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Abstract

We give explicit formulas for the recently introduced Schur multiple zeta values, which generalize
multiple zeta(-star) values and which assign to a Young tableaux a real number. In this note we
consider Young tableaux of various shapes, filled with alternating entries like a Checkerboard. In
particular we obtain new sum representation for odd single zeta values in terms of these Schur mul-
tiple zeta values. As a special case we show that some Schur multiple zeta values of Checkerboard
style, filled with 1 and 3, are given by determinants of matrices with odd single zeta values as entries.

2010 Mathematics Subject Classification : 11M41, 05E05, 33C05.
Key words and phrases : Multiple zeta values, Schur functions, Jacobi-Trudi formula, Hypergeo-
metric functions, Hankel determinants

1 Introduction

The purpose of this paper is to give explicit formulas for special values of a certain class of Schur multiple

zeta values. Schur multiple zeta values, which were recently introduced in [NPY], generalize the classical

multiple zeta(-star) values. For k1, . . . , kr−1 ≥ 1, kr ≥ 2 the multiple zeta value and the multiple zeta-star

value are defined by

(1.1) ζ(k1, . . . , kr) =
∑

0<m1<···<mr

1

mk1
1 · · ·m

kr
r

, ζ?(k1, . . . , kr) =
∑

0<m1≤···≤mr

1

mk1
1 · · ·m

kr
r

.

There are various results on special values of these real numbers. Denote by {k1, . . . , kr}n the index set

which consists of n repetitions of k1, . . . , kr. Then it was first proven in [BBB] that for all n ≥ 1

(1.2) ζ({1, 3}n) =
2π4n

(4n+ 2)!
=

1

4n
ζ({4}n) .

In this note we are interested in analogues formulas for Schur multiple zeta values. Schur multiple zeta

values generalize multiple zeta values by replacing an index set (k1, . . . , kr) by a Young tableau. For

example for numbers a, b, d ≥ 1, c, e, f ≥ 2 the following sum is an example for a Schur multiple zeta

value

(1.3) ζ

(
a b c

d e

f

)
=

∑
ma ≤ mb ≤ mc< <

md ≤ me<

mf

1

ma
a ·mb

b ·mc
c ·md

d ·me
e ·m

f
f

,

where we always assume that the m∗ appearing in the summation are positive integers. We will not just

consider full Young tableaux but also their skew-type, i.e. where one allows to subtract another Young

∗Partially supported by JSPS Grant-in-Aid for Scientific Research (C) No. 15K04785.
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2 H. Bachmann and Y. Yamasaki

tableau from the upper left corner. For example the following sum is an example of a Schur multiple zeta

value for a skew Young tableau

ζ

(
b c

d e

f

)
=

∑
mb ≤ mc<

md ≤ me<

mf

1

mb
b ·mc

c ·md
d ·me

e ·m
f
f

.

First notice that the multiple zeta(-star) values in (1.1) are given by Schur multiple zeta values of a

Young tableau with a single column and row, respectively, i.e.,

(1.4) ζ(k1, . . . , kr) = ζ

(
k1
...
kr

)
and ζ?(k1, . . . , kr) = ζ

(
k1 · · ·kr

)
.

In this paper we will give explicit formulas for Schur multiple zeta values of Checkerboard style, by

which we mean that the entries of the Young tableaux have two alternating entries. The formula in

(1.2) is an example for such an identity of Checkerboard style Schur multiple zeta values, since it can be

written as

ζ


1

3
...
1

3

 =
1

4n
ζ({4}n) .

Here and in the following the coloring is just for optical reasons and n denotes the number of blocks 1
3

.

As we will see in Theorem 3.4, a similar formula holds for the following skew Young tableaux

ζ

 1

. .
. 3

1 . .
.

3

 =
1

4n
ζ?({4}n) .

More surprisingly we will see in Theorem 3.5 that, after adding a 1 on the bottom left or a 3 on the top

right, we can obtain all odd single zeta values by these Schur multiple zeta values:

(1.5) ζ

 1

. .
. 3

1 . .
.

1 3

 =
2

4n
ζ(4n+ 1), ζ

 1 3

. .
. 3

1 . .
.

3

 =
1

4n
ζ(4n+ 3) .

These formulas are valid for all n ≥ 1 and n ≥ 0 respectively. In particular this gives new sum represen-

tation for odd single zeta values. Using (1.5) we will give explicit expressions for various classes of Schur

multiple zeta values of Checkerboard style. For example we will show (as a special case of Corollary 4.6)

that the value (1.3) with alternating entries in 1 and 3 is given by a Hankel determinant of odd single

zeta values:

ζ

(
3 1 3

1 3

3

)
=

1

42

∣∣∣∣ζ(3) ζ(7)
ζ(7) ζ(11)

∣∣∣∣ .
In general we will give formulas for these type of Schur multiple zeta values and their skew type versions.

For example the higher cases of above formulas are given by

ζ

 1 3 1 3

3 1 3

1 3

3

 =
1

44

∣∣∣∣ ζ(7) ζ(11)
ζ(11) ζ(15)

∣∣∣∣ , ζ


3 1 3 1 3

1 3 1 3

3 1 3

1 3

3

 =
1

46

∣∣∣∣∣∣
ζ(3) ζ(7) ζ(11)
ζ(7) ζ(11) ζ(15)
ζ(11) ζ(15) ζ(19)

∣∣∣∣∣∣ ,
from which the reader should already be able to guess the general form. Most of our results will be proven

for Checkerboard style Schur multiple zeta values with arbitrary entries a, b. But because of (1.5) the

case (a, b) = (1, 3) will always give even more explicit formulas.
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2 Schur multiple zeta values

2.1 Notations

Throughout the present paper, the set of all positive integers is denoted by N = {1, 2, 3, . . . }.
A partition of n ∈ N is a tuple λ = (λ1, . . . , λh) of positive integers λ1 ≥ · · · ≥ λh ≥ 1 with

n = |λ| = λ1 + · · · + λh. For another partition µ = (µ1, . . . , µr) we write µ ⊂ λ if r ≤ h and µj < λj
for j = 1, . . . , r. For partitions λ, µ with µ ⊂ λ we identify the pair λ/µ = (λ, µ) with its (skew) Young

diagram

D(λ/µ) =
{

(i, j) ∈ Z2 | 1 ≤ i ≤ h , µi < j ≤ λi
}
,

where we set µj = 0 for j > r. In the case where µ = ∅ is the empty partition we just write λ/µ = λ.

An entry (i, j) ∈ D(λ/µ) is called a corner of λ/µ if (i, j + 1) 6∈ D(λ/µ) and (i + 1, j) 6∈ D(λ/µ). We

denote the set of all corners of λ/µ by C(λ/µ). For example when λ/µ = (5, 4, 3)/(3, 1) we have C(λ/

µ) = {(1, 5), (2, 4), (3, 3)}, which we visualize as • in the corresponding Young diagram:

•
•

•

The conjugate of λ/µ is the pair λ′/µ′ with λ′ = (λ′1, . . . , λ
′
λ1

) and µ′ = (µ′1, . . . , µ
′
µ1

) whose Young

diagram is the transpose of that of λ/µ. For example when λ/µ = (5, 4, 3)/(3, 1) we have λ′/µ′ =

(3, 3, 3, 2, 1)/(2, 1, 1), which is visualized by

λ/µ = −→ λ′/µ′ = .

A (skew) Young tableau k = (ki,j)(i,j)∈D(λ/µ) of shape λ/µ is a filling of D(λ/µ) obtained by putting

ki,j ∈ N into the (i, j)-entry of D(λ/µ). For shorter notation we will also just write (ki,j) in the following

if the shape λ/µ is clear from the context. For example when λ/µ = (5, 4, 3)/(3, 1) we visualize this

Young tableau by

k = (ki,j) =

k1,4 k1,5

k2,2 k2,3 k2,4

k3,1 k3,2 k3,3

.

A Young tableau (mi,j) is called semi-standard if mi,j < mi+1,j and mi,j ≤ mi,j+1 for all i and j. The

set of all Young tableaux and all semi-standard Young tableaux of shape λ/µ are denoted by T (λ/µ) and

SSYT(λ/µ), respectively.

2.2 Schur multiple zeta values

We call a Young tableau k = (ki,j) ∈ T (λ/µ) admissible if ki,j ≥ 2 for (i, j) ∈ C(λ/µ). For an admissible

k = (ki,j) ∈ T (λ/µ) the Schur multiple zeta value is defined by

ζ(k) =
∑

(mi,j)∈SSYT(λ/µ)

∏
(i,j)∈D(λ/µ)

1

m
ki,j
i,j

.

We notice that the condition ki,j ≥ 2 for the corners ensures the convergence of the above series (see

[NPY, Lemma 2.1]). By definition it is clear that these numbers generalize multiple zeta and zeta-star

values as seen in (1.4). The product of two multiple zeta values can be expressed by using the so called

harmonic product formula, which in the lowest depth is given by ζ(a)ζ(b) = ζ(a, b) + ζ(b, a) + ζ(a + b).

Using the notion of Schur multiple zeta values, this can be expressed even nicer as

ζ
(

a
)
ζ
(

b
)

= ζ
(

a b
)

+ ζ

(
b

a

)
.
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In the following we want to explain this harmonic product for arbitrary Schur multiple zeta values. For

λ = (λ1, . . . , λh) and µ ⊂ λ we call (1, λ1) ∈ D(λ/µ) the top-right entry and (h, 1) ∈ D(λ/µ) the bottom-

left entry of λ/µ. For example when λ/µ = (5, 4, 3)/(3, 1) the top-right entry is (1, 5) and the bottom-left

entry is (3, 1), which are respectively visualized as tr and bl in the corresponding Young diagram:

tr

bl

For partitions λ1, λ2, µ1, µ2 with µ1 ⊂ λ1 and µ2 ⊂ λ2, define the horizontal gluing λ1/µ1 ⊕h λ
2/µ2 of

λ1/µ1 and λ2/µ2 by putting λ2/µ2 next to λ1/µ1 such that the bottom-left entry of λ2/µ2 is on the

right of the top-right entry of λ1/µ1. Moreover, define the vertical gluing λ1/µ1 ⊕v λ
2/µ2 of λ1/µ1 and

λ2/µ2 by putting λ2/µ2 next to λ1/µ1 such that the bottom-left entry of λ2/µ2 is on top of the top-right

entry of λ1/µ1. Analogously we define for Young diagrams k1 ∈ T (λ1/µ1) and k2 ∈ T (λ2/µ2) the Young

diagrams k1 ⊕h k2 ∈ T (λ1/µ1 ⊕h λ
2/µ2) and k1 ⊕v k2 ∈ T (λ1/µ1 ⊕v λ

2/µ2).

Example 2.1. For λ1/µ1 = (5, 4, 3)/(3, 1) and λ2/µ2 = (3, 3, 3, 2, 1)/(2, 1, 1) the horizontal gluing is

given by

k1,4k1,5

k2,2k2,3k2,4

k3,1k3,2k3,3

⊕h

l1,3

l2,2 l2,3

l3,2 l3,3

l4,1 l4,2

l5,1

=

l1,3

l2,2 l2,3

l3,2 l3,3

l4,1 l4,2

k1,4k1,5 l5,1

k2,2k2,3k2,4

k3,1k3,2k3,3

and the vertical gluing is given by

k1,4k1,5

k2,2k2,3k2,4

k3,1k3,2k3,3

⊕v

l1,3

l2,2 l2,3

l3,2 l3,3

l4,1 l4,2

l5,1

=

l1,3

l2,2 l2,3

l3,2 l3,3

l4,1 l4,2

l5,1

k1,4k1,5

k2,2k2,3k2,4

k3,1k3,2k3,3

.

Now the following is immediately from the definition of the Schur multiple zeta values.

Lemma 2.2. (Harmonic product) Let k1 ∈ T (λ1/µ1) and k2 ∈ T (λ2/µ2) be admissible indices. Then

both k1 ⊕h k2 and k1 ⊕v k2 are admissible and

(2.1) ζ(k1)ζ(k2) = ζ(k1 ⊕h k2) + ζ(k1 ⊕v k2) .

Let T diag(λ/µ) be the subset of T (λ/µ) consisting of all Young tableaux k = (ki,j) satisfying ki,j =

ki′,j′ whenever j − i = j′ − i′, which means that k has the same entries on each diagonal. The following

result from [NPY] states, that the Schur multiple zeta value ζ(k) for k ∈ T diag(λ/µ) can be written as a

determinant of a matrix whose entries are multiple zeta-(star) values.

Theorem 2.3 ([NPY, Theorem 4.3]). Let λ = (λ1, . . . , λh) and µ = (µ1, . . . , µr) be partitions with µ ⊂ λ
and k = (ki,j) ∈ T diag(λ/µ) an admissible Young tableau. Write dm = ki,i+m for m ∈ Z.

i) If the last entry of every row in k is strictly larger than 1, then we have

(2.2) ζ(k) = det
(
ζ?(dµj−j+1, dµj−j+2, . . . , dµj−j+(λi−µj−i+j))

)
1≤i,j≤h ,

where we set ζ?( · · · ) = 1 if λi − µj − i+ j = 0 and ζ?( · · · ) = 0 if λi − µj − i+ j < 0.
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ii) If the last entry of every column in k is strictly larger than 1, then we have

(2.3) ζ(k) = det
(
ζ(d−µ′j+j−1, d−µ′j+j−2, . . . , d−µ′j+j−(λ′i−µ′j−i+j))

)
1≤i,j≤λ1

,

where we set ζ( · · · ) = 1 if λ′i − µ′j − i+ j = 0 and ζ( · · · ) = 0 if λ′i − µ′j − i+ j < 0.

2.3 Checkerboard style Schur multiple zeta values

Let a, b ∈ N with b ≥ 2. In the remaining part of this paper we will be interested in Young diagrams λ/µ

satisfying the following properties: there exists a Young tableau ka,b = (ki,j) ∈ T (λ/µ) whose entries are

arranged in a ”Checkerboard style”, that is,

i) ki,j = a if i− j is even and ki,j = b otherwise, or, ki,j = a if i− j is odd and ki,j = a otherwise.

ii) ki,j = b whenever (i, j) ∈ C(λ/µ).

Notice that if ka,b exists, it is in T diag(λ/µ) by the first condition and always admissible by the second

one. Moreover conditions i) and ii) ensure that ka,b is unique for a given Young diagram λ/µ. We call

such a Young diagram λ/µ checkerboardable. The aim of this paper is, for a checkerboardable Young

diagram λ/µ, to study the checkerboard style Schur multiple zeta value ζ(a, b;λ/µ) = ζ(ka,b).

An immediate consequence of the Jacobi-Trudi formula above is the following.

Lemma 2.4. Let λ/µ be a checkerboardable Young diagram.

i) If the last entry of every row in ka,b is b, then we have

ζ(a, b;λ/µ) ∈ Q[ζ?({a, b}n), ζ?(b, {a, b}n) |n ≥ 0] .

ii) If the last entry of every column in ka,b is b, then we have

ζ(a, b;λ/µ) ∈ Q[ζ({a, b}n), ζ(b, {a, b}n) |n ≥ 0] .

Example 2.5. i) When λ/µ = (5, 4, 3)/(3, 1) we have from (2.2)

ζ(a, b;λ/µ) = ζ

(
a b

b a b

b a b

)
=

∣∣∣∣∣∣
ζ?(a, b) ζ?(b, {a, b}2) ζ?(b, {a, b}3)

1 ζ?(b, a, b) ζ?(b, {a, b}2)
0 ζ?(b) ζ?(b, a, b)

∣∣∣∣∣∣
= ζ?(a, b)ζ?(b, a, b)2 + ζ?(b)ζ?(b, {a, b}3)

− ζ?(b, a, b)ζ?(b, {a, b}2)− ζ?(b)ζ?(a, b)ζ?(b, {a, b}2) .

ii) When λ/µ = (3, 3, 3, 2, 1)/(2, 1, 1) we have from (2.3)

ζ(a, b;λ/µ) = ζ


b

b a

a b

a b

b

 =

∣∣∣∣∣∣
ζ(a, b) ζ(b, {a, b}2) ζ(b, {a, b}3)

1 ζ(b, a, b) ζ(b, {a, b}2)
0 ζ(b) ζ(b, a, b)

∣∣∣∣∣∣
= ζ(a, b)ζ(b, a, b)2 + ζ(b)ζ(b, {a, b}3)

− ζ(b, a, b)ζ(b, {a, b}2)− ζ(b)ζ(a, b)ζ(b, {a, b}2) .

3 Ribbons

A Young diagram λ/µ is called a ribbon if it is connected and does not contain any 2 × 2 blocks. For

example the following Young tableau is an example of a Checkerboard style ribbon.

b a b

a

a b

a b a b
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In this section we will show that all Schur multiple zeta values of Checkerboard style ribbons can be

reduced to Schur multiple zeta values of certain types of ribbons, which we call primitive ribbons. First

we will define these primitive ribbons and prove basic properties of them. After this we will give explicit

evaluating in terms of multiple zeta values in the case (a, b) = (1, 3). At the end of this section we

consider hooks and anti-hooks. One of the results of this section will be the following.

Theorem 3.1. For (a, b) = (1, 3) the space spanned by all Schur multiple zeta values of Checkerboard

style ribbons is given by Q[π4, ζ(3), ζ(5), ζ(7), . . . ].

3.1 Primitive ribbons

In this section we will let δn = (n, n − 1, . . . , 2, 1) and set δ0 = δ−1 = ∅. We now focus on the following

checkerboard style Schur multiple zeta values A(n) = Aa,b(n) for n ≥ 1 and B(n) = Ba,b(n) for n ≥ 0.

A(n) = Aa,b(n) = ζ

 a

. .
. b

a . .
.

a b

 = ζ(a, b; (n+ 1, n+ 1, n, n− 1, . . . , 3, 2)/δn) ,(3.1)

B(n) = Ba,b(n) = ζ

 a b

. .
. b

a . .
.

b

 = ζ(a, b; δn+1/δn−1) .(3.2)

For convenience, we set A(n) = 0 if n ≤ 0 and B(n) = 0 if n < 0. Further we define for n ≥ 1

L(n) = La,b(n) = ζ(a, b; (22n)/(12n−1)) , L?(n) = L?a,b(n) = ζ(a, b; ((2n)2)/(2n− 1)) ,

and for n ≥ 0

S(n) = Sa,b(n) = ζ(a, b; (n, n, n− 1, . . . , 2, 1)/δn−1) , S?(n) = S?a,b(n) = ζ(a, b; (n+ 1, n, . . . , 3, 2)/δn−1) ,

where we set S(0) = S?(0) = 1. In terms of Young tableau these are given by

L(n) = ζ


a
b
...
a

a b

 , L?(n) = ζ

(
a

a b · · · a b

)
,

S(n) = ζ

 a

. .
. b

a . .
.

b

 , S?(n) = ζ

(
a b

. .
.
. .
.

a b

)
.

Notice that A(n) and B(n) are obtained by adding an a on the bottom left of S(n) and a b on the top

right, respectively. Using the harmonic product (2.1), one easily show by induction on n that both A(n)

and B(n) satisfy the following recursion formulas.

Lemma 3.2. i) For n ≥ 2, we have

A(n) = (−1)n−1L(n)−
n−1∑
k=1

(−1)n−kA(k) ζ({a, b}n−k) ,(3.3)

A(n) = (−1)n−1L?(n)−
n−1∑
k=1

(−1)n−kA(k) ζ?({a, b}n−k) .(3.4)

ii) For n ≥ 1, we have

B(n) = (−1)nζ(b, {a, b}n)−
n−1∑
k=0

(−1)n−kB(k) ζ({a, b}n−k) ,(3.5)

B(n) = (−1)nζ?(b, {a, b}n)−
n−1∑
k=0

(−1)n−kB(k) ζ?({a, b}n−k) .(3.6)
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Similarly there is a connection between the Schur multiple zeta values S(n) and ζ({a, b}n).

Lemma 3.3. i) The generating series of S(n) and S?(n) are given by

(3.7)
∑
n≥0

S(n)xn =

∑
n≥0

(−1)nζ({a, b}n)xn

−1 , ∑
n≥0

S?(n)xn =

∑
n≥0

(−1)nζ?({a, b}n)xn

−1 ,
ii) For all n ≥ 0 we have

(3.8) S?(n) =

n∑
k=0

S(k)ζ({a+ b}n−k) .

Proof. To prove (3.7), it is sufficient to show

n∑
k=0

(−1)n−kS(k)ζ({a, b}n−k) =

{
1 n = 0,

0 otherwise,

n∑
k=0

(−1)n−kS?(k)ζ?({a, b}n−k) =

{
1 n = 0,

0 otherwise.

This is proven by inductively on n with the help of (2.1). To prove (3.8) one uses the formula

ζ?({a, b}n) =

n∑
k=0

ζ({a, b}k)ζ?({a+ b}n−k) ,

which is obtained in [Mu, Theorem 6] together with (3.7) and the well-known formula

∑
n≥0

(−1)nζ?({a+ b}n)xn =

∑
n≥0

ζ({a+ b}n)xn

−1 .

3.2 Primitive ribbons for (a, b) = (1, 3)

In the case (a, b) = (1, 3) the Schur multiple zeta values A,B,L and S can be evaluated explicitly in

terms of multiple zeta values.

Theorem 3.4. i) For n ≥ 1, we have

S1,3(n) = ζ

 1

. .
. 3

1 . .
.

3

 =
1

4n
ζ?({4}n) .(3.9)

ii) For n ≥ 1, we have

S?1,3(n) = ζ

 1 3

. .
.
. .
.

1 3

 =

n∑
k=0

1

4k
ζ?({4}k)ζ({4}n−k) .(3.10)

Proof. It is easy to see that (3.10) is derived from (3.9) together with (3.8). Hence we just need to prove

(3.9). For k1, . . . , kr ≥ 1 define a multiple polylogarithm by

L(k1, . . . , kr;x) =
∑

0<m1<···<mr

xmr

mk1
1 . . .mkr

r

.

From [BBBL, Theorem 11.1], where a different order of summation is used, it is known that∑
n≥0

L({1, 3}n;x)t4n = 2F1

( t
2 (1 + i),− t

2 (1 + i)
1

∣∣∣x) 2F1

( t
2 (1− i),− t

2 (1− i)
1

∣∣∣x) ,(3.11)
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where 2F1

( a, b
c

∣∣∣x) =
∑
n≥0

(a)n(b)n
(c)n

xn

n! is the usual Gauss hypergeometric function. In particular

setting x = 1, t = (1 + i)y and using the well-known formula

2F1

(
a, b
c

∣∣∣ 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

with Γ(x) being the gamma function, we obtain

(3.12)
∑
n≥0

(−4)nζ({1, 3}n)y4n =
1

Γ(1− y)Γ(1 + y)Γ(1− iy)Γ(1 + iy)
.

Notice that ζ({1, 3}n) = L({1, 3}n; 1). Therefore, letting (a, b) = (1, 3) and replacing x by 4x4 in the first

equation of (3.7) we see that by (3.12)

∑
n≥0

4nS1,3(n)x4n =

∑
n≥0

(−4)nζ({1, 3}n)x4n

−1 = Γ(1− x)Γ(1 + x)Γ(1− ix)Γ(1 + ix)

=
πx

sin(πx)

πx

sinh(πx)
=
∏
m>0

1

1− x4

m4

=
∑
n≥0

ζ?({4}n)x4n .

(3.13)

Theorem 3.5. i) For n ≥ 1, we have

A1,3(n) = ζ

 1

. .
. 3

1 . .
.

1 3

 =
2

4n
ζ(4n+ 1) .(3.14)

ii) For n ≥ 0, we have

B1,3(n) = ζ

 1 3

. .
. 3

1 . .
.

3

 =
1

4n
ζ(4n+ 3) .(3.15)

Proof. We first show (3.15). Since

ζ(3, {1, 3}n) =
1

4n

n∑
k=0

(−1)kζ(4k + 3)ζ({4}n−k) =

n∑
k=0

(
−1

4

)k
ζ(4k + 3)ζ({1, 3}n−k) ,

where the first equality is obtained in [BB, Theorem 1] and the second one by the well known identity

ζ({4}n) = 4nζ({1, 3}n), we have from (3.5)

B1,3(n) = (−1)nζ(3, {1, 3}n)−
n−1∑
k=0

(−1)n−kB1,3(k)ζ({1, 3}n−k)

=
1

4n
ζ(4n+ 3)−

n−1∑
k=0

(−1)n−k
{
B1,3(k)− 1

4k
ζ(4k + 3)

}
ζ({1, 3}n−k) .

This shows the desired equation by induction on n.

We next show (3.14). For n ≥ 0 and k ≥ 0, define the truncated version of A(n) by

A(n; k) =
∑
∗

1

p0q31p1 . . . q
3
npn

,
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where the sum runs over all 0 < p0 < k and 0 < pj−1 ≤ qj > pj for j = 1, . . . , n. Define the (4n-weighted)

generating function of A(n; k) by

G(x, y) =
∑
n≥0
k≥1

4nA(n; k)xky4n .

Since we are only interested in A(n; k) for n ≥ 1, we further put

G̃(x, y) = G(x, y)−G(x, 0) =
∑
n≥1
k≥1

4nA(n; k)xky4n .

Then, since limk→∞A(n; k) = A1,3(n) for n ≥ 1, we have

(3.16) lim
x→1

(x− 1)G̃(x, y) =
∑
n≥1

4nA1,3(n)y4n .

In the following we will calculate the limit in the left-hand side of (3.16).

For k ≥ 1 and k1, . . . , kr ≥ 1, define a truncated version of the multiple zeta value ζ(k1, . . . , kr) by

ζk(k1, . . . , kr) =
∑

0<m1<···<mr<k

1

mk1
1 · · ·m

kr
r

.

With this it is easy to check from (2.1) again that

A(n; k) =

n∑
j=0

S1,3(n) · (−1)n−jζk({1, 3}n−j , 1) .

Hence, together with (3.13), we obtain

G(x, y) =
∑
n≥0

4nS1,3(n)y4n ·
∑
n≥0
k≥1

(−4)nζk({1, 3}n, 1)xky4n

= Γ(1− y)Γ(1 + y)Γ(1− iy)Γ(1 + iy) ·K(x, y) ,(3.17)

where

K(x, y) =
∑
n≥0
k≥1

(−4)nζk({1, 3}n, 1)xky4n .

We observe that

θ3xL({1, 3}n;x) =
∑
k≥1

ζk({1, 3}n−1, 1)xk ,

where θx = x d
dx . This, by the virtue of (3.11), shows

K(x, y) = − 1

4y4
θ3x

(
2F1

(
y,−y

1

∣∣∣x) 2F1

(
iy,−iy

1

∣∣∣x))
=

1

2y

x

1− x

(
2F1

( 1− y, y
1

∣∣∣x) 2F1

( −iy, iy
1

∣∣∣x)
− i 2F1

(
1− iy, iy

1

∣∣∣x) 2F1

( −y, y
1

∣∣∣x)+ (i− 1) 2F1

( −y, y
1

∣∣∣x) 2F1

( −iy, iy
1

∣∣∣x))
=

1

2

x2

1− x

(
2F1

(
1− y, 1 + y

2

∣∣∣x) 2F1

( −iy, iy
1

∣∣∣x)+ 2F1

(
1− iy, 1 + iy

2

∣∣∣x) 2F1

( −y, y
1

∣∣∣x)) .
Notice that the second equality follows from a direct calculation and the last one from the identity

2F1

(
1− y, y

1

∣∣∣x)− 2F1

( −y, y
1

∣∣∣x) = xy 2F1

(
1− y, 1 + y

2

∣∣∣x) .
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Now, from (3.17) with the above expression of K(x, y), we obtain

G(x, y) =
x2

2(1− x)
(F1(x, y)F0(x, iy) + F1(x, iy)F0(x, y)) ,

where Fj(x, y) = Γ(1 − y)Γ(1 + y) 2F1

( j − y, j + y
j + 1

∣∣∣x) for j = 0, 1. Therefore, because G(x, 0) =

− x
(1−x) log(1− x), we have

(3.18) G̃(x, y) =
x

2(1− x)

(
xF1(x, y)F0(x, iy) + log(1− x) + xF1(x, iy)F0(x, y) + log(1− x)

)
.

With this expression, we can calculate the desired limit. To do that, let us recall the expansion due to

Ramanujan (see for example [E, Corollary 20]);

(3.19)
Γ(a)Γ(b)

Γ(a+ b)
2F1

( a, b
a+ b

∣∣∣x) = − log(1− x)− 2γ − ψ(a)− ψ(b) +O((1− x) log(1− x))

as x→ 1, where

ψ(1 + y) =
Γ′(1 + y)

Γ(1 + y)
= −γ +

∑
n≥2

(−1)nζ(n)yn−1

denotes the digamma function with γ being the Euler-Mascheroni constant. Setting a = 1 − y and

b = 1 + y in (3.19) we obtain

F1(x, y) =
Γ(1− y)Γ(1 + y)

Γ(2)
2F1

( 1− y, 1 + y
2

∣∣∣x)
= − log(1− x)−H(y) +O ((1− x) log(1− x))

as x→ 1, where

H(y) = 2γ + ψ(1− y) + ψ(1 + y) =
∑
n≥2

((−1)n − 1) ζ(n)yn−1 = −2
∑
n≥1

ζ(2n+ 1)y2n .

Therefore, from the expression (3.18), noticing that F0(1, y) = 1, we have

(1− x)G̃(x, y) = −1

2
(H(y) +H(iy)) +O ((1− x) log(1− x))

as x→ 1, which implies that

lim
x→1

(x− 1)G̃(x, y) = 2
∑
n≥1

ζ(4n+ 1)y4n

because H(y) +H(iy) = −4
∑
n≥1 ζ(4n+ 1)y4n. This completes the proof.

Corollary 3.6. i) For n ≥ 1, we have

L1,3(n) = ζ


1

3
...
1

1 3

 = −2

n∑
k=1

(
−1

4

)k
ζ(4k + 1)ζ({1, 3}n−k) ,(3.20)

L?1,3(n) = ζ

(
1

1 3 · · · 1 3

)
= −2

n∑
k=1

(
−1

4

)k
ζ(4k + 1)ζ?({1, 3}n−k) .(3.21)

ii) For n ≥ 1, we have

ζ(3, {1, 3}n) = ζ


3

1

3
...
1

3

 =

n∑
k=0

(
−1

4

)k
ζ(4k + 3)ζ({1, 3}n−k) ,(3.22)

ζ?(3, {1, 3}n) = ζ
(

3 1 3 · · · 1 3
)

=

n∑
k=0

(
−1

4

)k
ζ(4k + 3)ζ?({1, 3}n−k) .(3.23)
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Proof. The equations (3.20), (3.21) and (3.23) follow from Theorem 3.5 together with (3.3), (3.4) and

(3.6) in Lemma 3.2, respectively. Equation (3.22) is obtained in [BB, Theorem 1].

Corollary 3.7. For all n ≥ 1 we have the following identity between multiple zeta values

n−1∑
j=0

(
ζ({1, 3}j , 1, 2, 2, {1, 3}n−j−1) + 3ζ({1, 3}j , 1, {1, 3}n−j)

)
=

2

4n

n−1∑
j=0

ζ({4}j , 5, {4}n−j−1) .(3.24)

Proof. Using ζ({1, 3}n) = 1
4n ζ({4}n) and the usual harmonic product of multiple zeta values it is easy to

see that the right-hand side of (3.24) is exactly the right-hand side of (3.20). The left-hand side of (3.20)

can be written in terms of multiple zeta values by using the iterated integral expression in [NPY, (6.3)]

or [KY] (see also Remark 3.12 below). Writing these in terms of multiple zeta values gives the left-hand

side of (3.24).

3.3 Hook types

We first consider the case where λ is a hook (m, 1n) with m,n being non negative integers with m ≥ 1.

Notice that (m, 1n) with n ≥ 1 is checkerboardable if and only if m 6≡ n (mod 2) and therefore there are

just two different types of these checkerboardable hooks: (even, 1odd) and (odd, 1even). For example,

(3.25) ζ(a, b; (4, 13)) = ζ

 a b a b
b
a
b

 , ζ(a, b; (3, 14)) = ζ


b a b
a
b
a
b

 .

Recall that by Lemma 3.2 we have

ζ?(b, {a, b}n) =

n∑
k=0

(−1)kBa,b(k)ζ?({a, b}n−k) .

ζ(b, {a, b}n) =

n∑
k=0

(−1)kBa,b(k)ζ({a, b}n−k) ,

(3.26)

The following Proposition states an analogue result of (3.26) for hooks, which can be seen as an

interpolation between ζ?(b, {a, b}n) and ζ(b, {a, b}n).

Proposition 3.8. i) For p ≥ 0 and q ≥ 1 we have

ζ(a, b; (2p+ 2, 12q−1) = −
∑

0≤k1≤p
1≤k2≤q

(−1)k1+k2Ba,b(k1 + k2)ζ?({a, b}p−k1)ζ({a, b}q−k2).

ii) For p, q ≥ 0 we have

ζ(a, b; (2p+ 1, 12q)) =
∑

0≤k1≤p
0≤k2≤q

(−1)k1+k2Ba,b(k1 + k2)ζ?({a, b}p−k1)ζ({a, b}q−k2).

Proof. We only show the first assertion, since the proof for the second one is similar. By using the

harmonic product (2.1), one obtains the following recursion formula

ζ(a, b; (2p+ 2, 12q−1))− ζ(a, b; (2p, 12q+1)) = ζ?({a, b}q)ζ(b, {a, b}p)− ζ({a, b}p)ζ?(b, {a, b}q) .

From this we deduce

ζ(a, b; (2p+ 2, 12q−1)) =

p∑
j=0

ζ
(
{a, b}p+q−j

)
ζ?
(
b, {a, b}j

)
−
p+q∑
j=p

ζ?
(
{a, b}p+q−j

)
ζ
(
b, {a, b}j

)
=: A1 −A2 .
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Using the first equation in (3.26) for n = j and making the variable change k1 = p + q − j, k2 = n − k
we obtain for A1

A1 =

p+q∑
k2=q

p+q−k2∑
k1=0

(−1)p+q−k1−k2Ba,b(p+ q − k1 − k2)ζ?({a, b}k1)ζ({a, b}k2) .

For A2 we obtain with the first equation in (3.26) for n = p+j by setting k2 = q−1−j and k1 = p+j−k

A2 =

 q−1∑
k2=0

p∑
k1=0

+

p+q∑
k2=q

p+q−k2∑
k1=0

 (−1)p+q−k1−k2Ba,b(p+ q − k1 − k2)ζ?({a, b}k1)ζ({a, b}k2) .

And therefore A1 − A2 gives the desired identity for ζ(a, b; (2p + 2, 12q−1)) after changing k1 to p − k1
and k2 to q − k2.

In the special case (a, b) = (1, 3) we can use Theorem 3.5 ii), i.e. B1,3(n) = 1
4n ζ(4n+ 3), to get

ζ(1, 3; (2p+ 2, 12q−1)) =
∑

0≤k1≤p
1≤k2≤q

(
−1

4

)k1+k2
ζ(4(k1 + k2) + 3)ζ?({1, 3}p−k1)ζ({1, 3}q−k2),

ζ(1, 3; (2p+ 1, 12q)) = −
∑

0≤k1≤p
0≤k2≤q

(
−1

4

)k1+k2
ζ(4(k1 + k2) + 3)ζ?({1, 3}p−k1)ζ({1, 3}q−k2).

Example 3.9. By using the explicit evaluating of ζ?({1, 3}n) in [Mu, Theorem B], we get

ζ(1, 3; (4, 13)) = ζ

 1 3 1 3
3
1
3

 =
5

64
ζ(7)ζ(4)2 − 3

32
ζ(11)ζ(4) +

1

64
ζ(15),

ζ(1, 3; (3, 14)) = ζ


3 1 3
1
3
1
3

 =
5

896
ζ(3)ζ(4)3 − 71

896
ζ(7)ζ(4)2 +

3

32
ζ(11)ζ(4)− 1

64
ζ(15).

3.4 Anti-hook types

An anti-hook is a skew Young diagram obtained by rotating a hook by 180◦. Anti-hook skew Young

diagrams are of the form (mn+1)/((m − 1)n) for some natural numbers m ≥ 2, n ≥ 1. Notice that they

are always checkerboardable for any such m,n, since they just have one corner whose entry can be set to

be b. We now study the checkerboard style Schur multiple zeta values of anti-hook types. For example,

ζ(a, b; (35)/(24)) = ζ


b
a
b
a

b a b

 , ζ(a, b; (43)/(32)) = ζ

 b
a

a b a b

 .

We will now show, that the checkerboard style Schur multiple zeta values of anti-hook types can be

written in terms of the ribbon types A,B, S and S?, defined at the beginning of Section 3.1.

Proposition 3.10. i) For p ≥ 1 and q ≥ 0 we have

ζ(a, b; ((2p)2q+1)/((2p− 1)2q)) =
∑

1≤k1≤p
1≤k2≤q

(−1)k1+k2Aa,b(k1 + k2 − 1)ζ?
(
{a, b}p−k1

)
ζ
(
b, {a, b}q−k2

)

−
p∑

k1=1

(−1)q+k1S?a,b (q + k1) ζ?
(
{a, b}p−k1

)
.
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ii) For p, q ≥ 1 we have

ζ(a, b; ((2p)2q)/((2p− 1)2q−1)) =
∑

1≤k1≤p
1≤k2≤q

(−1)k1+k2Aa,b(k1 + k2 − 1) ζ?
(
{a, b}p−k1

)
ζ
(
{a, b}q−k2

)
.

iii) For p ≥ 0 and q ≥ 1 we have

ζ(a, b; ((2p+ 1)2q)/((2p)2q−1)) =
∑

1≤k1≤p
1≤k2≤q

(−1)k1+k2Aa,b(k1 + k2 − 1)ζ?
(
b, {a, b}p−k1

)
ζ
(
{a, b}q−k2

)

−
q∑

k2=1

(−1)p+k2Sa,b (p+ k2) ζ
(
{a, b}q−k2

)
.

iv) For p, q ≥ 0 we have

ζ(a, b; ((2p+ 1)2q+1)/((2p)2q)) =
∑

1≤k1≤p
1≤k2≤q

(−1)k1+k2Aa,b(k1 + k2 − 1)ζ?
(
b, {a, b}p−k1

)
ζ
(
b, {a, b}q−k2

)

−
p∑

k1=1

(−1)q+k1S?a,b (q + k1) ζ?
(
b, {a, b}p−k1

)
−

q∑
k2=1

(−1)p+k2Sa,b (p+ k2) ζ
(
b, {a, b}q−k2

)
+ (−1)p+qBa,b(p+ q) .

Proof. These are directly obtained by using the harmonic product formula (2.1). We demonstrate the

proof for the case ζ(a, b; (35)/(24)):

ζ


b
a
b
a

b a b

 = ζ

(
a

b a b

)
· ζ

(
b
a
b

)
− ζ

 b
a

a b
b a b


= ζ

(
a

b a b

)
· ζ

(
b
a
b

)
− ζ

(
a

a b
b a b

)
· ζ ( b ) + ζ

(
a b

a b
b a b

)

=

[
ζ

(
a

a b

)
· ζ ( b )− ζ

(
a

a b
b

)]
ζ

(
b
a
b

)
−

ζ ( a
a b

a b

)
· ζ ( b )− ζ

 a
a b

a b
b


 ζ ( b )

+

ζ ( a b
a b

a b

)
· ζ ( b )− ζ

 a b
a b

a b
b




= Aa,b(1)ζ?(b)ζ(b, a, b)−Aa,b(2)ζ?(b)ζ(b) + S?a,b(3)ζ?(b)− Sa,b(2)ζ(b, a, b) + Sa,b(3)ζ(b)−Ba,b(3).
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Example 3.11. Using Theorem 3.4 and 3.5 we give the following examples for (a, b) = (1, 3).

ζ(1, 3; (43)/(32)) = ζ

(
3
1

1 3 1 3

)
=

5

8
ζ(3)ζ(4)ζ(5)− 1

8
ζ(3)ζ(9)− 13245

34496
ζ(4)3,

ζ(1, 3; (44)/(33)) = ζ

 1
3
1

1 3 1 3

 =
5

32
ζ(4)2ζ(5)− 3

16
ζ(4)ζ(9) +

1

32
ζ(13),

ζ(1, 3; (34)/(23)) = ζ

 1
3
1

3 1 3

 =
1

8
ζ(3)ζ(4)ζ(5)− 1

8
ζ(3)ζ(9)− 493

448448
ζ(4)3,

ζ(1, 3; (35)/(24)) = ζ


3
1
3
1

3 1 3

 =
1

8
ζ(3)2ζ(4)ζ(5) +

7279

81536
ζ(3)ζ(4)3 − 1

8
ζ(3)ζ(5)ζ(7)

+
13

896
ζ(4)2ζ(7)− 1

8
ζ(3)2ζ(9)− 1

64
ζ(15).

Remark 3.12. Schur multiple zeta values of anti-hook types also appear in [KY], where they are de-

noted for index sets k, l by ζ(k � l?). For example with k = (b, a, b − 1) and l = (a, b, a, 1) we have

ζ(a, b; (43)/(32)) = ζ(k�l?). Theorem 4.1. in [KY] gives an iterated integral expression for these ζ(k�l?),

which was generalized in [NPY] for arbitrary ribbons. These iterated integral expressions could be used

to obtain even more formulas for Schur multiple zeta values of ribbon type.

Proof of Theorem 3.1. Again by the harmonic product it is easy to see, that every Schur multiple zeta val-

ues of Checkerboard style ribbon can be expressed as a linear combination of products of the primitive rib-

bons A,B,S, S? and the multiple zeta values ζ(b, {a, b}n) and ζ({a, b}n). In the case (a, b) = (1, 3) we know

by Theorem 3.5 that A1,3(n) = 2
4n ζ(4n+1) for n ≥ 1 and B1,3(n) = 1

4n ζ(4n+3) for n ≥ 0. Together with

ζ({1, 3}n) = 1
4n ζ({4}n) ∈ Qπ4n and Corollary 3.6 we see that the Q-vector space spanned by all Schur

multiple zeta values of Checkerboard style ribbons in theses cases is exactly Q[π4, ζ(3), ζ(5), ζ(7), . . . ].

4 Stairs

Recall that for a natural number N ∈ N we write δN = (N,N − 1, . . . , 2, 1). We call a Young diagram

of the form δN/µ with µ ⊂ δN a stair. One example for a stair is the primitive ribbon Ba,b(n) discussed

in the section before. In this section we calculate Checkerboard style Schur multiple zeta values of stair

type and prove that these are all given as determinants of matrices whose entries are given by Ba,b(n).

Before we can state the precise result, we need to introduce some notations.

For N ∈ N and a partition µ = (µ1, . . . , µN ) ⊂ δN , where we also allow µi = 0, define

J0(µ) = JN,0(µ) = {j ∈ {1, 2, . . . , N} |N + j 6≡ µj (mod 2)} ,
J1(µ) = JN,1(µ) = {j ∈ {1, 2, . . . , N} |N + j ≡ µj (mod 2)} .

Notice that J0(µ) ∩ J1(µ) = ∅ and J0(µ) t J1(µ) = {1, 2, . . . , N}. Moreover, for j ∈ {1, 2, . . . , N}, put

mj(µ) = mN,j(µ) =

{
N+j−1−µj

2 j ∈ J0(µ) ,
N+j−2−µj

2 j ∈ J1(µ) ,

and set

lN (µ) =
∑

j∈J0(µ)

(mj(µ) + j + 1).

Furthermore, define the N ×N -matrix BN (µ) = BN,a,b(µ) by

BN (µ) =
(

(−1)mj(µ)−i+1B(mj(µ)− i+ 1)
)
1≤i,j≤N

,
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where B(n) = Ba,b(n) is the primitive ribbon defined at the beginning of Section 3.1. By FN (µ) =

FN,a,b(µ) we denote the submatrix of BN (µ) of size |J1(µ)| × |J1(µ)|, obtained by removing from BN (µ)

for all j ∈ J0(µ) the j-th column and the (mj(µ) + 1)-th row.

Theorem 4.1. For N ∈ N and a partition µ = (µ1, . . . , µN ) ⊂ δN we have

ζ(a, b; δN/µ) = (−1)lN (µ) det (FN (µ)) ,(4.1)

ζ(a, b; δN/µ) = (−1)lN (µ′) det (FN (µ′)) .(4.2)

We first show some examples.

Example 4.2. Let us consider the case of N = 5.

i) When µ = (2, 2, 1), we have J0(µ) = {2, 3, 4}, J1(µ) = {1, 5} and hence (m1(µ), . . . ,m5(µ)) =

(1, 2, 3, 4, 4). This yields l5(µ) = 21,

B5(µ) =


−B(1) B(2) −B(3) B(4) B(4)
B(0) −B(1) B(2) −B(3) −B(3)

0 B(0) −B(1) B(2) B(2)
0 0 B(0) −B(1) −B(1)
0 0 0 B(0) B(0)

 and F5(µ) =

(
−B(1) B(4)
B(0) −B(3)

)
.

Hence, from (4.1),

ζ


b a b

a b

a b

a b

b

 = (−1)21
∣∣∣∣−B(1) B(4)
B(0) −B(3)

∣∣∣∣ = −
∣∣∣∣B(1) B(4)
B(0) B(3)

∣∣∣∣ .
ii) When µ = (2, 2), we have J0(µ) = {2, 4}, J1(µ) = {1, 3, 5} and hence (m1(µ), . . . ,m5(µ)) =

(1, 2, 3, 4, 4). This yields l5(µ) = 14,

B5(µ) =


−B(1) B(2) −B(3) B(4) B(4)
B(0) −B(1) B(2) −B(3) −B(3)

0 B(0) −B(1) B(2) B(2)
0 0 B(0) −B(1) −B(1)
0 0 0 B(0) B(0)

 and F5(µ) =

−B(1) −B(3) B(4)
B(0) B(2) −B(3)

0 B(0) −B(1)

 .

Hence, from (4.1),

ζ


b a b

a b

b a b

a b

b

 = (−1)14

∣∣∣∣∣∣
−B(1) −B(3) B(4)
B(0) B(2) −B(3)

0 B(0) −B(1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
B(1) B(3) B(4)
B(0) B(2) B(3)

0 B(0) B(1)

∣∣∣∣∣∣ .
From (3.5), we have

(4.3) ζ(b, {a, b}n) =

n∑
k=0

(−1)n−kB(n− k)ζ({a, b}k) .

Let e1, . . . , eN ∈ RN be the standard basis of RN . For n ≥ 0, define t(n) = tN (n) ∈ RN , y(n) = yN (n) ∈
RN and b(n) = bN (n) ∈ RN by

t(n) =

N∑
i=1

ζ({a, b}n+1−i)ei , y(n) =

N∑
i=1

ζ(b, {a, b}n+1−i)ei , b(n) =

N∑
i=1

(−1)n+1−iB(n+ 1− i)ei .

Notice that, from (4.3), we have

(4.4) y(n) =

n∑
i=0

(−1)n−iB(n− i)t(i) .

The following is elementary but useful in our discussion.
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Lemma 4.3. Let n1, . . . , nk,m be positive integers satisfying n1 < · · · < nk ≤ m < N . Then, by the

elementary transformation, the matrix (t(n1), . . . , t(nk), y(m)) of size N × (k + 1) is reduced to

(en1+1, . . . , enk+1, b(m)) .

Proof. For matrices P,Q, let us write P → Q if Q is obtained by some elementary transforms from P .

When k = 1, noticing T (0) = 1 and using (4.4), we have(
t(n1),

m∑
i=0

(−1)m−iB(m− i)t(i)

)

→

(
t(n1),

n1∑
i=0

(−1)m−iB(m− i)t(i) +

m+1∑
i=n1+2

(−1)m+1−iB(m+ 1− i)ei

)

→

(
t(n1),

n1−1∑
i=0

(−1)m−iB(m− i)t(i) +

m+1∑
i=n1+2

(−1)m+1−iB(m+ 1− i)ei

)

→

(
en1+1,

n1−1∑
i=0

(−1)m−iB(m− i)t(i) +

m+1∑
i=n1+2

(−1)m+1−iB(m+ 1− i)ei

)

→

(
en1+1,

n1∑
i=1

(−1)m+1−iB(m+ 1− i)ei +

m+1∑
i=n1+2

(−1)m+1−iB(m+ 1− i)ei

)
=
(
en1+1, b(m)− (−1)m−n1B(m− n1)en1+1

)
→ (en1+1, b(m)) .

Hence the claim follows. The general cases are verified by induction on k.

Now we give a proof of Theorem 4.1.

Proof of Theorem 4.1. We first show the equation (4.2). From the Jacobi-Trudi formula (2.3), we have

ζ(a, b; δN/µ
′) = det(α1, . . . , αN ) where αj ∈ RN is defined by

αj =

{
t(mj(µ)) j ∈ J0(µ),

y(mj(µ)) j ∈ J1(µ).

Moreover, from Lemma 4.3, we have ζ(a, b; δN/µ
′) = det(β1, . . . , βN ) where βj ∈ RN is defined by

βj =

{
emj(µ)+1 j ∈ J0(µ),

b(mj(µ)) j ∈ J1(µ).

Now, it is easy to see that this is equal to (−1)lN (µ) det(FN (µ)) and therefore interchanging µ with µ′ we

obtain ζ(a, b; δN/µ) = (−1)lN (µ′) det (FN (µ′)).

The equation (4.1) is similarly obtained by the same discussion above. For this we use the Jacobi-Trudi

formula (2.2) for ζ(a, b; δN/µ) instead of (2.3) for ζ(a, b; δN/µ
′), which will give the exact same matrix

as before, except that ζ will be replaced by ζ?. Since equation (4.3) is also true for ζ? the statement in

Lemma 4.3 remains true by replacing t by t? and y by y?, which are defined by

t?(n) =

N∑
i=1

ζ?({a, b}n+1−i)ei , y?(n) =

N∑
i=1

ζ?(b, {a, b}n+1−i)ei .

Therefore we also obtain ζ(a, b; δN/µ) = det(β1, . . . , βN ) = (−1)lN (µ) det(FN (µ)).

As a special case, we have the following.

Theorem 4.4. For N ∈ N and 0 ≤ n ≤ N − 1, ζ(a, b; δN/δn) can be written as a Hankel determinant of

the matrices in B(n). More precisely,
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i) When N ≡ n (mod 2), we have

ζ(a, b; δN/δn) = det (B(i+ j + n− 1))1≤i,j≤N−n
2

.

ii) When N 6≡ n (mod 2), we have

ζ(a, b; δN/δn) = (−1)
1
2n(n+1) det (B(i+ j − n− 2))1≤i,j≤N+n+1

2
.

Proof. This follows from Theorem 4.1 with the following data which can be obtained by direct calculations.

i) When N ≡ n (mod 2), letting m = N−n
2 , we have

J0(δn) = {1, 2, . . . , n} t {n+ 1, n+ 3, . . . , N − 1} ,
J1(δn) = {n+ 2, n+ 4, . . . , N} ,

{mj(δn) | j ∈ J0(δn)} =

{
N − n

2
,
N − n+ 2

2
, . . . , . . . , N − 1

}
=

{
m+ j − 1

∣∣∣∣ 1 ≤ j ≤ N + n

2

}
{mj(δn) | j ∈ J1(δn)} =

{
N + n

2
,
N + n+ 2

2
, . . . , N − 1

}
,

lN (δn) ≡ mn+
1

2
m (m+ 1) (mod 2) ,

FN (δn) =
(
(−1)m+1−i+j+n−1B (m+ 1− i+ j + n− 1)

)
1≤i,j≤m .

Hence, we have

(−1)lN (δn) det (FN (δn))

= (−1)mn+
1
2m(m+1) · (−1)

1
2m(m−1)+m(n−1)+m(m+1) det (B(i+ j + n− 1))1≤i,j≤m(4.5)

= det (B(i+ j + n− 1))1≤i,j≤m .

ii) When N 6≡ n (mod 2), letting m = N+n+1
2 , we have

J0(δn) = {n+ 2, n+ 4, . . . , N − 1} =

{
n+ 2j

∣∣∣∣ 1 ≤ j ≤ N − n− 1

2

}
,

J1(δn) = {1, 2, . . . , n} t {n+ 1, n+ 3, . . . , N} ,

{mj(δn) | j ∈ J0(δn)} =

{
N + n+ 1

2
,
N + n+ 3

2
, . . . , N − 1

}
=

{
m+ j − 1

∣∣∣∣ 1 ≤ j ≤ N − n− 1

2

}
,

{mj(δn) | j ∈ J1(δn)} =

{
N − n− 1

2
,
N − n+ 1

2
, . . . , N − 1

}
,

lN (δn) ≡ 1

2
(m− n− 1) (3m+ n) (mod 2) ,

FN (δn) =
(
(−1)m+1−i+j−n−2B (m+ 1− i+ j − n− 2)

)
1≤i,j≤m .

Hence, we have

(−1)lN (δn) det (FN (δn))

= (−1)
1
2 (m−n−1)(3m+n) · (−1)

1
2m(m−1)−m(n+2) det (B(i+ j − n− 2))1≤i,j≤N+n+1

2
(4.6)

= (−1)
1
2n(n+1) det (B(i+ j − n− 2))1≤i,j≤N+n+1

2
.

Notice that, in the equalities (4.5) and (4.6), we have used the formulas

det(am+1−i,j)1≤i,j≤m = (−1)
1
2m(m−1) det(ai,j)1≤i,j≤m ,

det(ci+jai,j)1≤i,j≤m = cm(m+1) det(ai,j)1≤i,j≤m .
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Example 4.5. When N = 5, we have

ζ


b a b a b

a b a b

b a b

a b

b

 =

∣∣∣∣∣∣
B(0) B(1) B(2)
B(1) B(2) B(3)
B(2) B(3) B(4)

∣∣∣∣∣∣ , ζ


a b a b

a b a b

b a b

a b

b

 =

∣∣∣∣B(2) B(3)
B(3) B(4)

∣∣∣∣ ,

ζ


b a b

b a b

b a b

a b

b

 = −

∣∣∣∣∣∣∣∣
0 0 B(0) B(1)
0 B(0) B(1) B(2)

B(0) B(1) B(2) B(3)
B(1) B(2) B(3) B(4)

∣∣∣∣∣∣∣∣ , ζ


a b

a b

a b

a b

b

 =
∣∣B(4)

∣∣ .
When (a, b) = (1, 3), from Theorem 4.4 and (3.15), we have the following formulas.

Corollary 4.6. For N ∈ N and 0 ≤ n ≤ N − 1, ζ(1, 3; δN/δn) can be written as a Hankel determinant

of the matrices in ζ(4k + 3). More precisely,

i) When N ≡ n (mod 2), we have

ζ(1, 3; δN/δn) = 4−
1
4 (N+n)(N−n) det (ζ (4(i+ j + n)− 1))1≤i,j≤N−n

2
.

ii) When N 6≡ n (mod 2), we have

ζ(1, 3; δN/δn) = (−1)
1
2n(n+1)4−

1
4 (N+n+1)(N−n−1) det (ζ (4(i+ j − n)− 5))1≤i,j≤N+n+1

2
,

where we set ζ(n) = 0 if n < 0.

In particular, ζ(1, 3; δN/δn) ∈ Q[ζ(4n+ 3) |n ≥ 0].

Example 4.7. When N = 5, we have

ζ


3 1 3 1 3

1 3 1 3

3 1 3

1 3

3

 =
1

46

∣∣∣∣∣∣
ζ(3) ζ(7) ζ(11)
ζ(7) ζ(11) ζ(15)
ζ(11) ζ(15) ζ(19)

∣∣∣∣∣∣ , ζ


1 3 1 3

1 3 1 3

3 1 3

1 3

3

 =
1

46

∣∣∣∣ζ(11) ζ(15)
ζ(15) ζ(19)

∣∣∣∣ ,

ζ


3 1 3

3 1 3

3 1 3

1 3

3

 = − 1

44

∣∣∣∣∣∣∣∣
0 0 ζ(3) ζ(7)
0 ζ(3) ζ(7) ζ(11)
ζ(3) ζ(7) ζ(11) ζ(15)
ζ(7) ζ(11) ζ(15) ζ(19)

∣∣∣∣∣∣∣∣ , ζ


1 3

1 3

1 3

1 3

3

 =
1

44
∣∣ζ(19)

∣∣ .

5 Other shapes, observations and discussion

We end this note by discussing the other shapes which were not discussed above and also some numerical

observations and possible further directions.

Squares: Of course speaking about Checkerboard style Schur multiple zeta values, the square shapes

comes into mind. Though the authors could not find any nice formulas for these shapes. One can check

that

ζ

(
3 1

1 3

)
=

1

2
ζ(3)ζ(5)− 5

16
ζ(4)2 ,(5.1)

but the 3× 3 case seems not to be a polynomial in single zeta values anymore. To deal with the square

case one possibility is again to use the Jacobi-Trudi formula to get for example for a, b ≥ 2

ζ

(
b a b

a b a

b a b

)
= ζ(b, a, b, a, b)ζ

(
b a

a b

)
− ζ(b, a, b, a)ζ

(
b a b

a b

)
+ ζ(b, a, b)ζ

(
b a b

a b a

)
.
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This works for the arbitrary n×n-case and therefore it seems to be necessary to investigate the Checker-

board style Schur multiple zeta values of shape λ = (n, . . . , n, n− 1, . . . , n− 1).

Anti-stairs: We saw that ζ

(
1

1 3

)
= 1

2ζ(5) and one can also show that

ζ

(
3

3 1

3 1 3

)
=

1

16
ζ(5)ζ(9)− 1

16
ζ(3)2ζ(8) +

1

2
ζ(3)3ζ(5) +

3

8
ζ(3)ζ(4)ζ(7)− 85

192
ζ(5)2ζ(4) .

This can be done by using a regularized version of the Jacobi-Trudi formulas. But for higher weight cases

it is not clear how to deal with these ”anti-stair” type of Schur multiple zeta values.

Gluings: Equation (5.1) can also be written as

ζ
(

3
)
· ζ
(

1

1 3

)
− ζ

(
3 1

1 3

)
= 70 ζ({1, 3}2) .

Taking the product of these types of Schur multiple zeta values and substract their ”glued”-version seems

to give multiple of ζ({1, 3}n) also in higher weight cases. From numerical experiments we expect the

following

ζ

(
1 3

3

)
· ζ

(
1

1 3

1 3

)
− ζ

(
1 3 1

3 1 3

1 3

)
?
= 1074502 ζ({1, 3}4) ,(5.2)

ζ

(
1 3

1 3

3

)
· ζ

 1

1 3

1 3

1 3

− ζ
 1 3 1

1 3 1 3

3 1 3

1 3

 ?
=

9656199193420

21
ζ({1, 3}6) ,(5.3)

and similarly for the weight 32 case, in which the product subtracted by the ”glued”-version is expected

to be 2222659435447178310 ζ({1, 3}8). So one might expect that for n ≥ 1 there exists αn ∈ Q with

B1,3(n− 1) ·A1,3(n)− ζ(1, 3; (n+ 1, n+ 1, n, n− 1, . . . , 3, 2)/δn−2)
?
= αnζ({1, 3}2n).

Interpolated versions: Another possible direction is to study formulas for Checkerboard style

interpolated Schur multiple zeta values. Interpolated Schur multiple zeta values were introduced in

[B]. They are elements ζt(k) ∈ R[t], which interpolate between a Schur multiple zeta value of a Young

tableau k and its conjugate k′, i.e. ζ0(k) = ζ(k) and ζ1(k) = ζ(k′). In the case λ = (2, 1) we have for

a ≥ 1, b, c ≥ 2

ζt
(

a b

c

)
= ζ(a, b, c) + ζ(a, c, b) + ζ(a+ b, c) + ζ(a, b+ c)

+
(
ζ(a+ c, b)− ζ(a+ b, c) + ζ(a+ b+ c)

)
· t− ζ(a+ b+ c) · t2 .

As an analogue of B1,3(1) = ζ

(
1 3

3

)
= 1

4ζ(7), which is a special case of Corollary 4.6, we get

ζt
(

1 3

3

)
=

(
1

4
+ t(1− t)

)
ζ(7) .

Furthermore we get as an analogue of A1,3(2) = 1
8ζ(9)

ζt

(
1

1 3

1 3

)
=

1

8
ζ(9) +

(
15

2
ζ(5)ζ(4)− 31

4
ζ(9)

)
t(1− t) + ζ(9)t2(1− t)2 .

Since in [B] a Jacobi-Trudi formula for ζt(k) is proven, one could try to give an analogue of Corollary

4.6 for the interpolated case. To give a formula for the general case one would need explicit evaluations
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of the interpolated multiple zeta values ζt({1, 3}n) and ζt(3, {1, 3}n).

Other special cases for a and b: A natural question is whether there are other a, b, such that the

Aa,b(n) or Ba,b(n) have a nice explicit form. In the case (a, b) = (1, 2) it is well-known that due to duality

we have ζ({1, 2}n) = ζ({3}n). From this one can also deduce, together with Lemma 3.2 and 3.3, that for

all n ≥ 1

A1,2(n) = ζ

 1

. .
. 2

1 . .
.

1 2

 = 3ζ(3n+ 1) and S1,2(n) = ζ

 1

. .
. 2

1 . .
.

2

 = ζ?({3}n) .

Though in contrast to the (a, b) = (1, 3) case, it seems that B1,2(n) is not a rational multiple of ζ(3n+2).

In the case a = b = 2k with k ≥ 1, it is clear that all A2k,2k(n), B2k,2k(n) and S2k,2k(n) are some

rational multiples of even powers of π. For other cases with a 6= b there are no explicit nice evaluations

available for the primitive ribbon cases. In the case (a, b) = (1, 5) there are partial results to evaluate

ζ({1, 5}n)) in [Y].

Other proofs: It would be interesting to know if the simple explicit sum representation of the odd

single zeta values in Theorem 3.5 also have a more elementary proof. In [Mo] and [HZ] the authors

also studied Hankel determinants of single zeta values. It would be interesting to know if the explicit

calculation of the Hankel determinant, as it was done in [Mo], can also be used to prove our identities in

Theorem 4.6 directly without using the Jacobi-Trudi formulas.
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