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Abstract

In this note we characterize the Reidemeister trace, the equivariant

Lefschetz number and the equivariant Reidemeister trace in terms of

certain axioms.

Introduction

The Euler characteristic and the Lefschetz number have been systematically
used in order to treat fixed point theory, where the former can be regarded
as a particular case of the latter. C. Watts in [Wa] characterized the Euler
characteristic in an axiomatic way, and recently M. Arkowitz and R. Brown
in [AB] characterized the Lefschetz number also in an axiomatic way.

A sharper invariant for the study of fixed point theory is the Reidemeis-
ter trace, which was originally defined by K. Reidemeister in [R]. S. Husseini
in [Hu] provided an algebraic version of the so called Generalized Lefschetz

∗This work began during the 5th International Siegen Topology Meeting July 25-July

30 2005.
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number which under certain identifications constitutes an extension of the
Reidemeister trace. This can be used to define in a more geometric way an
extended Reidemeister trace (see section 1). It is defined on a larger category
than the Reidemeister trace, and the Reidemeister trace of an endomorphism
is equal to the extended Reidemeister trace of the corresponding endomor-
phism in the larger category.

The first purpose of this work is to show that this extended Reidemeister
trace can be characterized in terms of some axioms which are similar to
(but not the same as) the ones used in [AB]. For equivariant fixed point
theory, we have the notion of an equivariant Lefschetz number (see [LR]) and
an equivariant Reidemeister trace (see [We], where it was called generalized
equivariant Lefschetz invariant). The second purpose of this work is to show
that the equivariant invariants can also be characterized by corresponding
axioms.

The paper contains 4 sections. In section 1 we revise a few facts about
the Reidemeister trace, where the definition of the Reidemeister trace here
extends the one given in [R]. The main ideas are from S. Husseini [Hu].
In section 2 we give a set of axioms and show that these characterize the
Reidemeister trace. In section 3 we deal with the axioms characterizing the
equivariant Lefschetz number, and in section 4 we treat the axioms for the
equivariant Reidemeister trace.

1 Preliminaries about the Reidemeister trace

The original Reidemeister trace was defined in [R] for endomorphisms in a
certain category. In this section we extend this definition to endomorphisms
of a larger category which will be used in our approach. We simply refer to
this as an extension of the Reidemeister trace to this larger category.

Extensions of the Reidemeister trace to larger categories than the one
considered by Reidemeister have been studied in a purely algebraic way
by S. Husseini in [Hu], and more geometrically by J. S. Fares and E. Hart
in [FH], [Ha]. We will refer to them for more details.

We will consider an extension of the Reidemeister trace to a category
which seems suitable for the type of problem we want to analyze, namely
axiomatization. We start by recalling the Reidemeister trace and discussing
the extension in detail.

Let C be the category where the objects are finite connected CW-complexes
and the morphisms are continuous maps. Let X ∈ C and denote by X̃ the
universal covering space of X. Each module Cn(X̃) of the cellular chain com-
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plex C∗(X̃) is a free Z[π]−module. As in [R], given a cellular map f : X → X
consider the induced chain homomorphism f̃n# : Cn(X̃) → Cn(X̃). From [R]
one has the definition of the ”trace” tr(f̃n#) of each homomorphism f̃n#

which is a well defined element in the abelian group Z[R(f)] where R(f) is
the set of the Reidemeister classes of f . The element Σ∞

n=0(−1)ntr(f̃n#) of
the abelian group Z[R(f)] is called the Reidemeister trace of the function f ,
we denote it by RT (f).

Now consider the category C0 where the objects are pairs (X, H) where X
is a CW-complex and H ⊂ π1(X) is a normal subgroup. Morphisms are pairs
(f, f#) where f is a continuous map f : X → X such that f#(H) ⊂ H, with
f# the induced homomorphism on the fundamental group. There is a natural
way to define an extension of the Reidemeister trace for the morphisms of
C0, see [Ha], [FH] and [Hu] for more details. We simply call this extension an
extension of the Reidemeister trace to the category C0.

Finally denote by C1 the category where the objects are pairs (Y, G) where
G is a discrete group, Y is a connected and finite-dimensional CW-complex,
G acts cellularly and either freely or semi-freely where the fixed point set
of the action is one point, i.e., Y G = y0, and Cn(Y ) (which is a free Z[G]-
module) has finite rank. (This is fulfilled if G acts cocompactly.) Denote by
C0

1 ⊂ C1 the objects where the action is free. By a map between two objects
(Y1, G1) and (Y2, G2), we mean a pair (f, φ) where φ : G1 → G2 is a group
homomorphism and f : Y1 → Y2 is a cellular equivariant map with respect to
φ (meaning f(g.y) = φ(g).f(y)).

The category C embeds in the category C1 in the following way: To a finite
connected CW-complex X we associate the pair (X̃, π1(X)). To a morphism
f : X → Y , we associate the pair (f̃ , f#), where f# is the map induced by f
on the fundamental group.

We need to use the category C1 because of the cofibration axiom: When
we have a cofibration A → X and we want to pass to the universal cover X̃,
then we only obtain a cofibration Ã → X̃ if π1(A) = π1(X). We also want to
treat the case where π1(A) 6= π1(X) by using the corresponding cover Â of A
and then associating (Â, π1(X)) to A.

Given a map (f, φ) from a pair (Y, G) to itself we define:

Definition 1.1 The extended Reidemeister trace of a self map (f, φ) : (Y, G) →
(Y, G), denoted by RTE(f, φ), is given by:
a) If the action is free it is the element Σ∞

n=0(−1)ntr(fn#) of the abelian group
Z[R(φ)], where R(φ) is the set of the Reidemeister classes of the homomor-
phism φ : G → G, and fn : Cn(Y ) → Cn(Y ) is the Z[G]-homomorphism of
the chain complex in dimension n, equivariant with respect to φ.
b) If the action is semi-free, similarly as in item a), it is the element
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Σ∞
n=1(−1)ntr(fn#)+ tr(f̄0#) of the abelian group Z[R(φ)], where R(φ) are the

Reidemeister classes of the homomorphism φ : G → G, fn : Cn(Y ) → Cn(Y )
is the Z[G]-homomorphism of the chain complex in dimension n > 0 and
f0 : C0(Y )/C0(y0) → C0(Y )/C0(y0) is the Z[G]-homomorphism of the quo-
tient of the chain complex in dimension 0. Here y0 is the basepoint of Y .

The difference between a) and b) is that in b) we ignore the summand Z

of the 0-chain which comes from the point fixed by the action.
We briefly comment on how RTE extends the original definition of Rei-

demeister trace. Given an object X ∈ C consider the pair (X̃, π1(X)). It is
easy to check that this pair is in C1. Given a map f : X → X we consider a
lift f̃ : X̃ → X̃. It is also easy to see that RT (f) = RTE(f̃ , f#).

Now we will prove two lemmas about RTE where the first can be used to
give an alternative description of a set of axioms which will characterize the
Reidemeister trace.

Lemma 1.2 a) Let (Y, G) ∈ C0
1 and let (f, φ) be an endomorphism of (Y, G),

i.e., φ is an endomorphism of G and f : Y → Y is a φ-equivariant map.
Let Ȳ = Y/G, and let f̄ : Ȳ → Ȳ be the induced map. Then the natural
homomorphism θ : π1(Ȳ ) → G satisfies θ(RT (f̄)) = RTE(f, φ).

b) Let (Yi, Gi) ∈ C0
1 for i = 1, 2 and let (fi, φi) be endomorphisms of

(Yi, Gi), i.e., let φi be endomorphisms of Gi and fi : Yi → Yi be φi-equivariant
maps for i = 1, 2. Let θ : G2 → G1 be a surjective homomorphism and let
p : Y2 → Y1 be a regular covering, where p is θ-equivariant and f2 is a lift of f1

with respect to the covering. If the deck tranformations of the regular covering
correspond to a subgroup of G2 such that we have a short exact sequence

1 → π1(Y1)/π1(Y2) → G2 → G1 → 1,

then θ(RTE(f2, φ2)) = RTE(f1, φ1).

Proof. Part a) Consider the universal covering Ỹ of Y and the covering map
p : Ỹ → Y . The pair (p, θ) is a map from (Ỹ , π1(Ȳ )) to (Y, G) and the result
follows straight from the definitions of RT (f̄) and RTE(f, φ).

Part b) Let Ȳ1 = Y1/G1 and Ȳ2 = Y2/G2. Because of the hypotheses we
have a well defined map p̄ : Ȳ2 → Ȳ1 which is indeed a homeomorphism and
we denote this space (hoemeomorphic to Ȳ1 and Ȳ2) by Y . Let f : Y → Y
be the quotient map and let Ỹ be the universal cover of Y which is also the
universal cover of Yi for i = 1, 2. The projection θi : π1(Y ) → Gi maps the
Reidemeister trace of f to RTE(fi, φi) for i = 1, 2 respectively and the result
follows.

For the next lemma, for all n ≥ 1 let us denote by Yn a bouquet of spheres
Sn which as CW-complex has one 0-cell and a number of n-cells equal to the
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number of spheres in the bouquet. Suppose that Yn is a G-CW-complex
where G acts semi-freely with respect to the CW structure of Yn described
above.

Lemma 1.3 Let φ : G → G be a homomorphism, and let fn : Yn → Yn be
a φ-equivariant homomorphism where the suspension of fn is homotopic to
fn+1, for all n ≥ 1. Then RTE(f1, φ) = (−1)n−1RTE(fn, φ).

Proof. From the definition of RTE, for each space Yn we have to consider
only one free module which corresponds to the chains at level n, denoted by
Fn. But these modules are isomorphic and the Z[G]-homomorphisms are the
same because of the hypotheses. So the result follows.

Some examples

The following examples show the necessity of axioms slightly more compli-
cated than the ones used to characterize the Lefschetz number. If we work
with the Lefschetz number, for a given cofibration A → X → X/A and a self
map of this cofibration, we know that L(f) = L(f ′) + L(f̄), where f ′ is the
restriction of f to A and f̄ is the induced map in the quotient.

Although given f ′ and f̄ there are many different homotopy classes of
maps [f ] of cofiber maps f : X → X which make the diagram commutative
up to homotopy, the Lefschetz number of any one possible f is the same and
it is determined by f ′ and f̄ as in the formula above. This is not the case for
the Reidemeister trace. Therefore we need some suitable replacement for the
cofibration axiom.

Example 1 Take A = S1, X = S1 ∨ S2 and X/A = S2. Let us define
two maps f1, f2 : X → X, not homotopic, such that the induced maps on
the subspace and on the quotient are homotopic. (There are infinitely many
such maps homotopic to some prescribed f ′ on A and f̄ on X/A.) Denote
by ι1, ι2 the generators of π1(S

1), π2(S
2). Let f1, f2 be maps such that the

induced homomorphisms on the generators ι1, ι2 are defined as follows: for f1

the homomorphism is the identity and for f2 we have ι1 → ι1 and ι2 → ι1 ◦ ι2
where the multiplication ◦ means the action of π1 on the group π2. The
Reidemeister trace of f1 is not the same as the Reidemeister trace of f2. This
tells us that the calculation of the Reidemeister trace cannot be computed
simply using f ′ and f̄ as in the Lefschetz number case.

Example 2 Take A = S1, let X be the torus and take the inclusion S1 →
S1×S1 to be x 7→ (x, y0) for some base point y0 ∈ S1. The space X/A has the
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homotopy type of a wedge of S1 and S2. All these spaces have nice models for
the universal covering. There are many maps f : T → T (they are classified
by the induced homomorphism in homology) which satisfy f(A) ⊂ A, but they
have different Reidemeister trace. In this case the space is not a wedge as in
example 1.

2 Axioms for the Reidemeister trace

Now we formulate the axioms for the Reidemeister trace. Let µ be a function
which to a self map (f, φ) of an object (Y, G) ∈ C1 associates an element of
the abelian group Z[R(φ)]. Suppose that µ satisfies the following axioms:

1. Homotopy property:
Let (Y, G) ∈ C1 and let φ be an endomorphism of G. If f, g : Y → Y
are φ-homotopic then µ(f, φ) = µ(g, φ).

2. Commutativity property:
Let (Y1, G1), (Y2, G2) ∈ C1 and let φ1 : G1 → G2, φ2 : G2 → G1 be
homomorphisms. If f : Y1 → Y2, g : Y2 → Y1 are φ1-, φ2-equivariant
maps respectively, then φ1∗µ(g ◦ f, φ2φ1) = µ(f ◦ g, φ1φ2). Here φ1∗

denotes the map induced by φ1 on the set of Reidemeister classes.

3. Cofibration property:
Let A be a G-sub-CW-complex of X, (X, G) ∈ C1 and A → X

p
→ X/A

the cofiber sequence. Consider the induced action of G on A given by
the restriction of the action of G on X, and an action on X/A such that
the projection p : X → X/A is a G-map, i.e., p(g.x) = g ◦ p(x).

Suppose that there exists a homotopy commutative diagram

A //

f ′

��

X
p

//

f

��

X/A

f̄

��

A // X // X/A

where the vertical maps are G-maps with respect to a given homomor-
phism φ, then µ(f, φ) = µ(f ′, φ) + µ(f̄ , φ) as an element of Z[R(φ)].

4. Wedge property:
Given K any one dimensional G-complex where (K, G) ∈ C1, and a
self-map (f, φ) of the object (K, G), then µ(f) = RTE(f).
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We have the following alternative description of the axiom 4 above:

4’. Alternative description of the Wedge property:
4’.1) Let (K, G) be a pair where K is a one-dimensional complex which is a
tree and G acts freely on K. If (f, φ) is an endomorphism, then µ(f, φ) =
RTE(f, φ).
4’.2) Let (K, G) be a pair where K is a bouquet of circles where G acts semi-
freely on K and KG is the distinguished point of the bouquet. If (f, φ) is an
endomorphism, then µ(f, φ) = RTE(f, φ).
4’.3) Let (X1, G1), (X2, G2) be pairs and let (p, θ) be a morphism such that
p : X1 → X2 is a normal covering map, the group of deck tranformations of
p, denoted by H, is a subgroup of G1, and we have a short exact sequence
1 → H → G1 → G2 → 1. Then given f2 : X2 → X2 and f1 : X1 → X1 where
f1 covers f2 with respect to p, we have p#µ(f1) = µ(f2).

Now we are in a position to prove the main result.

Theorem 2.1 Let µ be a function which associates to each endomorphism
(f, φ) of an object (Y, G) ∈ C1 an element of the Reidemeister group Z[R(φ)]
such that it satisfies the 4 axioms above. Then µ coincides with RTE and
consequently µ restricted to C coincides with the Reidemeister trace RT .

Proof. The proof is by induction on the dimension of the CW-complex.
If the dimension of K is one then the function µ coincides with RTE by

the Wedge axiom. It remains to show that this is also true if the Alternative
Wedge axiom holds. But this follows from Lemma 1.2.

Suppose that we have proved the result for all CW-complexes of dimension
less than or equal to n and let Y have dimension n + 1 with (Y, G) ∈ C1. We
consider two cases. In the first case G acts freely, in the second case it acts
semi-freely.

In the first case consider the cofibration Y n → Y → Y/Y n ∼= ∨Sn+1.
Since the action of G is cellular, it can be restricted to Y n, and we obtain a
free G-action on Y n and a semi-free action on Y/Y n. The map f induces a
self-map of the cofibration above, i.e., there is a commutative diagram

Y n //

f ′

��

Y //

f

��

Y/Y n

f̄

��

Y n // Y // Y/Y n

where f ′ and f̄ are φ-equivariant maps. The hypotheses of the ”Cofibration
property” axiom are satisfied. So we obtain µ(f, φ) = µ(f ′, φ) + µ(f̄ , φ) =
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RTE(f ′, φ) + µ(f̄ , φ). In order to show that µ(f, φ) = RTE(f, φ) it suffices
to show that µ(f̄ , φ) = RTE(f̄ , φ).

Now we proceed as follows: Let us consider the bouquet of (n+1)-spheres
indexed by a set J . Consider the bouquet of n-spheres indexed by the same
set and the map f̄des a desuspension of the given map f̄ . Then consider the
bouquet of discs of dimension n + 1 indexed by the same set and extend
the map f̄ to a map f̄discs. From the homotopy property and the cofibration
property (the action defined on the spaces satisfies the hypotheses of the ”cofi-
bration property” axiom) it follows that µ(f̄discs, φ) = 0 and that µ(f̄des, φ) =
−µ(f̄ , φ). From Lemma 1.3 we know that RTE(f̄des, φ) = −RTE(f̄ , φ), so by
the induction hypothesis we have µ(f̄ , φ) = RTE(f̄ , φ) and the result follows
for a free action. If the action is semi-free the proof is similar and is left to
the reader.

3 Axioms for the equivariant Lefschetz num-

ber

In this section we give a set of axioms for the equivariant Lefschetz number
with values in the Burnside ring, corresponding to the axioms given in [AB].

Let Γ be a finite group. The Burnside ring A(Γ) of Γ is defined to be the
Grothendieck ring of finite Γ-sets with the additive structure coming from
disjoint union and the multiplicative structure coming from the Cartesian
product. Additively,

A(Γ) =
⊕

(H)∈c(Γ)

Z · [Γ/H],

where c(Γ) denotes the set of conjugacy classes of subgroups of Γ. Let X
be a finite Γ-CW-complex. Given a Γ-equivariant cellular endomorphism
f : X → X, one defines the equivariant Lefschetz number with values in the
Burnside ring of f [LR, Equation 4.1] by

LΓ(f) :=
∑

(H)∈c(Γ)

LZWH(fH , f>H) · [Γ/H] ∈ A(Γ).

Here, for H ≤ Γ, we have the fixed point set XH := {x ∈ X | hx =
x for all h ∈ H} and set fH := f |XH . We set X>H := {x ∈ XH | Γx 6= H},
where Γx denotes the isotropy group of x, and f>H := f |X>H .

Using [LR, Lemma 1.9], we have

LZWH(fH , f>H) =
∑

p≥0

(−1)p
∑

WH·e∈WH\Ip(XH ,X>H)

inc(fH , e).
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Here Ip(X
H , X>H) denotes the set of p-cells of XH \ X>H and inc(fH , e) is

the incidence number, the degree of the composition

e/∂e
ie−→

∨
Sp k−1◦fH◦k

−−−−−−→
∨

Sp pre−−→ e/∂e,

where k is the appropriate homotopy equivalence. The general definition is
given in [LR, Definition 1.4]. If f is not cellular, one takes any Γ-equivariant
cellular approximation [tD, II.2] f̂ of f and defines L(f) := L(f̂).

Now let X be a based Γ-CW-complex, where the isotropy group of the
basepoint is Γ. Let f be an endomorphism fixing the basepoint. We define
the reduced equivariant Lefschetz number L̃Γ to be L̃Γ(f) := LΓ(f) − 1. We
characterize the reduced equivariant Lefschetz number as follows.

Theorem 3.1 Let λΓ be a function from the set of Γ-equivariant endomor-
phisms of finite based Γ-CW-complexes to the Burnside ring A(Γ) that satis-
fies the following conditions:

1. Γ-Homotopy Axiom:
If f, g : X → X are Γ-homotopic, then λΓ(f) = λΓ(g).

2. Cofibration Axiom:
If A is a sub-Γ-CW-complex of X and A → X → X/A is the resulting
cofiber sequence, and if there exists a commutative diagram

A //

f ′

��

X //

f

��

X/A

f
��

A // X // X/A,

then λΓ(f) = λΓ(f ′) + λΓ(f).

3. Commutativity Axiom:
If f : X → Y and g : Y → X are equivariant maps, then λΓ(gf) =
λΓ(fg).

4. Wedge of Circles Axiom:
If f :

∨k Γ/Hi × S1 →
∨k Γ/Hi × S1 is an equivariant map, then

λΓ(f) = −(inc(f, e1) · [Γ/H1] + . . . + inc(f, ek) · [Γ/Hk]).

Then λΓ coincides with the reduced equivariant Lefschetz number L̃Γ.

This theorem is the equivariant generalization of [AB, Theorem 1.1]. We
use several lemmas in the proof, corresponding to [AB, Lemma 3.1 – 3.4].
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Lemma 3.2 If f : X → X is an equivariant map and h : X → Y is a Γ-
homotopy equivalence with Γ-homotopy inverse k : Y → X, then λΓ(f) =
λΓ(hfk).

Lemma 3.3 If f : X → X is Γ-homotopic to a constant map, then λΓ(f) =
0.

Lemma 3.4 If X is a based Γ-space, f : X → X is a based equivariant map
and Σf : ΣX → ΣX is the suspension of f , then λΓ(Σf) = −λΓ(f).

Lemma 3.5 For any k ≥ 0 and n ≥ 0, if f :
∨k Γ/Hi×Sn →

∨k Γ/Hi ×Sn

is a Γ-equivariant map, then

λ(f) = (−1)n(inc(f, e1) · [Γ/H1] + . . . + inc(f, ek) · [Γ/Hk]).

Proof.[Sketch] The proofs are only slight modifications of those given in [AB].
The only point to remark here is that Lemma 3.5 also holds for the case
n = 0. This is derived from Lemma 3.4, using the fact that the suspension is
a wedge of one-dimensional spheres and thus the value of λΓ(f) = −λΓ(Σf)
is given by Axiom (4).

Proof. of Theorem. We easily check that the reduced equivariant Lefschetz
number L̃Γ fulfills the above axioms. Axiom (1) follows directly from [LR,
Lemma 1.6 (a)] and Axiom (3) from [LR, Lemma 1.6 (b)]. Axiom (2) follows
from additivity, as stated for example in [We, Definition 2.3], which holds
because of [We, Theorem 5.14]. Using the Γ-pushout-diagram

(A, f ′) //

��

(∗, id∗)

��

(X, f) //// (X/A, f)

one obtains
LΓ(f) + LΓ(id∗) = LΓ(f ′) + LΓ(f).

We have LΓ(id∗) = 1, so

L̃Γ(f) = L̃Γ(f ′) + L̃Γ(f).

Axiom (4) follows from [LR, Lemma 1.9], using the fact that the WH-cells of
XH \X>H are in a one-to-one correspondence with the Γ/H-cells of X. The
zero-cell gives a contribution +1 to LΓ(f), this disappears since we consider

L̃Γ(f).
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We now have to check that any invariant satisfying the axioms is equal to
L̃Γ. This can be done analogously to [AB].

Lemma 3.5 gives the value for based 0-dimensional spaces. If f : X → X
is an endomorphism of a 0-dimensional Γ-CW-complex without basepoint,
adding a disjoint basepoint and looking at the cofibration sequence

(X, f) → (X+, f+) → (S0, idS0)

gives by the Cofibration Axiom

λΓ(f+) = λΓ(f) + λΓ(idS0),

and since λΓ(idS0) = inc(f, e) = 1 we have

λΓ(f) = λΓ(f+) − 1.

Using the above lemmas, we can now prove the desired result by induction.
Using Γ-equivariant cellular approximation [tD, II.2] and the Γ-homotopy
axiom, we can suppose without loss of generality that f is cellular.

Let X = qk
i=1Γ/Hi be a 0-dimensional Γ-CW-complex, and let f : X → X

be an endomorphism. By definition we have L̃Γ(f) = (
∑

i inc(f, ei)·[Γ/Hi])−
1. (Note that inc(f, ei) = 1 if f induces the identity on this 0-cell, and
inc(f, ei) = 0 otherwise.) We have the same value for λΓ(f) by Lemma 3.5.

Let X be an n-dimensional Γ-CW-complex. Inclusion of the n−1-skeleton
gives a cofibration sequence

(Xn−1, fn−1) → (X, f) → (X/Xn−1, f) = (
k∨

Γ/Hi × Sn, f),

whence λΓ(f) = λΓ(fn−1) + λΓ(f). Using the induction hypothesis and

Lemma 3.5 we obtain λΓ(f) = L̃Γ(fn−1) + L̃Γ(f) = L̃Γ(f).

Remark 3.6 It might also be possible to introduce an induction structure
into the axioms, this is fulfilled by the equivariant Lefschetz number [LR,
Lemma 1.6, assertions (c) and (d)]. Using the induction structure, we would
only need the wedge axiom for S1 with trivial group action.

Remark 3.7 The commutativity axiom does not seem to be necessary in its
full generality, it is only needed to know that the value on the one-point-space
is trivial. We keep the commutative axiom because this axiom has been used
more frequently in calculations.
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4 Axioms for the equivariant Reidemeister trace

We generalize Section 2 to the equivariant case, using the equivariant Reide-
meister trace RTΓ which was developed under the name generalized equivari-
ant Lefschetz invariant λΓ in [We]. (We call it RTΓ here to avoid confusion
with λΓ introduced in Section 3.) We define an equivariant extended Rei-
demeister trace RTEΓ and we give axioms characterizing this invariant, and
thus also the equivariant Reidemeister trace.

We start by reviewing the definition of the equivariant Reidemeister trace.
We adopt a geometric approach, a thorough treatment of the abstract setup
can be found in [We].

Let Γ be a finite group. Let X be a finite Γ-CW-complex, and let f : X →
X be an equivariant endomorphism. The equivariant Reidemeister trace of
f is an element in the abelian group

⊕

(H)∈c(Γ)
i∈IX,H

ZR(φH,i).

Here the indexing set IX,H is used for the connected components of the fixed
point set XH , i.e., XH = qi∈IX,H

XH
i with XH

i connected. The Reidemeister
set R(φH,i) is given by

R(φH,i) := π1(X
H
i )/φH,i(γ)αγ−1 ∼ α

if f(XH
i ) ⊆ XH

i , and by the empty set ∅ otherwise.
Here α ∈ π1(X

H
i ) and γ ∈ AH,i, where AH,i is given by a group extension

1 → π1(X
H
i ) → AH,i → WHi → 1 with WHi ≤ WH being the subgroup

that fixes XH
i . The map φH,i is induced by the restriction of f# on π1(X

H
i )

and by the identity on WHi.
There is a trace map mapping into this group, and the equivariant Reide-

meister trace RTΓ(f) is the image of a certain universal invariant under this
trace map [We, Definition 5.13].

Definition 4.1 Let f : X → X be an equivariant endomorphism of a finite
Γ-CW-complex X. The equivariant Reidemeister trace of f is

RTΓ(f) :=
∑

H,i

trZAH,i
(f̃H

i , f̃>H
i ) ∈

⊕

(H)∈c(Γ)
i∈IX,H

ZR(φH,i).

Here X>H
i := {x ∈ XH

i |Γx 6= H} ⊆ XH
i denotes the singular set, the set

of points in XH
i having isotropy group greater than H. The maps fH

i and

12



f>H
i are the restrictions to those spaces, and f̃H

i and f̃>H
i are the lifts to the

universal cover of XH
i and to the corresponding cover of X>H

i .
The trace map trZAH,i

is the trace map for discrete group extensions in-
troduced in [We, Definition 5.4].

We also want to treat spaces with a basepoint. If X is a based Γ-CW-
complex, with the basepoint x0 ∈ X having isotropy group Γ and lying in
XΓ

1 , then we define the reduced equivariant Reidemeister trace R̃TΓ to be

R̃TΓ(f) := RTΓ(f) − 1, where 1 ∈ ZR(XΓ
1 ).

We now enlarge the category on which we want to define an equivariant
Reidemeister trace.

Definition 4.2 Let ΓC be the category consisting of finite Γ-CW-complexes
and equivariant maps.

Let ΓC1 be the category consisting of triples (Z,X ,G). Here Z is a finite
proper Γ-CW-complex and X and G are families indexed by {(H) ∈ c(Γ), i ∈
IZ,H}. At (H, i), the group GH,i is given by a group extension

1 → π1(Z
H
i ) → GH,i → WHi → 1.

The family X consists of pairs of finite-dimensional spaces (XH,i, X
′
H,i), and

the group GH,i is required to act freely and cocompactly on XH,i \ X ′
H,i.

If Z has a basepoint, then we also have a basepoint in XΓ,1, and maps are
basepoint-preserving.

Morphisms are triples (g, F, Φ), where g : Z1 → Z2 is an equivariant map
which induces a map on the indexing sets. The family Φ consists of maps
induced by g, and the family F consists of maps compatible with the map on
the indexing set and such that fH,i is φH,i-equivariant.

We embed C into C1 by associating to a finite proper Γ-CW-complex X

the triple (X, {(X̃H
i , X̃>H

i )},G), where G is given as above.

To a morphism g : X → Y , we associate (g, {(g̃H
i , g̃>H

i )}, Φ), where Φ is
induced by g.

The dimension of a fimily X is defined to be the maximum of the dimen-
sions of the spaces it contains.

Remark 4.3 A more abstract approach can be made by considering spaces
over categories, defined in the spirit of [L]. Using this approach, one can see
why the above definitions make sense and work. In this setting, we would
define:
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Let CΓ1 be the category consisting of pairs (X ,G), where X is a finite-
dimensional proper G-CW-complex. Here G is an EI-category (a small cat-
egory where every endomorphism is an automorphism) which is the funda-
mental category [L, Definition 8.15] of some Γ-CW-complex, i.e., there exists
a Γ-CW-complex Z with G ∼= Π(Γ, Z).

A morphism from (X1,G1) to (X2,G2) in CΓ1 is a pair (f, Φ), where Φ: G1 →
G2 is a functor induced by a morphism g : Z1 → Z2 between the corresponding
Γ-spaces and f : X1 → X2 is a Φ-equivariant map.

We embed ΓC in CΓ1 by associating to a finite proper Γ-CW-complex X
the pair (X̃, Π(Γ, X)). Here X̃ is the universal covering space of X in the
equivariant sense [L, Definition 8.22], a Π(Γ, X)-CW-complex.

In order to characterize the reduced equivariant Reidemeister trace, we
define an equivariant extended Reidemeister trace (RTEΓ) as a generalization
of RTE.

Definition 4.4 Let Γ be a finite group. The equivariant extended Reide-
meister trace RTEΓ is defined on endomorphisms in the category ΓC1. Given
an endomorphism (g, F, Φ) of an object (Z,X ,G), we have

RTEΓ(g, F, Φ) :=
∑

H,i

trZGH,i
(fH,i) ∈

⊕

(H)∈c(Γ)
i∈IZ,H

ZR(φH,i).

Here trZGH,i
is the trace map for group extensions [We, Definition 5.4].

We need to prove a preliminary lemma, analogous to Lemma 1.3 in the
non-equivariant case.

Lemma 4.5 For all n ≥ 1, let (Z,Yn,G) ∈ ΓC1 with Yn consisting of bou-
quets of n-spheres, seen as pairs (∨Sn, pt), and where Yn+1 is the family
consisting of the suspensions of the spheres in Y.

Let (g, Fn, Φ) be endomorphisms of (Z,Yn,G), with (g, Fn+1, Φ) homotopic
to the suspension of (g, Fn, Φ). Then

RTEΓ(g, Fn+1, Φ) = −RTEΓ(g, Fn, Φ).

Proof. For all n ≥ 1, the only maps appearing in the definition of RTEΓ(g, Fn, Φ)
are endomorphisms of free GH,i-modules of dimension n, and the modules ap-
pearing for n and n + 1 are isomorphic. Since the map fn+1 is homotopic to
the suspension of fn, by homotopy invariance of the trace, trZGH,i

(fn+1H,i) =
trZGH,i

(fnH,i) for all (H, i), and the result follows.

Now we can state and prove the theorem.
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Theorem 4.6 Let Γ be a discrete group. Let µΓ be a function defined on the
set of equivariant endomorphisms of objects in ΓC1, mapping an endomor-
phism (g, F, Φ): (Z,X ,G) → (Z,X ,G) into

⊕
(H)∈c(Γ)
i∈IZ,H

ZR(φH,i), that satisfies

the following conditions:

1. Γ-Homotopy Axiom:
Let (Z,X ,G) ∈ ΓC1. If endomorphisms (g1, F1, Φ1) and (g1, F2, Φ2) of
(Z,X ,G) are homotopic in ΓC1, then

µΓ(g1, F1, Φ1) = µΓ(g2, F2, Φ2).

2. Cofibration Axiom:
Let (Z,X ,G) ∈ ΓC1. Let (Z,A,G) ∈ ΓC1 with (AH,i, A

′
H,i) → (XH,i, X

′
H,i)

a cofibration for all (H, i). Let X /A = {(XH,i, AH,i ∪ X ′
H,i)}. Let

(g, F, Φ) be an endomorphism of (Z,X ,G) which can be restricted to an
endomorphism (g, F ′, Φ) of (Z,A,G). If there exists an endomorphism
(g, F , Φ) of (Z,X /A,G) lying in a homotopy commutative diagram

A
i

//

F ′

��

X
p

//

F

��

X /A

F
��

A // X // X /A,

then µΓ(g, F, Φ) = µΓ(f, F ′, Φ) + µΓ(f, F , Φ).

3. Commutativity Axiom:
Given a morphism (g1, F1, Φ1) : (Z1,X ,G1) → (Z2,Y,G2) and a mor-
phism (g2, F2, Φ2) : (Z2,Y,G2) → (Z1,X ,G1), we have

Φ1∗µΓ(gf, Φ2Φ1) = µΓ(fg, Φ1Φ2)

and
Φ2∗µΓ(g1g2, F1F2, Φ1Φ2) = µΓ(g2g1, F2F1, Φ2Φ1).

4. Wedge Axiom:
Given an endomorphism (g, F, Φ) of (Z,K,G) ∈ ΓC1, where K is one-
dimensional, we have µΓ(g, F, Φ) = RTEΓ(g, F, Φ).

Then µΓ coincides with RTEΓ, and consequently µΓ restricted to ΓC coincides
with the equivariant Reidemeister trace RTΓ.
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Proof. The proof is analogous to the non-equivariant case. We proceed by
induction on the dimension of the family X .

If the dimension is one, then the function µΓ coincides with RTEΓ by the
wedge axiom.

Let (Z,X ,G) ∈ ΓC1 with X having dimension n + 1. Suppose that we
have proved the result for all objects with families of dimension less than or
equal to n.

Again, we only consider the basepoint-free case, the case of spaces with
basepoint is analogous.

Consider the family of cofibrations (Xn
H,i, X

n
H,i

′) → (XH,i, X
′
H,i) → (XH,i, X

n
H,i∪

X ′
H,i) which we abbreviate by X n

H,i → XH,i → XH,i/X
n
H,i. Since the action of

GH,i is cellular, it can be restricted to Xn
H,i, and we have a free GH,i-action on

Xn
H,i \Xn

H,i
′ and a semi-free action on the quotient. Since the maps are cellu-

lar, every map fH,i can be restricted to a φH,i-equivariant endomorphism on
Xn

H,i, and a φH,i-equivariant endomorphism f̄H,i on the quotient is induced.
We obtain a commutative diagram

X n i
//

F ′

��

X
p

//

F

��

X /X n

F
��

X n // X // X /X n,

and thus we have µΓ(g, F, Φ) = µΓ(g, F ′, Φ) + µΓ(g, F , Φ).
It remains to show that µΓ(g, F , Φ) = RTEΓ(g, F , Φ). We know that

X /X n is a family of bouquets of (n+1)-spheres with semi-free cellular group
actions. As in the non-equivariant case, we can desuspend the endomorphisms
and see that µΓ(g, F̄des, Φ) = −µΓ(g, F̄ , Φ). From Lemma 4.5 we know that
RTEΓ(g, F̄des, Φ) = −RTEΓ(g, F̄ , Φ), so by the induction hypothesis we ob-
tain µΓ(g, F̄ , Φ) = RTEΓ(g, F̄ , Φ) and the result follows.

Remark 4.7 It might also be possible to introduce an induction structure
into the axioms, this is fulfilled by the equivariant generalized Lefschetz invari-
ant [We]. The induction structure would connect the invariants for different
groups Γ.
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