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GAUSS MAP ON THE SPACE OF INTERVAL EXCHANGE
TRANSFORMATIONS. FINITENESS OF THE INVARIANT

MEASURE. LYAPUNOV EXPONENTS.

ANTON ZORICH

ABSTRACT. We construct a map on the space of interval exchange transformations,
which generalizes the classical Gauss map on the interval, related to continuous
fraction expansion. This map is based on Rauzy inductioo, but unlike its relatives
known up to now, the map is ergodic with respect to some finite absolutely con­
tinuous measure on the space of interval exchange transformations. We present
the prescription for calculation of this measure based on technique developed by
W. Veech for Rauzy induction.

We study Lyapunov exponents related to this map and show that when the
number of intervals is m, and the genus of corresponding surface is g, there are
m - 2g Lyapunov exponents, which are equal to zero, while the rest 2g ones are
distributed iota pairs fh = -Bm - i+1 • '\Ve present an explicit formula for the highest
ODe, which proves in particular, that it is greater than zero.

1. INTRODUCTION

Consider an orientable measured foliation on a dosed orientable surface 1\1; of
genus 9 with singularities of the saddle type. Throughout the paper we will assume,
that the foliation has neither dosed singular leaves 1 nor saddle connections. We will
also assume, that the foliation is uniquely ergodic. A generic orientable measured
foliation can be decomposed to ones which obey all the indicated properties (see [20]),
as a consequence of unique ergodicity of a generic interval exchange transformation
(see (7], [18]). Recall, that we can define an orientable measured foliation as a foliation
of leaves of a dosed I-form u). Any leaf of the orientable measured foliation as
described above winds around the surface along one and the same cyde from the first
homology group H1(M;, IR) of the surface, ,which is called asymptotic cyde. This
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2 ANTON ZORICH

cycle is just Poincare dual to the cohomology class [w] of corresponding I-form. In a
sense asymptotic cycle gives the first term of approximation of dynamics of leaves.

Study of further terms of approximation gives the following picture (see [19] for
details). Computer experiments show, that taking the next term of approximation
we get a two-dimensional subspace in. Hd1V!; , IR), i.e., with a good precision leaves
deviate from the asymptotic cycle not arbitrary, but inside one and the same two­
dimensional subspace H 2 in the first homology. Taking further steps n = 3, ... , 9 of
approximation we get subspaces Hk of dimension k for the k-th step; collection of the
subspaces generates a Hag H 1 C H2 C ... c Hg of subspaces in the first homology
group. The largest, g-dimensional subspace, gives a Lagrangian subspace in 2g­
dimensional symplectic space H1(j\l;, IR), with the intersection form considered as a
symplectic form. VVe stop at level 9 since deviation from corresponding Lagrangian
subspace is in a sense already negligible. The main conjecture of [19] claims existence
of this asymptotic Lagrangian Hag for almost all orientable measured foliations on
surfaces as described above.

Having an orientable measured foliation on a surface, one can consider interval
exchange transformation induced by the first return map on a piece of transver­
sal. Taking shorter and shorter pieces af transversal we will get langer and longer
pieces of leaf bounded by the point of first return. Joining the ends of the piece
of leaf along transversal we get a closed cycle, representing an element of the first
homology. The asymptotic behavior of tp.is cycle is wh~t we need to investigate. To
trace modifications of our cycles we use special procedure for shortening our piece of
transversal. Namely, we use iterates of Rauzy induction for corresponding interval
exchange transformation (see [13] as weIl as later expositions in [18] and [6]). The
transformation operator representing modification of our cycles after k steps of Rauzy
induction is the product of k elementary matrices Ai/l: ... Ait related to each step of
Rauzy induction. We now need to study properties of these products of matrices.

Though the mapping T : )( --t X corresponding to Rauzy induction on the space
X of interval exchange transformations is ergodic with respect to some absolutely
continuous invariant measure on ~'( ([18]), we can not immediately use multiplicative
ergodic theorem to study products of matrices A ik ... Ai1 since the invariant measure
is not finite.

We canstruct anather map Q : ~Y- --t X, which assigns to a point x E X some power
Q(x) = Tn(x) (x) of the map T evaluated at x, where n(x) depends on the point x. The
numbers n(x), n(Q(x)), ... here are analogous to the entries of continuous fraction
expansion for areal number. In the simplest case of interval exchange transformation
of two intervals the numbers n(x), n(Q(x)), ... ,n(Qk(x)), ... are exactly the entries of
corresponding continuous fraction, and the map Q coincides with the classical Gauss
map (up to duplication and conjugation). We prove that for any number of intervals
the Gauss map Q is ergodic with respect to some absolutely continuous invariant
measure on X, and this measure is already finite.
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Note that initial matrix-valued function A(x) on X related to Rauzy induction
induces a new cocycle, B(x) = A(Tn(x)-I(x)) . A(Tn(x)-2(x)) ... A(x). This time we
are already able to apply Oseledec theorem to study products of matrices B. Consider
the collection 01' corresponding Lyapunov exponents BI ::; ... ::; Bm .

vVe prove, that °9+1 = ... = Bm - g = 0, where 9 is the genus of the original
surface. As for the rest Lyapunov exponents, we prove, that they are grouped into
pairs Bi = -Bm - i+1 . We calculate explicitly the largest Lyapunov exponent BI; in
particular we show, that BI > O.

vVe prove that Lyapunov exponents of the differential ng are represented by BI +
BI, B2 + BI, ... , Bm - 1 + BI.

Presumably Lyapunov exponents B2 , •• • ,B9 are also nonzero, and hence positive,
and all of them have multiplicities one. This conjecture implies existence of asymp­
totic Lagrangian flag in the first homology of the surface, responsible for approxima­
tion of the leaves. Still to avoid overloading the paper we decided to discuss existence
of asymptotic Hag separately, in some other paper.

2. INTERVAL EXCHANGE TRANSFORMATIONS AND RAUZY INDUCTION

Recall the notion of interval exchange transformation. Consider an interval, and
cut it into m subintervals of lengths Al, ... , Am' Now glue t he subintervals together in
another order, according to some permutation 1T E Sm and preserving the orientation.
We again obtain an interval I of the same length, and hence we defined a mapping
T : I -+ I, which is called interval exchange transformation. Our mapping is piecewise
linear, and it preserves the orientation and Lebesgue measure. It is singular at the
points of cuts, unless two consecutive intervals separated by a point of cut are mapped
to consecutive intervals in the image.

Remark 1. Note, that actually there are two ways to glue the subintervals "according
to permutation 11"". We may send the interval number k to the place -rr(k), or we may
have the intervals in the image to appear in the order 1T(1), ... ,1T(m). Following [18]
we use the first way; under this choice the second way corresponds to permutation
11"-1.

Given an interval exchange transformation T corresponding to a pair (A,1T), A E
IR~, 7r E 6 n , set ßo = 0, ßi = L~=l Aj, and Xi = [ßi-l, ßi[' Define skew-symmetric
mxm-matrix 5(1T) as follo\vs:

(2.1 )
{

I if i < j and 7r(i) > 1T(j)
!1 ij (-rr) = -01 if i > j and 1r(i) < 1T(j)

otherwise

Consider a translation vector

(2.2)
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Our interval exchange transformation T is defined as folIows:

T (x) = x + bi, for x E Xi, 1 ~ i ~ n

Note, that if for some k < m we have 1r{ 1, ... , k} = {I, ... , k}, then our map
T decomposes into two interval exchange transformations. We consider only the
dass 6~ of irreducible permutations - those which have no invariant subsets of the
form {I, ... , k}, where 1 ~ k < m. Vve can also confine ourselves to the dass of
nondegenerate permutations - those which obey the property 1r(k) + 1 =I 1r(k + 1),
1 ~ k < m, since an interval exchange transformation defined by adegenerate
permutation coincides with an interval exchange transformation of smaller number
of intervals. Both subsets of permutations are invariant uuder operation of taking
Inverse.

Having an interval exchange transformation T corresponding to the pair (A, 1r)
one can construct a closed orientable surface 1\1;, a dosed I-form w on M;, and a
nonselfintersecting curve / in jvI;, such that / would be transversal to leaves of w, and
the induced Poincare (first return) map I ---.. I would coincide with the initial interval
exchange transformation T (see corresponding constructions in [18] and in [7]). The
genus 9 of the surface is defined by combinatorics of the permutation 1r as follows
(see [18]).

Let 1r E 6~. Define permutation a = a(1r) on {O, 1, ... , m} by

(2.3)
j=O
j = 1r-1

otherwise

Let

(2.4) S(j) = {j,a(j),a2(j), ... } C {O,I,2, ... ,m} j = O,I, ... ,m

be the cyclic subset for the permutation a. To each subset S of this form assign the
vector bs E IR.m, which is presented in components as folIows:

. j-1 j
(2.5) lls = Xs - Xs

where

{I if j E S
X~ = ° otherwise

Let

(2.6) E(1r) := {set of cyclic subsets for a(1r)}

(2.7) ):o( 1r) := E( 1r) \5(0)

(2.8) N(1r) := CardE(1r)
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According to [18] the genus g of the surface Al; is

5

(2.9)
m - (lV (7r) - 1)

g = 2

To each permutation 7r E Sm we assign mxm permutation matrix

(2.10) P"(7r)={l
~,J 0

if j = 7r(i),
otherwise

We denote by Tk E Sm, 1 ~ k < m the following permutation:

Tk = {I, 2, , k, k +2, ... , m, k + I} 1 ~ k < m - 1
Tm -1 = {1,2, ,1"n}=id

Permutation Tk cyclically moves one step forward all the elements occurring after the
element k.

Define the norm lAI of A E IR+ to be lAI = L~l Ai. By ~m-1 we denote the
standard simplex Llm-l = {,,\ 1,,\ E IR+ j 1,,\1 = I}. Having- an interval exchange
transformation, defined by a pai r ("\, 7r), W here vector A = (A 1 , •.• , "\m) E IR+' defines
the lengths of subintervals, and 7r is apermutation, 7T' E Sm, we can renormalize
vector A to A/I,,\I E ßm-l. Interval exchange transformation corresponding to the
pair ("\/1"\ I, 7r) is obviously conjugate to the initial one.

Now we remind construction of Rauzy induction [13]. Whenever it is possible we
try to use notations in [18]. "VVe also use some notations from [6].

Consider two maps a, b : S?n -Jo S?n on the set of irreducible permutations:

(2.11)
-1

7r'T1f - 1 (m)

T1r(m) • 'Tr

where one should consider product of permutations as composition of operators ­
from right to left. Considering permutation as a map from one ordering of 1,2, ... ,m
to another, operator b corresponds to the modification of the image ordering by
cyclically moving one step forward those letters occurring after the image of the
last letter in the domain, i.e., after the letter m. Operation a corresponds to the
modification of the ordering of the domain by cyclically moving one step forward
those letters occurring after one going to the last place, i.e., after 7T'-1 (m).

Note, that

(2.12)
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In components the maps a, bare as folIows:

(2.13)

(

1fU)
a(7l")(j) = 1f(m)

1fU-I)

(

1fU)
b(1f )(j ) = 1fU) + 1

1f(m) +1

j :S 1f-l(m)

j = 1f-l(m) + 1

other j

1f(j) :S rr(m)
1f (m) < 1f(j) < m

'lr(j) = m

(2.14)

The Rauzy dass 91(7i'0) of an irreducible permutation 1fo is the subset of those per­
mutations 7r E 6?n which can be obtained from 1fo by some composition of mappings
a and b. We will also denote by the same symbol 91(7ro) the oriented graph, which
vertices are indexed by elements 1f E 91(7i'0), and which directed edges are either of
the type 1r t---+ a(1r) l or of the type 1r t---+ b(1f).

Denote by E identity rn x rn-matrix, and by h.j square m x rn-matrix, which has
only one nonzero entry, which equals one, at the (i, j) place. For any 7r E 6~ define
matrices A( tr, a), A( 7r l b) as folIows:

A(7r, a) = (E + I 1f-l(m),m)' P(T1f-l(m)) = P(T1f -l(m)) + l 1r-l(m),m

A(tr,b) = E+lm,1f-1(m)

Consider an interval exchange transformation T corresponding to a pair (A, 7r),
where A = (Al, ... ,Am ) E ~m-I, 7r E 6~. Compare the lengths Am and A1f-l(m) of
the last subinterval in the domain and in the image of T. Suppose they are not equal.
Let v = min(Am , A1f-l(m))' Cut off an interval of the length v from the right hand side
of the initial interval and consider induction of the map T to the suhinterval [0, 1- v[.
According to [13] the new map would be again an interval exchange transformation
of m subintervals corresponding to a pair (A', 1f'), where

"'\m < "'\1f- 1 (m)

Am > "'\1t- 1 (m)

(2.15)

Rescaling the vector .\' we get the transformation

T : ~m-l X 6~ -t ~m-l X 6?n

(...\,11") t---+ C;: ll 1l"')

Consider restriction of this map to invariant subsets of the form .6.m-I X 91(7i').
In [18] Veech proves, that Rauzy induction T is conservative and ergodie on each
~m-l x91(7r). It admits unique up to a scalar multipleahsolutely continuous invariant
measure, hut this measure is infinite.
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To complete this section we make one more note on the requirements on measured
foliations on closed orientable surfaces, which we will consider in this paper. We will
consider only orientable measured foliations. "Ve always assume, that the foEation
does not have minima or maxima, i.e., all singularities are of saddle type only. We
assume that there are no saddle connections and no closed singular leaves. In this
case the foliation is minimal - every leaf is dense in the surface. A generic ori­
entable measured foliation on a closed orientable surface can be decomposed to ones
as described above in the following sense. Suppose a foliation has minima, maxima,
and hence closed loops. Assume, that the corresponding closed I-form has maximal
rank, i.e., all periods of the form are rationally independent. Note, that this is the
generic situation. One can decompose the surface into several components filled with
closed leaves, and several components, where each nonsingular leaf would be closed.
Camponent filled with closed leaves is homeomorphic either to a disk (a trap), or to
a cylinder (a neck). Consider a minimal component, where each nonsingular leaf is
dense. It is a compact orientable surface with several holes. Each hole, i.e., each
component of the boundary is represented by a closed singular leaf. Shrinking each
hole to a point we will get a closed surface with smooth foliation on it; critical points
corresponding to the holes would be eliminated. By construction the foliation would
be minimal. For more details see, e.g., (20].

ce

3. GAUSS MAP 9

Fix some 1ro E 6~ and confine ourselves to the dass 91(1ro) = 91. We denote

(A(k) , 1r (k) ) := T k ( ,,\, 7r )
(A(O),7r(O)) := (A,7r)

We subdivide each simplex ß m-l X 7r, 7r E 91 iota two subsimplexes

ßm-l X 1r = (n+(7r) U ~ -(7r)) x 7r

where

(3.1 )
~+(7r) = {AE~m-IIAm>A1l"-I(m)}

~-( 7r) = {,,\ E ~m-l I "\m < A1l"-l(m)}

Similarly define positive cones A+(7r) U A- Cr.) = IR.+.
For almost all points on .6.m-I X 91 we can define the function

(3.2)
. {A(k) E ~-(7r(k))

n( A, 7I") = ..:.nln k such that \ (k) A +( (k))
k-I,2.... A E u 1r

when A E ~+(7I")

when A E ~-(7r)

In other words we iterate Rauzy induction and count how many consecutive trans­
formations of the same type (a or b, see (2.11), (2.13)) we can make.



8 ANTON ZORICH

Definition 1. We define the Gauss map 9 related to Rauzy induction T to be

(3.3)
9 : UJrEilt (ß+(1r) U ~ - (1r)) -t U".Eilt (~+(1r) U ß - (1r ))

9(A, rr) := Tn(>,,"-l(A, 1r)

One should consider domain of 9 as U"'Eilt (~+( rr) U ß - (rr)) forgetting that sim­
plexes ~+(1r) and ß-(rr) were once glued into one. Note that the map 9 maps
simplexes ß + to ß - and vice versa.

Define the following matrix-valued function B(A, rr) on a subset of complete mea­
sure in UJrE~(~+(rr) U ß_(rr)) as

(3.4)
n(>.,"')-l

B( A, rr):= II A(A(k), rr(k))

k=:l

where matrix-valued function A(A: rr) is defined by (2.14). By definition if (A', 1r/) =
Q(A, 1r), then A' = B(A, rr). A/IIB(A, rr)· All (see also explicit formulae (3.6) and (3.7)
below). Note, that det B(A, rr) = ±l.

vVe can give also a direct definition of Q as folIows. Let

(3.5)
~fS~ I s~ ~ A".-1(m) when Am < A1I"-1(m)

-where S~ = Am + Am-I +... + A".-1 (m)+1 + Am + Am-I +..., .,...
n terms

v(.-\, rr) :=
max S~ I S;; ~ Am when Am > A".-1 (m)
n>I

-s; = A1I"-1 (m) +A,,--1 (rn-I) +... + A".-l (".(m)+I) + A".-1 (m) +...
'- y .,

n tenns

Note that the maximal possible number n involved in definition above coincides with

n(A,1r) in (3.2). Consider an interval exchange transformation T corresponding to
a pair (A, 1r), A E ~m-I, 1r E 6~. Cut off an interval of the length v( A, 1r) from
the right hand side of the initial interval and consider induction of the map T to
the subinterval [0,1 - V(A, 1\'")]. The new map would be again an interval exchange
transformation of m subintervals corresponding to the pair (A', 1r'). There would be
two cases.

Case a Am < A".-1 (m)' In this case
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and

j < 7r- l (m)
j = 7r-1(m)
7r-1 (m) < j ::; 7r- l (m) +q

other j

A'· =J

Aj

A1I"-1 (m) - v( A, 7r)

Am+JI"-l (m)+q-j

A;r(j-q)

Case b Am > AJI"-l(m)' In this case

(3.6)

, q
7r = T1I"(m) • 1r

and

(3.7) ,,\ '. = {A j j < m
J Am -v{A,7r) J=m

Oue can see, that the matrix B( A, 7r) defined by (3.4) is the matrix of transforma­
tion (3.6) when Am < A"1I"-1 (m), and of transformation (3.7), when Am > AlI'-l (m)'

Rescaling the vector A' we get the transformation

(3.8)
(A, 7r ) ~ ( Wr, 11"')

In other words at one step of the new induction we are shortening one and the same
interval Am or A1I"-1 (m), whichever is larger, as much as possible, cutting cyclically from
its right-hand side intervals of lengths AJI"-l(m), A1r-l(m-l)l ... , AJI"-1(JI"(m)+1) in the first
case, and intervals of lengths Am, Am-I, ... ,A1I"-1 (m)+l in the second case. The lengths
of the rest intervals stay unchanged (modulo reenumeration in the first case).re

4. FOR1IULATION OF RESULTS

Theorem 1. Let m > 1) and let 91 E 6~ be a fixed Rauzy class. Then the Gauss
map 9 is ergodie on

U ~+(1r) U ~-(7r)

Jl"E9t

and 9 admits an ahsolutely continuous invariant prohability measure J-l. The density
0/ Jl is the restrietion to UlI'E9t.Q+(7r) U .6. - (7r), of a function on UJI"EiR A+ (1r) U A- ('Jr)
which is positive) rational, and homogeneous of degree -m.

Theorem 1 is proved in section 9
Consider some norm in the space IR+-" Define norm of a matrix B E GL(m) to be

IIBII := max IIB .viI·
Ilvll:::l
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Proposition 1. Function Ilog 11 B (A, 11" ) 111 is integrable over U~E!7Iß +(11" ) UL~ - (11") with

respect to the 'measure fl.

J Ilog II B (A, 1I")1I1/l(dx) < 00

UltE~(ü+(Jr)UÜ -(;T»

Apply multiplicative ergodie theorem to products

(4.1) (B(klf' = B-1(Qk-l(,\,rr))' .... B-1(Q('\,rr))' B-1(,\,rr)

of matrices B- I (A, 7r) taken at trajectories of the Gauss map 9. Let 81 :2: 82 :2: ... :2:
Bm be corresponding Lyapunov exponents.

Theorem 2. The middle m - 2g Lyapunov exponents are equal to zero

Bg+I = 8g+2 = ... = Bm - g = 0

The rest 2g Lyapunov exponents are distributed in pairs

fOT k = 1, ... ,g

One can consider differential Dp..,Jr)9 as another "matrix-valued function" on the
space UJrEi'lt ~+(7r) U .6.- (7r), and compute collection of corresponding Lyapunov ex­
ponents. The dimension of the space is m - 1, so there would be m - 1 Lyapunov
exponents for the differential.

Proposition 2. Collection of Lyapunov exponents fOT the differential D9 0/ the
Gauss map coincides wilh the collection

BI +Bh O2 +Ob ... ,Om-I + BI

Theorem 3. The largest Lyapunov exponent 81 equals

BI = - L J (log IIB-I(A, 7r) . All -log IIAII) dp =
1rEilt6 ±(Jr)

= ~ L J detDQd/l =
m lfEilt6±('~)

(4.2) = - L J log(l- v(A,7r))dp =
lfEvt6 ±(1f)

(4.3) = L J llog(l - Am) - log(l - A1f-l(m))1 dp
1fEilt6 ± (lf)

Corollary 1. The highest Lyapunov exponent is strietly positive, BI > O.
Proof. 0



GAUSS ~I..IAP AND LYAPUNOV EXPONENTS

Conjecture 1. The top 9 Lyapunov exponents are distinct and strictly positive

5. RAUZY INDUCTION IN DIMENSION TWO, EUCLIDEAN ALGORITHM, AND

CLASSICAL GAUSS MAP

11

Before treating the general case we want to illustrate relation between the Gauss
map 9 and Rauzy induction T in the simplest case, when we have interval exchange
transformation of just two intervals, m = 2. In this case Rauzy dass 91(1ro) of
the permutation 1ro = {2, I} contains the only element fR( 1ro) = {no}; the simplex
~ rn-I = ~1 is just the interval, and hence the space ~ rn-I X 91( Jro) is just an interval.

We remind the definition of the Gauss map G : I -? I on the interval I = [0,1]

G(x) = {~}

where {} denotes the fractional part of the number. Gauss map is ergodie; the density
function of corresponding invariant probability measure is as follows

1 1
g(x) = log 2 . x + 1

We remind, that Gauss map G is related to one step of Euclidean algorithm in the
following sense. Suppose we have two intervals. Rescale them proportionally so
that the longer one would have a unit length. Let the shorter one have length x,
o < x ::; 1 after rescaling. \Ve cut the shorter interval from the larger one as many
times as possible, that is

times. Consider the remainder, which has the length

We got two intervals of the lengths x and 8, 8 < x. Rescale them proportionally to
make the larger interval have the unit length. Then the smaller one would have the
length

G(x) = ~ = {~}
x x
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Note, that if we will go on, then the consecutive integer numbers nl, n2, . .. would
give the continuous [faction expansion of the real number x

1
x=-------

1
nl + 1

n2+--­
n3 +...

Now let us consider Rauzy induction. In coordinates (,\l, ".\2)' where '\1 + '\2 = 1,
and "'\1,'\2 ~ 0, Rauzy induction T : ß I -+ ß I is as follows

Density !1ro (...\) of the invariant measure, computed according prescription In (18]
equals

1
!1tO (...\) = )\1 '\2

The map T corresponds to "slow", or "step by step" Euclidian algorithm. This time
we use slightly different normalization in comparison with one used in the definition
of the Gauss map G above. Having a pair of intervals we proportionally rescale
them to make the sum of their lengths Al and '\2 have the unit length. Then we
cut the smaller interval from the larger one, hut this time only once. Then we again
proportionally rescale the intervals, to make the surn of their lengths have the unit
length. We called such rnap "slow" Euclidian algorithrn, because several iterations of
this process lead to one step of a usual Euclidean algorithrn, when we cut from the
larger interval the largest possible Dumber of the srnaller ones at once.

In coordinate x E I = [0,1], Al = x, A2 = 1 - x Rauzy induction T : I ~ I is
represented as follows

1
_1 -1

T(x) = I-x

2- 1
x

if 0 :::; x < ~,

if t ::; x ~ 1

(5.1 )

Density of invariant rneasure in this coordinates is represented by the function

1
p(x) = x(1 - x)

and integral of p(x) over the interval obviously diverges though the rnap T is ergodie.
It would be easy to predict that invariant measure would not he finite. Consider

an orbit of some point Xo E I under action of T. For almost all initial points after
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certain number of steps we will get elose to the endpoint of the interval, say, to the
point O. Then the orbit will stay near this endpoint for a long time, since

T(x) - x = o(x) asx ......... O

Let us improve the situation as folIows. \Ve speed up Rauzy induction to make it
correspond to the usual Euelidean algorithm. That is for any (Al, ".\2) E ßI define

Now define
9(A) = Tn('\)(A)

In other words, starting with the point A we iterate the map T while the iterates
obey the same type of inequality '\1 < A2 or '\1 > A2 as the initial point. Note, that
by definition image of 9 obeys the opposite type of inequality.

The new induction in coordinates A before normalization is as folIows:

The direct definition of Q in coordinate x E I = [0, I}, '\1 = x, A2 - 1 - x: is as
folIows:

1
1~I if Al < A2

Q(x)= • 1

1 - 1+:I:" if'\l > A2
1-%

Density of the new invariant measure is

\

'\1 ~'\2 • ,\12 if Al < '\2
p(,\) =

_l_ . .l.. if Al> A2
'\1 +'\2 '\1

and now it is already finite.
In coordinate x corresponding normalized probabi li tY measure Jl = p( x) dx is as

follows

\

2~2 • l~X if 0 ~ x < ~'
p(x) =

( 1 if 1 < ;L < 1
2ln2 . ~ 2 - -
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Note, that up to duplication and conjugation the maps G and gare the same.

if 0 ~ x < t,

if ~ ::; x ::; 1

6. CONSTRUCTION OF THE INVARIANT MEASURE

In this section we remind construct.ion of the space 0/ zippered reetang/es from [18].
Then we define some particular subspace in it and an automorphism of the suhspace,
which projects to the Ganss map g. Finally we define a measure on the space of
interval exchange transformations invariant under g. Since we are extensively using
the technique in [18] we need to remind briefly same definitions and results from
there.

For 7r E 6~ defi ne H (7r) C IRmasthe annulator of the system of vectors bs,
SEE (7r) (see (2.5))

(6.1) H(7r) = {h E IRmIh· bs = 0 for all S E E(7r)}

Remark 2. There is a naturallocal identification of the space H(7r) with H1(M:j IR)
(see Proposition 4 and Remark 3 below).

Define the parallelepiped Z(h, 7r) to be the set of solutions a E IRm to the following
system of equations and inequalities (which are equations (2.3) and inequalities (3.1)
in [18]):

hi - ai = hcr(i)+l - acr(i) (O::;i::;m)
h· > 0 (l~i~m)1

(6.2) ai > 0 (l::;i < m)
-h1f-J m ::; am :::; hm

a1r-l m < h1f-1 m+l

a· < min( hi , hi+1 ) (0 < i < m, i #- 7r-1m)1

and define the cone

(6.3) H+(7r) = {h E H(7r) IZ(h, 7r) is nonempty}

The zippered reetangles space 0/ type 7r is the set of tri pies (A, h, a), 1\ E IR~, h E
H+ (7r), a E Z( h, 7r). Parameters hand aare responsible for the structure of the Rie­
mann surface corresponding to the interval exchange transformation (A, 7r) (see [18]
for details).

Define 0(91) to be the set of zippered rectangles (A, h, a, 7r) such that 7r E 91 is
in a given Rauzy dass 91, and A . h = 1. Define also a codimension-one subspace
1(91) c 0(91) by additional constraint lAI = 1.
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where matrices A (7r , a) and .4(7r, b) are defined by equations (2.14); transformations
a(7r), b( 7r) are defined by eqrefeq:ab (and (2.13)); and vectors a', a" are defined as
follows:

(6.4)

a'! =
J

Define t(x), x E1(91), by t(x) = -log (1 - min{Am , A/f-l m )). Consider a mapping

S : 1(91) -+ 1(91), Sx = upt(x)x.

The following measure

(6.5)

on 1(91) is constructed in {IS] as a measure invariant under transformation S. Here
c(11") are the constants,

(6.6) c(1r) = (Volume of fundamental domain in zm n H{7r))-1

and

1 ;; j, f.l),(dh)
TlJr:= ~h(da) 11QAll wm -l(dA)

~m-l Ht Z(h,/f)

Here H,t := {h E H+(1r) Ih . A = l}; ;h(da) is Euclidean measure on Z(h,1r) in
dimension JV(1r) - 1; I-l),(dh) is the measure on H,t induced by Euclidean metric;
1I QA11 is the Eucliclean norm of the orthogonal proj ection of the vector A on H (1r );
and W m -l (dA) is Euclidean measure on Q,m-l.

Finally we remind that the following diagram

T(91)

pi

~m-I X 91

s
----+

T
----+

1(91)

lp

~m-l X 91



16 ANTON ZORICH

is commutative (see {IS]), where p : (A, h, a, JT) ~ (/\, 1r) is the natural projection.
Hence the measure PT] is invariant under Rauzy induction T on the space .6.m-l X 9l
of interval exchange transformations.

* * *

Having reminded constructions in [18] we now modify them to get a measure fl on
the space of interval exchange transformations invariant under the Gauss map 9.

Define the parallelepipeds

(6.7)

Define the subcones

Z+(h~7T") = {aEZ(h,1r)la m 2:0}
Z - (h. ;r) = {a E Z (h ~ 1r) 1 am ::; O}

(6.8)
H++(1r) = {h E H+(JT) 1 Z+(h, iT) is nonempty}
H+-(1r) = {h E H+(tr) 1 Z-(h, 7T") is nonempty}

For a given Rauzy dass 91 define

n+(9l) = {("\, h, a, 1r) E f1(91) 1/\ E ~+(1r); h E H++(1r); a E Z+(h, 7r)}

n-(9l) = {("\, h, a, tr) E 0(91) 1,.\ E .6.-(1r); h E H+-(1r); a E Z-(h, tr)}

Define also

T+(91) = T(91) n 0+(91)
T-(~) = T(~) n 0-(91)
T±(91) = T+(9l) U T-(91)

Consider the map F : T±(91) --+- T(9l) as folIows:

F(/\~ h, a.1r) = sn(>.,1f) (/\, h, a, tr)

where n("\, 1r) is defined by (3.2).

Lemma 6.1. The map ;: is the induction 0/ the map S to the subspace T±(9t) C
T(9l) .

Proof. \Ve need to prove, that the image of F belangs to T±(91), and, that n("\,1r)
is the first return time, Le.. the ~time:', when trajectory of a point x = ("\, h, a, 1r) E
T±(91) returns to Y±(91) under iterations of the mapping S. Suppose ,.\ E .6.+(1r).
Then x(1) = (,.\(1), h(1), a(I): ;-;-(1)) = Sx is obtained by transformation "af the type
b". Recall the remark in [1S]. saying that the image a' in (6.4) of the transformation
of the "type a", ,.\m < 1\1f-Jm, satisfies a~ ~ 0, and the image a" in (6.4) of the
transformation of the "type b", '\rn > "\7l'-lm, satisfies a~ .::; o. Hence, if ,.\(1) E
.6.+(1r(1)) and a(1) =/:- 0, then the point x(l) = S does not belong to Y± (91) since
a(1) < O. The first time the iterate would get back to the space Y±(9t) is the first



GAUSS MAP AND LYAPUNOV EXPONENTS 17

time vector A(k) = yk A would get to the simplex of the type .6. - (we neglect the set
of measure zero of the points {x = (A, h, a, 7r) E T(91) la = O}). But this is exactly
the definition (3.2) of the function n(A,1t").

The case, when we have A E .6.- (7r) for the initial point is analogous to one discussed
above. 0

Corollary 2. The map :F is almost everywhere one-to-one map on i±(91). The
measure T] /rom (6.5) conjined to T±(91) is invariant under :F.
Proof. 0

Lemma 6.2. The Jollowing diagram is commutative

U (~+(7r)U.6.-(7r))
lI'E!Jt

~ T±(91)

1,
~ U (.6.+(7r) U ~-(7r))

ll"E!Jt

Proof. This is just a straightforward corollary of definitions :F = sn(.\,lI')j 9 = yn(.\,11\

and of commutativity of the initial diagram above. 0

Define measure J.l on U1rE~ (~+(7r) U .6.- ('7r)) as J.l = PT].

Theorem 4. Let m > 1) and let 91 be a Rauzy class. The Gauss map 9 on the
space oJ interval exchange transformations U1l"E9t (.6.+(7r) U .6.- (7r)) admits the invari­
ant measure

J.l = L C(7r) (f:w+(7r) + f;w-(1r)) (9811'
lI'E9t

where 811" 7r E 91) is the unit mass at 7r; c(1r) are constants specijied above; and w+(7r)
(w- (7r)) is the Euclidean measure on .6.+ (7r) (D. - (7r)). For each 1r E Dl the density
f: (correspondingly f;) is the restriction toD.+(1r ) (correspondingly ~ - (1r)) 0 f a
Junction which is rational, positive) und homogeneous 01 degree -m on IR.~.

The measure J.l is finite.

The invariance of the measure follows from its definition. The statement about the
concrete form of the measure is jU8t the original theorem 11.6 in [18} for the initial
measure invariant under Rauzy induction T. \Vhat i8 new (and rather essential for
us) is that the measure J-l is now finite, which would be proved in the next two
sections.

Morally, we claim, that the fiber p-l(A,7r) is "iceberg-like", i.e., there is a huge
"underwater part" specified by inequality am < 0 for A E ß + (and a m > 0 for
A E ~-) which gives an impact to the measure leading to it infiniteness; while the
rest part of the "iceberg": which i5 "above the water" ,and which volume gives us
our density function~ leads t.o the finite measure.
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7. THE CONES H++(Jr, vV) AND H+-('rr, vV)

This section is parallel to §12 in [18], but dealing with the spaces H++ (Jr) and
H+- (Jr, vV) we are able to improve the estimate of Proposition 12.8 in [18]. Here we
would not exclude the subsets containing m and 1r-1m anymore.

Let m > 1, and fix 1r E 6~. Consider W C {I, 2, ... ,m} such that vV =f. 0;
vV =1= {1, 2, ... , m}. Define L:o(W) (cL (2.7)) to be the set of S E Eo(1r) such that

T( S) = S u {S + I} C vV

Here {S + 1} = {j + Ilj ES, J =f. m}.
Next define H++(1r, W) (H+-(1r, vV)) to be the subset of those h E H++(1r) (cor­

respondingly , H+-(1r)) which are supported on vV i.e., hj = O,j ~ vV, h E H++(1r)
(correspondingly hj = 0, j f/. vV, h E H+- (1r)). vVe use the same definition for
H+ (1r, W) as in [18], except that we do not assurne 1r-1m, m f/. vV anymore, unless
it is specially indicated.

Lemma 7.1. In hoth oJ the Jollowing cases

(1) m E vV, 1r -1m f/. vV und h E H+- ('rr, W), U E Z- (h, 1r)'­
(2) m f/. vV, Jr- 1m E W; und h E H++(1r, W), U E Z+(h,Jr),-

the Jollowing equality is valid:

o::; Uj ::; hj, hj+l (0 '5:. j '5:. m)

Proof. Gase (1): h E H+-(1r, ~'V), U E Z-(h, Jr), and m E vV, Jr-1m ~ W.
In this case Um ::; O. Since Jr-1m f/. }V, we get h7r-l m = O. Since by definition
hm+1 = 0 we may combine equation

from (6.2) with inequality U 7r-l (m) ~ 0 to obtain

o::; a1f-l m = a m '5:. 0,

Gombining this with inequalities from (6.2) we prove the lemma for this case.
Gase (2): h E H++(Jr, vV), u E Z+(h, 1r), and 1TL f/. vV, Jr-1m E W.

In this case Um ~ O. Since m f/. vV, we get km = O. Since from (6.2) Um '5:. hm , we
obtain 0 ::; Um ::; hm = 0, and hence

(7.1) Um = O.

Using the following equation from (6.2)

we get
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Combining this equation and equation 7.1 with inequalities (6.2) we complete the
proof of Lemma 7.1 0

Lemma 7.2. In both oJ the Jollowing cases

(1) m E ~V J 1r -1 m 1. ~V and h E H+- err, IV), a E Z- (h, 1r),­
(2) m 1. W J 7r-

1m E W,; and h E H++(1r, W)J a E Z+(h,7r);

the Jollowing strict inequality is valid:

dirnH+±(1r, W) +Card 2:0 (ltV) < Card ~V

Proof. The proof is the same as the proof of Proposition 12.8 in [18J. 0

Now we consider one more case. \,Ve stress that the statement below is formulated
for the subcone H+(1r, W) C H+(7r) in the "old" cone from [18].

Lemma 7.3. Let 1r-
1m, m E ~V, where l'V is as above. Then

dimH+(1r, ~V) +Card Eo(ltV) < Card W

Proof. We have to consider three cases separately.
Case (i). (S(m) U {S(m) + I}) \ {O} C W.

(Here we do not assume, that necessarily 0 E S(m).) In this case we apply the
arguments similar to those, which follow Lemma 12.3 in [18]. Slight modifications
are as follows. Choose i E ~V, i =1= m, so that i + 1 1. W, and define I ~ 1 to be the
first integer such that one of O'1i, O'1i+l fails to belong to W. Since W =1= {1, 2, ... , m}
and W =I 0 such i exists. Note, that from assumptions for this case it follows that
i rt. S(rn) = S(1r- 1m). It means that i =1= 1r-

1m, m, and (J.li =I 1r- 1m, m. Heuce ai = 0
because hi+1 = 0, and aali = °because one of hali' ha l i+1 is equal to zero. From this
point we can apply the same arguments as in [18] - we get additional equation

(7.2) h i - hai+1 + hai - ... + haI-li - h a l i+1 = 0 (h E H+(1r, W)),

(cf. equation (12.6) in [18]) and we rewrite it as h . b = 0, (h E H+(1r, W)). Then
we prove, that vector band vectors bs, S E 2:o(W) are linearly independent. We
skip special consideration of the case H+(1r, l'V) = {O}. Since by construction t he
sets {i, O'i + 1, ... ,0'1-1 i, O'1i + I} and USEEo(lV)(S U {S + I}) do not intersect, linear
dependence holds in only case when equation 7.2 is tautologically trivial on H+ (1r, W),
which contradicts Lemma 12.7 in [18]. As bs , S E Eo(t,V), and b (restricted to W)
are orthogonal to H+(1r, l'V) and linearly independent we get desired inequality, and
prove case (i).

Case (ii). S(m) tt 2:o(t,V) and 0 ~ S(m).
In this case we get additional vector b, b 1. H+ (1r, W)), independent from bs , S E
L:o(W) as a restriction of bS(m) to VV (i.e., by letting bj = 0, for all j fI. W). Indeed,
this restrietion is nontriviaL because blf-1m = 1 since 1r-1m E vV, and 1r-1m E S(m),
while 1r-1m - 1 = 0-0 1. S(m). And this vector is independent from bs, S E l:o(W)
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since 7r-
1m ~ S for all S E Lo(~V), and hence component iT-1m vanishes for all these

vectors.
Case (iii). (S(m)\{O}) U {S(m) + I} rt. I'V and 0 E S(m).

Note that in this case S(m) == S(iT-1m) == S(O). Choose i E vV, i =I m, so that
i + 1 ~ vV. If i ~ S(m), further proof is analogous to case (i). Suppose i E S(m).
We represent orbit S(m) as follows

Suppose i == akm, 1 ::; k < p. Define I 2: k + 1 to be the first integer such that
one of alm, (J"lm + 1 fails to belong to vV. We note, that I ~ p. If I < p, then since
alm =j:.iT- l m, m we have 0 :::; aO'lm :::; halm, h a l m +l and hence aO'l m == O. If I == p, then
aO'lm == Go == 0 by definition. \Ve again obtain additional equation

(h E H+ ( iT, vV)),

and proceed further same as before.
Suppose i == erkO, 2 ::; k ::; q. \Ve exclude case k == 1 since 0-0 == 7r-1m - 1, and we

assume 7r-1m E vV. By the same arguments as above aO'lIo == O. Now we start with 0
to get

or

Going on and using (2.4) in (18] we come up to equation

-h:r-Jm + h~-lm-l - ... + hO'k-10+l == 0

We excluded term hO'kO+l since by assumption akO + 1 rt. W, and hence hqko+l == 0 for
h E H+(7r, vV). To prove that the new condition is linearly independent with others
we only need to prove, that the equation is not tautologically trivial, which is so, say,
because the component 7r- l m of corresponding vector b does not vanish. Lemma 7.3
is proved. 0

8. FINITENESS OF THE MEASURE

In this section we will prove that the integrals of the density functions

(8.1 )

of the measure j..t in Theorem 4 aver correspanding simplexes Ll± (7r) are finite. We
use the scheme similar to one in §13 in (18]. In particular we use the following bouud
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(8.2)

where

VolumeZ(h:r.)~ II B(A,S)-l forhEHt(1r)
SEEoCrr)

and

B(:\,S) = L Aj
jESu{S+I}

(see (4.7), (4.8) in [18]).
From now on we fix the permutation 1r and one of the subsimplexes .6.+(11") = {:\ E

.6.(11") I Am ~ :\11"-1 m} or ~ - (1r) = {A E .6.(1r) I Am ~ AJr -1 m}. Corresponding cone
H++ (1r) in the first case and H+- (1r) in the second case can be subdivided to a finite
union of cones with simplex base. Note, that this subdivision is not canonical unless
H++ elf) (correspondingly H+- (1r)) is itself a cone with a simplex base. Fix some
subdivision. Each cone C intersects with the hyperplane (h . A) = 1 by simplex .6..\.
Integral 8.1 decomposes to the surn of integrals like

(8.3)

According to bound 8.2, and obvious inequality

Volum.e (Z±(h,1I")) ::; Volume (Z(h, 1r))

each of integrals 8.3 is bounded by

Volume(ß.\)· II B(A, S)-l
SEEo{1I")

Let VI, ... , Vd, where d = clirnH+±(1r) = dimC = m - lV(1r) + 1 be extremals
which span C. We can choose vectors Vj to be positive. They are defined up to
multiplication by positive scalars, and do not depend on A. Fix collection of Vj. The
vertices of the simplex ß.\ are given by points (Vj . A)Vj, where Vj does not depend
on A. Hence

d 1
Volume(6..\) = const .DVj . A

(cL 13.5 in [18]) where const is a constant, which does not depend on A.
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(8.4)

Proposition 3. For each subsimplex .6.+(1r), .6.-(1r), 1r E 91 C 6?n, and for each
cone C in the corresponding space H+± (1r) /unction

f(A) = (n v\) TI B(A,5)-1
1=1 1 SEEoC7l')

is integrable over corresponding subsimplex .6.± (1r).

Proof. Consider one of the simplexes ß +CiT), ß - (1r) in the standard simplex .6.m-l =
{A E IR+ I L:I<i<m,\i = I}. vVe use the following change of coordinates to replace
domain of f by standard simplex ß m-l. For.6.+(1r), that is for subsimplex ,\m ;:::

Alf-1 m we define

(8.5)

For .6. - (1r) we define

(8.6)

Consider induced function

(8.7)

on .6.m - 1 .

/(,\') = (n / N) II B'(A', 5)-1
1=1 1 SEEo{:lI')

Lemma 8.1. Consider a subset W C {1, 2, ... , m}, 0 < Card l-V < m. Then number
0/ /actors N(l-V) in 8.7 which depend only on the variables with subscripts in l-V is
strictly less than Card W.

lV'(W) < Card W

Proof. Note that N'(W) ::; lV(W), where N(W) is the number N(W) of those fac­
tors in 8.4 which depend only on the variables with subscripts in l-V. Hence for
those W, such that 1r-1m,m rt. ~V the statement of the Lemma follows from linear
independence of vectors Vj E H+±(1r) C H+(1r) and Proposition 12.8 in [18].

Similarly, for those W, which contain both 1r- 1m, m E W, Lemma 7.3 proves that
N(l-V) < Card W, and hence the statement is valid for this case as weIl.

Now we have to consider cases of subsimplex .6.+(1r) and.6. -(1r) separately. Suppose
we started with the subsimplex .6.+( 7r). Then the case 7r-1m E ~V, m rt. W follows
[rom Lemma 7.2. Consider the rest case, when 1r-1m rt. W, m E ~V. Due to our
change of coordinates 8.5, each factor in 8.7 containing variable A~ would necessarily
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contain ..\~-lm' Hence none of them would be counted towards IV'(VV) for the VV like
ours. Hence

lV'(VV) = lV'(lV \ m) ~ IV(W \ m) :::; eard vV - 1,

and we obtain desired strict inequality.
\Ve use similar arguments for the suhsimplex ~ - C1r) to complete the proof of

Lemma 8.1. 0

To complete the proof of Proposition 3 we apply Proposition 13.2 in [18] to function
f(A'). For every subset vV C {I: 2: ... , m}, 0 < Card W < m we define fW(..\')
to be the product of all factors in 8.7 which have subscripts in W, and we define
D(vV, ..\') to be the product cf the rest factors. Functions fw(A'), and D(W, A') obey
all conditions of Proposition 13.2 in [18}, except that f(A') is homogeneous of degree
-m on IR~;\ which does not affect the proof cf this proposition. Proposition 3, and
hence Theorem 4 are proved. 0

9. ERGODICITY OF THE MAP 9

Now we can prove ergodicity cf the map 9. The proof is similar to the proof of
ergodicity of Rauzy induction T (c.f. Theorem 13.8 in [18], and Theorem 1.11 in [6]).

Proof. Let A be a matrix such that det A = 1, with some of the entries possibly
negative. Consider projective linear map TA : ..\ 1--+ I~:~I and suppose TA maps some

compact subset !( C ~m-l iota ßm-l, Im(!() ~ ßm-l. Let JA be Jacobian of TA.
Then according to 7.1 and 7.2 in [17J

sup J.4(..\) < sup (..\i)m
.\.,VEK J..d..\') - >.,>.'EK A~

lSiSm

Consider a subset ~l = {A J..\ ~ €~ i = 1, ... , mj LAi = I} Then for any !( S; ~l
and any matrix A E SL(m) such that A(!() ~ 6.m

-
1 we get from the estimate above,

that
sup JA(..\) < (!)m

,\"VEh' JA (A') - €

Note, that this estimate does not depend neither on A nor on the subset !( anymore.
We remind that

gk(-\,;;-o) = C~~I'1l")' detA = 1

Consider the set ~v(A, 1ro, k) E ~ rn-I of (A', 1ro) for which 9k uses the same matrix
A. Then 9k(..\, 1ro) maps ~G(/\ Jro, k) anta one of the (Ll+(Jr), tr), (~-(1r), 1i').

Consider analogaus subsimplexes !.l7(..\, ?To, k) corresponding to Rauzy induction
T. It is known that diameters af sllbsimplexes 6.r(..\,1ro, k) tend to zero as k ---+ 00

for almost allA (see [18]and [6]). Since ~y( ..\,1ro,k) = Llr(..\,1ro,l(k)) for some l(k)
we conclude~ that diameters of the sllbsimplexes ~G(A, Jro, k) tend to zero for almost
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all AasweIl. Hence up to a set of measure zero we can subdivide ~t to subsimplexes
~9(Aj, 1ro, k), Aj E ~t Suppose now E is an invariant subset under the mapping
g. If for some f > 0 we have J-L(E n ~t) < p(~t), then, probably refining our
subdivision, for any 5 > 0 we will find a subsimplex ~o = ~G(Ao, 1ro, ko) from our
subdivision such that J-L(E n ßo)/p(ßo) < 5. Let (~±(1r),1r) = 9kO(6c (Ao, 1ro, ko).
Then J.L(E n (.6.±, 1r)) ::; 5/fm

• Since 5 is arbitrary small, we can find some 1r, such
that J.L (E n (L\± , 1r)) = o. Cornbini ng this wi th t he following Lemma we complete the
proof of ergodicity of g. D

Lemma 9.1. The only invariant subcolleetions 0/ simplexes 0/ the form (~±, 1r), 1r E
~(1ro) are 0 and (~+ U ~-) x 9l(1ro).

Proof. Consider the oriented graph representing Rauzy dass 9l(1ro). Any ordered
pair of vertices of this graph can be joined by an oriented path (see [18]).

Consider the following oriented graph, responsible for the Gauss map 9. We
enumerate the set of vertices of the new graph by duplicated set 9l(1ro) , provid­
ing each 1r E 9l(1ro) with additional superscript "+" or "-". We join 1rt with 1r2,
1rl,1r2 E 9l(1ro), by an arrow, if there is some (A, 1rd E (6+(1T'1)' 1rd which is mapped
by 9 to (.6.-(1r2),1T'2)' Similarly we join 1T'] with 1rt, 1r1)1r2 E 9l(1T'o), by an arrow, if
there is some (A,1rd E (.6.-(1T'd, 1T'd which is mapped by Q to (~+(pi2)'1r2)' (Note
that points of ~± are always mapped to points of ~T.) To prove the Lemma we
need to prove that any ordered pair of vertices of the graph just constructed can be
connected by an oriented path.

First note that for each 1T' E 9lCiTo) there is a pair of arrows going in opposite direc­
tions joining 1r+ and 1r-. Next note that for each edge of the graph, corresponding to
Rauzy induction, which goes from the vertex 1T'1 to vertex 1r2, there is corresponding
edge of the new graph, which joins either edges 1T't and 1r2 or edges 1r1 and 1rt,
depending on whether the initial edge of the Rauzy graph was of type "a" or "b"
correspondingly (see (2.11)). Note also that there is a natural orientation preserving
projection of the new graph to Rauzy graph, which sends each pair of vertices 1r+ and
1r- to vertex 1T', and each edge of the new graph to the oriented chain of the edges of
Rauzy graph.

Now having an arbitrary pair of vertices 1T't and 1t'2 we construct an oriented path
in the Rauzy graph joining 1T'1 and iT2' Taking into consideration remarks above it
is easy to "lift this path up~ to the new graph. Lemma is proved, and hence the
Theorem 1 is proved as weIl. 0

10. LVAPUNOV EXPONENTS

First we will prove Proposition 1.
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Proo/. Recalling the definitions 3.4-3.7, of the function B(A,7r) we see, that the
following inequalities for the entries of matrix B are valid:

A -1( ) 1IBi ,j(A,7r)1 ~ 1f

A
m +1 ~ \ + 1 when A E ß +(7r)

m Am

and

I ( I
~\m 1

Bi,j A,1r) :::; A + 1 ~ A + 1 when A E .6,-(1r)
"..-1 (m) 11'-1 (m)

Hence to prove integrability of the funetion !Iog IIB(A, 11") 11 lover U1I'E9t ~+(1r) U n- (1r)

with respect to measure {L, it is sufficient to prove integra ility of the function

h( A, Jr) = {lOg Am if A E ~+(1r)
logA1l"-l(m) if A E ~-(7T")

To prove integrability of h, it is sufficient to prove integrability of the product
h(A')/(A') of h with the function f in 8.7, bounding the density of {L, over each
simplex n±(7r), now already with respect to Lebesgue measure. We do it the same
way, as we proved integrability of f in section 8. We use Lemma 8.1 and then trivially
modify proof of Proposition 13.2 in [18] to fit our case. Proposition 1 is proved. 0

Since funetion Ilog 11 B (A, Ir) 111 is integrable, we can use fiultiplicative ergodie the­

orem to study products B-1(9 (A,7r)) ..... B-1(.\,Jr). To prove Theorem 2 let us
first prove the following

Lemma 10.1. At least m - 2g Lyapunov exponents are equal to zero

Bj = Bj+1 = ... = (}j+m-2g-1 = 0

Proo/. Recall, that there is natural local identification between the space IR.+ of in­
terval exchange transformations with fixed permutation Jr E 6~ and the first relative
cohomology H1(M;, {saddles}; IR) of corresponding surface M; with respect to the
set of saddles of corresponding foliation (see [5]). Recall, that the saddles are enu­
merated by the classes S E l:( 7r) (see seetion 6 in [18]). Consider the following terms
of the exact sequence of the pair {set of saddles} C 1\1;

o= HO (lvI; , {saddles}; R) ---+ HO (.1\1;; IR) = Z ---+ HO (saddles; IR.) ---+

---+ H 1(M; , {saddles}; IR) ---+ H 1(M;; IR) ---+ H 1 (saddles; IR) = 0

From results in (19] the following Lemmas easily follow

Lemma 10.2. Under identification with cohomology, vector bs represents the image
0/ an element in HO( saddles; IR.) dual to the saddle corresponding to the class S. In
particular the (m - 2g)-dimensional image 0/ HO( saddles; IR.) is spanned by vectors
bs , S E E(7t').
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Proof. 0

Lemma 10.3. For those powers gk, 0/ the Gauss mapJ which send (A, 11") to (A',11"),
i.e., for those powers, which preserve permutation 7r, the corresponding composition
of operators

preserves the colleetion of veetors b8 J S E E(7r), and hence it preserves the subspace

(10.1)
Proof. 0

Note now, that since the Gauss map is ergodie with respect to finite invariant
measure, it is minimal, Le., trajectory of almost every point is dense in the compact
space U1rE9t (6.+(7r) U 6.- (7r)) In particular trajectory of almost any point (AO' 7ro)
would visit initial simplex 6,±(7ro) 3 AO infinite number of times. Hence for almost
every point (AO' 11"0) we have m - 2g linearly independent vectors bSl S E Eo(7ro) such
that for same infinite sequence of growing integer numbers (depending on the point
(Ao, 11"0)) the following inequalities are valid

Cl s; 11 ( E«;)f\ '\0, ?To) . bsll S; C2 i = 1,2, ...

where Cl and C2 depend only on the point (Ao,7ro). Hence at least m - 2g Lyapunov
exponents are equal to zero. Lemma 10.1 is proved. 0

Let us now prove the relation

(10.2) for k = 1, ... ,g

Recall, that B(k) preserves "degenerate symplectic form" D( 'Tr) defined by (2.1) in the
following sense (see [9]):

(10.3) n(7r) = (B(k») T . n( 'Tr(k») . B(k)

Due to Proposition 2 in [19J the kernel of 51(11") coincides with the subspace ]( in (10.1)
spanned by vectors bs . Hence O( 'Tr) is already nondegenerate on the quotient over
subspace !(, and hence it induces the symplectic structure there. Regarding exact
sequence above and Lemma 10.2 we get the following

Proposition 4. Under loeal identification of the space 01 interval exchange trans­
formations with relative eohomology BI (Mi, saddles; IR) the quotient space over the
subspace spanned by veetors bs , S E E( 'Tr), coincides with the absolute cohomology
BI (M;; IR.). The sympleetic strueture induced by n( 7r) on the quotient space eoin­
eides with the intersection form on cohornology.
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Consider onee more apower k of the Gauss map g\ whieh sends (A, 1r) to (A', 11"),
i.e., whieh preserves the permutation 1r. As we already mentioned the eorresponding
operator B(k)(A, 1r) preserves subspace !(, and hence we can define induced operator
on the quotient over !(, i.e., on cohomology H1 (1'1;; IR). Aecording to (10.3) induced
operator would be symplectic - it preserves the intersection form.

Recall naw, that eigenvalues of a sympleetic matrix are distributed into pairs ­
together with eigenvalue K, it has eigenvalue 1/K,. Taking the logarithms, and using
the fact, that generically the iterates of Q will come baek to initial permutation
infinite number of times, allee more, we prove relation (10.2), and complete the proof
of Theorem 2. 0

Remark 3. Recalling the definition 6.1 of the space H(11") as the annulator of the
subspace spanned by vectors bs , S E L;(1r), we see, that H(1r) is locally identified in
our setting with the absolute homology H1(i\1;; IR).

Remark 4. Due to Perron-Frobenius theorem the highest eigenvalue of B(k)(A,1r) is
real and positive for almost all (A,1r), and k Iarge enough. Normalize carresponding
eigenvector AO so that A E L\rn-I. Vector Ao would be very elose to initial vector A for
large k. In particular B(J;)(A, 1r) = B(k)(Ao, 1r). Suppose gk preserves the permutation
11" as above. Consider measured foliation eorresponding to interval exchange transfor­
mation defined by (AO' 1r). Veech construets in [18J the pseudo Anosov diffeomorphism
which preserves the foliation thus constructed. We note, that the automorphism in
cohomology H1(jvJ';; IR) defined by B(k)(A, 1r) above, coincides with the automorphism
in cohomology, induced by corresponding pseudo Anosov transformation.

Let us prove now Theorem 3.

Proof. To prove, that some number 0 belongs to the eolleetion of Lyapunov exponents
it is sufficient to present for a set of points (A, 1r) of nonzero measure a vector V(A, 1r) E
IR. m such that

. 1 11 (Blklf\.\, 7l") . v(..\, 11")11

k~~oo k log Ilv(A,1r)11 = 0

Let
V(A,1r):=A

Denote
(..\(k) , 1r(k)) := gk(A, 1r)

We see, that vectors (B(k») -\ (..\,11") . ..\ and ..\(k) are proportional. Let

( \ . ) "= IIB-I(A, 1r) . ..\11
r A, 7r • IIAli



28 ANTON ZORICH

(10.4)

Due to the comment above under our choice of vector v (", 7r) we wi 11 have

1 11 (B(k)r\~, 11") . V{A, 11")11

klog Ilv(A,7r)11 =

= ~ log (r(gk-l (.\, 7r)) .... r(g(.\, 7r)) . r(.\, 7r)) =

= ~(logr(.\,7r) + log"(Y(A,7r)) + ... + log r(gk-l(A, 7r)))

Applying Ergodic theorem to the sum above we prove, that the following number
e is present in the collection of Lyapunov exponents

8 = L J (log IIB-1(A, 7r) . "li - log IIAII) d/-l
ll'Evt 6,±(1l')

Note that in fact we have absolute freedom in choosing the norm II 11. Choosing the
norm Ilvll := Ivd + ... + Ivml we will get for ..\ E ~±

log IIB-1 (A) 7r) ."li-log 11..\11 = log(1 - v(A, 7r)) -log 1

where v (..\, 1r) is defined by (3.5). Choosing for v E IR m X 7r another norm

!Iv 1I = JV11 +... + IVll'-l (m)-ll + IV>r-1 (m)+l! +... + IVm-ll + max( IVmI, IV1r-l (m) D
we get

log lIB(..\, 7r)' All-log IIAII = {IOg(1 - AK-l(m)) -log(1 - Am) for A E ~-(1r)
log(1 - Am) -log(1 - A'Il"-l(m)) for A E ~+(7r)

Remark 5. Note, that the second norm is different for the spaces /R.m corresponding
to different ~± (1r). In fact, we should consider /R.m as a fiber of a trivialized vector
bundle over U1l'Evt~+(7r) U ~-(7r), and we can even choose the norm, which would
differ (continuously) from fiber to fiber. It is easy to see, t hat the integral (10.4)
would be the same anyway.

Note, that expressions (4.2) and (4.3) for B1 in the statement of Theorem 3 differ
from the corresponding expressions for e above ooly by a sign. Since we already
proved, that 81 = -Dm, to complete the proof of Theorem 3 we just need to prove,
that Lyapunov exponent 8 computed above is the smallest one, i.e., that D = Dm.
This is true since for almost every point (A, 7r)

lim B(kl(A,7r)V =,\ foranyvE~m-l,
10-00 IIBt k )(A, 1r)vll

and hence for almost all v E IRm, lvI = 1. Theorem 3 is proved. 0

We complete this section by proving Proposition 2.
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Proof. Consider the trivialized vector bundle with the base Ux-efR ~+('Ir) U ~ - (1r)
and a fiber IRm. The Gauss map 9 extends to the map on the total space of this
bundle (x, v) 1--+ (9 (x). B-1(x)v), where x = (..\ Jr) is a point in the base. and v is a
vector in the fiber. There is a tautological one-dimensional vector subbundle with a
fiber spanned by vector ...\ over a point (...\, iT). This subbundle is obviously invariant
under the action above. Now note, that the quotient of the trivialized bundle over
tautologieal bundle is isomorphie to the tangent bundle over our base. wIoreover,
it is easy to see, that the composition of the induced action in the total space of
the quotient bundle with fiberwise homotety with coefficient IB-1

...\1- 1 coincides with
the action of the differential Dg under suggested identification. In fact, we just use
canonical isomorphism T G1( m) ~ Hom(7 , ,J. ), w here 7 isthe tautological, and 7 J.

is the normal bundle to the Grassmann manifold Gdm) = IRpm-l.
Multiplicative ergodic theorem guaranties existence of the flag of subspaces IRm =

EI ::l E2 ~ .•• :;J Eq :;J Eq+1 = 0 (depending on the point of the base) in almost all
fibers of the trivialized bundle~ such that for any v E Ej, v ~ Ej+1 the relation

(10.5)
( )

-1

1 I1 B(k) vii .
lim -log = 0(;)

k-+oo k Ilvll

holds. Here by B(l), ... ,fJ(q) we denote Lyapunov exponents repeated without multi­
plicities.

From the praof of Theorem 3 it follows, that the aue-dimensional fiber of the
tautological bundle belongs (and presumably coincides) to the subspace Eq (A,1r).
Hence, the flag of subspaces Ej induces the flag of the subspaces in the fiber of
the quotient bundle, with the same property 10.5. The only difference is that the
multiplicity of the smallest Lyapunov exponent would be reduced by one. The impact
of the homotety can be easily computed since homotety commutes with our induced
cocycle in the quotient bundle (and~ actually with any fiberwise linear mapping).
This impact is just a shift of all Lyapunov exponents by 01 • Theorem 2 is proved. D
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