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1 Introduction

Let X be an algebraic variety defined over a number field K. One says that the
rational points are potentially dense in X, or that X is potentially dense, if there is
a finite extension L of K, such that X(L) is Zariski-dense. For instance, unirational
varieties are obviously potentially dense. A well-known conjecture of Lang affirms
that a variety of general type cannot be potentially dense; more recently, the question
of geometric characterisation of potentially dense varieties has been raised by several
mathematicians, for example, by Abramovich and Colliot-Thélène and especially by
Campana [C]. According to their points of view, one expects that the varieties with
trivial canonical class should be potentially dense. This is well-known for abelian
varieties, but the simply-connected case remains largely unsolved.

Bogomolov and Tschinkel [BT] proved potential density of rational points for K3
surfaces admitting an elliptic pencil, or an infinite automorphisms group. Hassett
and Tschinkel [HT] did this for certain symmetric powers of general K3-surfaces
with a polarization of a suitable degree. The key observation of their work was that
those symmetric powers are rationally fibered in abelian varieties over a projective
space, and, as the elliptic K3 surfaces of [BT], they admit a potentially dense
multisection which one can translate by suitable fiberwise rational self-maps to
obtain the potential density of the ambient variety.

More recently, Amerik and Voisin [AV] gave a proof of potential density for the
variety of lines of a sufficiently general cubic fourfold defined over a number field.
Such a variety X is an irreducible holomorphic symplectic fourfold with cyclic Picard
group, in fact the only (up to now) example of a simply-connected variety, defined
over a number field, with trivial canonical class and cyclic Picard group where the
potential density is established. The starting idea is similar: as noticed in [V1],
X admits a rational self-map of degree 16. Moreover, X carries a two-parameter
family Σb, b ∈ B of surfaces birational to abelian surfaces. It is proved in [AV]
that under certain genericity conditions on the pair (X, b), satisfied by many pairs
defined over a number field, the iterates fn(Σb), n ∈ N are Zariski-dense in X. Since
rational points are potentially dense on abelian varieties, this clearly implies that
X is potentially dense. The proof is rather involved: even the proof of the fact that
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the number of iterates is infinite for some Σb defined over a number field is highly
non-trivial, using, for instance, l-adic Abel-Jacobi invariants in the continuous étale
cohomology.

The purpose of this article is to further investigate the connection between the
existence of “sufficiently nontrivial” rational self-maps and the potential density of
rational points. In the first part we prove, among other facts, that if the differential
of a rational self-map f : X 99K X at a non-degenerate fixed point q ∈ X(Q̄) has
multiplicatively independent eigenvalues, then the rational points are potentially
dense on X. More precisely, we show that under this condition, one can find a point
x ∈ X(Q̄) such that the set of its iterates is Zariski-dense. Note that this remains
unknown for X and f as in [AV], though the question has been raised in [AC] where
it is shown that the map f : X 99K X does not preserve any rational fibration and
therefore the set of the iterates of a general complex point of X is Zariski-dense.

Unfortunately, it seems to be difficult to find interesting examples with multiplicatively
independent eigenvalues of the differential at a fixed point. There is certainly plenty
of such self-maps on rational varieties, but since for those the potential density is
obvious, we cannot consider their self-maps as being “interesting”. In the case of
[AV], the eigenvalues of Dfq at a fixed point q are far from being multiplicatively
independent (lemma 3.3). We do not know whether the multiplicative independence
could hold for a fixed point of a power of f .

Nevertheless, even the independence of certain eigenvalues gives interesting new
information. To illustrate this, we exploit this point of view in the second part,
where a simplified proof of the potential density of the variety of lines of the cubic
fourfold is given.
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2 Invariant neighbourhoods

Let X be a smooth projective variety of dimension n and let f : X 99K X be
a rational self-map, both defined over a ”sufficiently large” number field K. We
assume that f has a fixed point q ∈ X(K). This assumption is not restrictive if, for
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example, f is a regular polarized (that is, such that f ∗L = L⊗k for a certain ample
line bundle L and a positive integer k) endomorphism: indeed, in this case the set
of periodic points in X(Q̄) is even Zariski-dense [F], so replacing f by a power and
taking a finite extension of K if necessary, we find a fixed point.

For a number field K we denote by OK the ring of integers of K; for a point p, i.e.
an equivalence class of valuations of K, Kp denotes the corresponding completion,
Op the ring of integers in Kp.

Our starting point is that, for any fixed point q ∈ X(K) and a suitable prime
ideal p ⊂ OK , we can find a ”p-adic neighbourhood” q ∈ Op,q ⊂ X(Kp), on which f
is defined and which is f -invariant.

More precisely, choose an affine neighbourhood U ⊂ X of q, such that the
restriction of f to U is regular. By Noether normalisation lemma, there is a finite
K-morphism π = (x1, . . . , xn) : U −→ An

K to the affine space, which is étale at q and
which maps q to 0. Then the K-algebra O(U) is integral over K[x1, . . . , xn], i.e.,
it is generated over K[x1, . . . , xn] by some regular functions xn+1, . . . , xm integral
over K[x1, . . . , xn]. The coordinate ring of U is included into the local ring of q and

the latter is included into its completion: O(U) ⊂ OU,q ⊂ ÔU,q = K[[x1, . . . , xn]].
In particular, xn+1, . . . , xm become elements of K[[x1, . . . , xn]]. As f ∗ defines an
endomorphism of the ring OU,q and of its completion, the functions f ∗x1, . . . , f

∗xm

become power series in xi with coefficients in K.
We use the following well-known result (a stronger version for n = 1 goes back to

Eisenstein) to deduce that the coefficients of the power series xn+1, . . . , xm, f∗x1, . . . , f
∗xm

are p-integral for almost all primes p, i.e.,

xn+1, . . . , xm, f∗x1, . . . , f
∗xm ∈ OK [1/N ][[x1, . . . , xn]]

for some integer N ≥ 1:

Lemma 2.1 Let k be a field of characteristic zero and let φ ∈ k[[x1, . . . xn]] be a
function algebraic over k(x1, . . . , xd). Then φ ∈ A[[x1, . . . xn]], where A is a finitely
generated Z-algebra.

Proof. Let F be a minimal polynomial of φ over k[x1, . . . , xn], so F (φ) = 0 and
F ′(φ) 6= 0. Then F ′(φ) ∈ ms r ms+1 for some s ≥ 0, where m is the maximal ideal
in k[[x1, . . . , xn]].

Denote by φd the only polynomial of degree < d congruent to φ modulo md. For
a formal series Φ in x and an integer m denote by Φ(m) the homogeneous part of Φ
of degree m. Clearly, F ′(φd)(m) is independent of d for d > m.

We are going to show by induction on d that the coefficients of the homogeneous
component of φ of degree d belong to the Z-subalgebra in k generated by coefficients
of F (as a polynomial in n + 1 variables), by coefficients of φs+1 and by the inverse
of a certain (non-canonical) polynomial D in coefficients of F and in coefficients of
φs+1. To define D, choose a discrete valuation v of the field k(x1, . . . , xn) of rank n
trivial on k, say such that v(xi) > v(k(x1, . . . , xi−1)

×) for all 1 ≤ i ≤ n (equivalently,
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0 < v(xm1
1 ) < · · · < v(xmn

n ) for all m1, . . . ,mn > 0). Then D is the coefficient of the
monomial in F ′(φs+1)(s) with the minimal valuation.

For d ≤ s there is nothing to prove, so let d > s. Let ∆d := φ − φd, so
∆d ∈ md. Then 0 = F (φd + ∆d) ≡ F (φd) + F ′(φd)∆d (mod ∆2

d), so in particular,
F (φd)(d+s) + F ′(φd)(s)(∆d)(d) = 0, or equivalently, F (φd)(d+s) + F ′(φs+1)(s)φ(d) = 0,

and thus, φ(d) = − F (φd)(d+s)

F ′(φs+1)(s)
.

The field of rational functions k(x1, . . . , xn) is embedded into its completion with
respect to v, and by our choice of v this completion can be identified with the field of
iterated Laurent series k((x1)) · · · ((xn)). In particular, (F ′(φs+1)(s))

−1 becomes an
iterated Laurent series, whose coefficients are polynomials over Z in the coefficients
of F ′(φs+1)(s) and in D−1 (write F ′(φs+1)(s) as a product of its minimal valuation
monomial and a rational function, then write the inverse of the rational function
as a geometric series). Then, by induction assumption, the coefficients of φ(d) are
polynomials over Z in coefficients of F , coefficients of φs+1 and in D−1.

Therefore, for almost all primes p ⊂ OK , the coefficients of the power series
xn+1, . . . , xm, f∗x1, . . . f

∗xn are integral in Kp. Choose a p satisfying this condition
and such that, moreover, the irreducible polynomials Pi(X) = Pi(x1, . . . , xn; X) ∈
K[x1, . . . , xn; X] which are minimal monic polynomials of xi for n < i ≤ m, have p-
integral coefficients and the elements P ′

i (0, . . . , 0; xi(q)) are invertible in Op for each
n < i ≤ m (this last condition holds for almost all primes p since the morphism x
is étale at q).

Define the system of p-adic neighbourhoods Op,q,s, s ≥ 1 of the point q as follows:

Op,q,s = {t ∈ U(Kp)|xi(t) ≡ xi(q) (mod )ps for 1 ≤ i ≤ m}.

We set Op,q := Op,q,1.

Proposition 2.2 (1) The functions x1, . . . xn give a bijection between Op,q,s and the
n-th cartesian power of ps.

(2) The set Op,q contains no indeterminacy points of f .
(3) f(Op,q,s) ⊂ Op,q,s for s ≥ 1. Moreover, f : Op,q,s

∼−→ Op,q,s is bijective if
det Dfq is invertible in Op.

(4) The Q̄-points are dense in Op,q,s.

Proof: These properties are clear from the definition and the inclusion of the
elements x1, . . . , xm, f∗x1, . . . , f

∗xm into Op[[x1, . . . , xn]].

1. The map x from Op,q,s to the n-th cartesian power of ps is injective, since
the coordinates xn+1, . . . , xm of a point t are determined uniquely by the
coordinates x1, . . . , xn and the condition t ∈ Op,q. Let Pi(xi) = Pi(x1, . . . , xn; xi) =
0 be the minimal monic polynomial of xi for n < i ≤ m. For fixed values of
x1, . . . , xn ∈ p this equation has precisely deg Pi solutions (with multiplicities)
in K̄p. As P ′

i (xi(q)) ∈ O×
p , xi(t) ≡ xi(q) (mod p) is a simple root of Pi
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(mod p), and thus, any root congruent to xi(q) modulo p is not congruent to
any other root modulo p.

It is surjective, since xn+1, . . . , xm are convergent series on ps with constant
values modulo ps.

2. The functions f ∗xi, 1 ≤ i ≤ m, are convergent series on Op,q.

3. The functions f ∗xi on the n-th cartesian power of ps, 1 ≤ i ≤ m, are constant
modulo ps. This shows that f(Op,q,s) ⊆ Op,q,s. If det Dfq 6= 0 then the inverse
map f−1 is well-defined in a neighbourhood of 0. If det Dfq ∈ O×

p then f−1 is
defined by series in Op[[x1, . . . , xn]], i.e., it is well-defined on Op,q.

4. The Q̄-points are dense in the n-th cartesian power of ps and they lift uniquely
to Op,q,s.

Let λ1, . . . , λn be the eigenvalues of the tangent map Dfq. We assume that q is
a non-degenerate fixed point of f , so that λi 6= 0. Note that the λi are algebraic
numbers. Extending, if necessary, the field K, we may assume that λi ∈ K. The
following is a consequence of the p-adic versions of several well-known results in
dynamics and number theory:

Proposition 2.3 Assume that λ1, . . . , λn are multiplicatively independent. Then in
some p-adic neighbourhood Op,q,s, the map f is equivalent to its linear part Λ (i.e.
there exists a formally invertible n-tuple of formal power series h = (h(1), . . . , h(n))
in n variables (x1, . . . , xn) = x convergent together with its formal inverse on a
neighbourhood of zero such that h(λ1x1, . . . , λnxn) = f(h(x1, . . . , xn)).

Proof: It is well-known that in absence of relations

λm1
1 ...λmn

n = λj, 1 ≤ j ≤ n, m =
∑

mi ≥ 2, mi ≥ 0

(”resonances”), there is a unique formal linearization of f , obtained by formally
solving the equation f(h(x)) = h(Λ(x)); the expressions λm1

1 ...λmn
n − λj appear in

the denominators of the coefficients of h (see for example [Arn]). The problem
is of course whether h has non-zero radius of convergence, that is, whether the
denominators are “not too small”. By Siegel’s theorem (see [HY]) for its p-adic
version) this is the case as soon as the numbers λi satisfy the diophantine condition

|λm1
1 ...λmn

n − λj|p > Cm−α

for some C, α. By [Yu] , this condition is always satisfied by algebraic numbers.

When the fixed point q is not isolated, the eigenvalues λi are always resonant.
However, as follows from the results proved in the Appendix, if “all resonances come
from the fixed subvariety”, the linearization is still possible.
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More precisely, extending K if necessary, we may choose q ∈ X(K) which is a
smooth point of the fixed point locus of f . Let F be the irreducible component of
this locus containing q. Let r = dim F . By a version of Noether’s normalization
lemma [E, Theorem 13.3 & geometric interpretation on p.284], we may assume that
our finite morphism π = (x1, . . . , xn) : U −→ An

K which is étale at q, maps F ∩ U
onto the coordinate plane {xr+1 = · · · = xn = 0}.

Proposition 2.4 Let q be a general fixed point of f as above. Suppose that the
tangent map Dfq is semisimple and that its eigenvalues λ1, . . . , λn satisfy the condition
λ

mr+1

r+1 · · ·λmn
n 6= λi for all integer mr+1, . . . ,mn ≥ 0 with mr+1 + · · · + mn ≥ 2 and

all i, r < i ≤ n (and λ1 = · · · = λr = 1).
Suppose that the eigenvalues of Dfq do not vary with q. Then, for each p as

above, the map f can be linearized in some p-adic neighbourhood Op,q,s of q, i.e.,
there exists a formally invertible n-tuple of formal power series h = (h(1), . . . , h(n))
in n variables (x1, . . . , xn) = x convergent together with its formal inverse on a
neighbourhood of zero such that h(λ1x1, . . . , λnxn) = f(h(x1, . . . , xn)).

Proof: Taking into account that the λi are algebraic numbers and so the diophantine
condition

|λmr+1

r+1 · · ·λmn
n − λj|p > C(

∑
r<i≤n

mi)
−α

is automatically satisfied for some C, α > 0, whenever
∑

r<i≤n mi ≥ 2, this is just
Theorem 4.1.

In order to apply these propositions to the study of iterated orbits of algebraic
points, we need the following lemma.

Lemma 2.5 Let a1, a2, . . . be a sequence in K×
p tending to 0. Let b1, b2, . . . be

a sequence of pairwise distinct elements in O×
p generating a torsion-free subgroup.

Then any infinite subset S ⊂ N contains an element s such that
∑

i≥1 aib
s
i 6= 0.

Proof: Renumbering if necessary, we may suppose that |a1| = |a2| = · · · = |aN | >
|ai| for any i > N . Suppose that

∑
i≥1 aib

s
i = 0 for every s ∈ S.

First assume that S = N. It follows that for any polynomial P ,
∑

i≥1 aiP (bi) = 0.
By the triangular inequality, we’ll get a contradiction as soon as we find a polynomial
P such that |P (bk)| < |P (b1)| for 2 ≤ k ≤ N and |P (bk)| ≤ |P (b1)| for k > N . To
construct such a P , choose an ideal q = ps such that the bi are different modulo q

for i = 1, . . . , N and let

P (x) =
∏

b∈Op/q, b1 6∈b

(x− b̄),

where b̄ denotes any representative of the class b. An easy check gives that |P (x)| =
|P (b1)| when x ≡ b1 (mod q) and |P (x)| < |P (b1)| otherwise, so P has the required
properties.
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(This polynomial P has been indicated to us by A. Chambert-Loir.)

Now let S ⊂ N be arbitrary. Take an integer M such that |bM
i −1| < |p|

1
p−1 for all

i (this is possible since bi are in O×
p and the residue field is finite), then ci = log bM

i

is defined for all i and exp(ci) = bM
i . Since the subgroup generated by the bi is

torsion-free, all ci are different. We claim that for certain coefficients a′i, we can
write identities

∑
i≥1 a′ic

m
i = 0 for all m ∈ N, so this case reduces to that of S = N.

Indeed, consider S as a subset of Zp; it has a limit point s0. For a sequence
of m-tuples j1 > j2 > · · · > jm in S such that j1 ≡ j2 ≡ · · · ≡ jm (mod M) and
lim j1 = lim j2 = · · · = lim jm = s, and any analytic function g on Zp, one has

g(m)(s0)

m!
= lim

m∑
l=1

g(jl)∏
k 6=l(jl − jk)

(Newton interpolation formula).
Pick a class modulo M which contains a sequence in S converging to s0. There is

an analytic function gi such that gi(k) = bk
i when k is in this class. By the formula

above, we have

g
(m)
i (s0) =

cm
i

Mm
gi(s0) = m! lim

m∑
l=1

g(jl)∏
k 6=l(jl − jk)

,

where all the jl are in the same class modulo M . This gives

∞∑
i=1

aigi(s0)c
m
i = Mmm! lim

m∑
l=0

1∏
k 6=l(jl − jk)

∞∑
i=1

aigi(jl) = 0

since the jl are in S, q.e.d.

From now on, we assume that p is chosen such that all λi belong to O×
p (this is

of course the case for almost all p.
The first part of the lemma (case S = N) immediately implies the following

corollary:

Corollary 2.6 If λ1, . . . , λn are multiplicatively independent, the rational points on
X are potentially dense.

Proof: since algebraic points are dense in Op,q,s, we can find a point x ∈ X(Q̄)
which is contained in Op,q,s, away from the coordinate hyperplanes in the local
coordinates (y1, . . . yn) linearizing f . We claim that the iterated orbit of this point
is Zariski dense in X. Indeed, if not, there is a regular function G on U vanishing on
f i(x) for all i; in the local linearizing coordinates on Op,q,s, G becomes a convergent
power series G =

∑
I aIy

I . If x = (x1, . . . xn), we get
∑

I aIx
I(λI)i = 0 for all

i ∈ N. Since the λi are multiplicatively independent, the numbers λI are distinct,
contradicting lemma 2.5.

Another useful version of this corollary is the following:
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Corollary 2.7 Let n be a natural number, T be the n-th cartesian power of O×
p and

Λ = (λ1, . . . , λn) ∈ T , where λ1, . . . , λn are multiplicatively independent. Let S ⊂ N
be an infinite subset. Then the set {Λi | i ∈ S} is “analytically dense” in T , i.e.,
for any non-zero Laurent series F =

∑
I aIy

I convergent on T there is s ∈ S such
that F (Λs) 6= 0.

Proof. Otherwise, after a renumbering of aI as ai and setting bi = λI for i corresponding
to I, we get

∑
i≥1 aib

s
i = 0 for all s ∈ S. This contradicts Lemma 2.5.

The case S 6= N yields the following remark which might be useful in the study
of the case when the fixed point q is not isolated (as in the next section).

Corollary 2.8 Under assumptions of Proposition 2.4, let Y ⊂ U be such an irreducible
subvariety that, possibly after a finite field extension, Y (Kp) meets a sufficiently
small p-adic neighbourhood of q. Suppose that the multiplicative subgroup H ⊂ O×

p

generated by λ1, . . . , λn is torsion-free. Let S ⊂ N be an infinite subset. Then
the Zariski closure of the union

⋃
i∈S f ◦i(Y ) is independent of S, and therefore, is

irreducible.

Proof. To check the independence of S, let us show that any regular function F on
U vanishing on

⋃
i∈S f ◦i(Y ) vanishes also on

⋃
i≥1 f ◦i(Y ).

Let y1, . . . , yn be local coordinates at q linearizing and diagonalizing f on a
neighbourhood Op,q,s. Then for any choice of a sufficiently large number field K,
f ◦i(Y )(Kp) ∩ Op,q,s contains f ◦i(Y (Kp) ∩ Op,q,s), and therefore, each irreducible
component of the Zariski closure of

⋃
i∈S f ◦i(Y ) meets Op,q,s.

This implies that we can work in Op,q,s, where F becomes a convergent power
series

∑
I aIy

I . For any point t = (t1, . . . , tn) ∈ Y (Kp) ∩Op,q,s the series F vanishes
at the points f ◦i(t) for all i ∈ S (i.e.,

∑
I aIλ

iItI = 0 for all i ∈ S) and it remains to
show that F vanishes also at the points f ◦i(t) for all i ≥ 1.

Let us work only with multi-indices I such that tI is non-zero. The set of
such multi-indices splits into the following equivalence classes: I ∼ I ′ if λI = λI′ .
By Lemma 2.5, the sum of aIt

I over each equivalence class is zero, and thus,∑
I aIλ

iItI = 0 for all i ≥ 1.

Finally, the following is an obvious generalization of 2.6:

Corollary 2.9 Under the assumptions of Proposition 2.4, let t be a sufficiently
general algebraic point of U in a sufficiently small p-adic neighbourhood of q and
H be the multiplicative group generated by λ1, . . . , λn. Then the dimension of the
Zariski closure of the f -orbit {f ◦i(t) | i ∈ N} is greater than or equal to r = rank(H).

Proof. Let y1, . . . , yn be local coordinates at q linearizing and diagonalizing f in a
neighbourhood Op,q,s. Replacing f by a power, we may assume that the eigenvalues
λi generate a torsion-free group. Take a point t = (t1, . . . , tn) ∈ Op,q,s away from the
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coordinate hyperplanes and consider the natural embedding of the n-th cartesian
power T of O×

p :

t : T → Op,q,s, (µ1, . . . , µn) 7→ (µ1t1, . . . , µntn).

On the image of T , we can find a monomial coordinate change such that in the new
coordinates y′1, . . . , y

′
n one has

f(y′1, . . . , y
′
n) = (λ′1y

′
1, . . . , λ

′
ry
′
r, y

′
r+1, . . . y

′
n)

and λ′i, 1 ≤ i ≤ r are multiplicatively independent (Euclid’s algorithm). Now apply
Corollary 2.7 (notice that since it is about Laurent series, we can allow monomial
coordinate changes as above).

3 Variety of lines of the cubic fourfold

The difficulty in using the results of the previous section to prove potential density
of rational points is that it can be hard to find an interesting example such that the
eigenvalues of the tangent map at some fixed point are multiplicatively independent.
For instance if f is an automorphism and X is a projective K3 surface, or, more
generally, an irreducible holomorphic symplectic variety, then the product of the
eigenvalues is always a root of unity, as noticed for instance in [Bv].

So even when a linearization in the neighbourhood of a fixed point is possible,
the orbit of a general algebraic point may be contained in a relatively small analytic
subvariety of the neighbourhood (of course this subvariety does not have to be
algebraic, but it is unclear how to prove that it actually is not). Nevertheless, with
some additional geometric information, one can still follow this approach to prove
the potential density.

In the rest of this note, we illustrate this by giving a simplified proof of the
potential density of the variety of lines of a cubic fourfold, which is the main result
of [AV]. The proof uses several ideas from [AV], but we think that certain aspects
become more transparent thanks to the introduction of the “dynamical” point of
view and the use of p-adic neighbourhoods.

We recall the setting of [AV] (the facts listed below are taken from [V1] and
[A]). Let V be a general smooth cubic in P5 and let X ⊂ G(1, 5) be the variety
of lines on V . This is an irreducible holomorphic symplectic fourfold: H2,0(X) is
generated by a nowhere vanishing form σ. For l ⊂ V general, there is a unique
plane P tangent to X along l (consider the Gauss map, it sends l to a conic in the
dual projective space). The map f maps l to the residual line l′. It multiplies the
form σ by −2; in particular, its degree is 16. The indeterminacy locus S consists of
points such that the image of the corresponding line by the Gauss map is a line (and
the mapping is 2:1). This is a smooth surface of general type, resolved by a single
blow-up. For a general X, the Picard group is cyclic and thus the Hodge structure
on H2(X)prim is irreducible (thanks to h2,0(X) = 1); the space of algebraic cycles is
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generated by H2 = c2
1(U

∗) and ∆ = c2(U
∗), where U is the restriction of UG(1,5), the

universal rank-two bundle on G(1, 5). By Terasoma’s theorem [T], these conditions
are satisfied by a “sufficiently general” X defined over a number field, in fact even
over Q; “sufficiently general” meaning “outside of a thin subset in the parameter
space”. One computes that the cohomology class of S is 5(H2−∆) to conclude that
S is irreducible and non-isotropic with respect to σ.

3.1 Fixed points and linearization

The fixed point set F of our rational self-map f : X 99K X is the set of points
such that along the corresponding line l, there is a tritangent plane to V . Strictly
speaking, this is the closure of the fixed point set, since some of such points are in
the indeterminacy locus; but for simplicity we shall use the term “fixed point set”
as far as there is no danger of confusion.

Proposition 3.1 The fixed point set F of f is an isotropic surface of general type.

Proof: It is clear from f ∗σ = −2σ that F is isotropic. Let I ⊂ G(1, 5)×G(2, 5)
with projections p1, p2 be the incidence variety {(l, P )|l ⊂ P} and let F ⊂ I ×
PH0(OP5(3)) denote the variety of triples {(l, P, V )|V ∪P = 3l}. This is a projective
bundle over I, so F is smooth and thus its fiber F ′

V over a general V ∈ PH0(OP5(3)) is
also smooth. This fiber clearly projects generically one-to-one on the corresponding
F = FV , since along a general line l ⊂ V there is only one tangent plane, and a
fortiori only one tritangent plane if any; so F ′ = F ′

V is a desingularization of F .
Since dim(I) = 11 and since intersecting the plane P along the triple line l imposes
9 conditions on a cubic V , we conclude that F ′ and F are surfaces.

To compute the canonical class, remark that F ′ is the zero locus of a section
of a globally generated vector bundle on I. This vector bundle is the quotient of
p∗2S

3U∗
G(2,5) (where UG(2,5) denotes the tautological subbundle on G(2, 5)) by a line

subbundle L3 whose fiber at (l, P ) is the space of degree 3 homogeneous polynomials
on P with zero locus l. One computes that the class of L3 is three times the difference
of the inverse images of the Plücker hyperplane classes on G(2, 5) and G(1, 5), and
it follows that the canonical class of F is p∗2(3c1(U

∗)), which is ample (we omit the
details since an analogous computation is given in [V], and a more detailed version
of it in [Pc]).

Remark 3.2 Since F is isotropic and S is not, S cannot coincide with a component
of F . In fact, dimension count shows that F ∩ S is a curve.

Proposition 3.3 For a general (that is, non-singular and out of the indeterminacy
locus) point q ∈ F , the tangent map Dfq is diagonalized with eigenvalues 1, 1,−2,−2.

Proof: This follows from the fact that f ∗σ = −2σ. and the fact that the map
is the identity on the lagrangian plane TpF ⊂ TpX. Let e1, e2, e3, e4 be the Jordan
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basis with e1, e2 ∈ TpF . There is no Jordan cell corresponding to the eigenvalue 1,
since in this case e4 would be an eigenvector with eigenvalue 4, but then σ(e1, e4) =
σ(e2, e4) = σ(e3, e4) = 0, contradicting the fact that σ is non-degenerate. By the
same reason, the eigenvalues at e3 and e4 are both equal to ±2. Suppose that Dfq is
not diagonalized, so sends e3 to ±2e3 and e4 to e3±2e4. In both cases σ(e3, e4) = 0.
If e3 goes to 2e3, we immediately see that e3 ∈ Ker(σ), a contradiction. Finally, if
Dfq(e3) = −2e3 and Dfq(e4) = e3 − 2e4, we have

−2σ(e1, e4) = σ(e1, e3)− 2σ(e1, e4),

so that σ(e1, e3) = 0, but by the same reason σ(e2, e3) = 0, again a contradiction to
non-degeneracy of σ.

Proposition 3.4 (1) Let q ∈ X(K) be a general fixed point of f as above and
let Op,q be its p-adic neighbourhood for a suitable p, as in the previous section.
Then f is equivalent to its linear part in a sufficiently small subneighbourhood Op,q,s;
that is, there exist power series h = hq in four variables (t1, t2, t3, t4) = t such
that h(t1, t2,−2t3,−2t4) = f ◦ h(t), convergent together with its inverse in some
neighbourhood of zero.

(2) In the complex setting, the analogous statements are true. Moreover, the
maps ht1,t2 , where ht1,t2(x, y) = h(t1, t2, x, y) extend to global meromorphic maps
from C2 to X.

Proof: 1) Since the couple of non-trivial eigenvalues (−2,−2) is non-resonant,
this is just the Proposition 2.4.

2) In the complex case, the linearization is a variant of a classical result due to
Poincare [P]. One writes the formal power series in the same way as in the p-adic
setting, thanks to the absence of the resonances; but it is much easier to prove its
convergence thanks to the fact that now λ3 = λ4 = −2 and | − 2| > 1, and so the
absolute values of the denominators which appear when one computes the formal
power series are bounded from below (these denominators are in fact products of
the factors of the form λm3

3 λm4
4 − λi for m3 + m4 ≥ 2, m3, m4 ≥ 0). For the sake

of brevity, we refer to [Rg] which proves the analogue of Theorem 4.1, case (2),
in the complex case and under a weaker diophantine condition on the eigenvalues
(Rong assumes moreover that |λi| = 1, but as we have just indicated, in our case all
estimates only become easier, going back to [P]).

To extend the maps ht1,t2 to C2, set

ht1,t2(x) = fk(ht1,t2((−2)rx)),

where (−2)rx is sufficiently close to zero; one checks that this is independent of
choices.

We immediately get the following corollary (which follows from the results of
[AV], but for which there was as yet no elementary proof):
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Corollary 3.5 There exist points in X(Q̄) which are not preperiodic for f .

Proof: Indeed, Q̄-points are dense in Op,q. Take one in a suitable invariant
subneighbourhood and use the linearization given by the proposition above.

Remark 3.6 If f were regular, this would follow from the theory of canonical heights;
but this theory does not seem to work sufficiently well for polarized rational self-maps.

3.2 Non-preperiodicity of certain surfaces

The starting point of [AV] was the observation that X is covered by a two-parameter
family Σb, b ∈ B of birationally abelian surfaces, namely, surfaces parametrizing lines
contained in a hyperplane section of V with 3 double points. On a general X, a
general such surface has cyclic Neron-Severi group ([AV]); moreover, many of those
surfaces Σ defined over a number field have the same property, as shown by an
argument similar to that of Terasoma [T]. In fact, given a “general” X defined over
a number field, the set of such surfaces on X whose Neron-Severi group is not cyclic
is thin.

In [AV], it is shown that the iterates of a suitable Σ defined over a number field
and with cyclic Neron-Severi group are Zariski-dense in X. The first step is to prove
non-preperiodicity, that is, the fact that the number of fk(Σ), k ∈ N, is infinite.
Already at this stage the proof is highly non-trivial, using the l-adic Abel-Jacobi
invariant in the continuous étale cohomology.

In this subsection, we give an elementary proof of the non-preperiodicity of a
suitable Σ, which is based on proposition 3.4. Moreover, this works without an
assumption on its Néron-Severi group, and also for any X, not only for a “general”
one.

Lemma 3.7 The surface Σ is never invariant by f .

Proof: The surface Σ is the variety of lines contained in the intersection Y =
V ∩ H, where H is a hyperplane in P5 tangent to V at exactly three points. For
a general line l corresponding to a point of Σ, there is a unique plane P tangent
to V along l, and the map f sends l to the residual line l′. If Σ is invariant, l′

and therefore P lie in H, and P is tangent to Y along l. But this means that l is
”of the second type” on Y in the sense of Clemens-Griffiths (i.e. the Gauss map of
Y ⊂ H = P4 maps l to a line in (P4)∗ as a double covering), see [CG]. At the same
time it follows from the results of [CG] that a general line on a cubic threefold with
double points is ”of the first type” (mapped bijectively onto a conic by the Gauss
map), a contradiction.

Passing to the p-adic setting and taking a Σ meeting a small neighbourhood of a
general fixed point q of f , we see by corollary 2.8 that the Zariski closure of ∪kf

k(Σ)
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is irreducible. Since Σ cannot be f -invariant by the lemma above, this means that
Σ is not preperiodic and so the Zariski closure D of ∪kf

k(Σ) is at least a divisor.

Coming back to the complex setting and taking a Σ passing close to q in both
p-adic and complex topologies, let us make a few remarks on the geometry of D.

In a neighbourhood of our fixed point q, the intersections of D with the images
of ht1,t2 are f -invariant analytic subsets. From the structure of f as in Proposition
3.4 we deduce that such a subset is either the whole image of ht1,t2 , or a finite union
of ”lines through the origin” (that is, images of such lines by ht1,t2). If the last case
holds generically, D must contain F by dimension reasons. If the generic case is the
first one, D might only have a curve in common with F .

To sum up, we have the following

Theorem 3.8 The Zariski closure D is of dimension at least three. If it is of
dimension three, this is an irreducible divisor which either contains the surface of
fixed points F , or has a curve in common with F . In this last case, D contains
correspondent ”leaves” (images of C2 from 3.4) through the points of this curve.

3.3 Potential density

In this subsection, we exclude the case when D is a divisor.
Let µ : D̃ → X denote a desingularization; D̃ is equipped with a rational self-

map f̃ satisfying µf̃ = fµ.
Our proof is a case-by-case analysis on the Kodaira dimension of D. In [AV] , we

already have simple geometric arguments ruling out the cases of κ(D) = −∞ and
κ(D) = 0. The case κ(D) = −∞ is especially simple since then the holomorphic
2-form would be coming from the rational quotient of D, but Σ obviously must
dominate the rational quotient and this cannot be isotropic. The case κ(D) = 0
is less easy and uses the fact that Pic(X) = Z or, equivalently, that the Hodge
structure H2(X)prim is irreducible of rank 22. Namely, an argument using Minimal
Model theory and the existence of an holomorphic 2-form on D gives that D must be
rationally dominated by an abelian threefold or by a product of a K3 surface with
an elliptic curve. But the second transcendental Betti number of those varieties
cannot exceed 21, which contradicts the fact that D̃ carries an irreducible Hodge
substructure of rank 22; see [AV] for details.

Let us deal with the case κ(D) = 2. We need the following lemma:

Lemma 3.9 On a general X, the points of period 3 with respect to f form a curve.

Proof: Let l1 be (a line corresponding to) such a point, l2 = f(l1), l3 = f 2(l1),
so that f(l3) = l1. There are thus planes P1, P2, P3, such that P1 is tangent to V
along l2 and contains l3, etc. Clearly, P1 6= P2 6= P3. The span of the planes Pj is
a projective 3-space Q. Let us denote the two-dimensional cubic, intersection of V
and Q, by W . We can choose the coordinates (x : y : z : t) on Q such that l1 is
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given by y = z = 0, etc. Then the intersection of W and P1 is given by the equation
z2y = 0, etc. The only other monomial from the equation of W , up to a constant,
can be xyz, since it has to be divisible by the three coordinates. Therefore W is a
cone (with vertex at 0) over the cubic given by the equation

ax2y + by2z + cy2z + dxyz = 0

in the plane at infinity. Now a standard dimension count ([A]) shows that a general
cubic admits a one-parameter family of two-dimensional linear sections which are
cones. Each cone on V gives rise to a plane cubic on X. This cubic is invariant
under f , and f acts by multiplication by −2 (for a suitable choice of zero point).
The points of period 3 with respect to f lie on such cubic and are their points of
9-torsion.

Remark 3.10 In fact the lemma says slightly more: it applies to the indeterminacy
points which are ”3-periodic in the generalized sense”, that is, points appearing if one
replaces the condition ”f(l1) = l2, f(l2) = l3, f(l3) = l1” by ”l2 ∈ f(l1), l3 ∈ f(l2),
l1 ∈ f(l3)”; here by f(l1) we mean the rational curve which is the image of l1 by the
correspondence which is the graph of f (equivalently, l2 ∈ f(l1) says that for some
plane P3 tangent to V along l1, the residual line in P3 ∩ V is l2).

By blowing-up D̃, we may assume that the Iitaka fibration D̃ → B is regular.
Its general fiber is an elliptic curve. By [NZ], the rational self-map f̃ descends to B
and induces a transformation of finite order, so the elliptic curves are invariant by
a power of f̃ . From proposition 3.4, we obtain that they are in fact invariant by f̃
itself: indeed, locally in a neighbourhood of a fixed point, the curves invariant by f
are the same as the curves invariant by its power. On a general elliptic curve, there
is a finite (non-zero) number of points of period three, since f̃ acts as multiplication
by −2. We have two possibilities:

1) These are mapped to points of period three (in the ”generalized sense” as in
the 3.10) on X (or the surface they form is contracted to any other curve on X).
Then any preimage of our surface by an iteration of f̃ is contracted as well, but
since there are infinitely many of them, this is impossible.

2) This surface dominates a component of the surface of fixed points of f . In
this case, several points of period three must collapse to the same fixed point p. But
then the resulting branches of each elliptic curve near the generic fixed point are
interchanged by f , which contradicts the local description of f in 3.4.

This rules out the possibility κ(D) = 2.
Finally, let us consider the case κ(D) = 1. The Iitaka fibration D̃ → C maps D̃

to a curve C and the general fiber U is of Kodaira dimension 0. As before, by [NZ]
f̃ induces a finite order automorphism on C, and one deduces from 3.4 that this is
in fact the identity. We have two possible cases:

Case 1: U is not isotropic with respect to the holomorphic 2-form σ. We use
the idea from [AV] as in the case κ(D) = 0. Namely, since X is generic, the Hodge
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structure H2
prim(X, Q) is simple.Since the pull-back of σ to D̃ is non-zero, H2(D̃, Q)

carries a simple Hodge substructure of rang 22. Since U is non-isotropic, the same
is true for U , but a surface of Kodaira dimension zero never satisfies this property.

Case 2: U is isotropic with respect to σ. The kernel of the pull-back σD of σ to
D̃ gives a locally free subsheaf of rank one in the tangent bundle TD̃, which is in fact
a subsheaf of TU since U is isotropic. There is thus a foliation in curves on U , and
this foliation has infinitely many algebraic leaves (these are intersections of U with
the iterates of our original surface Σ). By Jouanolou’s theorem, this is a fibration.
In other words, D is fibered over a surface T in integral curves of the kernel of σD,
and U project to curves. These cannot be rational curves since the surface T is
not uniruled (indeed, the form σD must be a lift of a holomorphic 2-form on T ).
Therefore these are elliptic curves, and since κU = 0, so are the fibers of π : D → T .

Recall from 3.4 that either D contains F , or it contains a curve on F ; and in
this last case, locally near generic such point, D is a fibration in (isotropic) two-
dimensional disks over a curve; in particular, such a point is a smooth point of D. If
D contains F , we get a contradiction with 3.1: indeed, F must be dominated by a
union of fibers of π, but F is of general type and the fibers are elliptic. If D contains
a curve on F , then we look at the ”leave” (image of C2 from the Proposition 3.4) at
a general point q of this curve. Its intersection with the image of U is an invariant
curve, that is, the image of a line through the origin. Since U and the leave are both
isotropic, this must be an integral curve of the kernel of the restriction of σ to D.
But U varies in a family, and this implies that the restriction of σ to D is zero at q,
a contradiction since σ is non-degenerate.

We thus come to a conclusion that D cannot be a divisor, so D = X.

Remark 3.11 Here, unlike in the proof of non-preperiodicity, we do assume that
X is ”sufficiently general” and so Pic(X) = Z. It would be interesting to check
whether one can modify the argument to get rid of this assumption.

4 Appendix: a version of Siegel’s theorem

In this appendix we explain how to modify the proof of Siegel’s theorem on linearization
of p-adic diffeomorphisms given in [HY, Theorem 1, §4, p.423] in order to adapt it
to the situation where the fixed point is not isolated.

Let k be a complete non-archimedian field and n > r ≥ 0 be integers.

Theorem 4.1 Let f = (f (1), . . . , f (n)) be an analytic diffeomorphism of an n-
dimensional domain. Assume that the fixed set of f is r-dimensional and that the
tangent maps of f are semisimple at all fixed points of f . Suppose, moreover, that
the eigenvalues of df distinct from 1 (at fixed points of f) are either

1. equal and are not roots of unity at general fixed point, or
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2. constant and, if denoted by λr+1, . . . , λn, satisfy the following bad diophantine
approximation property: |λir+1

r+1 · · ·λin
n − λj|k ≥ C(ir+1 + · · · + in)−β for some

C > 0 and β ≥ 0, any r < j ≤ n and (ir+1, . . . , in) ∈ Zn−r
≥0 such that ir+1 +

· · ·+ in ≥ 2.

Then there exist coordinates x1, . . . , xn in a neighbourhood of a general fixed point
of f such that f (i)(x) = λi(x1, . . . , xr)xi for all 1 ≤ i ≤ n, where λ1 = · · · = λr = 1
(and in the second case λi(x1, . . . , xr) are constant for all 1 ≤ i ≤ n).

The desired coordinates are constructed, using Newton’s methods, as limits in
appropriate spaces of certain sequence of approximations h0, h1, h2, . . . , which are
diffeomorphisms of the ρi-neighbourhood of a general fixed point of f for a decreasing
sequence of radii ρ1 > ρ2 > ρ3 > · · · > ρ∞ > 0.

After a preliminary step (Corollaries 4.3, 4.4), the procedure is the same as in
[HY], but instead of working in the spaces A2

ρ(k
n) and B2

ρ(k
n) of loc. cit. we work

in smaller (when r > 0) spaces A
(r)
ρ (kn) and B

(r)
ρ (kn), cf. below.

Lemma 4.2 Let f be an analytic diffeomorphism of an n-dimensional domain, F
be the fixed set of f , and q be a general point of F . Assume that F is r-dimensional
and that only r eigenvalues of the tangent map of f at q are equal to 1. Then there
exist coordinates x1, . . . , xn in a neighbourhood of q such that xr+1, . . . , xn generate
the (f -invariant) ideal IF of F and f (i)(x) ≡ xi (mod I2

F ) for all 1 ≤ i ≤ r.

Proof. We split the coordinates into two groups: x′ := (x1, . . . , xr) and x′′ :=
(xr+1, . . . , xn). Then f(x) = x+

∑
I∈Zn−r

≥0 : |I|≥1 aI(x
′)(x′′)I for some analytic aI(x

′), so

f(x) ≡ (x′+
∑

I∈{0,1}n−r: |I|=1 a′I(x
′)(x′′)I ; x′′+

∑
I∈{0,1}n−r: |I|=1 a′′I (x

′)(x′′)I (mod I2
F ),

so f ≡ (x′+a′x′′; x′′+a′′x′′) (mod I2
F ), where a′ = a′(x′) is the matrix with columns

a′I(x
′) for |I| = 1 and a′′ = a′′(x′) is the matrix with columns a′′I (x

′) for |I| = 1.
Let h(x) = (x′ + a′(a′′)−1x′′; x′′). Then h−1(x) ≡ (x′ − a′(a′′)−1x′′; x′′) (mod I2

F ),
f(h(x)) ≡ (x′ + a′(a′′)−1x′′ + a′x′′; x′′ + a′′x′′) = (x′ + a′(1 + (a′′)−1)x′′; x′′ + a′′x′′),
and finally, h−1(f(h(x))) ≡ (x′; x′′ + a′′x′′) (mod I2

F ).

Corollary 4.3 In the setting of Lemma 4.2, assume that (i) the tangent maps of
f are semisimple at all points of F and (ii) their eigenvalues distinct from 1 are
equal. Then there exist coordinates x1, . . . , xn in a neighbourhood of a general point
of F such that xr+1, . . . , xn generate the ideal IF of F , f (i)(x) ≡ xi (mod I2

F ) for all
1 ≤ i ≤ r and f (i)(x) ≡ λ(x′)xi (mod I2

F ) for all r < i ≤ n.

Proof. In the setting of the proof of Lemma 4.2, the matrix a′′ is diagonalizable with
the same eigenvalues, so it is already diagonal.

Corollary 4.4 In the setting of Lemma 4.2, assume that (i) the tangent maps of f
are semisimple at all points of F and (ii) their eigenvalues λ1, . . . , λn do not vary.
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Then there exist coordinates x1, . . . , xn in a neighbourhood of a general point of
F such that xr+1, . . . , xn generate the ideal IF of F and f (i)(x) ≡ λixi (mod I2

F ) for
all 1 ≤ i ≤ n.

Proof. In the setting of the proof of Lemma 4.2, there is transform of the coordinates
x1, . . . , xn, identical on x1, . . . , xr, which is linear on xr+1, . . . , xn with coefficients in
functions of x1, . . . , xr making the matrix diagonal.

Namely, after a k-linear change of variables we can assume that a′′ is diagonal at
q. Let pi :=

∏
j: λj 6=λi

(λi−λj)
−1(a′′−λj) be a projector onto the λi-eigenspace of a′′.

If {er+1, . . . , en} is an eigenbasis of a′′(q), considered as sections of the restriction
of the tangent bundle to F , then {Ei := piei}r<i≤n is a system of eigenvectors of
a′′ and its reduction modulo the maximal ideal in k[[x1, . . . , xr]] is the eigenbasis
{er+1, . . . , en} of a′′(q). This means that E1, . . . , En generate the tangent bundle,
cf. [AtM, Proposition 2.8]. Then the dual basis of the cotangent bundle gives
the desired linear transformation of the coordinates xr+1, . . . , xn with coefficients in
functions of x1, . . . , xr.

Now we modify [HY] a little bit to allow some “resonances”. Let Λ be an n× n
diagonal matrix with entries λ1, . . . , λn, the first r being equal to 1. We assume
that λr+1, . . . , λn satisfy the following bad diophantine approximation property:
|λir+1

r+1 · · ·λin
n − λj|k ≥ C(ir+1 + · · ·+ in)−β for some C > 0 and β ≥ 0, any r < j ≤ n

and i = (ir+1, . . . , in) ∈ Zn−r such that ir+1 + · · ·+ in > 1.
For real ρ > 0 define the spaces

• Aρ(k
n) := {φ =

∑
I aIx

I ∈ k[[x1, . . . , xn]] | sup |aI |ρ|I| =: ‖φ‖ρ < ∞} (this is
a non-archimedian Banach algebra, denoted A2

ρ(k
n) in [HY]);

• Ar
ρ(k

n) consists of all φ ∈ Aρ(k
n) such that φ(x1, . . . , xr, 0, . . . , 0) = 0 and

∂φ
∂xi

(x1, . . . , xr, 0, . . . , 0) = 0 for all r < i ≤ n (this is an ideal in Aρ(k
n));

• Br
ρ(k

n) := {φ ∈ Ar
ρ(k

n) | φ ◦ Λ ∈ Ar
ρ(k

n)}. In particular, Br
ρ(k

n) = Ar
ρ(k

n) if
‖λ1‖ = · · · = ‖λn‖ = 1.

The set x + (Ar
ρ(k

n))n is a group (with respect to the composition). This group
acts on Ar

ρ(k
n).

We are interested in inverting the linear operator L : (Br
ρ(k

n))n → (Ar
ρ(k

n))n,
defined by Lw = w ◦Λ−Λ ◦w. Its injectivity is evident: φ =

∑
I aIx

I 7→ (
∑

I(λ
I −

λi)a
(i)
I xI)1≤i≤n, where λI = λi1

1 · · ·λin
n . Moreover, it is also evident that for any

g ∈ (Ar
ρ(k

n))n there exists a unique n-tuple of formal series w such that Lw = g,

w(x1, . . . , xr, 0, . . . , 0) = 0 and ∂w
∂xi

(x1, . . . , xr, 0, . . . , 0) = 0 for all r < i ≤ n.
Put on (Br

ρ(k
n))n the max norm: ‖φ‖r = max(‖φ‖r, ‖φ ◦ Λ‖r).

Lemma 4.5 For any δ > 0 the solution w belongs to (Br
ρ−δ(k

n))n and satisfies

‖w‖r−δ ≤ C1
‖g‖r

δβ rβ, ‖Dw‖r−δ ≤ C1
‖g‖r

δβ
rβ

r−δ
, ‖Dw ◦ Λ‖r−δ ≤ C1

‖g‖r

δβ
rβ

r−δ
, where C1 is

a constant depending only on C, β, ‖Λ‖.
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Let 0 < δ < s ≤ 1 such that s− δ ≥ 1/2. Assume as before that f ∈ (A1(k
n))n.

Take ĥ ∈ (Br
s(k

n))n such that ‖ĥ‖s < 1/2 and ‖Dĥ ◦ Λ‖s < 1/2. Set Ff (h) :=

f ◦ h− h ◦ Λ, where h(x) = x + ĥ(x). It belongs to (As(k
n))n.

Set E := (Dh)−1 ·∆h. Then Ff (h+∆h) = f ◦(h+∆h)−f ◦h+Ff (h)−∆h◦Λ =
Ff (h) + [f ◦ (h + ∆h)− f ◦ h + DFf (h) ·E−Df ◦ h ·∆h] + (Dh ◦Λ)(Λ ·E−E ◦Λ).

By Cauchy’s formula [HY, Lemma 10], ‖DFf (h) · E‖s−δ ≤ 2‖Ff (h)‖s−δ‖E‖s−δ.
By Taylor’s formula [HY, Prop. 7], ‖f ◦ (h + ∆h) − f ◦ h − Df ◦ h · ∆h‖s−δ ≤
4‖f‖1‖∆h‖2

s−δ.
According to Lemma 4.5=[HY, Lemma 15], there exists E ∈ (Br

s−δ(k
n))n such

that Ff (h) + (Dh ◦Λ)(Λ ·E −E ◦Λ) = 0 and ‖E‖s−δ ≤ C2
‖Ff (h)‖s

δβ ‖(Dh ◦Λ)−1‖s ≤
C2

‖Ff (h)‖s

δβ , ‖DE‖s−δ ≤ C2
‖Ff (h)‖s

δβ , ‖DE ◦ Λ‖s−δ ≤ C2
‖Ff (h)‖s

δβ , where we have used
the estimate ‖Dh ◦ Λ− id‖ < 1/2 and the following

Lemma 4.6 ([HY], Lemma 13) If ϕ ∈ Aρ(k
n, End(kn)) and ‖ϕ‖ρ < 1 then 1+ϕ

is invertible in Aρ(k
n, End(kn)) and ‖(1 + ϕ)−1 − 1‖ρ = ‖ϕ‖ρ.

(This is evident from the identity (1− x)−1 =
∑

i≥0 xi for ‖x‖ < 1.)
It follows from the estimates ‖Dh‖s ≤ 1, ‖Dh−1‖s ≤ 1, ‖Dh ◦ Λ‖s ≤ 1, ‖(Dh ◦

Λ)−1‖s ≤ 1 that ∆h ∈ (Br
s−δ(k

n))n and satisfies the same estimates as E.

To obtain the initial assumption ‖∆h‖s−δ < 1/2, we assume that C2
‖Ff (h)‖s

δβ <
1/2. Then we can choose ∆h so that ‖Ff (h+∆h)‖s−δ ≤ K

δβ ‖Ff (h)‖2
s, where K > C2

2

depends only on C, β, ‖A‖, ‖f‖1. Moreover, h + ∆h satisfies, with respect to s− δ,
the same hypothesis that h with respect to s.

Let ρi = 1/2 + 2−i−1, ρ∞ = 1/2 and δi = si − si+1 = 2−i−2 for all integer
i ≥ 0. Replacing if necessary f by uf(u−1x) (u ∈ k, |u|k � 1), we can suppose that
‖f − λ‖1 = ε is as small as we want.

The rest of the iteration process goes exactly the same way as described in [HY,
§4.4].
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