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GAUSS MAP ON THE SPACE OF INTERVAL EXCHANGE
TRANSFORMATIONS. FINITENESS OF THE INVARIANT
MEASURE. LYAPUNOV EXPONENTS.

" ANTON ZORICH

ABSTRACT. We construct a map on the space of interval exchange transformations,
which generalizes the classical Gauss map on the interval, related to continuous
fraction expansion. This map is based on Rauzy induction, but unlike its relatives
known up to now, the map is ergodic with respect to some finite absolutely con-
tinuous measure on the space of interval exchange transformations. We present
the prescription for calculation of this measure based on technique developed by
W.Veech for Rauzy induction.

We study Lyapunov exponents related to this map and show that when the
number of intervals is m, and the genus of corresponding surface ig g, there are
m — 2g Lyapunov exponents, which are equal to zero, while the rest 2g ones are
distributed into pairs #; = —8,,_;+;. We present an explicit formula for the highest
one, which proves in particular, that it is greater than zero.

1. INTRODUCTION

Consider an orientable measured foliation on a closed orientable surface 1\4_3 of
genus g with singularities of the saddle type. Throughout the paper we will assume,
that the foliation has neither closed singular leaves, nor saddle connections. We will
also assume, that the foliation is uniquely ergodic. A generic orientable measured
foliation can be decomposed to ones which obey all the indicated properties (see [20]),
as a consequence of unique ergodicity of a generic interval exchange transformation
(see 7], [18]). Recall, that we can define an orientable measured foliation as a foliation
of leaves of a closed 1-form w. Any leaf of the orientable measured foliation as
described above winds around the surface along one and the same cycle from the first
homology group Hi(MZ,R) of the surface, which is called asymptotic cycle. This
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cycle is just Poincaré dual to the cohomology class [w] of corresponding 1-form. In a
sense asymptotic cycle gives the first term of approximation of dynamics of leaves.

Study of further terms of approximation gives the following picture (see {19] for
details). Computer experiments show, that taking the next term of approximation
we get a two-dimensional subspace in H;(M?,R), i.e., with a good precision leaves
deviate from the asymptotic cycle not arbitrary, but inside one and the same two-
dimensional subspace H? in the first homology. Taking further steps n = 3,..., ¢ of
approximation we get subspaces H* of dimension k for the &-th step; collection of the
subspaces generates a flag H' C H? C --- C H? of subspaces in the first homology
group. The largest, g-dimensional subspace, gives a Lagrangian subspace in 2¢-
dimensional symplectic space HI(M’;, R), with the intersection form considered as a
symplectic form. We stop at level ¢ since deviation from corresponding Lagrangian
subspace is in a sense already negligible. The main conjecture of [19] claims existence
of this asymptotic Lagrangian flag for almost all orientable measured foliations on
surfaces as described above.

Having an orientable measured foliation on a surface, one can consider interval
exchange transformation induced by the first return map on a piece of transver-
sal. Taking shorter and shorter pieces of transversal we will get longer and longer
pieces of leaf bounded by the point of first return. Joining the ends of the piece
of leaf along transversal we get a closed cycle, representing an element of the first
homology. The asymptotic behavior of this cycle is what we need to investigate. To
trace modifications of our cycles we use special procedure for shortening our piece of
transversal. Namely, we use iterates of Rauzy induction for corresponding interval
exchange transformation (see [13] as well as later expositions in [18] and [6]). The
transformation operator representing modification of our cycles after k steps of Rauzy
induction is the product of & elementary matrices A;, - - - A;, related to each step of
Rauzy induction. We now need to study properties of these products of matrices.

Though the mapping 7 : X — X corresponding to Rauzy induction on the space
X of interval exchange transformations is ergodic with respect to some absolutely
continuous invariant measure on X ([18]), we can not immediately use multiplicative
ergodic theorem to study products of matrices A;, - - - A;; since the invariant measure
is not finite.

We construct another map G : X — X, which assigns to a point z € X some power
G(z) = T™)(z) of the map T evaluated at z, where n(z) depends on the point z. The
numbers n(z),n(G(x)),... here are analogous to the entries of continuous fraction
expansion for a real number. In the simplest case of interval exchange transformation
of two intervals the numbers n(z),n(G(z)),...,n(G*(x)),... are exactly the entries of
corresponding continuous fraction, and the map G coincides with the classical Gauss
map (up to duplication and conjugation). We prove that for any number of intervals
the Gauss map G is ergodic with respect to some absolutely continuous invariant
measure on X, and this measure is already finite.
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Note that initial matrix-valued function A(z) on X related to Rauzy induction
induces a new cocycle, B(z) = A(T"®)~1(z)) - A(T*®)-%(z))-.- A(z). This time we
are already able to apply Oseledec theorem to study products of matrices B. Consider
the collection of corresponding Lyapunov exponents 8; < --- < 6,,.

We prove, that 0,4y = -+ = 0,y = 0, where ¢ is the genus of the original
surface. As for the rest Lyapunov exponents, we prove, that they are grouped into
pairs 6; = —0,,_iy1. We calculate explicitly the largest Lyapunov exponent #;; in
particular we show, that §, > 0.

We prove that Lyapunov exponents of the differential DG are represented by 6, +
91,02 -+ 81,.. -,gm—l + 01.

Presumably Lyapunov exponents 8,,...,68, are also nonzero, and hence positive,
and all of them have multiplicities one. This conjecture implies existence of asymp-
totic Lagrangian flag in the first homology of the surface, responsible for approxima-
tion of the leaves. Still to avoid overloading the paper we decided to discuss existence
of asymptotic flag separately, in some other paper.

2. INTERVAL EXCHANGE TRANSFORMATIONS AND RAUZY INDUCTION

Recall the notion of interval exchange transformation. Consider an interval, and
cut it into m subintervals of lengths A,..., A,,. Now glue the subintervals together in
another order, according to some permutation # € &,, and preserving the orientation.
We again obtain an interval I of the same length, and hence we defined a mapping
T : I — I, which is called interval exchange transformation. Our mapping is piecewise
linear, and it preserves the orientation and Lebesgue measure. It is singular at the
points of cuts, unless two consecutive intervals separated by a point of cut are mapped
to consecutive intervals in the image.

Remark 1. Note, that actually there are two ways to glue the subintervals “according
to permutation 7”. We may send the interval number k to the place #(k), or we may
have the intervals in the image to appear in the order #(1),...,7(m). Following [18]
we use the first way; under this choice the second way corresponds to permutation
x L.

Given an interval exchange transformation T corresponding to a pair (A, 7), A €
R:, 7€ Gn,yset fo=0, B = ;-=1 Aj, and X; = [Bio1, Bi[. Define skew-symmetric
mxm-matrix S(7) as follows:

1 ifi<jand n(z) > n(7)
(2.1) Qij(r) =< =1 ifz2>7and n(3) < #(y)
0 otherwise

Consider a translation vector

(2.2) § = Q(m)A
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Our interval exchange transformation 7' is defined as follows:
T(z) =z + 6, forre X;,1<i<n

Note, that if for some & < m we have n{1,...,k} = {1,...,k}, then our map
T decomposes into two interval exchange transformations. We consider only the
class &% of irreducible permutations — those which have no invariant subsets of the
form {1,...,k}, where 1 < k < m. We can also confine ourselves to the class of
nondegenerate permutations — those which obey the property =(k) + 1 # =(k + 1),
1 € k < m, since an interval exchange transformation defined by a degenerate
permutation coincides with an interval exchange transformation of smaller number
of intervals. Both subsets of permutations are invariant under operation of taking
inverse.

Having an interval exchange transformation T corresponding to the pair (A, )
one can construct a closed orientable surface Jlf_fgz, a closed 1-form w on M gz’ and a
nonselfintersecting curve v in Mg?, such that v would be transversal to leaves of w, and
the induced Poincaré (first return) map v — « would coincide with the initial interval
exchange transformation T' (see corresponding constructions in [18] and in [7]}). The
genus g of the surface is defined by combinatorics of the permutation 7 as follows
(see [18]).

Let € &Y. Define permutation ¢ = o(r) on {0,1,...,m} by

1 —1 =0
(2.3) o(j)={m j=7"1
Y m(j)+1) =1 otherwise
Let
(2.4) S@G) = {,e(5),0%),... 1 € {0,1,2,...,m} j=0,1,....m

be the cyclic subset for the permutation ¢. To each subset S of this form assign the
vector bg € R™, which is presented in components as follows:

(2.5) Vo= x5" - x%
where
J_Jtifjes
5= 0 otherwise
Let
(2.6) Y(x) := {set of cyclic subsets for o(r}}
(2.7) So(m) := E(m)\S(0)

(2.8) N(r) = CardE(r)
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According to [18] the genus g of the surface M7 is

(2.9) g=m—(No(7r)—1)

4

To each permutation n € G, we assign mxm permutation matrix

1 ify ==(e),
2.10 (7)) =
( ) Fis(m) {U otherwise

We denote by 7 € G, 1 £ &k < m the following permutation:

% {,2,....kk+2,....mk+1} 1<k<m-1
Tm-1 = {1,2,...,m}=1d

Permutation 74 cyclically moves one step forward all the elements occurring after the
element k.

Define the norm [A| of A € R} to be [A| = ¥, A;. By A™"! we denote the
standard simplex A™~!' = {X|A € R}; |A\| = 1}. Having an interval exchange
transformation, defined by a pair (A, 7), where vector A = (Ay,...,An) € RT, defines
the lengths of subintervals, and 7 is a permutation, 7 € &,,, we can renormalize
vector A to A/|A| € A™ L. Interval exchange transformation corresponding to the
pair (A/|A|, 7) is obviously conjugate to the initial one.

Now we remind construction of Rauzy induction [13}. Whenever it is possible we
try to use notations in [18]. We also use some notations from [6].

Consider two maps a,b: &% — &° on the set of irreducible permutations:

(2.11) ‘;(”) - T T )
(ﬂ-) - Tvr(m) T

where one should consider product of permutations as composition of operators —
from right to left. Considering permutation as a map from one ordering of 1,2,...,m
to another, operator b corresponds to the modification of the image ordering by
cyclically moving one step forward those letters occurring after the image of the
last letter in the domain, i.e., after the letter m. Operation a corresponds to the
modification of the ordering of the domain by cyclically moving one step forward
those letters occurring after one going to the last place, i.e., after #=1(m).

Note, that

(2.12) (a(m))™" = b(r ")
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In components the maps a, b are as follows:

(7(j)  J<n7i(m)
a(r)(z) = (7(m)  j=r"l(m)+1
(7(; — 1) otherj

(7(j)  #(j) < x(m)
B(r)G) = {x()+1 w(m)< (i) <m
7(m)+1 n(j)=m

The Rauzy class R(mo) of an irreducible permutation 7 is the subset of those per-
mutations 7 € &2, which can be obtained from 7y by some composition of mappings
a and b. We will also denote by the same symbol R(7p) the oriented graph, which
vertices are indexed by elements 7 € fR(mp), and which directed edges are either of
the type = — a(x), or of the type = — b(7).

Denote by E identity m xm-matrix, and by [;; square m xm-matrix, which has
only one nonzero entry, which equals one, at the (7,7) place. For any 7 € G2 define
matrices A(rw,a), A(w,b) as follows:

A(r,a)
A(m,b)

(E + I,—l(m)‘m) . P(Tﬂ-x(m)) = P(T,,-l (m)) + I,-x(m).m

(2.14) SR A

i

Consider an interval exchange transformation 7" corresponding to a pair (A, ),
where A = (Ay,...,An) € A™ ', 7 € &),. Compare the lengths Ay, and Ap-i(y) of
the last subinterval in the domain and in the image of 7. Suppose they are not equal.
Let v = min(Am, A;-1(m)). Cut off an interval of the length v from the right hand side
of the initial interval and consider induction of the map T to the subinterval [0,1—v].
According to [13] the new map would be again an interval exchange transformation
of m subintervals corresponding to a pair (M, '), where

(V) = {(A“(fr,a)/\, a(7))  Am < Ae-im)
’ (A7 (m,0)X, B(T)) A > Apmi(m)

Rescaling the vector A’ we get the transformation
T: A"t x &) — A™ ' x &2
(A7) (I—';',—l,ﬂ")
Consider restriction of this map to invariant subsets of the form A™~! x R(x).
In [18] Veech proves, that Rauzy induction 7 is conservative and ergodic on each

A™ 1 xR(r). It admits unique up to a scalar multiple absolutely continuous invariant
measure, but this measure is infinite.

(2.15)
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To complete this section we make one more note on the requirements on measured
foliations on closed orientable surfaces, which we will consider in this paper. We will
consider only orientable measured foliations. We always assume, that the foliation
does not have minima or maxima, i.e., all singularities are of saddle type only. We
assume that there are no saddle connections and no closed singular leaves. In this
case the foliation is minimal — every leaf is dense in the surface. A generic ori-
entable measured foliation on a closed orientable surface can be decomposed to ones
as described above in the following sense. Suppose a foliation has minima, maxima,
and hence closed loops. Assume, that the corresponding closed 1-form has maximal
rank, i.e., all periods of the form are rationally independent. Note, that this is the
generic situation. One can decompose the surface into several components filled with
closed leaves, and several components, where each nonsingular leaf would be closed.
Component filled with closed leaves is homeomorphic either to a disk (a trap), or to
a cylinder (a neck). Consider a minimal component, where each nonsingular leaf is
dense. It is a compact orientable surface with several holes. Each hole, i.e., each
component of the boundary is represented by a closed singular leaf. Shrinking each
hole to a point we will get a closed surface with smooth foliation on it; critical points
corresponding to the holes would be eliminated. By construction the foliation would
be minimal. For more details see, e.g., [20].

&

3. GAUSS MAP G
Fix some 7y € &2 and confine ourselves to the class R(mp) = R. We denote
(A 2By = TR, 1)
(AO, 7)== (A7)
We subdivide each simplex A™~! x 7, 7 € R into two subsimplexes
A" x = (A+(ﬂ') U A_(vr)) X 7
where

A+(Tl') = {)\ e Am-1 | Am > /\,r-l(m)}

(3.1) A~(r) = {(AEA™ | An < Ap-ipm))

Similarly define positive cones At (x) UA~ (%) = RT.
For almost all points on A™~! x R we can define the function

AR e A=(7%))  when A € At(r)

. = i v t'
(3.2) n(A, ) Lirluznk such tha {/\(k) € A*(7®W) when A € A~ ()

In other words we iterate Rauzy induction and count how many consecutive trans-
formations of the same type (a or b, see (2.11), (2.13)) we can make.
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Definition 1. We define the Gauss map G related to Rauzy induction T to be
G : Uren (AT(m) U AT(F)) = Urem (A% () U A= (7))

G(A, ) = TN (A7)

(3.3)

One should consider domain of G as | ,em (A% (7) U A™(x)) forgetting that sim-
plexes A*(7) and A~(r) were once glued into one. Note that the map G maps
simplexes A% to A~ and vice versa.

Define the following matrix-valued function B(A, 7) on a subset of complete mea-

sure in [ rem(AT(7) U A_(r)) as
(3.4) B(\ )= ].—f AW

where matrix-valued function A(A, r) is defined by (2.14). By definition if (X', #') =
G(A, ), then N = B(A,7)-A/||B(), 7) - A|l (see also explicit formulae (3.6) and (3.7)
below). Note, that det B(A, ) = 1.

We can give also a direct definition of G as follows. Let

(3.5)
( max st st < Apmi(my when A < Ap-1(m)
where SI = /\m + /\m—l + 4 )\r—l(m)-l»l + ’\m. + Am—l + ...
n terms
v(A,m) = ¢
max sy | 57 < Am when Ay > Az-1(m)
57 = Armtgm) + Ari(no) 000 F Aemi afmy ) + Anmim) F -
\ n terms

Note that the maximal possible number n involved in definition above coincides with
n(A,7) in (3.2). Consider an interval exchange transformation 7' corresponding to
a pair (A,7), A € A™ ! 7 € &Y. Cut off an interval of the length v(A,7) from
the right hand side of the initial interval and consider induction of the map T to
the subinterval [0,1 — v(A, 7)]. The new map would be again an interval exchange
transformation of m subintervals corresponding to the pair (A, 7). There would be
two cases.
Case a A, < Az-1(m). In this case

'=g. 11
T =T Teml(m)
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and

Aj 1< W_l(m)

Ar-imy — V(A7) j =77 (m)
Amin=ifmpbe—i 7 (m) <j <77 (m) +¢q
Ar(i=q) other j

(3.6) A

Case b /\m > A,—l(m). In this case

7 = Tf.(m) v
and

Aj j<m
3.7 Moo=
(3-7) 7 {/\m—v(,\,w) j=m

One can see, that the matrix B(A, r) defined by (3.4) is the matrix of transforma-
tion (3.6) when A < Ar-1(m), and of transformation (3.7), when Ay > Ar-1(m).
Rescaling the vector A’ we get the transformation

G Urem (A1) UA™(1)) = Lirem (A*(x) L A~(r)

(A7) — (:\\: ,:'r’)

In other words at one step of the new induction we are shortening one and the same
interval A, or Az-1(,), whichever is larger, as much as possible, cutting cyclically from
its right-hand side intervals of lengths Ar-i(m), Ax=1(m=1)s -+ s Ax=1(n(m)+1) in the first
case, and intervals of lengths A;, An—1,. .., Ar=1(;m)4+1 in the second case. The lengths
of the rest intervals stay unchanged (modulo reenumeration in the first case).

(3.8)

4. FORMULATION OF RESULTS

Theorem 1. Let m > 1, and let R € &2 be a fired Rauzy class. Then the Gauss
map G is ergodic on

L] At(r)u A= (r)

TeR
and G admits an absolutely conlinuous invariant probability measure . The density
of y is the restriction to ;e At (7)UA™(7), of a function on | ,em AT (m)U A~ ()
which is positive, rational, and homogeneous of degree —m.

Theorem 1 is proved in section 9
Consider some norm in the space RT. Define norm of a matrix B € GL(m) to be

|B|| := max || B - v||.

[lvll=1
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Proposition 1. Function |log || B(A, 7}

is integrable over | | em AT (7)UA™(7) with
respect to the measure .

[ [leeiBosmifude) < oo
L, en(a*(mua=(x))
Apply multiplicative ergodic theorem to products
-1
(4.1) (B(")) = BTG (A7) - ... BYG(A 1) - BT\, )

of matrices B~'(\, 7) taken at trajectories of the Gauss map G. Let §; > 6, > ---
6 be corresponding Lyapunov exponents.

v

Theorem 2. The middle m — 2g Lyapunov exponents are equal to zero
09+1 =95:+2 = =9m-g:0
The rest 2g Lyapunov exponents are distributed in pairs
O = =0, g1 for k=1,...,¢

One can consider differential Dn§ as another “matrix-valued function” on the
space [ J,em AT(m) U A~(7), and compute collection of corresponding Lyapunov ex-
ponents. The dimension of the space is m — 1, so there would be m — 1 Lyapunov
exponents for the differential.

Proposition 2. Collection of Lyapunov ezponents for the differential DG of the
Gauss map coincides with the collection

014+6,,0,+86,....,0,_1+6
Theorem 3. The largest Lyapunov ezponent 8, equals

== [ (ogB'(A,7)- Al = logI\l) du =

‘JTEmAi(W)
-1y [ det DG dys =
m NemAt(w}
(4.2) _ / log(1 — v(A, 7))du =
ﬂ'EmAi(")
(4.3) - / llog(1 = M) = log(1 = Ae-sm))| dp
€Rak(r)

Corollary 1. The highest Lyapunov ezponent is strictly positive, &) > 0.
Proof. 0O
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Conjecture 1. The top g Lyapunov exponents are distinet and strictly positive

6 >0,>--->0,>0

5. RAUZY INDUCTION IN DIMENSION TWO, EUCLIDEAN ALGORITHM, AND
CLASSICAL GAUSS MAP

Before treating the general case we want to illustrate relation between the Gauss
map G and Rauzy induction 7 in the simplest case, when we have interval exchange
transformation of just two intervals, m = 2. In this case Rauzy class R(mg) of
the permutation 7o = {2,1} contains the only element :(7y) = {mo}; the simplex
A™ 1 = Al is just the interval, and hence the space A™~! x R(my) is just an interval.

We remind the definition of the Gauss map G : I — [ on the interval I = [0, 1]

o= (1)

where {} denotes the fractional part of the number. Gauss map is ergodic; the density
function of corresponding invariant probability measure is as follows

R
T log?2 z41

9(z)

We remind, that Gauss map G is related to one step of Euclidean algorithm in the
following sense. Suppose we have two intervals. Rescale them proportionally so
that the longer one would have a unit length. Let the shorter one have length z,
0 < £ <1 after rescaling. We cut the shorter interval from the larger one as many
times as possible, that is
H
np=\|-
T

times. Consider the remainder, which has the length

e e[ =Y

T z Lz T

We got two intervals of the lengths ¢ and 6, § < z. Rescale them proportionally to
make the larger interval have the unit length. Then the smaller one would have the

length
Gle)= 2 = {1
Z

z
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Note, that if we will go on, then the consecutive integer numbers ny,n,,... would
give the continuous fraction expansion of the real number z
1
T =
B 1
n
1 N 1
ng + ———
3 + -

Now let us consider Rauzy induction. In coordinates (Aq, Az), where A + Ay = 1,
and Ay, Ag > 0, Rauzy induction 7 : A! - Al is as follows

(%,hﬁh) if A < Ny

TOw ) =

(hih,g) if A > A,

Density fr,(A) of the invariant measure, computed according prescription in [18]
equals .
i

fol) = 11
The map T corresponds to “slow”, or “step by step” Euclidian algorithm. This time
we use slightly different normalization in comparison with one used in the definition
of the Gauss map G above. Having a pair of intervals we proportionally rescale
them to make the sum of their lengths A; and A, have the unit length. Then we
cut the smaller interval from the larger one, but this time only once. Then we again
proportionally rescale the intervals, to make the sum of their lengths have the unit
length. We called such map “slow” Euclidian algorithm, because several iterations of
this process lead to one step of a usual Euclidean algorithm, when we cut from the
larger interval the largest possible number of the smaller ones at once.

In coordinate z € I = [0,1], \y = &, A\, = 1 — z Rauzy induction 7 : ] — [ is
represented as follows

-1 if0<e <],
T(z)=
9 _

=

if -;- <z<l1
Density of invariant measure in this coordinates is represented by the function
5.1) () = =
. r) = ——"7
g z{l — x)

and integral of p(z) over the interval obviously diverges though the map 7 is ergodic.
It would be easy to predict that invariant measure would not be finite. Consider
an orbit of some point zg € I under action of 7. For almost all initial points after
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certain number of steps we will get close to the endpoint of the interval, say, to the
point 0. Then the orbit will stay near this endpoint for a long time, since

T(z)— = o(z) as ¢ ~0

Let us improve the situation as follows. We speed up Rauzy induction to make it
correspond to the usual Euclidean algorithm. That is for any (A, A;) € Al define

A

[x] if A < Ag
ni(A) =

[%;] i > A,
Now define
G(A) = TN

In other words, starting with the point A we iterate the map 7 while the iterates

obey the same type of inequality Ay < A; or A; > A; as the initial point. Note, that
by definition image of G obeys the opposite type of inequality.

The new induction in coordinates A before normalization is as follows:

o (AMde = [8]) i M <
1, A2}
(M =[32]00) itz

The direct definition of G in coordinate z € [ = {0,1}, Ay = z, Ay, =1 — z: is as
follows:

Feny if A < A

1~ H_—I_E if A > A
Density of the new invariant measure 1s

1 1 .
M+A2 ’ A lf Al < /\2

p(A) =
—'\l_:_/\2 . \Ll if )\] > /\2
and now it is already finite.

In coordinate z corresponding normalized probability measure p = p(z)dx is as
follows

1 1 M 1
2 -z lfOS:B(—

(&)

plz) =

! 1 e 1 )
fwz z  HzSesl
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Note, that up to duplication and conjugation the maps G and G are the same.
1(1+G (%)) Ho0<a<,
g(z) =
16 (1z2) if

N =

<z<1

6. CONSTRUCTION OF THE INVARIANT MEASURE

In this section we remind construction of the space of zippered rectangles from [18].
Then we define some particular subspace in it and an automorphism of the subspace,
which projects to the Gauss map §. Finally we define a measure on the space of
interval exchange transformations invariant under G. Since we are extensively using
the technique in [18] we need to remind briefly some definitions and results from
there.

For 7 € &Y define H(x) C R™ as the annulator of the system of vectors bs,
S € E(r) (see (2.5))

(6.1) H(r)={h € R™|h-bs=0forall § € 5(r)}

Remark 2. There is a natural local identification of the space H(r) with Hi(M};R)
(see Proposition 4 and Remark 3 below).
Define the parallelepiped Z(h, ) to be the set of solutions a € R™ to the following

system of equations and inequalities (which are equations (2.3) and inequalities (3.1)
in [18]):

h; —a; = hg(;).,.l — Qq(5) (0<i<m)

hi 2 0 (1<i<m)

a; > 0 (1 <i<m)
(62) _hn—lm <an < hm

Ar-1m < hw“m-f—l

a; < min(hi ki) (0<i<m,i#rim)
and define the cone
(6.3) H*Y(r) = {h € H(r)| Z(h, ) is nonempty}

The zippered rectangles space of type m is the set of triples (A, h,a), A € RT,h €
H*(7),a € Z(h, ). Parameters h and a are responsible for the structure of the Rie-
mann surface corresponding to the interval exchange transformation (A, =) (see [18]
for details).

Define (R) to be the set of zippered rectangles (A, h,a,7) such that = € R is
in a given Rauzy class R, and A - h = 1. Define also a codimension-one subspace
T(R) C Q(R) by additional constraint |A| = 1.
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In {18] Veech defines a flow P*;t € R on Q(R), P*(\, h,a,7) = (e'), e"th,e~ta, ),
and a mapping i : Q(R} — Q(R)

(A~Yr,a)\, AT(x,a)h,a',a(7)) when Ay < Ag-im

UN ha,m) =
(;h,a,m) {(A"(r.,b)A,AT(Tr,b)h,a”, b(r)) when Ay > Ap-ipn

where matrices A(x,a) and A(7,b) are defined by equations (2.14); transformations
a(rw),b(w) are defined by eqrefeq:ab (and (2.13)); and vectors a’,a” are defined as
follows:

a; J<nlm
a; = (Phe-im+amy J=7"'m
(6.4) aj_q TTim<j<m
wo_ )% 0<j<m
==lm arr‘lm—l) J=m

Define t(z),z € T(R), by t(x) = —log(l - min()\m,/\,,-lm)). Consider a mapping
S:T(R) = T(R), Sz =UP"Iz.
The following measure
(6.5) n=9_ c(min.
&R

on T(fR) is constructed in {18] as a measure invariant under transformation S. Here
¢(m) are the constants,

(6.6) ¢(r) = (Volume of fundamental domain in Z™ N H(r)) "'

and

- pa(dh)
Nx —Lm_l -/;{I -L(h,ﬂ‘) €h(dﬂ) ||Q/\” wm_l(d/\)

Here HY = {h € H*(r)]h - X = 1}; &i(da) is Euclidean measure on Z(h,m) in
dimension N(7) — 1; pa(dh) is the measure on HY induced by Euclidean metric;
IQAll is the Euclidean norm of the orthogonal projection of the vector A on H(x);
and wm_1(d)) is Euclidean measure on A™"1.

Finally we remind that the following diagram

TR — T

At} Lo AT xR
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is commutative (see [18}), where p : (A, h,a,7) — (), 1) is the natural projection.
Hence the measure p7 1s invariant under Rauzy induction 7 on the space A™~1 x R
of interval exchange transformations.

* * *

Having reminded constructions in [18] we now modify them to get a measure p on
the space of interval exchange transformations invariant under the Gauss map G.
Define the parallelepipeds

Z*(h,7) = {a€ Z(h,m)|am 20}
(6.1 Z-(h7) = {a€ Z(h,7)|an <0)
Define the subcones
H*+(x)

(6.8)

{h € H*(x)| Z*(h,7) is nonempty}
H*= (=) {h € H*(x)| Z~(h,7) is nonempty}

For a given Rauzy class R define
Q*(R) = {(M\ h,a,7) € AR | yih € H¥ (r);a € Zt(h,m)}
Q" (R)={(M\h,a,m) e QR) A€ A~ (n);h e HY (x);a € Z7(h,7)}
Define also

THR) = T(R)NOQT(R)

T-(R) = TR)NOQ(R)

T=R) = THR)UT-(R)
Consider the map F : TE(R) — Y(R) as follows:

F(Mhya.w) =S\ b a,n)
where n(A, 7) is defined by (3.2).

Lemma 6.1. The map F is the induction of the map S to the subspace T*(R) C
T(R).

Proof. We need to prove, that the image of F belongs to T*(R), and, that n(X,n)
is the first return time, i.e.. the “time”, when trajectory of a point z = (A, h,a,7) €
T*(R) returns to T*(R) under iterations of the mapping S. Suppose A € A*(r).
Then =™ = (AD A1) oM 7)) = Sz is obtained by transformation “of the type
b”. Recall the remark in [18). saying that the image a’ in (6.4) of the transformation
of the “type a”, Ay < Aj-1, satisfies al > 0, and the image a” in (6.4) of the
transformation of the “type 4”, \n > A;-in, satisfies a”. < 0. Hence, if A} ¢
A*(r(M) and a™ # 0, then the point z(!) = S does not belong to YT*(R) since
aM < 0. The first time the iterate would get back to the space T(R) is the first
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time vector A"} = T*\ would get to the simplex of the type A~ (we neglect the set
of measure zero of the points {z = (A, h,a,7) € T(R)|a = 0}). But this is exactly
the definition (3.2) of the function n(A, ).

The case, when we have A € A~(7) for the initial point is analogous to one discussed
above. [

Corollary 2. The map F is almost everywhere one-to-one map on Y(R). The
measure n from (6.5) confined to T*(R) is invariant under F.

Proof. 0O
Lemma 6.2. The following diagram is commutative
T*(R) ~ T*(R)

U (A*(r)uA~(r)) —Z= U (A*(x)UA~ (1))
TER reR

Proof. This is just a straightforward corollary of definitions F = S**™); G = TnAm),
and of commutativity of the initial diagram above. O

Define measure g on | ex (At (7)U A~ (7)) as u = pn.

Theorem 4. Let m > 1, and let R be a Rauzy class. The Gauss map G on the
space of interval exchange transformations Urem (A% (7)U A~ (7)) admits the invari-

ant measure
p=Y o(m)(ffwt(n) + frw (7)) @ 6,
mER
where ., 7 € R, is the unit mass at =, c(7) are constants specified above; and w™*(x)
(w=(m)) is the Fuclidean measure on A*(r) (A~(n)). For each m € R the density
I+ (correspondingly f7) is the restriction to AY(x) (correspondingly A=(x)) of a
function which is rational, positive, and homogeneous of degree —m on RT.
The measure pu is finite.

The invariance of the measure follows from its definition. The statement about the
concrete form of the measure is just the original theorem 11.6 in [18] for the initial
measure invariant under Rauzy induction 7. What is new (and rather essential for
us) is that the measure g is now finite, which would be proved in the next two
sections.

Morally, we claim, that the fiber p~'(\,7) is “iceberg-like”, i.e., there is a huge
“underwater part” specified by inequality a,, < 0 for A € A% (and a,, > 0 for
A € A™) which gives an impact to the measure leading to it infiniteness; while the
rest part of the “iceberg”, which is “above the water”, and which volume gives us
our density function, leads to the finite measure.
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7. THE CONES HY*(r,W) AND H*~ (7, W)

This section is parallel to §12 in [18], but dealing with the spaces H**(x) and
H*=(m, W) we are able to improve the estimate of Proposition 12.8 in {18]. Here we
would not exclude the subsets containing m and 7~'m anymore.

Let m > 1, and fix # € &%. Consider W C {1,2,...,m} such that W # §;
W # {1,2,...,m}. Define Zo(W) (cf. (2.7)) to be the set of S € Eg(n) such that

T(S)=SU{S+1}cW

Here {S+1} ={j+ 1|7 € §,j # m}.

Next define H**(nr, W) (H*~(x,W)) to be the subset of those h € H**(x) (cor-
respondingly , H¥~(r)) which are supported on W ie., h; = 0,5 ¢ W, h € H**(7)
(correspondingly h; = 0,7 ¢ W,h € H*~(r)). We use the same definition for
H*(x,W) as in [18], except that we do not assume 7~'m, m ¢ W anymore, unless
it is specially indicated.

Lemma 7.1. In both of the following cases

(WDYmeW, s 'm¢Wand he H¥~(n,W), a € Z=(h,7);

2)me¢W, n'meW;and he Ht(x,W), a € ZT(h,7);
the following equality is valid:

0<a; < hjhjp (0< 5 £m)

Proof. Case (1): he Ht " (x,W),a € Z7(h,7),and me W, 77 'm ¢ W.
In this case a,, < 0. Since 77'm ¢ W, we get hr-1,, = 0. Since by definition
hm+1 = 0 we may combine equation

h,r-lm — Q=1 = hm+1 — am
from (6.2) with inequality a,-1(m) > 0 to obtain
0 L1y = U S 05

Combining this with inequalities from (6.2) we prove the lemma for this case.

Case (2): he HY*(m,W),a € Z*(h,7),and m¢ W, 7" lm e W.
In this case a,, > 0. Since m ¢ W, we get h,, = 0. Since from (6.2) am < hm, we
obtain 0 < a,, < h,, =0, and hence

(7.1) am = 0.
Using the following equation from (6.2)
h,—lm — Qp-1y = hm+1 — am;y

we get

Ap-tym = hﬁ'"m
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Combining this equation and equation 7.1 with inequalities (6.2) we complete the
proof of Lemma 7.1 [

Lemma 7.2. In both of the following cases
()meW, 7 'mé¢Wandhe H* (r,W),a € Z~(h,7);
2ymegW, n"imeW;and he H**(x,W), a € Z*(h,7);

the following strict inequality is valid:
dim H**(x, W) + Card £o(W) < Card W
Proof. The proof is the same as the proof of Proposition 12.8 in [18]. D

Now we consider one more case. We stress that the statement below is formulated
for the subcone H*(x, W) C H*(r) in the “old” cone from [18].

Lemma 7.3. Let 77 'm, m € W, where W is as above. Then
dim H* (7, W) + Card £o(W) < Card W

Proof. We have to consider three cases separately.
Case (i). (S(m)U {S(m) +1})\{0} C W.

(Here we do not assume, that necessarily 0 € S(m).) In this case we apply the
arguments similar to those, which follow Lemma 12.3 in [18]. Slight modifications
are as follows. Choose 1 € W, 7 # m, so that : + 1 ¢ W, and define { > 1 to be the
first integer such that one of ¢'¢, o'i+1 fails to belong to W. Since W # {1,2,...,m}
and W # § such 7 exists. Note, that from assumptions for this case it follows that
i & S(m) = S(r~'m). It means that i # 7~'m, m, and o'i # 7~'m, m. Hence a; = 0
because hiy; = 0, and a,:;; = 0 because one of ki, by, is equal to zero. From this
point we can apply the same arguments as in [18] — we get additional equation

(1.2)  hi = hoist + hoi =+ hpori = hgpr =0 (b€ HY(xr, W),

(cf. equation (12.6) in [18]) and we rewrite it as h- b =0, (h € H*(x,W)). Then
we prove, that vector b and vectors bg, S € To(W) are linearly independent. We
skip special consideration of the case H*(x, W) = {0}. Since by construction the
sets {7,014+ 1,...,0" 71, 0' + 1} and Ugez,(w)(S U {S + 1}) do not intersect, linear
dependence holds in only case when equation 7.2 is tautologically trivial on H* (7, W),
which contradicts Lemma 12.7 in [18]. As bs, S € Eo(W), and b (restricted to W)
are orthogonal to H*(w, W) and linearly independent we get desired inequality, and
prove case (i).
Case (ii). S(m) ¢ Zo(W) and 0 ¢ S(m).

In this case we get additional vector b, b L H*(x,W)), independent from bs, S €
Eo(W) as a restriction of bs(m) to W (i.e., by letting b; =0, for all 7 ¢ W). Indeed,
this restriction is nontrivial, because by-1,, = 1 since 7~'m € W, and #7'm € S(m),
while 77'm — 1 = 00 ¢ S(m). And this vector is independent from bg, S € Zo(W)
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since #~'m ¢ S for all § € (W), and hence component 7~!m vanishes for all these
vectors.

Case (iil). (S(m)\{0}) U {S(m)+ 1} ¢ W and 0 € S(m).
Note that in this case S(m) = S{z~'m) = S(0). Choose : € W, { # m, so that
t+1¢ W. If ¢ ¢ S(m), further proof is analogous to case (i). Suppose ¢ € S(m).
We represent orbit S(m) as follows

1

fm—eomm—- - mo’m=0dl=r""m=1r 00 = 7"'m — m}

Suppose ¢ = 0*m, 1 < k < p. Define I > k + 1 to be the first integer such that
one of o'm, o'm + 1 fails to belong to W. We note, that [ < p. If I < p, then since
o'm # 7~'m, m we have 0 < a,i,, < hgimy Ryims1 and hence a1, = 0. If I = p, then
At = ap = 0 by definition. We again obtain additional equation

Rokm — hoktimer + Rgktim — -+ Agimi, — Rotmer =0 (h € H"'(?r, W),

and proceed further same as before. -

Suppose i = 050, 2 < k < ¢q. We exclude case k = 1 since 00 = 7~'m — 1, and we
assume 7~ 'm € W. By the same arguments as above a,xy = 0. Now we start with 0
to get

ho — a0 = hoo41 — @0

or
Au=lyp1 = hﬂ-—lm.
Going on and using (2.4) in [18] we come up to equation

‘—h:r_lm + hr‘lm—-l -t h"k_10+1 =0

We excluded term A,xo4, since by assumption c*0+1 ¢ W, and hence h,xq,, = 0 for
h € H*(r,W). To prove that the new condition is linearly independent with others
we only need to prove, that the equation is not tautologically trivial, which 1s so, say,
because the component #~!'m of corresponding vector b does not vanish. Lemma 7.3
is proved. O

8. FINITENESS OF THE MEASURE
In this section we will prove that the integrals of the density functions

fFN = Jar+ Volume (Z*(h,n))dh

(8.1) f7Q) = [ys-Volume(Z~(h,))dh

of the measure p in Theorem 4 over corresponding simplexes A%(7) are finite. We
use the scheme similar to one in §13 in {18]. In particular we use the following bound
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(4.12) from there:

(8.2) Volume Z(h,7) < [[ B(AS)™ for h € Hf(r)
SeXq(m)
where
B(\S)= Y X (m ¢ S € Zo(r))
JESU{S+1}
and
B(A,S(m)) = Min(As-im Am) + 3 A (S(m) € o))

FES(m)u{S(m)+1}
j#Fz=lm,m
(see (4.7), (4.8) in [18]).

From now on we fix the permutation = and one of the subsimplexes A*(r) = {) €
A(m) | Am 2 Apmim}t or A7(7) = {X € A7) | Mn € Ap-1n}. Corresponding cone
H**(w) in the first case and H*~(r) in the second case can be subdivided to a finite
union of cones with simplex base. Note, that this subdivision is not canonical unless
H**(n) (correspondingly H+~(r)) is itself a cone with a simplex base. Fix some
subdivision. Each cone C intersects with the hyperplane (k- A) = 1 by simplex A,.
Integral 8.1 decomposes to the sum of integrals like

.3 Vol ZE(h dh
(8.3) N oume( (,‘.ﬂ‘))

According to bound 8.2, and obvious inequality
Volume (Zi(h,ﬂ')) < Volume (Z(h, 7))
each of integrals 8.3 is bounded by

Volume(Ay)- [] B(A,S)™!
Selo(m)

Let v1,...,vq, where d = dim H*%(r) = dimC = m — N(r) + 1 be extremals
which span C. We can choose vectors v; to be positive. They are defined up to
multiplication by positive scalars, and do not depend on A. Fix collection of v;. The
vertices of the simplex A, are given by points (v; - A)v;, where v; does not depend
on A. Hence

d
Volume(A,) = const - | ! 3
0

j=1 Y1~

{cf. 13.5 in [18]) where const is a constant, which does not depend on A.
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Proposition 3. For each subsimplez A*(x), A~(x), * € R C G2, and for each
cone C in the corresponding space H**(r) function

(8.4) f(A):(H IA) I B(\9™

=1 Y SE€To(n)

J
is integrable over corresponding subsimplez A%(r).

Proof. Consider one of the simplexes A*(r), A~(7) in the standard simplex A™~! =
{A € R} | Ticicm A = 1}. We use the following change of coordinates to replace
domain of f by standard simplex A™~!. For A*(r), that is for subsimplex A, >
Ag-1,, we define

1y

’\F'lm = 2% im
(8.5) Am = AL+ 32N,
A; = X forj#77'm, m

For A=(#) we define
’\:r—lm + -12‘/\:11
A9

- -1
A; forg#aim,m

(8.6)

N,
S D e
L 3 -_-.]I

3
T |

Consider induced function

(8.7) f(X):(H 1)\,) [ B\,S)™!

f -
i=1Y; SETo(m)

on A™1,

Lemma 8.1. Consider a subset W C {1,2,...,m}, 0 < Card W < m. Then number
of factors N(W) in 8.7 which depend only on the variables with subscripts in W is
strictly less than Card W.

N (W) < Card W

Proof. Note that N'(W) < N(W), where N(W) is the number N(W) of those fac-
tors in 8.4 which depend only on the variables with subscripts in W. Hence for
those W, such that 77 'm, m ¢ W the statement of the Lemma follows from linear
independence of vectors v; € H**(x) C H*(x) and Proposition 12.8 in [18].

Similarly, for those W, which contain both #~!'m, m € W, Lemma 7.3 proves that
N(W) < Card W, and hence the statement is valid for this case as well.

Now we have to consider cases of subsimplex A*(7) and A~(7) separately. Suppose
we started with the subsimplex A*(x). Then the case 77'm € W, m ¢ W follows
from Lemma 7.2. Consider the rest case, when 7='m ¢ W, m € W. Due to our
change of coordinates 8.5, each factor in 8.7 containing variable A}, would necessarily
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contain A’ _, . Hence none of them would be counted towards N'/(W) for the W like
ours. Hence
N'(W)=N(W\m) < N(W\m)<CardW -1,
and we obtain desired strict inequality.
We use similar arguments for the subsimplex A~(7) to complete the proof of
Lemma8.1. O

To complete the proof of Proposition 3 we apply Proposition 13.2 in [18] to function
f(X). For every subset W C {1,2,... ym}, 0 < Card W < m we define fy(\')

to be the product of all factors in 8.7 which have subscripts in W, and we define
D(W, X') to be the product of the rest factors. Functions fiy(A), and D(W, ') obey
all conditions of Proposition 13.2 in {18], except that f()’) is homogeneous of degree
—m on RZ, which does not affect the proof of this proposition. Proposition 3, and
hence Theorem 4 are proved. O

9. ERGODICITY OF THE MAP G

Now we can prove ergodicity of the map G. The proof is similar to the proof of
ergodicity of Rauzy induction 7 (c.f. Theorem 13.8 in {18], and Theorem 1.11 in [6]).

Proof. Let A be a matrix such that det A = 1, with some of the entries possibly
negative. Consider projective linear map T4 : A — rﬁ—%[ and suppose T4 maps some
compact subset K C A™ ! into A™™!, Im(K) C A™ 1. Let J4 be Jacobian of T.
Then according to 7.1 and 7.2 in [17]

Ja(A) ( i)m
< 24
\S\L’lé)h Ja(N) T As;:lg‘ Ad
1<i<m
Consider a subset A, = {A|\; >¢€, i =1,...,m; A =1} Then for any K C A,
and any matrix A € SL(m) such that A(K) C A™ ! we get from the estimate above,

that
JA()\) < (].)m
su <|{-
. Ja(XN) €
Note, that this estimate does not depend neither on A nor on the subset & anymore.
We remind that

G*(\, =) = (ﬁ%«) , det A =1
Consider the set Ag(\, o, k) € A™ 1 of (), mg) for which G* uses the same matrix
A. Then G*(\, ) maps Ag(\, 7o, k) onto one of the (A¥(x), ), (A~(x), 7).
Consider analogous subsimpiexes Ar(A, 7, k) corresponding to Rauzy induction
7. It is known that diameters of subsimplexes Ar(A, 7w, k) tend to zero as k — oo
for almost all A (see {18]and [6]). Since Ag(A, mo, k) = A7(A, mo,l(k)) for some (k)
we conclude, that diameters of the subsimplexes Ag(X, 7o, &) tend to zero for almost
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all A as well. Hence up to a set of measure zero we can subdivide A, to subsimplexes
Ag(Aj,mo, k), A; € A, Suppose now E is an invariant subset under the mapping
G. If for some ¢ > 0 we have u(E N A,) < p(A,), then, probably refining our
subdivision, for any é > 0 we will find a subsimplex Ag = Ag(Ao, 7o, ko) from our
subdivision such that p(E N Ag)/pu(Ao) < 6. Let (A%(r),7) = G*¥(Ag(Ao, 7o, ko).
Then p(E N (A%,7)) < §/e™. Since § is arbitrary small, we can find some =, such
that u(E N (A%, 7)) = 0. Combining this with the following Lemma we complete the
proof of ergodicity of G. O

Lemma 9.1. The only invariant subcollections of simplezes of the form (A%, ), v €
R(mo) are § and (AT U A7) x R(mo).

Proof. Consider the oriented graph representing Rauzy class (7). Any ordered
pair of vertices of this graph can be joined by an oriented path (see [18]).

Consider the following oriented graph, responsible for the Gauss map G. We
enumerate the set of vertices of the new graph by duplicated set R(m), provid-
ing each = € M(mp) with additional superscript “+” or “~". We join 7{ with =3,
71,72 € R(7o), by an arrow, if there is some (A, m;) € (A*(m;), ™) which is mapped
by G to (A~(m3),m2). Similarly we join 77 with #3, 1,72 € R(m), by an arrow, if
there is some (A, 71) € (A~(m1), ) which is mapped by G to (A*(pis), m2). (Note
that points of A* are always mapped to points of A¥.) To prove the Lemma we
need to prove that any ordered pair of vertices of the graph just constructed can be
connected by an oriented path.

First note that for each © € R(mp) there is a pair of arrows going in opposite direc-
tions joining #* and #~. Next note that for each edge of the graph, corresponding to
Rauzy induction, which goes from the vertex =, to vertex m,, there is corresponding
edge of the new graph, which joins either edges 7 and n; or edges 77 and 77,
depending on whether the initial edge of the Rauzy graph was of type “a” or “b”
correspondingly (see (2.11)). Note also that there is a natural orientation preserving
projection of the new graph to Rauzy graph, which sends each pair of vertices 71 and
7~ to vertex 7, and each edge of the new graph to the oriented chain of the edges of
Rauzy graph.

Now having an arbitrary pair of vertices 7{ and 77 we construct an oriented path
in the Rauzy graph joining = and m;. Taking into consideration remarks above it
is easy to “lift this path up” to the new graph. Lemma is proved, and hence the
Theorem 1 is proved as well. O

a&©e

10. LYAPUNOV EXPONENTS

First we will prove Proposition 1.
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Proof. Recalling the definitions 3.4-3.7, of the function B(\,7) we see, that the
following inequalities for the entries of matrix B are valid:

)\,r-l m 1
|Bi;(A, m)| < —)\(—l +l<—+1 when A € A*(r)
and .
|B;;(\, 1) < —"—+1<

7=1(m) r~1(m)
Hence to prove integrability of the function ‘ log || B(A, 7r)|[Lover Ures AT (m)UA~(T)
with respect to measure g, it is sufficient to prove integra

logAm  if A€ A¥(r)
log /\,r-l(m) ifAe A—(‘}‘r)

+1 when A € A™(7)

ility of the function

h(h, ) = {

To prove integrability of A, it is sufficient to prove integrability of the product
R(A)f(XN) of h with the function f in 8.7, bounding the density of u, over each
simplex A*(r), now already with respect to Lebesgue measure. We do it the same
way, as we proved integrability of f in section 8. We use Lemma 8.1 and then trivially
modify proof of Proposition 13.2 in [18] to fit our case. Proposition 1 is proved. [

Since function ‘log | B(A, rr)lq is integrable, we can use multiplicative ergodic the-

orem to study products B~Y(G*(\,x))-... - B™}(A\,x). To prove Theorem 2 let us

first prove the following
Lemma 10.1. At least m — 2g Lyapunov ezponents are equal to zero
0;=0;p1 =" =0bi4m-2g-1 =0

Proof. Recall, that there is natural local identification between the space RT of in-
terval exchange transformations with fixed permutation = € &2 and the first relative
cohomology H'(M}?, {saddles}; R) of corresponding surface M? with respect to the
set of saddles of corresponding foliation (see [5]). Recall, that the saddles are enu-
merated by the classes 5 € () (see section 6 in [18]). Consider the following terms
of the exact sequence of the pair {set of saddles} C M?

0= HO(M?, {saddles};R) — H'(M};R)=72Z — H°saddles;R) —
— H'(M?, {saddles};R) — H'(M}R) — H'(saddles;R) = 0

From results in {19] the following Lemmas easily follow

Lemma 10.2. Under identification with cohomology, vector bs represents the image
of an element in H%(saddles;R) dual to the saddle corresponding to the class S. In
particular the (m — 2g)-dimensional image of H%(saddles;R) is spanned by vectors

bs, S € E(x).
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Proof. 0O

Lemma 10.3. For those powers G*, of the Gauss map, which send (A7) to (N, ),
i.e., for those powers, which preserve permutation m, the corresponding composition
of operators

-1 (k)
(B9) " 0,m) = (B7) (hm) = BTG O m) - BTG m) - B )
preserves the collection of vectors b,, S € E(x), and hence it preserves the subspace

(10.1) K =1Im (Ho(saddles;R) — H'(M?, {saddles}; R))
Proof. 0O

Note now, that since the Gauss map is ergodic with respect to finite invariant
measure, it i1s minimal, i.e., trajectory of almost every point is dense in the compact
space Urem (AT(7)U A~(x)) In particular trajectory of almost any point {Ag, o)
would visit initial simplex A%(mp) 3 Ao infinite number of times. Hence for almost
every point (Ao, To) we have m — 2¢ linearly independent vectors bg, S € Eo(mg) such
that for some infinite sequence of growing integer numbers (depending on the point
(Ao, o)) the following inequalities are valid

-1
G < (B (o,m) bsll < €2 =12,

where C) and C, depend only on the point (Ao, 7). Hence at least m — 2¢g Lyapunov
exponents are equal to zero. Lemma 10.1 is proved. O

Let us now prove the relation
(10.2) B = —Om_r4n for k=1,...,¢

Recall, that B(¥) preserves “degenerate symplectic form” () defined by (2.1) in the
following sense (see {9]):

(10.3) Ofr) = (B(k))T  Q(r®) . B®

Due to Proposition 2 in [19] the kernel of () coincides with the subspace K in (10.1)
spanned by vectors bs. Hence Q}(7) is already nondegenerate on the quotient over
subspace [, and hence it induces the symplectic structure there. Regarding exact
sequence above and Lemma 10.2 we get the following

Proposition 4. Under local identification of the space of interval ezchange trans-
formations with relative cohomology Hl(Mj, saddles;R) the quotient space over the
subspace spanned by vectors bg, § € X{r), coincides with the absolute cohomology
HY(M?Z;R). The symplectic structure induced by §}m) on the quotient space coin-
cides with the intersection form on cohomology.
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Proof. O (See [19] for details.)

Consider once more a power k of the Gauss map G*, which sends (A, ) to (X, ),
i.e., which preserves the permutation 7. As we already mentioned the corresponding
operator B®¥)(X, 7) preserves subspace K, and hence we can define induced operator
on the quotient over K, i.e., on cohomology H'(MZ?;R). According to (10.3) induced
operator would be symplectic — it preserves the intersection form.

Recall now, that eigenvalues of a symplectic matrix are distributed into pairs —
together with eigenvalue & it has eigenvalue 1/x. Taking the logarithms, and using
the fact, that generically the iterates of G will come back to initial permutation
infinite number of times, once more, we prove relation (10.2), and complete the proof
of Theorem 2. O

Remark 3. Recalling the definition 6.1 of the space H(x) as the annulator of the
subspace spanned by vectors bg, S € E(7), we see, that H(7) is locally identified in
our setting with the absolute homology H{(MZ;R).

Remark 4. Due to Perron—Frobentus theorem the highest eigenvalue of B*) (A, ) is
real and positive for almost all (A, r), and & large enough. Normalize corresponding
eigenvector Ap so that A € A™~!. Vector Ag would be very close to initial vector A for
large k. In particular B (), 1) = B®) ()Xo, 7). Suppose G* preserves the permutation
7 as above. Consider measured foliation corresponding to interval exchange transfor-
mation defined by (Ao, 7). Veech constructs in (18] the pseudo Anosov diffeomorphism
which preserves the foliation thus constructed. We note, that the automorphism in
cohomology H'(M?; R) defined by B®)(), 1) above, coincides with the automorphism
in cohomology, induced by corresponding pseudo Anosov transformation.
Let us prove now Theorem 3.

Proof. To prove, that some number # belongs to the collection of Lyapunov exponents
it is sufficient to present for a set of points (A, ) of nonzero measure a vector v(A, ) €
R™ such that

() m) )
o071

v(A,7):= A

=40

Let

Denote

(A, 20 .= g*(\, m)
-1
We see, that vectors (B(k)) (A, 7)- A and A*) are proportional. Let

1B
() B
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Due to the comment above under our choice of vector v(A, #) we will have

L I(BW) v e ml
ko o5l N
1 k-1

=2 log(r(G*='(\,m)) - ... 7(G(A, 7)) - (A, 7)) =

1
Tk
Applying Ergodic theorem to the sum above we prove, that the following number
0 is present in the collection of Lyapunov exponents

(log7(A, ) + log 7(G(A, 7)) + - + log r{(G*1(A, 7))

(10.4) 0= [ (loglB7(A) N~ log [\ du

reR af(n)
Note that in fact we have absolute freedom in choosing the norm || ||. Choosing the
norm ||v]] ;= |jvi| + - - - + |vm| we will get for A € A*

log [|B7}(A, m) - M|l — log [[A[| = log(1 — v(}, 7)) — log1
where v(), ) is defined by (3.5). Choosing for v € R™ x 7 another norm
lell = ol + - + [va=1(m)=1] + [Ve=smys1]| + - - - + [om=1] + max(fvm], [Vr-1(m)])

we get

1og(1 = Ag=i(m)) = log(1 = Am) for A € A=(r)

Al = log [A]l =
log | B(A,7) - All — log || Al {Iog(l_)\m)_]og(l_,\ﬂ_;{m)) for A € At(7)

Remark 5. Note, that the second norm is different for the spaces R™ corresponding
to different A%(r). In fact, we should consider R™ as a fiber of a trivialized vector
bundle over | ;e AT(7) U A~(x), and we can even choose the norm, which would
differ (continuously) from fiber to fiber. It is easy to see, that the integral (10.4)
would be the same anyway.

Note, that expressions (4.2) and (4.3) for 8 in the statement of Theorem 3 differ
from the corresponding expressions for § above only by a sign. Since we already
proved, that 8, = —#8,,, to complete the proof of Theorem 3 we just need to prove,
that Lyapunov exponent # computed above is the smallest one, i.e., that 8 = 8,,.
This is true since for almost every point (A, 7)

. BB, 1) m-1
’}Lrgm—)\ fora.nvaA )

and hence for almost all v € R™, |v| = 1. Theorem 3 is proved. O

We complete this section by proving Proposition 2.
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Proof. Consider the trivialized vector bundle with the base | [,eq AT (7) U A~(7)
and a fiber R™. The Gauss map G extends to the map on the total space of this
bundle (z,v) — (G(z), B~'(z)v), where z = (A, ) is a point in the base, and v is a
vector in the fiber. There is a tautological one-dimensional vector subbundle with a
fiber spanned by vector A over a point (A, 7). This subbundle is obviously invariant
under the action above. Now note, that the quotient of the trivialized bundle over
tautological bundle is isomorphic to the tangent bundle over our base. Moreover,
it is easy to see, that the composition of the induced action in the total space of
the quotient bundle with fiberwise homotety with coefficient |B~*A|~! coincides with
the action of the differential DG under suggested identification. In fact, we just use
canonical isomorphism T'G;(m) & Hom(v,+1), where v is the tautological, and v+
is the normal bundle to the Grassmann manifold G;(m) = RP™"".

Multiplicative ergodic theorem guaranties existence of the flag of subspaces R™ =
E, D E;, DD E; D Ey41 =0 (depending on the point of the base) in almost all
fibers of the trivialized bundle, such that for any v € E;,v & E;4 the relation

-1
B(‘")
L u — o

10.5 lim -1

109 R T T
holds. Here by (V). ... 89 we denote Lyapunov exponents repeated without multi-
plicities.

From the proof of Theorem 3 it follows, that the one-dimensional fiber of the
tautological bundle belongs {and presumably coincides) to the subspace E (A, ).
Hence, the flag of subspaces E; induces the flag of the subspaces in the fiber of
the quotient bundle, with the same property 10.5. The only difference is that the
multiplicity of the smallest Lyapunov exponent would be reduced by one. The impact
of the homotety can be easilv computed since homotety commutes with our induced
cocycle in the quotient bundle (and, actually with any fiberwise linear mapping).
This impact is just a shift of all Lyapunov exponents by 8,. Theorem 2 is proved. [
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