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1 Introduction

Perhaps, the most elementary way to introduce a compact Riemann surface is the following: one can
simply consider the boundary of a connected (but, generally, not simply connected) polyhedron in three
dimensional Euclidean space. This is a polyhedral surface which carries the structure of a complex
manifold (the corresponding system of holomorphic local parameters is obvious for all points except
the vertices; near a vertex one should introduce the local parameter ζ = z2π/α, where α is the sum of
the angles adjacent to the vertex). In this way the Riemann surface comes together with a conformal
metric; this metric is flat and has conical singularities at the vertices. Instead of a polyhedron one
can also start from some abstract simplicial complex, thinking of a polyhedral surface as glued from
plane triangles.

The present paper is devoted to the spectral theory of the Laplacian on such surfaces. The main
goal is to study the determinant of the Laplacian (acting in the trivial line bundle over the surface)
as a functional on the space of Riemann surfaces with conformal flat conical metrics (polyhedral
surfaces). The similar question for smooth conformal metrics and arbitrary holomorphic bundles was
very popular in the eighties and early nineties being motivated by the string theory. The determinants
of Laplacians in flat singular metrics are much less studied: among the very few appropriate references
we mention [6], where the determinant of the Laplacian in conical metric was defined via some special
regularization of the diverging Liouville integral and the question about the relation of such a definition
with the spectrum of the Laplacian remained open, and two papers [10], [1] dealing with flat conical
metrics on the Riemann sphere.

In [12] the determinant of the Laplacian was studied as a functional

Hg(k1, . . . , kM ) 3 (L, ω) 7→ det∆|ω|2

on the space Hg(k1, . . . , kM ) of equivalence classes of pairs (L, ω), where L is a compact Riemann
surface of genus g and ω is a holomorphic one-form (an Abelian differential) with M zeros of multi-
plicities k1, . . . , kM . Here det ∆|ω|2 stands for the determinant of the Laplacian in the flat metric |ω|2
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having conical singularities at the zeros of ω. The flat conical metric |ω|2 considered in [12] is very
special: the divisor of the conical points of this metric is not arbitrary (it should be the canonical one,
i. e. coincide with the divisor of a holomorphic one-form) and the conical angles at the conical points
are integer multiples of 2π. Later in [11] this restrictive condition has been eliminated in the case of
polyhedral surfaces of genus one.

In the present paper we generalize the results of [12] and [11] to the case of polyhedral surfaces
of an arbitrary genus. Moreover, we give a short and self-contained survey of some basic facts from
the spectral theory of the Laplacian on flat surfaces with conical points. In particular, we discuss
the theory of self-adjoint extensions of this Laplacian and study the asymptotics of the corresponding
heat kernel.

2 Flat conical metrics on surfaces

Here following [23] and [11], we discuss flat conical metrics on compact Riemann surfaces of an arbitrary
genus.

2.1 Troyanov’s theorem

Let
∑N

k=1 bkPk be a (generalized, i. e. the coefficients bk are not necessary integers) divisor on a

compact Riemann surface L of genus g. Let also
∑N

k=1 bk = 2g − 2. Then, according to Troyanov’s
theorem (see [23]), there exists a (unique up to a homothety) conformal flat metric m on L which is
smooth in L \ {P1, . . . , PN} and has simple singularities of order bk at Pk. The latter means that in a
vicinity of Pk the metric m can be represented in the form

m = eu(z,z̄)|z|2bk |dz|2, (2.1)

where z is a conformal coordinate and u is a smooth real-valued function. In particular, if βk > −1
the point Pk is conical with conical angle βk = 2π(bk + 1). Here we construct the metric m explicitly,
giving an effective proof of Troyanov’s theorem (cf. [11]).

Fix a canonical basis of cycles on L (we assume that g ≥ 1, the case g = 0 is trivial) and let
E(P,Q) be the prime-form (see [7]). Then for any divisor D = r1Q1 + . . . rmQM − s1R1 − · · · − sNRN
of degree zero on L (here the coefficients rk, sk are positive integers) the meromorphic differential

ωD = dz log

∏M
k=1E

rk(z,Qk)∏N
k=1E

sk(z,Rk)

is holomorphic outside D and has the first order poles at the points of D with residues rk at Qk and
−sk at Rk. Since the prime-form is single-valued along the a-cycles, all the a-periods of the differential
ωD vanish.

Let {vα}gα=1 be the basis of holomorphic normalized differentials and B the corresponding matrix
of b-periods. Then all the a- and b-periods of the meromorphic differential

ΩD = ωD − 2πi

g∑

α,β=1

((=B)−1)αβ=
(∫ r1Q1+...rMQM

s1R1+...sNRN

vβ

)
vα

are purely imaginary (see [7], p. 4).
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Obviously, the differentials ωD and ΩD have the same structure of poles: their difference is a
holomorphic 1-form.

Choose a base-point P0 on L and introduce the following quantity

FD(P ) = exp

∫ P

P0

ΩD.

Clearly, FD is a meromorphic section of some unitary flat line bundle over L, the divisor of this section
coincides with D.

Now we are ready to construct the metric m. Choose any holomorphic differential w on L with,
say, only simple zeros S1, . . . , S2g−2. Then one can set m = |u|2, where

u(P ) = w(P )F(2g−2)S0−S1−...S2g−2
(P )

N∏

k=1

[FPk−S0(P )]bk (2.2)

and S0 is an arbitrary point.
Notice that in case g = 1 the second factor in (2.2) is absent and the remaining part is nonsingular

at the point S0.

2.2 Distinguished local parameter

In a vicinity of a conical point the flat metric (2.1) takes the form

m = |g(z)|2|z|2b|dz|2

with some holomorphic function g such that g(0) 6= 0. It is easy to show (see, e. g., [23], Proposition
2) that there exists a holomorphic change of variable z = z(x) such that in the local parameter x

m = |x|2b|dx|2 .

We shall call the parameter x (unique up to a constant factor c, |c| = 1) distinguished. In case b > −1
the existence of the distinguished parameter means that in a vicinity of conical point the surface L is
isometric to the standard cone with conical angle β = 2π(b+ 1).

2.3 Euclidean polyhedral surfaces.

In [23] it is proved that any compact Riemann surface with flat conformal conical metric admits
a proper triangulation (i. e. each conical point is a vertex of some triangle of the triangulation).
This means that any compact Riemann surface with a flat conical metric is a Euclidean polyhedral
surface (see [2]) i. e. can be glued from Euclidian triangles. On the other hand as it is explained
in [2] any compact Euclidean oriented polyhedral surface gives rise to a Riemann surface with a flat
conical metric. Therefore, from now on we do not discern compact Euclidean polyhedral surfaces and
Riemann surfaces with flat conical metrics.

3 Laplacians on polyhedral surfaces. Basic facts

Here claiming no originality we give a short self-contained survey of some basic facts from the spectral
theory of Laplacian on compact polyhedral surfaces. We start with recalling the (slightly modified)
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Carslaw construction (1909) of the heat kernel on a cone, then we describe the set of self-adjoint ex-
tensions of conical Laplacian (these results are complementary to Kondratjev’s study ([13]) of elliptic
equations on conical manifolds and are well-known, being in the folklore since sixties; their generaliza-
tion to the case of Laplacians acting on p-forms can be found in [18]). Finally, we establish the precise
heat asymptotics for the Friedrichs extension of the Laplacian on a compact polyhedral surface. It
should be noted that more general results on the heat asymptotics for Laplacians acting on p-forms
on piecewise flat pseudomanifolds can be found in [5].

3.1 The heat kernel on infinite cone

We start from the standard heat kernel

H2π(x, y; t) =
1

4πt
exp{−(x− y) · (x− y)/4t} (3.1)

in the space R2 which we consider as the cone with conical angle 2π. Introducing the polar coordinates
(r, θ) and (ρ, ψ) in the x and y-planes, one can rewrite (3.1) as the contour integral

H2π(x, y; t) =
1

16π2it
exp{−(r2 + ρ2)/4t}

∫

Cθ,ψ

exp{rρ cos(α− θ)/2t} cot
α− ψ

2
dα, (3.2)

where Cθ,ψ denotes the union of a small positively oriented circle centered at α = ψ and the two
vertical lines, l1 = (θ−π− i∞, θ−π+ i∞) and l2 = (θ+π+ i∞, θ+π− i∞), having mutually opposite
orientations.

To prove (3.2) one has to notice that
1) < cos(α− θ) < 0 in vicinities of the lines l1 and l2 and, therefore, the integrals over these lines

converge.
2)The integrals over the lines cancel due to 2π-periodicity of the integrand and the remaining

integral over the circle coincides with (3.1) due to the Cauchy Theorem.
Observe that one can deform the contour Cθ,ψ into the union, Aθ, of two contours lying in the

open domains {θ − π < <α < θ + π , =α > 0} and {θ − π < <α < θ + π , =α < 0} respectively, the
first contour goes from θ+ π+ i∞ to θ− π+ i∞, the second one goes from θ−π− i∞ to θ+ π− i∞.
This leads to the following representation for the heat kernel H2π:

H2π(x, y; t) =
1

16π2it
exp{−(r2 + ρ2)/4t}

∫

Aθ

exp{rρ cos(α− θ)/2t} cot
α− ψ

2
dα. (3.3)

The latter representation admits natural generalization to the case of the cone Cβ with conical
angle β, 0 < β < +∞. Notice here that in case 0 < β ≤ 2π the cone Cβ is isometric to the surface

z3 =
√

(4π2

β2 − 1)(z2
1 + z2

2).

Namely, introducing the polar coordinates on Cβ, we see that the following expression represents
the heat kernel on Cβ:

Hβ(r, θ, ρ, ψ; t) =
1

8πβit
exp{−(r2 + ρ2)/4t}

∫

Aθ

exp{rρ cos(α− θ)/2t} cot
π(α− ψ)

β
dα . (3.4)

Clearly, expression (3.4) is symmetric with respect to (r, θ) and (ρ, ψ) and is β-periodic with respect
to the angle variables θ, ψ. Moreover, it satisfies the heat equation on Cβ. Therefore, to verify that Hβ

is in fact the heat kernel on Cβ it remains to show that Hβ(·, y, t) −→ δ(· − y) as t→ 0+. To this end
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deform the contour Aψ into the union of the lines l1 and l2 and (possibly many) small circles centered

at the poles of cot π(·−ψ)
β in the strip θ − π < <α < θ + π. The integrals over all the components of

this union except the circle centered at α = ψ vanish in the limit as t→ 0+, whereas the integral over
the latter circle coincides with H2π.

3.1.1 The heat asymptotics near the vertex

Proposition 1 Let R > 0 and Cβ(R) = {x ∈ Cβ : dist(x,O) < R}. Let also dx denote the area
element on Cβ. Then for some ε > 0

∫

Cβ(R)
Hβ(x, x; t) dx =

1

4πt
Area(Cβ(R)) +

1

12

(
2π

β
− β

2π

)
+O(e−ε/t) (3.5)

as t→ 0+.

Proof (cf. [9], p. 1433). Make in (3.4) the change of variable γ = α− ψ and deform the contour
Aθ−ψ into the contour Γ−

θ−ψ−∪Γ+
θ−ψ∪{|γ| = δ}, where the oriented curve Γ−

θ−ψ goes from θ−ψ−π−i∞
to θ−ψ−π+i∞ and intersects the real axis at γ = −δ, the oriented curve Γ+

θ−ψ goes from θ−ψ+π+i∞
to θ−ψ+π− i∞ and intersects the real axis at γ = δ, the circle {|γ| = δ} is positively oriented and δ
is a small positive number. Calculating the integral over the circle {|γ| = δ} via the Cauchy Theorem,
we get

Hβ(x, y; t) −H2π(x, y; t) =
1

8πβit
exp{−(r2 + ρ2)/4t}

∫

Γ−

θ−ψ
∪Γ+

θ−ψ

exp{rρ cos(γ + ψ − θ)/2t} cot
πγ

β
dγ

(3.6)
and

∫

Cβ(R)

(
Hβ(x, x; t) −

1

4πt

)
dx =

1

8πit

∫ R

0
dr r

∫

Γ−

0 ∪Γ+
0

exp{−r
2 sin2(γ/2)

t
} cot(

πγ

β
) dγ . (3.7)

The integration over r can be done explicitly and the right hand side of (3.7) reduces to

1

16πi

∫

Γ−

0 ∪Γ+
0

cot(πγβ )

sin2(γ/2)
dγ +O(e−ε/t). (3.8)

(One can assume that < sin2(γ/2) is positive and separated from zero when γ ∈ Γ−
0 ∪ Γ+

0 .) The
contour of integration in (3.8) can be changed for a negatively oriented circle centered at γ = 0. Since

Res(
cot(πγ

β
)

sin2(γ/2)
, γ = 0) = 2

3( β2π − 2π
β ), we arrive at (3.5).

Remark 1 The Laplacian ∆ corresponding to the flat conical metric (dρ)2 + r2(dθ)2, 0 ≤ θ ≤ β on
Cβ with domain C∞

0 (Cβ \ O) has infinitely many self-adjoint extensions. Analyzing the asymptotics
of (3.4) near the vertex O, one can show that for any y ∈ Cβ, t > 0 the function Hβ(·, y; t) belongs
to the domain of the Friedrichs extension ∆F of ∆ and does not belong to the domain of any other
extension. Moreover, using Hankel transform, it is possible to get an explicit spectral representation
of ∆F (this operator has absolutely continuous spectrum of infinite multiplicity) and to show that the
Schwartz kernel of the operator et∆F coincides with Hβ(·, ·; t) (see, e. g., [22] formula (8.8.30) together
with [4], p. 370.)
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3.2 Heat asymptotics for compact polyhedral surfaces

3.2.1 Self-adjoint extensions of conical Laplacian

Let L be a compact polyhedral surface with vertices (conical points) P1, . . . , PN . The Laplacian ∆
corresponding to the natural flat conical metric on L with domain C∞

0 (L \ {P1, . . . , PN}) (we remind
the reader that the Riemannian manifold L is smooth everywhere except the vertices) is not essentially
self-adjoint and one has to fix one of its self-adjoint extensions. We are to discuss now the choice a
self-adjoint extension.

This choice is defined by the prescription of some particular asymptotical behavior near the conical
points to functions from the domain of the Laplacian; it is sufficient to consider a surface with only
one conical point P of the conical angle β. More precisely, assume that L is smooth everywhere except
the point P and that some vicinity of P is isometric to a vicinity of the vertex O of the standard cone
Cβ (of course, now the metric on L no more can be flat everywhere in L \ P unless the genus g of L
is greater than one and β = 2π(2g − 1)).

For k ∈ N0 introduce the functions V k
± on Cβ by

V k
±(r, θ) = r±

2πk
β exp{i2πkθ

β
}; k > 0 ,

V 0
+ = 1, V 0

− = log r .

Clearly, these functions are formal solutions to the homogeneous problem ∆u = 0 on Cβ. Notice that

the functions V k
− grow near the vertex but are still square integrable in its vicinity if k < β

2π .
Let Dmin denote the graph closure of C∞

0 (L \ P ), i. e.

U ∈ Dmin ⇔ ∃um ∈ C∞
0 (L \ P ),W ∈ L2(L) : um → U and ∆um →W in L2(L).

Define the space H2
δ (Cβ) as the closure of C∞

0 (Cβ \ O) with respect to the norm

||u;H2
δ (Cβ)||2 =

∑

|α|≤2

∫

Cβ

r2(δ−2+|α|)|Dα
xu(x)|2dx.

Then for any δ ∈ R such that δ − 1 6= 2πk
β , k ∈ Z one has the a priori estimate

||u;H2
δ (Cβ)|| ≤ c||∆u;H0

δ (Cβ)|| (3.9)

for any u ∈ C∞
0 (Cβ \ O) and some constant c being independent of u (see, e. g., [19], Chapter 2).

It follows from Sobolev’s imbedding theorem that for functions from u ∈ H 2
δ (Cβ) one has the

point-wise estimate
rδ−1|u(r, θ)| ≤ c||v;H2

δ (Cβ)||. (3.10)

Applying estimates (3.9) and (3.10) with δ = 0, we see that functions u from Dmin must obey the
asymptotics u(r, θ) = O(r) as r → 0.

Now the description of the set of all self-adjoint extensions of ∆ looks as follows. Let χ be a
smooth function on L which is equal to 1 near the vertex P and such that in a vicinity of the support
of χ L is isometric to Cβ . Denote by M the linear subspace of L2(L) spanned by the functions χV k

±
with 0 ≤ k < β

2π . The dimension, 2d, of M is even. To get a self-adjoint extension of ∆ one chooses a
subspace N of M of dimension d such that

(∆u, v)L2(L) − (u,∆v)L2(L) = lim
ε→0+

∮

r=ε

(
u
∂v

∂r
− v

∂u

∂r

)
= 0
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for any u, v ∈ N. To any such subspace N there corresponds a self-adjoint extension ∆N of ∆ with
domain N + Dmin.

The extension corresponding to the subspace N spanned by the functions χV k
+ , 0 ≤ k < β

2π
coincides with the Friedrichs extension of ∆. The functions from the domain of the Friedrichs extension
are bounded near the vertex.

From now on we denote by ∆ the Friedrichs extension of the Laplacian on the polyhedral surface
L; other extensions will not be considered here.

3.2.2 Heat asymptotics

Theorem 1 Let L be a compact polyhedral surface with vertices P1, . . . , PN of conical angles β1, . . . , βN .
Let ∆ be the Friedrichs extension of the Laplacian defined on functions from C∞

0 (L \ {P1, . . . , PN}).
Then

1. The spectrum of the operator ∆ is discrete, all the eigenvalues of ∆ have finite multiplicity.

2. Let H(x, y; t) be the heat kernel for ∆. Then for some ε > 0

Tr et∆ =

∫

L
H(x, x; t) dx =

Area(L)

4πt
+

1

12

N∑

k=1

{
2π

βk
− βk

2π

}
+O(e−ε/t), (3.11)

as t→ 0+.

3. The counting function, N(λ), of the spectrum of ∆ obeys the asymptotics N(λ) = O(λ) as
λ→ +∞.

Proof. 1) The proof of the first statement is a standard exercise (cf. [10]). We indicate only the main
idea leaving all the details to the reader. Introduce the closure, H 1(L), of the C∞

0 (L \ {P1, . . . , PN}
with respect to the norm |||u||| = ||u;L2||+ ||∇u;L2||. It is sufficient to prove that any bounded set S
in H1(L) is precompact in L2-topology (this will imply the compactness of the self-adjoint operator
(I − ∆)−1). Moreover, one can assume that the supports of functions from S belong to a small ball
B centered at a conical point P . Now to prove the precompactness of S it is sufficient to make use of
the expansion with respect to eigenfunctions of the Dirichlet problem in B and the diagonal process.

2)Let L = ∪Nj=0Kj , where Kj , j = 1, . . . , N is a neighborhood of the conical point Pj which is

isometric to Cβj (R) with some R > 0, and K0 = L \ ∪Nj=1Kj .
Let also Kε1

j ⊃ Kj and Kε1
j is isometric to Cβj (R + ε1) with some ε1 > 0 and j = 1, . . . , N .

Fixing t > 0 and x, y ∈ Kj with j > 0, one has

∫ t

0
ds

∫

K
ε1
j

(ψ{∆z − ∂s}φ− φ{∆z + ∂s}ψ) dz = (3.12)

∫ t

0
ds

∫

∂K
ε1
j

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dl(z) −

∫

K
ε1
j

(φ(z, t)ψ(z, t) − φ(z, 0)ψ(z, 0)) dz

with φ(z, t) = H(z, y; t) − Hβj(z, y; t) and ψ(z, t) = Hβj (z, x; t − s). (Here it is important that we
are working with the heat kernel of the Friedrichs extension of the Laplacian, for other extensions the
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heat kernel has growing terms in the asymptotics near the vertex and the right hand side of (3.12)
gets extra terms.) Therefore,

Hβj (x, y; t)−H(x, y; t) =

∫ t

0
ds

∫

∂K
ε1
j

(
H(y, z; s)

∂Hβj (x, z; t − s)

∂n(z)
−Hβj (z, x; t − s)

∂H(z, y; s)

∂n(z)

)
dl(z)

= O(e−ε2/t)

with some ε2 > 0 as t→ 0+ uniformly with respect to x, y ∈ Kj . This implies that

∫

Kj

H(x, x; t)dx =

∫

Kj

Hβj(x, x; t)dx +O(e−ε2/t). (3.13)

Since the metric on L is flat in a vicinity of K0, one has the asymptotics

∫

K0

H(x, x; t)dx =
Area(K0)

4πt
+O(e−ε3/t)

with some ε3 > 0 (cf. [17]). Now (3.11) follows from (3.5).
3) The third statement of the theorem follows from the second one due to the standard Tauberian

arguments.

4 Determinant of Laplacian: Analytic surgery and Polyakov’s type

formulas

Theorem 1 opens a way to define the determinant, det∆, of the Laplacian on a compact polyhedral
surface via the standard Ray-Singer regularization. Namely introduce the operator ζ-function

ζ∆(s) =
∑

λk>0

1

λsk
, (4.1)

where the summation goes over all strictly positive eigenvalues λk of the operator −∆ (counting
multiplicities). Due to the third statement of Theorem 1, the function ζ∆ is holomorphic in the
half-plane {<s > 1}. Moreover, due to the equality

ζ∆(s) =
1

Γ(s)

∫ ∞

0

{
Tr et∆ − 1

}
ts−1 dt (4.2)

and asymptotics (3.11), one has the equality

ζ∆(s) =
1

Γ(s)

{
Area (L)

4π(s− 1)
+

[
1

12

N∑

k=1

{
2π

βk
− βk

2π

}
− 1

]
1

s
+ e(s)

}
, (4.3)

where e(s) is an entire function. Thus, ζ∆ is regular at s = 0 and one can define the ζ-regularized
determinant of the Laplacian via usual ζ-regularization (cf. [21]):

det∆ := exp{−ζ ′∆(0)} . (4.4)
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Moreover, (4.3) and the relation
∑N

k=1 bk = 2g − 2; bk = βk
2π − 1 yield

ζ∆(0) =
1

12

N∑

k=1

{
2π

βk
− βk

2π

}
− 1 =

(
χ(L)

6
− 1

)
+

1

12

N∑

k=1

{
2π

βk
+
βk
2π

− 2

}
, (4.5)

where χ(L) = 2 − 2g is the Euler characteristics of L.

It should be noted that the term χ(L)
6 − 1 at the right hand side of (4.5) coincides with the value

at zero of the operator ζ-function of the Laplacian corresponding to an arbitrary smooth metric on L
(see, e. g., [20], p. 155).

Let m and m̃ = κm, κ > 0 be two homothetic flat metrics with the same conical points with
conical angles β1, . . . , βN . Then (4.1), (4.4) and (4.5) imply the following rescaling property of the
conical Laplacian:

det∆m̃ = κ
−

“

χ(L)
6

−1
”

− 1
12

PN
k=1

n

2π
βk

+
βk
2π

−2
o

det∆m (4.6)

4.1 Analytic surgery

Let m be an arbitrary smooth metric on L and denote by ∆m the corresponding Laplacian. Consider
N nonoverlapping connected and simply connected domainsD1, . . . , DN ⊂ L bounded by closed curves
γ1, . . . , γN and introduce also the domain Σ = L \ ∪Nk=1Dk and the contour Γ = ∪Nk=1γk.

Define the Neumann jump operator R : C∞(Γ) → C∞(Γ) by

R(f)|γk = ∂ν(V
−
k − V +

k ),

where ν is the outward normal to γk = ∂Dk, the functions V −
k and V + are the solutions of the

boundary value problems ∆mV −
k = 0 in Dk, V

−|∂Dk = f and ∆mV + = 0 in Σ, V +|Γ = f . The
Neumann jump operator is an elliptic pseudodifferential operator of order 1, and it is known that one
can define its determinant via the standard ζ-regularization.

In what follows it is crucial that the Neumann jump operator does not change if we vary the metric
within the same conformal class.

Let (∆m|Dk) and (∆m|Σ) be the operators of the Dirichlet boundary problem for ∆m in domains
Dk and Σ respectively, the determinants of these operators also can be defined via the ζ-regularization.

Due to Theorem B∗ from [3], we have

det∆m =

{
N∏

k=1

det(∆m|Dk)

}
det(∆m|Σ)detR {Area(L,m)} {l(Γ)}−1 , (4.7)

where l(Γ) is the length of the contour Γ in the metric m

Remark 2 We have excluded the zero modes of an operator from the definition of its determinant,
so we are using the same notation detA for the determinants of operators A with and without zero
modes. In [3] the determinant of an operator A with zero modes is always equal to zero, and what we
call here detA in [3] is called the modified determinant and denoted by det∗A. .

Analogous statement holds for flat conical metric. Namely let L be a compact polyhedral surface
with vertices P1, . . . , PN and g be a corresponding flat metric with conical singularities. Choose the
domains Dk, k = 1, . . . , N being (open) nonoverlapping disks centered at Pk and let (∆|Dk) be the
Friedrichs extension of the Laplacian with domain C∞

0 (Dk \Pk) in L2(Dk). Then formula (4.7) is still
valid with ∆m = ∆ (cf. [12] or see recent paper [16] for a more general result).
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4.2 Polyakov’s formula

We state this result in the form given in ([8], p. 62). Let m0 = ρ−2
0 (z, z̄)d̂z and m1 = ρ−2

1 (z, z̄)d̂z be two
smooth conformal metrics on L and let det∆m0 and det∆m0 be the determinants of the corresponding
Laplacians (defined via the standard Ray-Singer regularization). Then

det∆m1

det∆m0
=

Area(L,m1)

Area(L,m0)
exp

{
1

3π

∫

L
log

ρ1

ρ0
∂2
zz̄ log(ρ1ρ0)d̂z

}
. (4.8)

4.3 Analog of Polyakov’s formula for a pair of flat conical metrics

Proposition 2 Let a1, . . . , aM and b1, . . . , bN be real numbers which are greater than −1 and satisfy
a1 + · · · + aM = b1 + · · · + bN = 2g − 2. Let also T be a connected C1-manifold and let

T 3 t 7→ m1(t), T 3 t 7→ m2(t)

be two C1-families of flat conical metrics on L such that

1. For any t ∈ T the metrics m1(t) and m2(t) define the same conformal structure on L,

2. m1(t) has conical singularities at P1(t), . . . , PN (t) ∈ L with conical angles 2π(b1 + 1), . . . ,
2π(bN + 1) .

3. m2(t) has conical singularities at Q1(t), . . . , QM (t) ∈ L with conical angles 2π(a1 + 1), . . . ,
2π(aM + 1) ,

4. For any t ∈ T the sets {P1(t), . . . , PN (t)} and {Q1(t), . . . , QM (t)} do not intersect.

Let xk be distinguished local parameter for m1 near Pk and yl be distinguished local parameter for m2

near Ql (we omit the argument t).
Introduce the functions fk, gl and the complex numbers fk, gl by

m2 = |fk(xk)|2|dxk|2 near Pk; fk := fk(0),

m1 = |gl(yl)|2|dyl|2 near Ql; gl := gl(0).

Then the following equality holds true

det∆m1

det∆m2
= C

Area (L,m1)

Area (L,m2)

∏M
l=1 |gl|al/6∏N
k=1 |fk|bk/6

, (4.9)

where the constant C is independent of t ∈ T .

Proof. Take ε > 0 and introduce the disks Dk(ε), k = 1, . . . ,M+N centered at the points P1, . . . , PN ,
Q1, . . . , QM ; Dk(ε) = {|xk| ≤ ε} for k = 1, . . . , N and DN+l = {|yl| ≤ ε} for l = 1, . . . ,M . Let
hk : R+ → R, k = 1, . . . , N +M be smooth positive functions such that

1. ∫ 1

0
h2
k(r)rdr =

{∫ 1
0 r

2bk+1dr = 1
2bk+2 , if k = 1, . . . , N∫ 1

0 r
2al+1dr = 1

2al+2 , if k = N + l, l = 1, . . . ,M

10



2.

hk(r) =

{
rbk for r ≥ 1 if k = 1, . . . , N

ral for r ≥ 1 if k = N + l, l = 1, . . . ,M

Define two families of smooth metrics mε
1, mε

2 on L via

mε
1(z) =

{
ε2bkh2

k(|xk|/ε)|dxk|2, z ∈ Dk(ε), k = 1, . . . , N

m(z), z ∈ L \ ∪Nk=1Dk(ε) ,

mε
2(z) =

{
ε2akh2

N+l(|yl|/ε)|dyl|2, z ∈ DN+l(ε), l = 1, . . . ,M

m(z), z ∈ L \ ∪Ml=1DN+l(ε) .

The metrics mε
1,2 converge to m1,2 as ε→ 0 and

Area(L,mε
1,2) = Area(L,m1,2).

Lemma 1 Let ∂t be the differentiation with respect to one of the coordinates on T and let det∆mε
1,2

be the standard ζ-regularized determinant of the Laplacian corresponding to the smooth metric mε
1,2.

Then
∂t log det∆m1,2 = ∂t log det∆mε

1,2 . (4.10)

To establish the lemma consider for definiteness the pair m1 and m1(ε). Due to the analytic surgery
formulas from section 4.1 one has

det∆m1 =

{
N∏

k=1

det(∆m1 |Dk(ε))

}
det(∆m1 |Σ)detR {Area(L,m1)} {l(Γ)}−1, (4.11)

det∆mε
1 =

{
N∏

k=1

det(∆mε
1 |Dk(ε))

}
det(∆mε

1 |Σ)detR {Area(L,mε
1)} {l(Γ)}−1, (4.12)

with Σ = L \ ∪Nk=1Dk(ε).
Notice that the variations of the logarithms of the first factors in right hand sides of (4.11) and

(4.12) vanish (these factors are independent of t) whereas the variations of logarithms of all the
remaining factors coincide. This leads to (4.10).

By virtue of Lemma 1 one has the relation

∂t

{
log

det∆m1

Area(L,m1)
− log

det∆m2

Area(L,m2)

}
= ∂t

{
log

det∆mε
1

Area(L,mε
1)

− log
det∆mε

2

Area(L,mε
2)

}
. (4.13)

By virtue of Polyakov’s formula the r. h. s. of (4.13) can be rewritten as

N∑

k=1

1

3π
∂t

∫

Dk(ε)
(logHk)xkx̄k log |fk|d̂xk −

M∑

l=1

1

3π
∂t

∫

DN+l(ε)
(logHN+l)yl,ȳl log |gl|d̂yl, (4.14)

where Hk(xk) = ε−bkh−1
k (|xk|/ε), k = 1, . . . , N and HN+l(yl) = ε−alh−1

N+l(|yl|/ε), l = 1, . . . ,M . Notice

that for k = 1, . . . , N the function Hk coincides with |xk|−bk in a vicinity of the circle {|xk| = ε} and
the Green formula implies that

∫

Dk(ε)
(logHk)xkx̄k log |fk|d̂wk =

i

2

{∮

|xk|=ε
(log |xk|−bk)x̄k log |fk|dx̄k+
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+

∮

|xk|=ε
log |xk|−bk(log |fk|)xkdxk +

∫

Dk(ε)
(log |fk|)xkx̄k logHkdxk ∧ dx̄k

}

and, therefore,

∂t

∫

Dk(ε)
(logHk)xkx̄k log |fk|d̂xk = −bkπ

2
∂t log |fk| + o(1) (4.15)

as ε→ 0. Analogously

∂t

∫

DN+l(ε)
(logHN+l)ylȳl log |gl|d̂yl = −akπ

2
∂t log |gl| + o(1) (4.16)

as ε→ 0.
Formula (4.9) follows from (4.13), (4.15) and (4.16). �

5 Polyhedral tori

Here we establish a formula for the determinant of the Laplacian on a polyhedral torus, i. e. a
Riemann surface of genus one with flat conical metric. We do it comparing this determinant with
the determinant of the Laplacian corresponding to the smooth flat metric on the same torus. For the
latter Laplacian the spectrum is easy to find and the determinant is explicitly known (it is given by
Ray-Singer formula stated below).

In this section L is an elliptic curve and it is assumed that L is the quotient of the complex plane C

by the lattice generated by 1 and σ, where =σ > 0. The differential dz on C gives rise to a holomorphic
differential v0 on L with periods 1 and σ.

5.0.1 Ray-Singer formula

Let ∆ be the Laplacian on L corresponding to the flat smooth metric |v0|2. The following formula for
det∆ was proved in [21]:

det∆ = C|=σ|2|η(σ)|4, (5.1)

where C is a σ-independent constant and η is the Dedekind eta-function.

5.1 Determinant of the Laplacian on a polyhedral torus

Let
∑N

k=1 bkPk be a generalized divisor on L with
∑N

k=1 bk = 0 and assume that bk > −1 for all k.
Let m be a flat conical metric corresponding to this divisor via Troyanov’s theorem. Clearly, it has
a finite area and is defined uniquely when this area is fixed. Fixing numbers b1, . . . , bN > −1 such
that

∑N
k=1 bk = 0, we define the space M(b1, . . . , bN ) as the moduli space of pairs (L,m), where L

is an elliptic curve and m is a flat conformal metric on L having N conical singularities with conical
angles 2π(bk+1), k = 1, . . . , N . The space M(b1, . . . , bN ) is a connected orbifold of the real dimension
2N + 3.

We are going to give an explicit formula for the function

M(β1, . . . , βN ) 3 (L,m) 7→ det∆m .

Write the normalized holomorphic differential v0 on the elliptic curve L in the distinguished local
parameter xk near the conical point Pk (k = 1, . . . , N) as

v0 = fk(xk)dxk
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and define
fk := fk(xk)|xk=0, k = 1, . . . , N . (5.2)

Theorem 2 The following formula holds true

det∆m = C|=σ|Area(L,m) |η(σ)|4
N∏

k=1

|fk|−bk/6, (5.3)

where C is a constant depending only on b1, . . . , bN .

Proof. The theorem immediately follows from (5.1) and (4.9).

6 Polyhedral surfaces of higher genus

Here we generalize the results of the previous section to the case of polyhedral surfaces of an arbitrary
genus. Among all polyhedral surfaces of genus g ≥ 1 we distinguish flat surfaces with trivial holonomy.
In our calculation of the determinant of the Laplacian it is this class of surfaces which plays the role
played in genus one by smooth flat tori. For flat surfaces with trivial holonomy we find an explicit
expression for the determinant of the Laplacian which generalizes the Ray-Singer formula (5.1) for
smooth flat tori. Then, as we did in genus one, comparing two determinants of the Laplacians by means
of Proposition 2, we derive a formula for the determinant of the Laplacian on a general polyhedral
surface.

6.1 Flat surfaces with trivial holonomy and moduli spaces of holomorphic differ-

entials on Riemann surfaces

We follow [14] and Zorich’s survey [24]. Outside the vertices a Euclidean polyhedral surface L is
locally isometric to a Euclidean plane and one can define the parallel transport along paths on the
punctured surface L \ {P1, . . . , PN}. The parallel transport along a homotopically nontrivial loop in
L\{P1, . . . , PN} is generally nontrivial. If, e. g., a small loop encircles a conical point Pk with conical
angle βk then a tangent vector to L turns by βk after the parallel transport along this loop.

A Euclidean polyhedral surface L is called a surface with trivial holonomy if the parallel transport
along any loop in L \ {P1, . . . , PN} does not change tangent vectors to L .

All the conical points of a surface with trivial holonomy must have conical angles which are integer
multiples of 2π.

A flat conical metric g on a compact real oriented two-dimensional manifold L provides L with
the structure of a compact Riemann surface, if this metric has trivial holonomy then it necessarily has
the form g = |w|2, where w is a holomorphic differential on the Riemann surface L (see [24]). The
holomorphic differential w has zeros at the conical points of the metric g. The multiplicity of the zero
at the point Pm with the conical angle 2π(km + 1) is equal to km

1.
The holomorphic differential w is defined up to a unitary complex factor, this ambiguity can be

avoided if the surface L is provided with a distinguished direction (see [24]) and it is assumed that w

1There exist polyhedral surfaces with nontrivial holonomy whose conical angles are all integer multiples of 2π. To

construct an example take a compact Riemann surface L of genus g > 1 and choose 2g − 2 points P1, . . . , P2g−2 on L in

such a way that the divisor P1 + · · ·+ P2g−2 is not linearly equivalent to the canonical divisor. Consider the flat conical

conformal metric m corresponding to the divisor P1 + · · ·+ P2g−2 according to the Troyanov theorem. This metric must

have nontrivial holonomy and all its conical angles are equal to 4π.
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is real along this distinguished direction. In what follows we always assume that surfaces with trivial
holonomy are provided with such a direction.

Thus, to a Euclidean polyhedral surface of genus g with trivial holonomy we put into correspon-
dence a pair (L, w), where L is a compact Riemann surface and ω is a holomorphic differential on this
surface. This means that we get an element of the moduli space, Hg, of holomorphic differentials over
Riemann surfaces of genus g (see [14]).

The space Hg is stratified according to the multiplicities of zeros of w.
Denote by Hg(k1, . . . , kM ) the stratum of Hg, consisting of differentials w which have M zeros on

L of multiplicities (k1, . . . , kM ). Denote the zeros of w by P1, . . . , PM ; then the divisor of differential
w is given by (w) =

∑M
m=1 kmPm. Let us choose a canonical basic of cycles (aα, bα) on the Riemann

surface L and cut L along these cycles starting at the same point to get the fundamental polygon L̂.
Inside of L̂ we choose M − 1 ( homology classes of) paths lm on L \ (w) connecting the zero P1 with
other zeros Pm of w, m = 2, . . . ,M . Then the local coordinates on Hg(k1, . . . , kM ) can be chosen as
follows [15]:

Aα :=

∮

aα

w , Bα :=

∮

bα

w , zm :=

∫

lm

w , α = 1, . . . , g; m = 2, . . . ,M . (6.1)

The area of the surface L in the metric |w|2 can be expressed in terms of these coordinates as follows:

Vol(L) = =
g∑

α=1

AαB̄α .

If all zeros of w are simple, we have M = 2g − 2; therefore, the dimension of the highest stratum
Hg(1, . . . , 1) equals 4g − 3.

The Abelian integral z(P ) =
∫ P
P1
w provides a local coordinate in a neighborhood of any point

P ∈ L except the zeros P1, . . . , PM . In a neighborhood of Pm the local coordinate can be chosen to
be (z(P ) − zm)1/(km+1).

Remark 3 The following construction helps to visualize these coordinates in the case of the highest
stratum Hg(1, . . . , 1).

Consider g parallelograms Π1, . . . ,Πg in the complex plane with coordinate z having the sides
(A1, B1), . . . , (Ag, Bg). Provide these parallelograms with a system of cuts

[0, z2], [z3, z4], . . . , [z2g−3, z2g−2]

(each cut should be repeated on two different parallelograms). Identifying the opposite sides of the
parallelograms and gluing the obtained g tori along the cuts we get a compact Riemann surface L of
genus g. Moreover, the differential dz on the complex plane gives rise to a holomorphic differential w
on L which has 2g − 2 zeros at the ends of the cuts. Thus, we get a point (L, w) from Hg(1, . . . , 1).
It can be shown that any generic point of Hg(1, . . . , 1) can be obtained via this construction; more
sophisticated gluing is required to represent points of other strata, or non generic points of the stratum
Hg(1, . . . , 1).

To shorten the notations it is convenient to consider the coordinates {Aα, Bα, zm} altogether. Namely,
in the sequel we shall denote them by ζk, k = 1, . . . , 2g +M − 1, where

ζα := Aα , ζg+α := Bα , α = 1, . . . , g , ζ2g+m := zm+1 m = 1, . . . ,M − 1 (6.2)
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Let us also introduce corresponding cycles sk, k = 1, . . . , 2g +M − 1, as follows:

sα = −bα , sg+α = aα , α = 1, . . . , g ; (6.3)

the cycle s2g+m, m = 1, . . . ,M − 1 is defined to be the small circle with positive orientation around
the point Pm+1.

6.1.1 Variational formulas on the spaces of holomorphic differentials

In the previous section we introduced the coordinates on the space of surfaces with trivial holonomy
and fixed type of conical singularities. Here we study the behavior of basic objects on these surfaces
under the change of the coordinates. In particular, we derive variational formulas of the Rauch type
for the matrix of b-periods of the underlying Riemann surfaces. We also give variational formulas for
the Green function, individual eigenvalues, and the determinant of the Laplacian on these surfaces.

Rauch formulas on the spaces of holomorphic differentials. For any compact Riemann
surface L we introduce the prime-form E(P,Q) and the canonical meromorphic bidifferential

w(P,Q) = dPdQ logE(P,Q) (6.4)

(see [8]). The bidifferential w(P,Q) has the following local behavior as P → Q:

w(P,Q) =

(
1

(x(P ) − x(Q))2
+

1

6
SB(x(P )) + o(1)

)
dx(P )dx(Q), (6.5)

where x(P ) is a local parameter. The term SB(x(P )) is a projective connection which is called the
Bergman projective connection (see [8]).

Denote by vα(P ) the basis of holomorphic 1-forms on L normalized by
∫
aα
vβ = δαβ .

The matrix of b-periods of the surface L is given by Bαβ :=
∮
bα
vβ .

Proposition 3 Let a pair (L, w) belong to the space Hg(k1, . . . , kM ). Under variations of the coordi-
nates on Hg(k1, . . . , kM ) the normalized holomorphic differentials and the matrix of b-periods of the
surface L behaves as follows:

∂vα(P )

∂ζk

∣∣∣
z(P )

=
1

2πi

∮

sk

vα(Q)w(P,Q)

w(Q)
, (6.6)

∂Bαβ

∂ζk
=

∮

sk

vαvβ
w

(6.7)

where k = 1, . . . , 2g+M − 1; we assume that the local coordinate z(P ) =
∫ P
P1
w is kept constant under

differentiation.

We sketch a proof for k = g + 1, . . . 2g. Consider some point P0 ∈ L such that z0 := z(P0) is
independent of the moduli {Aβ , Bβ , zm}. Let us dissect the surface L along the basic cycles started at

P0 to get the fundamental polygon L̂. Denote the images of the different shores of the basic cycles in
z-plane by a−β , a+

β , b−β and b+β . The endpoints of these contours coincide with the points z0, z0 + Aβ,
z0 +Bβ and z0 +Aβ +Bβ. Let us write down the differential vα in terms of the local parameter z as
follows: vα(P ) = fα(z)dz, where z = z(P ).
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The function fα(z) is the same on the different shores of the cuts a−β and a+
β i.e. fα(z+Bβ) = fα(z)

for z ∈ a−β . Differentiating this relation with respect to Bβ, we get

∂fα
∂Bβ

(z +Bβ) =
∂fα
∂Bβ

(z) − ∂fα
∂z

(z) ;

obviously, this is the only discontinuity of the differential ∂vα(P )
∂Bβ

|z(P ) on L. Therefore, the differential
∂vα(P )
∂Bβ

|z(P ) has all vanishing a-periods and the jump − ∂fα
∂z (z(P ))dz(P ) on the contour a−β ; outside

of the cycle aβ this differential is holomorphic (in other words, it solves the scalar Riemann-Hilbert
problem on the contour aβ). Such a differential can be easily written (see, e.g., [25]) in terms of the
canonical bidifferential w(P,Q) as a contour integral over aβ as in (6.6) (in terms of coordinate z(P )
we have w(Q) = dz(Q)). Now to get (6.7) one has to integrate (6.6) over the b-cycles, change the
order of integration and make use of the relation

∫

bj

w(P, ·) = 2πivj(P ).

Variation of the resolvent kernel and eigenvalues. For a pair (L, w) from Hg(k1, . . . , kM )

introduce the Laplacian ∆ := ∆|w|2 in flat conical metric |w|2 on L (recall that we always deal with
the Friedrichs extensions). The corresponding resolvent kernel G(P,Q;λ), λ ∈ C \ sp (∆)

• satisfies (∆P − λ)G(P,Q;λ) = (∆Q − λ)G(P,Q;λ) = 0 outside the diagonal {P = Q},

• is bounded near the conical points i. e. for any P ∈ L \ {P1, . . . , PM}

G(P,Q;λ) = O(1)

as Q→ Pk, k = 1, . . . ,M ,

• obeys the asymptotics

G(P,Q;λ) =
1

2π
log |x(P ) − x(Q)| +O(1)

as P → Q, where x(·) is an arbitrary (holomorphic) local parameter near P .

The following proposition is an analog of the classical Hadamard formula for the variation of the Green
function of the Dirichlet problem in a plane domain.

Proposition 4 There are the following variational formulas for the resolvent kernel G(P,Q;λ):

∂G(P,Q;λ)

∂Aα
= 2i

∫

bα

ω(P,Q;λ) , (6.8)

∂G(P,Q;λ)

∂Bα
= −2i

∫

aα

ω(P,Q;λ) , (6.9)

where
ω(P,Q;λ) = G(P, z;λ)Gzz̄(Q, z;λ)d̄z +Gz(P, z;λ)Gz(Q, z;λ)dz

is a closed 1-form and α = 1, . . . , g;
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∂G(P,Q;λ)

∂zm
= −2i lim

ε→0

∮

|z−zm|=ε
Gz(z, P ;λ)Gz(z,Q;λ)dz , (6.10)

where m = 2, . . . ,M . It is assumed that the coordinates z(P ) and z(Q) are kept constant under
variation of the moduli Aα, Bα, zm.

Remark 4 One can unite the formulas (6.8-6.10) in a single formula:

∂G(P,Q;λ)

∂ζk
= −2i

{∫

sk

G(R,P ;λ)∂R∂̄RG(R,Q;λ) + ∂RG(R,P ;λ)∂RG(R,Q;λ)

w(R)

}
, (6.11)

where k=1, . . . , 2g+M-1.

Proof. We start with the following integral representation of a solution u to the homogeneous equation
∆u− λu = 0 inside the fundamental polygon L̂:

u(ξ, ξ̄) = −2i

∫

∂L̂
G(z, z̄, ξ, ξ̄;λ)uz̄(z, z̄)dz̄ +Gz(z, z̄, ξ, ξ̄;λ)u(z, z̄)dz . (6.12)

Cutting the surface L along the basic cycles, we notice that the function Ġ(P, · ;λ) = ∂G(P, · ;λ)
∂Bβ

is a

solution to the homogeneous equation ∆u−λu = 0 inside the fundamental polygon (the singularity of
G(P,Q;λ) at Q = P disappears after differentiation) and that the functions Ġ(P, · ;λ) and Ġz̄(P, · ;λ)
have the jumps Gz(P, · ;λ) and Gzz̄(P, · ;λ) on the cycle aβ. Applying (6.12) with u = Ġ(P, · ;λ),
we get (6.9). Formula (6.8) can be proved in the same manner.

The relation dω(P,Q;λ) = 0 immediately follows from the equality Gzz̄(z, z̄, P ;λ) = λ
4G(z, z̄, P ;λ).

Let us prove (6.10). From now on we assume for simplicity that km = 1, where km is the multiplicity
of the zero Pm of the holomorphic differential w.

Applying Green formula (6.12) to the domain L̂ \ {|z − zm| < ε} and u = Ġ = ∂G
∂zm

, one gets

Ġ(P,Q;λ) = 2i lim
ε→0

∮

|z−zm|=ε
Ġz̄(z, z̄, Q;λ)G(z, z̄, P ;λ)d̄z + Ġ(z, z̄, Q;λ)Gz(z, z̄, P ;λ)dz . (6.13)

Observe that the function xm 7→ G(xm, x̄m, P ;λ) (defined in a small neighborhood of the point
xm = 0) is a bounded solution to the elliptic equation

∂2G(xm, x̄m, P ;λ)

∂xm∂x̄m
− λ|xm|2G(xm, x̄m, P ;λ) = 0

with real analytic coefficients and, therefore, is real analytic near xm = 0.
From now on we write x instead of xm =

√
z − zm. Differentiating the expansion

G(x, x̄, P ;λ) = a0(P, λ) + a1(P, λ)x+ a2(P, λ)x̄+ a3(P, λ)xx̄+ . . . (6.14)

with respect to zm, z and z̄, one gets the asymptotics

Ġ(z, z̄, Q;λ) = −a1(Q,λ)

2x
+O(1), (6.15)

Ġz̄(z, z̄, Q;λ) =
ȧ2(Q,λ)

2x̄
− a3(Q,λ)

4xx̄
+O(1), (6.16)
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Gz(z, z̄, P ;λ) =
a1(P, λ)

2x
+O(1), (6.17)

Substituting (6.15), (6.16) and (6.17) into (6.13), we get the relation

Ġ(P,Q, λ) = 2πa1(P, λ)a1(Q,λ).

On the other hand, calculation of the right hand side of formula (6.10) via (6.17) leads to the same
result. �

Now we give a variation formula for an eigenvalue of the Laplacian on a flat surface with trivial
holonomy.

Proposition 5 Let λ be an eigenvalue of ∆ (for simplicity we assume it to have multiplicity one)
and let φ be the corresponding normalized eigenfunction. Then

∂λ

∂ζk
= 2i

∫

sk

(
(∂φ)2

w
+

1

4
λφ2w̄

)
, (6.18)

where k = 1, . . . , 2g +M − 1.

Proof. For brevity we give the proof only for the case k = g + 1, . . . , 2g. One has

∫∫

L̂
φφ̇ =

1

λ

∫∫

L̂
∆φ φ̇ =

1

λ

{
2i

∫

∂L̂
(φz̄φ̇dz̄ + φφ̇z dz) +

∫∫

L̂
φ(λφ)·

}
=

1

λ

{
2i

∫

aβ

(φz̄φz dz̄ + φφzz dz) + λ̇+ λ

∫∫

L̂
φφ̇

}
.

This implies (6.18) after integration by parts (one has to make use of the relation d(φφz) = φ2
zdz +

φφzzdz + φz̄φzdz̄ + 1
4λφ

2dz̄). �

Variation of the determinant of the Laplacian. For simplicity we consider only the flat
surfaces with trivial holonomy having 2g − 2 conical points with conical angles 4π. (The results
concerning the general case can be found in [12]).

Proposition 6 Let (L, w) ∈ Hg(1, . . . , 1). Introduce the notation

Q(L, |w|2) :=
{ det ∆|w|2

Area(L, |w|2) det=B

}
(6.19)

where B is the matrix of b-periods of the surface L and Area(L, |w|2) denotes the area of L in the
metric |w|2.

The following variational formulas hold

∂ log Q(L, |w|2)
∂ζk

= − 1

12πi

∮

sk

SB − Sw
w

, (6.20)

where k = 1, . . . , 4g − 3; SB is the Bergman projective connection, Sw is the projective connection

given by the Schwarzian derivative
{∫ P

w, x(P )
}
; SB − Sw is a meromorphic quadratic differential

with poles of the second order at the zeroes Pm of w.
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Proof. The following proof is based on the ideas of J. Fay applied in the context of flat metrics with
conical singularities (cf. the proof of Theorem 3.7 in [8]). In this case the calculations get shorter and
more elementary (in particular, the Ahlfors-Teichmüller theory is not used here).

Due to Theorem 1 one has
Tr et∆ =

c0
t

+ c1 +O(tN ) (6.21)

as t→ 0+, where N is an arbitrary real number, c0 = A
4π , where

A := Area(L, |w|2) = − 1

2i

g∑

α=1

(AαB̄α − ĀαBα)

is the area of the surface L and c1 = −M
8 . Notice that the coefficient c1 is moduli independent and

the coefficient c0 is independent of the moduli z2, . . . , zM .
Following [8], consider the expression

J(λ, s) =
1

sΓ(s)

∫ +∞

0
e−λtts−1h(t) dt,

where

h(t) = Tr et∆ − (1 − e−t
2
) − e−t

t
[(1 + t)c0 + tc1] .

Notice that h(t) = O(t−N ) as t→ +∞ with any N > 0 and (6.21) implies that h(t) = O(t) as t→ 0+.
Thus,

d

dλ
J(λ, s)|s=0 = −

∫ +∞

0
e−λth(t) dt = O(

1

λ2
)

as λ→ +∞. From the calculations on p. 42 of [8] it follows that

J(λ, s) =
d

ds
ζ∆(s;λ)|s=0 +

γ

2
−

∫ λ

0

∫ +∞

0
e−t

2−λtdt dλ+ c0(1 + λ− λ log(λ+ 1)) + c1 log(1 + λ) +O(s),

as s→ 0, where γ is the Euler constant and

ζ∆(s;λ) =
∑

λn∈ sp ∆\{0}

1

(λ− λn)s
.

This implies the relation

−
∫ +∞

0

d

dλ
J(λ, s)|s=0 dλ = J(0, 0) = ζ ′∆(0) +

γ

2
+ c0

and, therefore, one has

−ζ ′∆(0) =
γ

2
+ c0 −

∫ +∞

0
dλ

∫ +∞

0
e−λt

[
Tr et∆ − (1 − e−t

2
) − e−t

t
((1 + t)c0 + tc1)

]
dt . (6.22)

Consider the variation of (6.22) with respect to Aα. (In what follows for any differentiable function
F of moduli {zm, Aα, Bα} we denote by Ḟ the derivative ∂F

∂Aα
.)
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Using the formulas ċ1 = 0, ċ0 = −Bα
8πi and the relation

[∫∫

L
F (P )dA(P )

]·
=

∫∫

L
Ḟ (P )dA(P ) +

i

2

∮

bα

F (z, z̄)dz

where dA(P ) is the area element defined by the metric |w|2, we get

[−ζ ′∆(0)]· = −Bα

8πi
−

∫ +∞

0
dλ

∫ +∞

0
dt e−λt

{∫∫

L
(Ḣ(P, P, t) +

Ȧ

A2
(1 − e−t

2
))dA(P )+ (6.23)

i

2

∮

bα

[
H(z, z, t) − 1

A
(1 − e−t

2
) − e−t

4πt
(1 + t)

]
dz

}
.

Using the standard relation

G(x, y;λ) = −
∫ +∞

0
e−λtH(x, y, t)dt

between the resolvent and the heat kernels, we rewrite the right hand side of (6.23) as

−Bα

8πi
+

∫ +∞

0
dλ

{∫∫

L
Ġ(P, P ;λ)dA(P ) − Ȧ

A
I(λ) − i

2

∮

bα

Ĝ(z, z;λ)dz

}
, (6.24)

where

I(λ) =
1

λ
− eλ

2/4

∫ +∞

λ/2
e−t

2
dt

as in ([8], (2.34)) and Ĝ(z, z;λ) is Fay’s modified resolvent

Ĝ(z, z;λ) =

∫ +∞

0
e−λt(H(z, z, t) − 1

A
(1 − e−t

2
) − e−t

4πt
(1 + t)) dt . (6.25)

(See [8]: the last formula on page 42, formulas (2.34–2.35) on p. 38 and the first two lines on p. 39.
One has to make use of the fact that the metric |w|2 is Euclidean in a vicinity of the cycle bα and,
therefore, the coefficients H0 and H1 in Fay’s formulas are 1 and 0.) For future reference notice that
according to ([8], p. 38) one has the relation

Ĝ(z1, z2;λ) = G(z1, z2;λ) +
1

A
I(λ) − 1

2π

[
log |z1 − z2| + γ + log

√
λ+ 1

2
− 1

2(λ+ 1)

]
, (6.26)

where the right hand side of (6.26) is nonsingular at the diagonal z1 = z2. Now (6.8) implies

∫∫

L
Ġ(P, P ;λ)dA(P ) =

i

2

∮

bα

dz

∫∫

L
λG(z, P ;λ)G(z, P ;λ)dA(P )+

2i

∫∫

L
dA(P )

∮

bα

Gz(z, P ;λ)Gz(z, P ;λ)dz
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The interior contour integral in the last term has δ-type singularity as P approaches to the contour bα
and using Stokes formula and the (logarithmic) asymptotics of the resolvent kernel at the diagonal, it
is easy to show that

∫∫

L
dA(P )

∮

bα

Gz(z, P ;λ)Gz(z, P ;λ)dz =
2πi

16π2

∮

bα

dz+

∮

bα

dz p. v.

∫∫
Gz(z, P ;λ)Gz(z, P ;λ) dA(P ) .

Now from the resolvent identity

G(Q,P ;λ) −G(Q,P ;µ)

λ− µ
=

∫∫

L
G(P,R;λ)G(Q,R;µ)dA(R) (6.27)

it follows that ∫∫

L
G(z, P ;λ)G(z, P ;λ)dA(P ) =

∂

∂λ
G(z, z;λ). (6.28)

Moreover, according to Lemma 3.3 from [8] one has

∫∫

L
Gz′(z

′, P ;λ)Gz(z, P ;λ) dA(P ) = − 1

16π

z′ − z

z′ − z
+p. v.

∫∫

L
Gz(z, P ;λ)Gz(z, P ;λ)dA(P )+O(z′−z) ,

and the resolvent identity (6.27) implies the relation

p. v.

∫∫
Gz(z, P ;λ)Gz(z, P ;λ) dA(P ) =

∂

∂λ

{
Gz′z(z

′, z;λ) − 1

4π

1

(z′ − z)2
+

λ

16π

z′ − z

z′ − z

} ∣∣∣
z′=z

.

(6.29)
Thus, (6.24) can be rewritten as

−Bα

8πi
+
i

2

∫ +∞

0
dλ

∮

bα

dz

[
λ
∂

∂λ
G(z, z;λ) − 1

4π
+ Ĝ(z, z;λ) − 1

A
I(λ)

]
+ (6.30)

2i

∫ +∞

0

∮

bα

dz
∂

∂λ

{
Gz′z(z

′, z;λ) − 1

4π

1

(z′ − z)2
+

λ

16π

z′ − z

z′ − z

} ∣∣∣
z′=z

.

Using (6.26), rewrite the expression in the square brackets as

∂

∂λ

(
λĜ− 1

4π

λ

λ+ 1
− 1

A
λI(λ)

)
.

To finish our calculation we need several lemmas
The first one is an analog of Corollary 2.8 from [8].

Lemma 2 The following relation holds

4πGz′z(z
′, z;λ) =

1

(z′ − z)2
− λ

4

z′ − z

z′ − z
+ α(z′, z), (6.31)

where α(z, z′) is O(|z′ − z|) as z′ → z and λ belongs to any closed subinterval of (0,+∞).
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To prove the lemma we notice that the metric |w|2 is flat in a vicinity of a point P ∈ βα and the
geodesic local coordinates in this vicinity are given by the local parameter z. Therefore, as it is
explained on pp. 38-39 of [8] the asymptotical behavior of 4πGz′z(z

′, z;λ) coincides with that of the
second derivative with respect to z ′ and z of the function

F (z′, z̄′, z, z̄) = log |z′ − z|2 +
1

4
λ|z − z′|2 log |z′ − z|2, (6.32)

(One has to put H0 = 1 and H1 = 0 in Fay’s calculations on p. 38 of [8].) This immediately leads to
(6.31).

The next two lemmas are classical (see [8], p. 25 and example 2.4 and formula (2.18) on p. 30).

Lemma 3 There is the following Laurent expansion near the pole λ = 0 of the resolvent G(z ′, z;λ):

G(z′, z;λ) = − 1

λArea (L)
+G(z′, z) +O(λ) , (6.33)

as λ→ 0, where G(z′, z) is the Green function.

Lemma 4 The relation holds

4πGz′z(z
′, z) =

1

(z′ − z)2
+

1

6
SB(z) − π

g∑

α,β=1

(=B)−1
αβvα(z)vβ(z) +O(z′ − z), (6.34)

as z′ → z, where G(z′, z) is the Green function from (6.33), SB is the Bergman projective connection,
{vα(z)dz}gα=1 is the basis of normalized holomorphic differentials on L and B is the matrix of b-periods
of L.

It should be noted that the Green functions depends on the metric on L whereas its second derivative
(6.34) is independent of the (conformal) metric.

The last lemma immediately follows from Rauch variational formula (6.7) and the obvious relation
2i[log det=B]· = Tr{(=B)−1Ḃ} .

Lemma 5 The relation holds

[log det=B]· =
1

2i

g∑

γ,β=1

(=B)−1
γβ

∮

bα

vγ(z)vβ(z) dz . (6.35)

Now using the asymtotics I(λ) = O( 1
λ3 ) as λ→ +∞ and the last four Lemmas, one can make the

integration with respect to λ in (6.24). This leads to the relation

[−ζ ′∆(0)]· =
1

12πi

∮

bα

SB(z)dz + [log det=B]· + [logA]· .

The latter relation is equivalent to (6.20) for k = 1, ..., g. The proof of (6.20) in the case k =
g + 1, . . . , 2g is similar.
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Consider now the variation of (6.22) with respect to zm. From now on the dot denotes the derivative
with respect to zm. Using the equality ċ0 = ċ1 = 0 and (6.10), we get

[−ζ ′∆(0)]· = −2i lim
ε→0

∫ +∞

0
dλ

∫∫

L
dA(P )

∮

|z−zm|=ε
Gz(z, P ;λ)Gz(z, P ;λ) dz . (6.36)

After passing to local parameter x =
√
z − zm, the latter expression can be rewritten as

−2i lim
ε→0

∮

|x|=√
ε

dx

2x

∫ +∞

0
dλ

∫∫

L
Gx(x, P ;λ)Gx(x, P ;λ)dA(P ) . (6.37)

Lemma 3.3 from [8] implies the relation

∫∫

L
Gx′(x

′, P ;λ)Gx(x, P ;λ)dA(P ) = − 1

4π
|x|2x

′ − x

x′ − x
+

∫∫

L
Gx(x, P ;λ)Gx(x, P ;λ)dA(P )+O(|x′−x|) ,

(6.38)
as x′ → x. Using this relation rewrite the right hand side of (6.37) as

−2i lim
ε→0

∮

|x|=√
ε

dx

2x

∫ +∞

0
dλ

{∫∫

L
Gx′(x

′, P ;λ)Gx(x, P ;λ)dA(P ) +
1

4π
|x|2x

′ − x

x′ − x

} ∣∣∣
x=x′

(6.39)

As before, using the resolvent identity, we rewrite the expression inside the braces as a derivative with
respect to λ:

[−ζ ′∆(0)]· = −2i lim
ε→0

∮

|x|=√
ε

dx

2x

∫ +∞

0
dλ

∂

∂λ

{
Gx′x(x

′, x;λ) − 1

4π

1

(x′ − x)2
+

λ

4π
|x|2x

′ − x

x′ − x

} ∣∣∣
x′=x

.

(6.40)
Again we need a few lemmas.

Lemma 6 The following relation holds

4πGx′x(x
′, x;λ) =

1

(x′ − x)2
− 1

4x2
− λ|x|2x

′ − x

x′ − x
+ α(x′, x), (6.41)

where α(x, x′) is O(|x′ − x|) as x′ → x and λ belongs to any closed subinterval of (0,+∞).

To prove the lemma we notice that the metric |w|2 is flat in a vicinity of the point x and the geodesic
local coordinates in this vicinity are given by the local parameter z = zm + x2. Therefore, as it is
explained on pp. 38-39 of [8] the asymptotical behavior of 4πGx′x(x

′, x;λ) coincides with that of the
second derivative with respect to x′ and x of the function

F (x′, x̄′, x, x̄) = log |z′ − z|2 +
1

4
λ|z − z′|2 log |z′ − z|2, (6.42)

where z′ = zm + (x′)2.
Using the Taylor expansion of (x′ − x)2Fx′x(x

′, x̄′, x, x̄) up to the terms of the second order, we
arrive at (6.41).

Now notice that formulas (6.33) and (6.34) are still true being written in the local parameter x,
moreover, one has the following analog of Lemma 5:
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Lemma 7 The relation holds

[log det=B]· =
1

2i

g∑

α,β=1

(=B)−1
αβ

∮

|x|=√
ε

vα(x)vβ(x) dx

2x
. (6.43)

These lemmas together with (6.40) imply the relation

[−ζ ′∆(0)]· = − 1

12πi

∮

C

SB(x)dx

2x
+ [log det=B]·,

where C is a small positively oriented circle around Pm. The latter relation is equivalent to (6.20) for
k = 2g +m,m = 1, . . . ,M − 1. �

6.1.2 An explicit formula for the determinant of the Laplacian on a flat surface with

trivial holonomy

We start with recalling the properties of the prime form E(P,Q) (see [7, 8], some of these properties
were already used in our proof of the Troyanov theorem above).

• The prime form E(P,Q) is an antisymmetric −1/2-differential with respect to both P and Q,

• Under tracing of Q along the cycle aα the prime-form remains invariant; under the tracing along
bα it gains the factor

exp(−πiBαα − 2πi

∫ Q

P
vα) . (6.44)

• On the diagonal Q→ P the prime-form has first order zero with the following asymptotics:

E(x(P ), x(Q))
√
dx(P )

√
dx(Q) =

(x(Q) − x(P ))

(
1 − 1

12
SB(x(P ))(x(Q) − x(P ))2 +O((x(Q) − x(P ))3

)
, (6.45)

where SB is the Bergman projective connection and x(P ) is an arbitrary local parameter.

The next object we shall need is the vector of Riemann constants:

KP
α =

1

2
+

1

2
Bαα −

g∑

β=1,β 6=α

∮

aβ

(
vβ

∫ x

P
vα

)
(6.46)

where the interior integral is taken along a path which does not intersect ∂ L̂.
In what follows the pivotal role is played by the following holomorphic multivalued g(1 − g)/2-

differential on L̂

C(P ) =
1

W[v1, . . . , vg](P )

g∑

α1,...,αg=1

∂gΘ(KP )

∂zα1 . . . ∂zαg
vα1 . . . vαg (P ) , (6.47)

where Θ is the theta-function of the Riemann surface L,

W(P ) := det1≤α,β≤g||v(α−1)
β (P )|| (6.48)
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is the Wronskian determinant of holomorphic differentials at the point P .
It is easy to see that this differential has multipliers 1 and exp{−πi(g − 1)2Bαα − 2πi(g − 1)KP

α }
along basic cycles aα and bα, respectively.

In what follows we shall often treat tensor objects like E(P,Q), C(P ), etc as scalar functions of
one of the arguments (or both). This makes sense after fixing the local system of coordinates, which

is usually taken to be z(Q) =
∫ Q

w. In particular, the expression “the value of the tensor T at the
point Q in local parameter z(Q)” will mean the value of the scalar Tw−α at the point Q, where α is
the tensor weight of T (Q).

The following proposition was proved in [12].

Proposition 7 Consider the highest stratum Hg(1, . . . , 1) of the space Hg containing Abelian differ-
entials w with simple zeros.

Let us choose the fundamental polygon L̂ such that AP ((w))+2KP = 0, where AP is the Abel map
with the initial point P . Consider the following expression

τ(L, w) = F2/3
2g−2∏

m,l=1 m<l

[E(Qm, Ql)]
1/6 , (6.49)

where the quantity

F := [w(P )]
g−1

2 C(P )

2g−2∏

m=1

[E(P,Qm)]
(1−g)

2 (6.50)

does not depend on P ; all prime-forms are evaluated at the zeroes Qm of the differential w in the

distinguished local parameters xm(P ) =
(∫ P

Qm
w

)1/2
. Then

∂ log τ

∂ζk
= − 1

12πi

∮

sk

SB − Sw
w

, (6.51)

where k = 1, . . . , 4g − 3.

The following Theorem immediately follows from Propositions 6 and 7. It can be considered as a
natural generalization of Ray-Singer formula (5.1) to the higher genus case.

Theorem 3 Let a pair (L, w) be a point of the space Hg(1, . . . , 1). Then the determinant of the

Laplacian ∆|w|2 is given by the following expression

det ∆|w|2 = C Area(L, |w|2) det=B |τ(L, w)|2, (6.52)

where the constant C is independent of a point of Hg(1, . . . , 1). Here τ(L, w) is given by (6.49).

6.2 Determinant of the Laplacian on an arbitrary polyhedral surface of genus

g > 1

Let b1, . . . , bN be real numbers such that bk > −1 and b1+· · ·+bN = 2g−2. Denote by Mg(b1, . . . , bN )
the moduli space of pairs (L,m), where L is a compact Riemann surface of genus g > 1 and m is a flat
conformal conical metric on L having N conical points with conical angles 2π(b1 +1), . . . , 2π(bN +1).
The space Mg(b1, . . . , bN ) is a (real) orbifold of the (real) dimension 6g + 2N − 5. The moduli space
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Hg of holomorphic differentials on Riemann surfaces of genus g forms a fiber bundle over the moduli
space Mg.

Let U ⊂ Mg be a path-connected set such that there exists a C 1-section Ω : L 7→ (L, w) of the
bundle Hg|U with the property (L, w) ∈ Hg(1, . . . , 1) for any L ∈ U .

Let L ∈ U , (L,m) belong to Mg(b1, . . . , bN ) and let w be the holomorphic differential with 2g− 2
simple zeroes on L defined via the section Ω. Assume also that the set of conical points of the metric
m and the set of zeros of the differential w do not intersect.

Let P1, . . . , PN be the conical points of m and let Q1, . . . , Q2g−2 be the zeroes of w. Let xk be a
distinguished local parameter for m near Pk and yl be a distinguished local parameter for w near Ql.
Introduce the functions fk, gl and the complex numbers fk, gl by

|w|2 = |fk(xk)|2|dxk|2 near Pk; fk := fk(0),

m = |gl(yl)|2|dyl|2 near Ql; gl := gl(0).

Then, according to (4.9) and (6.52), we have

det∆m = CArea (L,m)det=B |τ(L, w)|2
∏2g−2
l=1 |gl|1/6∏N
k=1 |fk|bk/6

, (6.53)

where the constant C depends only on b1, . . . , bN and τ is given by (6.49).
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