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1. Introduction

Let X be a smooth affine surface over C with an affine ruling (an A1-fibration)
ρ : X → A1

C. Assume that ρ is surjective, has a unique degenerate fiber, and this fiber
is irreducible. In [3] such a surface X is called affine pseudo-plane. It is of class ML1

if ρ is unique up to an automorphism of A1
C. In [3] the following classification result is

obtained.

Theorem 1.1. (Miyanishi-Masuda) Suppose that X is an affine pseudo-plane of class
ML1. If X admits an effective C∗-action then the following hold.

(i) This C∗-action is necessarily hyperbolic.

(ii) The universal covering f̃ : X̃ → X is a cyclic covering of degree d, where d is the
multiplicity of the unique degenerate fiber of ρ.

(iii) X̃ is an affine hypersurface in A3
C = Spec C[x, y, z] with equation xmy = zd − 1

for some m > 1.
(iv) The Galois group Zd = 〈ζ〉 of the covering f̃ : X̃ → X, where ζ = ζd is a primitive

d-th root of unity, acts on X̃ via ζ.(x, y, z) = (ζx, ζ−my, ζez), where gcd(e, d) = 1.

(v) The C∗-action λ.(x, y, z) := (λx, λ−my, z) (λ ∈ C∗) on X̃ descends to the given
C∗-action on X, up to replacing λ by λ−1.

Our interest in this result is explained by our previous study [1, 2] of normal affine
surfaces admitting a C∗-action and an affine ruling. We give an alternative proof of
Theorem 1.1 based on these results. We deduce it from an abstract description of a
certain subclass of such surfaces realized as hypersurfaces in A3

C (see Lemma 2.2 below).

Let us add some remarks. An affine ruling on X induces an affine ruling ρ̃ : X̃ → A1
C

with a unique degenerate fiber consisting of d disjoint components isomorphic to A1
C.

In case m > 1 there is an essentially unique such affine ruling on X̃, defined by the
restriction x|X̃. However, for m = 1, y|X̃ gives a second independent affine ruling,

which also descends to X = X̃/Zd. Thus in this case X cannot be a ML1 surface.
If we want the Zd-action on X̃ to be free, the exponents e and d above must be

coprime. Indeed, otherwise ζeb = 1 for some b with 0 < b < d, and we would have
ζb.(0, 0, z) = (0, 0, z) for every d-th root of unity z.

On the other hand, for every triple (d, e, m) with d ≥ 1, m ≥ 2 and gcd(e, d) = 1,
(iii)-(v) determine a smooth affine pseudo-plane X of class ML1 with an effective C∗-
action. Thus Theorem 1.1 provides indeed a complete classification of these surfaces.
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2. The proof

Under the assumptions of Theorem 1.1 X 6∼= A2
C, since otherwise X would admit

another affine ruling ρ′ : X → A1
C with general fibers different from those of ρ, which

contradicts the condition ML1.
A smooth affine surface X with an elliptic C∗-action is always isomorphic to A2

C,
so this case is impossible. If X is smooth and the C∗-action on X is parabolic then
according to Proposition 3.8(b) in [1], X = Spec A0[D] for an integral divisor D on a
smooth affine curve C = Spec A0. The existence of an affine ruling ρ on X with the
base A1

C implies that C ∼= A1
C. Hence D is a principal divisor. By Theorem 3.2(b) in

[1], we have again X ∼= A2
C = Spec A0[0] with A0 = C[t], which is impossible.

Thus the C∗-action on X = Spec A is necessarily hyperbolic. Accordingly we can
write

A = A0[D+, D−](1)

with a pair of Q-divisors D± on a smooth affine curve C = Spec A0 satisfying D++D− ≤
0, see Theorem 4.3 in [1]. The remainder of the proof is based on Lemmas 2.1 and 2.2
below.

Lemma 2.1. Under the assumptions of Theorem 1.1, A ∼= A0[D+, D−], where A0 =
C[t] and

D+ = −
e′

d
[0], D− =

e′

d
[0] −

1

m
[1] .

Proof of Lemma 2.1. By Lemmas 1.6 and 2.1 in [2], X admits an affine ruling over
an affine base if and only if it admits a non-trivial C+-action defined by a non-zero
homogeneous locally nilpotent derivation ∂ ∈ Der(A). Moreover, A0 = C[t] in (1) and,
up to an automorphism λ 7−→ λ−1 of C∗ (thus switching (D+, D−) 7−→ (D−, D+)) we
may assume that e = deg ∂ ≥ 0. By Lemma 3.5 and Corollary 3.27 in [2], e = 0 implies
that X ∼= A1

C × C∗, so the induced affine ruling X → C∗ is essentially unique and has
the base C∗, which contradicts our assumption. Thus e > 0.

According to Corollary 3.23 in [2], the latter implies that the fractional part {D+} =
D − bDc is zero or is supported on one point, and we can choose this point to be
0 ∈ A1

C. Such a surface X = Spec A is of class ML1 if and only if the fractional part
{D−} is supported on at least 2 points, see [2, Theorem 4.5].

Replacing (D+, D−) by the equivalent pair ({D+}, D− + bD+c) (see Theorem 4.3(b)
in [1]) we may suppose that D+ = {D+} = −e′/d[0], where gcd(e′, d) = 1 and d > 0.

For any affine pseudo-plane X, the Picard group PicX is a torsion group [4, Ch. 3,
2.4.4]. On the other hand, for a C∗-surface X as above, rkQ(PicX ⊗Q) ≥ l − 1, where
l is the number of points bj ∈ A1

C such that (D+ + D−)(bj) < 0, see Corollary 4.24 in
[2]. Hence l ≤ 1 and so, ∃p ∈ A1

C : (D+ + D−)(q) = 0 ∀q 6= p.
Since D+(q) = 0 ∀q 6= 0 we have D−(q) = 0 ∀q 6= 0, p. It follows that supp(D−) =

supp({D−}) = {0, p} with p 6= 0. After an automorphism of A1
C we may assume that

p = 1. Thus finally

D±(0) = ∓e′/d, D+(1) = 0, D−(1) = a/m 6∈ Z and D±(q) = 0 ∀q 6= 0, 1 ,

where gcd(a, m) = 1 and m > 0. The smoothness of X forces a = −1, see Theorem
4.15 in [1]. This proves Lemma 2.1. �

Next we use the following description [2, Corollary 3.30], where for a Q-divisor D,
d(D) denotes the minimal positive integer d such that dD is integral.
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Lemma 2.2. We let A = C[t][D+, D−], where D+ + D− ≤ 0, d(D+) = d, d(D−) =
k. We assume that D+ = − e′

d
[0] and D−(0) = − l

k
, and we let ∂ ∈ Der(A) be a

homogeneous locally nilpotent derivation with e = deg ∂ > 0. Then there exists a
unitary polynomial Q ∈ C[t] with Q(0) 6= 0 and div(tlQ(t)) = −kD− such that, if
A′ = Ak,P is the normalization of

Bk,P = C[u, v, s]/
(

ukv − P (s)
)

, where P (s) = Q(sd)ske′+dl ,(2)

then the group Zd = 〈ζ〉 acts on Bk,P and also on A′ via

ζ.(u, v, s) = (ζe′

u, v, ζs) ,(3)

so that A ∼= A′Zd . Furthermore, ee′ ≡ 1 mod d and ∂ = cue ∂
∂s
|A for some constant

c ∈ C∗.

With this result we can complete the proof of Theorem 1.1 as follows. We may
assume that A = A0[D+, D−] with A0 = C[t] and (D+, D−) as in Lemma 2.1. With
k := lcm(d, m) let us write k = mm′ = dd′ and l = −e′d′, so that

D+ = −
e′

d
[0] =

l

k
[0], D− =

e′

d
[0] −

1

m
[1] = −

l

k
[0] −

m′

k
[1] .

Thus Lemma 2.2 can be applied in our setting with Q = (t − 1)m′

. By this lemma,
A = A′Zd , where A′ is the normalization of

B = C[u, v, s]/(ukv − (sd − 1)m′

),

with the action of Zd as in (3) and with the C∗-action λ.(u, v, s) = (λu, λ−kv, s).

The element w = sd−1

um ∈ Frac(B) satisfies wm′

= v and so is integral over B, hence

A′ ∼= C[u, w, s]/(umw − (sd − 1)).

Because of (3) we have ζ.w = ζ−me′

w. Thus after applying an automorphism ζ 7→ ζe′

of Zd, both the Zd-action and the C∗-action on X̃ = Spec A′ ⊆ A3
C = Spec C[u, w, s] ∼=

Spec C[x, y, z] have the claimed form

ζ.(u, w, s) = (ζu, ζ−mw, ζes) respectively, λ.(u, w, s) = (λu, λ−mw, s) .

This proves the theorem. �
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