On the linear independence of certain theta-series

by
Jürg Kramer

Max-Planck-Institut

Introduction. Let q be an odd prime and denote by $M_{2}\left(\Gamma_{0}(q)\right)$ resp. $J_{2,1}\left(\Gamma_{0}(q)\right)$ the space of modular forms of weight 2 resp. Jacobi forms of weight 2 , index 1 with respect to the congruence subgroup $\Gamma_{0}(q)$. In $[\mathrm{Kr}]$ we introduced the Jacobi-theta-series to the quaternary quadratic forms of discriminant q^{2} representing 2; they are defined by

$$
\begin{aligned}
& I_{I_{\lambda}}(\tau, z)=\sum_{\alpha \in I_{\lambda}} q_{\infty}^{n(\alpha)} \zeta^{t(\alpha)} \in J_{2,1}\left(\Gamma_{0}(q)\right) \\
& \left(q_{\infty}:=\exp (2 \pi i \tau), \tau \in \operatorname{fo} ; \zeta:=\exp (2 \pi i z), z \in \mathbb{C}\right),
\end{aligned}
$$

where I_{1}, \ldots, I_{T} is a set of representatives of the isomorphism classes of maximal orders of the (definite) quaternion algebra K / Q, ramified over q and ∞; T denotes the type number of K, and $n(\cdot)$ resp. $t(\cdot)$ is the reduced norm resp. trace of K. We proved that the Jacobi-theta-series are linear independent, if the representation of the classical Hecke-algebra, given by $T(p) \longmapsto B^{+}(p) \quad(T(p)$ classical Hecke-operator, $B^{+}(p)$ reduced Brandt-matrix (cf. [po3]), $p \neq 2, q$ a prime), allows only to reduce the 1 -dimensional part over Φ, which corresponds to the Eisenstein series of $M_{2}\left(\Gamma_{0}(q)\right)$ (cf. [Kr], Satz II.3). Then, by proving a necessary and sufficient condition for the injectivity of the $\operatorname{map} J_{2,1}\left(\Gamma_{0}(q)\right) \longrightarrow M_{2}\left(\Gamma_{0}(q)\right)(f(\tau, z) \longmapsto f(\tau, 0))$, we deduced a criterion for the linear independence of the classical theta-series $\quad \vartheta_{I_{\lambda}}(\tau):=I_{I_{\lambda}}(\tau, 0) \quad(\lambda=1, \ldots, T)$. In this note we shall give similar criterions for the linear independence of the Jacobi-theta-series resp. classical theta-series attached to the quaternary quadratic forms of
discriminant q representing 2 (theorem 2 resp. 3). The results are essentially obtained by translating the above mentioned theorem to certain theta-series to ternary quadratic forms, namely those studied in [Gr]. We explicitly determine the (predicted) linear relation for these theta-series in the case $q=389$; by the way we are led to the linear relation between the classical theta-series to the quaternary quadratic forms of discriminant 389 representing 2 , which was already calculated by Kitaoka (cf.[HH]).

Acknowledgement: I am thankful to M. Eichler and D. Zagier for stimulating discussions, to B. Gross for the manuscript [Gr] and to C. Tschudin (Basel) for his assistance concerning the computer-calculations. Finally I would like to express my hearty thanks to the Max-Planck-Institut für Mathematik for its hospitality during my stay at Bonn.
2. The main result. We restrict to primes $q \equiv 1 \bmod 4$ and consider the equivalence classes of quaternary quadratic forms of discriminant q representing 2 ; these are in 1-1-correspondence to the similtude classes of certain quaternary lattices of reduced discriminant q (level q), which were especially studied in [Ki]. There one also finds the formula for the corresponding class number T^{\prime}.
$T^{\prime}=T-(h(\sqrt{-q}) / 4-a / 2)$, where
T is the type number of K (cf. introduction),
$h(\sqrt{-q})$ the ideal class number of $\Phi(\sqrt{-q})$, and
$a= \begin{cases}0 & q=1 \text { mod. } 8 \\ 1 & q=5 \text { mod. } 8\end{cases}$

The lattices K_{1}, \ldots, K_{T} representing the T ' similtude classes can always be chosen such that the first $\mathrm{T}^{\prime \prime}$ lattices $K_{1}, \ldots, K_{T \prime}\left(T^{\prime \prime}:=h(\sqrt{-q}) / 4-a / 2\right)$ have two inequivalent representations of 2 , while for the latter ones $K_{T N+1}, \ldots, K_{T}$ ' all representations of 2 are equivalent (cf. [Ki], § 1.). The quadratic forms corresponding to K_{1}, \ldots, K_{T} will be denoted by $G_{1}[x], \ldots, G_{T},[x]$; the matrices G_{μ} can always be chosen in the form

$$
G_{\mu}=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
1 & * & * & * \\
0 & * & * & * \\
0 & * & * & *
\end{array}\right) \quad\left(\mu=1, \ldots, \mathrm{~T}^{s}\right)
$$

Putting $\quad r=(1,0,0,0)^{t}$ and writing r_{μ} for a column vector with $G_{\mu}\left[r_{\mu}\right]=2$, which is inequivalent to $r\left(\mu=1, \ldots, T^{\prime \prime}\right)$, we get the following $T=T^{\prime}+T^{\prime \prime}$ Jacobi-theta-series (of Nebentype):

$$
\vartheta_{G_{\mu,} r}(\tau, z)=\sum_{x \in \mathbb{Z}^{4}} q_{\infty}^{G_{\mu}[x] / 2} \zeta^{r^{t_{G}}{ }^{x}} \quad\left(\mu=1, \ldots, T^{\prime}\right)
$$

(1)

$$
\mathscr{I}_{G_{\mu}, r_{\mu}}(\tau, z)=\sum_{x \in z^{4}} G_{\infty}^{G_{\mu}^{[x] / 2}} \zeta^{r_{\mu}^{t_{G}} X^{x}} \quad\left(\mu=1, \ldots, T^{n}\right)
$$

These are obviously elements of the space $J_{2,1}\left(\Gamma_{0}(q), X_{q}\right)$ of Jacobi forms of weight 2, index 1 with respect to $\Gamma_{0}(q)$ and with the character $X_{q}(\cdot)=\left(\frac{q}{\cdot}\right)$. In [Kr], Corollar I. 3 it is shown that this space is isomorphic to Kohnen's space $M_{3 / 2}^{+}\left(\Gamma_{0}(4 q), X_{q}\right)$ (cf. [Ko1], [Ko2]), Now one easily proves (cf. [Kx], Satz II.1)

Theorem 1. The isomorphism between $J_{2,1}\left(\Gamma_{0}(q), X_{q}\right)$ and $\left.M_{3 / 2}^{+}\left(\Gamma_{0}(4 q), X_{q}\right)\right)$ maps the Jacobi-theta-series $\boldsymbol{J}_{G_{\mu}, r}(\tau, z), \mathscr{J}_{G_{\nu}, r_{V}}(\tau, z) \quad\left(\mu=1, \ldots, T^{\prime} ; \nu=1, \ldots, T \prime\right)$ to the theta-series $\mathscr{V}_{M_{\mu}^{*}}(\tau), \mathscr{V}_{N_{\nu}^{*}}(\tau)$ attached to ternary lattices M_{μ}^{*}, N_{v}^{*} of reduced discriminant $32 q$ (level $4 q$).

Remark 1. The lattices $M_{\mu}^{*}, N_{v}^{*}\left(\mu=1, \ldots, T^{\prime} ; \nu=1, \ldots, T^{\prime \prime}\right)$ just represent the similtude classes of ternary lattices of reduced discriminant 32 q (level 4 q).

Remark 2. In [Kx], Satz II. 1 it is proved that the isomorphism between $J_{2,1}\left(\Gamma_{0}(q)\right)$ and $M_{3 / 2}^{+}\left(\Gamma_{0}(4 q)\right)$ maps the Jacobi-theta-series $\overbrace{I_{\lambda}}(\tau, z) \quad(\lambda=1, \ldots, T)$ to the thetaseries $\vartheta_{L_{\lambda}^{*}}(\tau)$ attached to ternary lattices L_{λ}^{*} of reduced discriminant $32 q^{2}$ (level $4 q$). These are the thetaseries considered in [Gr], where the dimension of their C-span is determined, which leads to a necessary and sufficient condition for their linear independence.

Remark 3. Dualizing the result of [Po2], theorem 1, one realizes that ${ }_{\mu}^{M}, N_{v}^{*}$ can be considered as sublattices of index q in the lattices L_{λ}^{*} (eventually by taking suitable other representatives for the similtude classes of ternary lattices of reduced discriminant $32 q^{2}$, which again are denoted by L_{λ}^{*}). If we arrange the corresponding maximal orders I_{λ} such that the first $2 T-H(H=$ class number of $K)$ possess principle two-sided ideal of norm q, while for the remaining $H-T$ this ideal is not principle, we have the following inclusions, in the case $q=1 \bmod 8$:

$$
\begin{array}{lll}
M_{v}^{*} & \subset L_{2 \nu-1}^{*} & \left(\nu=1, \ldots, T^{\prime \prime}\right) \tag{2}\\
N_{v}^{*} & \subset L_{2 v}^{*} & \left(\nu=1, \ldots, T^{\prime \prime}\right) \\
M_{T}^{*}{ }^{\prime \prime}+\nu & \subset L_{2 T "+V}^{*} & (\nu=1, \ldots, H-T) .
\end{array}
$$

(2) reflects the correspondence between quaternary quadratic forms of discriminant q^{2} and those of discriminant q (both representing 2), which is given in [Ki] and [Po1], and can be stated as follows (if $q \equiv 1$ mod. 8) :

$$
\begin{array}{rll}
\left\{I_{2 v-1}, I_{2 v}\right\} & \longleftrightarrow K_{v} & \left(v=1, \ldots, T^{\prime \prime}\right) \\
\left\{I_{2 T^{\prime \prime}+v^{\prime}}\right\} & \longleftrightarrow K_{T^{\prime \prime}+\nu} & (v=1, \ldots, \mathrm{H}-\mathrm{T}) ;
\end{array}
$$

in the case $q=5 \bmod .8$ there is an "exceptional" maximal order with principle two-sided ideal of norm q, which corresponds alone to a quaternary lattice of reduced discriminant q.

We are now in position to give a criterion for the linear independence of the Jacobi-theta-series (1):

Theorem 2. The Jacobi-theta-series (1) are linear independent, if the representation of the Hecke-algebra, given by $T(p) \longmapsto B^{+}(p)$, allows only to reduce the 1 -dimensional part over \varnothing, which corresponds to the Eisenstein series of $M_{2}\left(\Gamma_{0}(q)\right)$.

Proof. Paying attention to the operator $T(q): M_{3 / 2}^{+}\left(\Gamma_{0}(4 q)\right) \longrightarrow$ $M_{3 / 2}^{+}\left(\Gamma_{0}(4 q), X_{q}\right)$, defined by $\quad \sum_{n \in \mathbb{N}_{0}} C(n) q_{\infty}^{n} \mid T(q):=$ $\sum_{n \in N_{0}} c(q n) q_{\infty}^{n}$ (this operator was introduced in [SS], §3.1 and applying remark 3 (especially (2)) we get (if q (mod.8):

$$
-6-
$$

$$
\begin{aligned}
& \mathscr{I}_{\mathrm{L}_{2 V-1}^{*}} \mid \mathrm{T}(\mathrm{q})(\tau)=\mathscr{J}_{\mathrm{M}_{V}^{*}}(\tau) \quad\left(\nu=1, \ldots, \mathrm{~T}^{\prime \prime}\right) \\
& \vartheta_{L_{2 V}^{*}} \mid T(q)(\tau)=\vartheta_{N_{V}^{*}}(\tau) \quad\left(\nu=1, \ldots, T{ }^{\prime \prime}\right) \\
& \nabla_{L_{2 T^{\prime \prime}+\nu}^{*}} \mid T(q)(\tau)=\forall_{M_{T}^{* \prime}+V}(\tau) \quad(\nu=1, \ldots, H-T) .
\end{aligned}
$$

From this one concludes that the operator $T(q)$ induces an isomorphism between the subspaces of $M_{3 / 2}^{+}\left(\Gamma_{0}(4 q)\right)$ resp. $M_{3 / 2}^{+}\left(\Gamma_{0}(4 q), X_{q}\right)$ spanned by the theta-series $\theta_{L_{\lambda}^{*}}(\tau) \quad(\lambda=1, \ldots, T)$ resp, $\dot{J}_{M_{\mu}^{*}}(\tau), \dot{D}_{N_{\nu}^{*}}(\tau) \quad\left(\mu=1, \ldots, T^{\prime} ; \nu=1, \ldots, T^{\prime \prime}\right)$. So theorem 2 follows from theorem 1 and [Kr], Satz II.3 (cf. introduction). An analogous argument applies to $q \equiv 5 \mathrm{mod} .8$.

Before stating the criterion for the linear independence of the classical theta-series to the quaternary quadratic forms of discriminant q representing 2 , given by

$$
\begin{equation*}
\vartheta_{G_{\mu}}(\tau) \quad:=\mathscr{V}_{G_{\mu}, r}(\tau, 0) \quad\left(\mu=1, \ldots, T^{\top}\right) \tag{3}
\end{equation*}
$$

we define by σ the linear map

$$
\begin{aligned}
\sigma: J_{2,1}\left(\Gamma_{0}(q), x_{q}\right) & \longrightarrow M_{2}\left(\Gamma_{0}(q), x_{q}\right) \\
f(\tau, z) & \longmapsto f(\tau, 0)
\end{aligned}
$$

(here $M_{2}\left(\Gamma_{0}(q), X_{q}\right)$ denotes the space of modular forms of weight 2 with respect to $\Gamma_{0}(q)$ with the character X_{q}). Evidently dim(kero) $\geq T$ ", if the condition in theorem 2 is satisfied (the differences

$$
\begin{equation*}
\vartheta_{G_{\mu}, r}(\tau, z)-\vartheta_{G_{\mu}, r_{\mu}}(\tau, z) \quad\left(\mu=1, \ldots, T^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

are $T^{\prime \prime}$ linear independent elements of kero).

Theorem 3. The theta-series (3) are linear independent, if the representation of the Hecke-algebra, given by $T(p) \longmapsto B^{+}(p)$, allows only to reduce the 1 -dimensional part over \mathbb{Q}, which corresponds to the Eisenstein series of $M_{2}\left(\Gamma_{0}(q)\right)$ and if $\operatorname{dim}(k e r \sigma)=T^{\prime \prime}$.

Proof. It has only to be noted that, under the conditions stated, the differences (4) form a basis of kero .
3. The example $q=389$. The necessary and sufficient condition for the linear independence of the theta-series $\vartheta_{L^{*}}(\tau) \quad(c f$. remark 2) is violated for the first time for $q=389\left(T=22, T^{\prime}=17\right)$. We explicitly calculated the single existing linear relation:

$$
\begin{align*}
& \sum_{\lambda=1}^{22} \alpha_{\lambda} V_{L_{\lambda}^{*}}(\tau) \equiv 0, \text { where }\left(\alpha_{1}, \ldots, \alpha_{22}\right)= \\
& (0,0 ;+1,-1 ;+1 ;-1 ;+1,0 ;-1,0 ; 0 ; 0 ; 0 ; 0 ;+1 ;+1 ;+1 ;+1 ;-1 ;-1 ;-1 ;-1) ; \tag{5}
\end{align*}
$$

the corresponding 22 ternary quadratic forms of discriminant $32 q^{2}$ are listed (in the same order) in the first column of table 1. By remark 2 the same relation is valid for the Jacobi-theta-series $J_{I_{\lambda}}(\tau, z)$; the corresponding quaternary quadratic forms of discriminant q^{2} representing 2 are given in the
second column of table 1. It is worth to be noted that by putting $z=0$ the corresponding theta-series $\mathscr{D}_{I_{\lambda}}(\tau)$ are also involved in only one linear relation, which is of course again of the same type.

Via the diagram

$$
\begin{aligned}
& \mathrm{M}_{3 / 2}^{+}\left(\Gamma_{0}(4 \mathrm{q})\right) \quad \cong \quad J_{2,1}\left(\Gamma_{0}(q)\right) \quad \xrightarrow{\mathrm{z}=0} \mathrm{M}_{2}\left(\Gamma_{0}(q)\right) \\
& T(\mathrm{q}) \downarrow \quad \uparrow \mathrm{T}(\mathrm{q}) \\
& M_{3 / 2}^{+}\left(\Gamma_{0}(4 q), x_{q}\right) \xrightarrow{\cong} J_{2,1}\left(\Gamma_{0}(q), x_{q}\right) \xrightarrow{z=0} M_{2}\left(\Gamma_{0}(q), x_{q}\right)
\end{aligned}
$$

it is now easy to calculate from (5) the linear relation between the theta-series (3), which was already found by Kitoaka (cf.[HH]):

$$
\begin{aligned}
& \sum_{\mu=1}^{17} \beta_{\mu} \mathscr{V}_{G_{\mu}}(\tau)=0, \text { where }\left(\beta_{1}, \ldots, \beta_{17}\right)= \\
& (0 ; 0 ; 0 ;+1 ;-1 ; 0 ; 0 ; 0 ; 0 ;+1 ;+1 ;+1 ;+1 ;-1 ;-1 ;-1 ;-1) ;
\end{aligned}
$$

the corresponding 17 quaternary quadratic forms of discriminant q representing 2 are listed in the third column of table 1. Our list especially shows the Kitaoka-Ponomarev-correspondence in the case $q=389$.

Table 1

Ternary quadratic forms Quaternary quadratic forms of discriminant $32 \cdot 389^{2}$
of discriminant 389^{2}, representing 2

Quaternary quadratic forms of discriminant 389, representing 2

1. $\left(\begin{array}{rrr}1040 & 520 & 4 \\ 520 & 1038 & 2 \\ 4 & 2 & 6\end{array}\right)$
2. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 2 & -2 & -1 \\ 0 & -2 & 262 & 131 \\ 0 & -1 & 131 & 260\end{array}\right)$
3. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 66 & -65 & 64 \\ 0 & -65 & 66 & -65 \\ 0 & 64 & -65 & 66\end{array}\right)$
4. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 66 & 2 & -1 \\ 0 & 2 & 6 & -3 \\ 0 & -1 & -3 & 196\end{array}\right)$
5. $\left(\begin{array}{rrr}784 & 4 & 12 \\ 4 & 262 & 8 \\ 12 & 8 & 24\end{array}\right)$
6. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 12 & 5 & -9 \\ 0 & 5 & 36 & 13 \\ 0 & -9 & 13 & 210\end{array}\right)$
7. $\left(\begin{array}{rrr}824 & -56 & -36 \\ -56 & 102 & 10 \\ -36 & 10 & 62\end{array}\right)$
8. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 16 & -18 & -9 \\ 0 & -18 & 46 & 23 \\ 0 & -9 & 23 & 206\end{array}\right)$
9. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 10 & -7 & 18 \\ 0 & -7 & 16 & -13 \\ 0 & 18 & -13 & 36\end{array}\right)$
10. $\left(\begin{array}{rrr}814 & -72 & 10 \\ -72 & 144 & -20 \\ 10 & -20 & 46\end{array}\right)$
11. $\left(\begin{array}{rrr}798 & 18 & -40 \\ 18 & 94 & -36 \\ -40 & -36 & 80\end{array}\right)$
12. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 24 & 9 & -28 \\ 0 & 9 & 20 & -19 \\ 0 & -28 & -19 & 232\end{array}\right)$
13. $\left(\begin{array}{rrr}798 & -40 & 2 \\ -40 & 80 & -4 \\ 2 & -4 & 78\end{array}\right)$
14. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 20 & 1 & -19 \\ 0 & 1 & 20 & 9 \\ 0 & -19 & 9 & 218\end{array}\right)$
15. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 6 & -5 & 10 \\ 0 & -5 & 24 & -9 \\ 0 & 10 & -9 & 20\end{array}\right)$
16. $\left(\begin{array}{rrr}832 & 108 & 8 \\ 108 & 216 & 16 \\ 8 & 16 & 30\end{array}\right)$
17. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 8 & 4 & 2 \\ 0 & 4 & 54 & 27 \\ 0 & 2 & 27 & 208\end{array}\right)$
18. $\left(\begin{array}{rrr}808 & -60 & 8 \\ -60 & 120 & -16 \\ 8 & -16 & 54\end{array}\right)$
19. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 14 & 4 & 2 \\ 0 & 4 & 30 & 15 \\ 0 & 2 & 15 & 202\end{array}\right)$
20. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 8 & 2 & 4 \\ 0 & 2 & 14 & 27 \\ 0 & 4 & 27 & 54\end{array}\right)$

Table 1, continued
5. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 14 & -13 & 26 \\ 0 & -13 & 20 & -25 \\ 0 & 26 & -25 & 52\end{array}\right)$
9. $\left(\begin{array}{rrr}830 & 104 & 2 \\ 104 & 208 & 4 \\ 2 & 4 & 30\end{array}\right)$
9. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 8 & 1 & -7 \\ 0 & 1 & 52 & 25 \\ 0 & -7 & 25 & 214\end{array}\right)$
10. $\left(\begin{array}{rrr}830 & -54 & -50 \\ -54 & 86 & 22 \\ -50 & 22 & 78\end{array}\right)$
10. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 20 & -25 & -32 \\ 0 & -25 & 52 & 51 \\ 0 & -32 & 51 & 252\end{array}\right)$
6. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 2 & -1 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & -1 & 1 & 98\end{array}\right)$
12. $\left(\begin{array}{rrr}400 & -28 & -16 \\ -28 & 142 & -30 \\ -16 & -30 & 94\end{array}\right)$
12. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 24 & -16 & -4 \\ 0 & -16 & 44 & 11 \\ 0 & -4 & 11 & 100\end{array}\right)$
7. $\left(\begin{array}{rrrr}10 & 1 & 8 & 11 \\ 1 & 4 & 1 & 1 \\ 8 & 1 & 12 & 4 \\ 11 & 1 & 4 & 18\end{array}\right)$
13. $\left(\begin{array}{rrr}312 & -104 & -36 \\ -104 & 294 & 12 \\ -36 & 12 & 64\end{array}\right) \quad$ 13. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 74 & -3 & 26 \\ 0 & -3 & 16 & -9 \\ 0 & 26 & -9 & 78\end{array}\right) \quad$ 8. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 6 & 5 & 3 \\ 0 & 5 & 6 & 3 \\ 0 & 3 & 3 & 26\end{array}\right)$
14. $\left(\begin{array}{rrr}270 & 12 & -32 \\ 12 & 208 & -36 \\ -32 & -36 & 96\end{array}\right)$
14. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 68 & -3 & -8 \\ 0 & -3 & 52 & 9 \\ 0 & -8 & 9 & 24\end{array}\right)$
9. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 18 & 3 & 17 \\ 0 & 3 & 8 & 3 \\ 0 & 17 & 3 & 18\end{array}\right)$
15. $\left(\begin{array}{rrr}408 & -56 & -20 \\ -56 & 206 & 18 \\ -20 & 18 & 62\end{array}\right) \quad$ 15. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 16 & -20 & -5 \\ 0 & -20 & 76 & 19 \\ 0 & -5 & 19 & 102\end{array}\right) \quad 10 \cdot\left(\begin{array}{rrrr}8 & 1 & 3 & 12 \\ 1 & 4 & 1 & 1 \\ 3 & 1 & 8 & -2 \\ 12 & 1 & -2 & 26\end{array}\right)$
16. $\left(\begin{array}{rrr}334 & -138 & -34 \\ -138 & 262 & 42 \\ -34 & 42 & 78\end{array}\right) \quad$ 16. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 20 & -30 & -28 \\ 0 & -30 & 106 & 73 \\ 0 & -28 & 73 & 120\end{array}\right) \quad 11 \cdot\left(\begin{array}{rrrr}10 & 5 & 4 & 10 \\ 5 & 6 & 3 & 1 \\ 4 & 3 & 8 & -3 \\ 10 & 1 & -3 & 22\end{array}\right)$
17. $\left(\begin{array}{rrr}302 & -76 & -52 \\ -76 & 184 & 44 \\ -52 & 44 & 112\end{array}\right)$
17. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 76 & 19 & -13 \\ 0 & 19 & 46 & -11 \\ 0 & -13 & -11 & 28\end{array}\right) \quad 12 \cdot\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 10 & 9 & 13 \\ 0 & 9 & 10 & 13 \\ 0 & 13 & 13 & 32\end{array}\right)$

Table 1, continued

18. $\left(\begin{array}{rrr}264 & -28 & 12 \\ -28 & 168 & -72 \\ 12 & -72 & 142\end{array}\right)$	18. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 36 & 18 & 3 \\ 0 & 18 & 42 & 7 \\ 0 & 3 & 7 & 66\end{array}\right)$	13. $\left(\begin{array}{rrrr}4 & 0 & 3 & 7 \\ 0 & 6 & 1 & 0 \\ 3 & 1 & 12 & 6 \\ 7 & 0 & 6 & 14\end{array}\right)$
19. $\left(\begin{array}{rrr}406 & -68 & 2 \\ -68 & 272 & -8 \\ 2 & -8 & 46\end{array}\right)$	19. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 12 & 2 & -11 \\ 0 & 2 & 68 & 15 \\ 0 & -11 & 15 & 112\end{array}\right)$	$14 .\left(\begin{array}{rrrr}10 & 2 & 1 & 17 \\ 2 & 4 & 1 & 0 \\ 1 & 1 & 6 & 1 \\ 17 & 0 & 1 & 34\end{array}\right)$
20. $\left(\begin{array}{rrr}270 & -42 & -22 \\ -42 & 214 & 38 \\ -22 & 38 & 94\end{array}\right)$	20. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 24 & -33 & -29 \\ 0 & -33 & 96 & 49 \\ 0 & -29 & 49 & 102\end{array}\right)$	15. $\left(\begin{array}{rrrr}8 & 4 & 3 & 8 \\ 4 & 6 & 1 & 1 \\ 3 & 1 & 8 & -3 \\ 8 & 1 & -3 & 18\end{array}\right)$
21. $\left(\begin{array}{rrr}278 & -56 & 4 \\ -56 & 168 & -12 \\ 4 & -12 & 112\end{array}\right)$	21. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 70 & 14 & 1 \\ 0 & 14 & 42 & 3 \\ 0 & 1 & 3 & 28\end{array}\right)$	16. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 10 & 9 & 1 \\ 0 & 9 & 10 & 1 \\ 0 & 1 & 8 & 14\end{array}\right)$
22. $\left(\begin{array}{rrr}262 & -102 & -78 \\ -102 & 206 & 66 \\ -78 & 66 & 142\end{array}\right)$	22. $\left(\begin{array}{rrrr}2 & 1 & 0 & 0 \\ 1 & 36 & -52 & -55 \\ 0 & -52 & 120 & 97 \\ 0 & -55 & 97 & 140\end{array}\right)$	17. $\left(\begin{array}{rrrr}10 & 7 & 5 & 3 \\ 7 & 8 & 3 & 3 \\ 5 & 3 & 10 & -3 \\ 7 & 3 & -2 & 34\end{array}\right)$

[Gr] Gross, B.: Heights and the special values of L-series to appear in Sém. Math. Sup., presses Univ. Montréal.
[HH] Hsia, J.S. and Hung, D.C.: Theta sexies of ternary and quaternary quadratic forms, Inv. math. 73 (1983), 151-156.
[Ki] Kitaoka, Y.: Quaternary even positive definite quadratic forms of prime discriminant, Nagoya Math.J. 52 (i973)f 147-161.
[Ko1] Kohnen, W.: Modular forms of half-integral weight on $\Gamma_{0}(4)$, Math. Ann. 248 (1980), 249-266.
[Ko2] Kohnen, W.: Newforms of half-integral weight, J. reine angew. Math. 333 (1982), 32-72.
[Kr] Kramer, J.: Jacobiformen und Thetareihen, to appeax $2 x$ Manuscripta Math..
[Po1] Ponomarev, P.: A correspondence between quaternary quadratic forms, Nagoya Math. J. 62 (1976), 125-140.
[Po2] Ponomarev, P.: Ternary quadratic forms and an explicit quaternary correspondence, Proceedings of the Conference on Quadratic Forms, Queen's Papers in Pure axe Applied Mathematics, No. 46 (1977), 582-594.
[PO3] Ponomarev, P.: Ternary quadratic forms and Shimura's correspondence, Nagoya Math. J. 81 (1981), 123-151.
[SS] Serre, J.-P. and Stark, H.M.: Modular forms of weight 1/2, in: Modular Functions of One Variable VI, Lectaxe Notes in Math. 627, Springer-Verlag Berlin-Heidelbexy New York 1977, 27-67.

