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1 Introduction

Throughout the paper, we assume that k is an algebraically closed field and Λ is a finite dimensional
basic connected k-algebra. We denote by modΛ the category of finite dimensional left Λ-modules
and by ind Λ the full subcategory of mod Λ consisting of indecomposable Λ-modules. We denote by
|M | the length of a Λ-module M . We use the symbol ⊂ to denote proper inclusion. For any two
Λ-modules X and Y , Exti(X, Y ) always stands for Exti

Λ(X, Y ) for any i ≥ 0.

The Gabriel-Roiter measure has been introduced by Gabriel (under the name ’Roiter measure’,
[6]) in 1973, in order to clarify the induction scheme used by Roiter in his proof of the first Brauer-
Thrall conjecture. Ringel used the Gabriel-Roiter measure as a foundation tool for representation
theory of artin algebras ([8],[9]). So-called Gabriel-Roiter submodules of an indecomposable module
are indecomposable submodules with a certain maximality condition. Gabriel-Roiter submodules of
an indecomposable module Y always exist in case Y is not simple, and one of the most interesting
properties is that if Y is an indecomposable non-simple module and X is a Gabriel-Roiter submod-
ule of Y , then Y/X, the Gabriel-Roiter factor module, is indecomposable ([8],[9]). Therefore, any
indecomposable non-simple module Y is an extension of indecomposable modules. A known inter-
esting application of Gabriel-Roiter submodules is that they can be used to construct orthogonal
exceptional pairs to indecomposable modules over representation-directed algebras ([3],[4],[10]).

For each indecomposable module M , there exists a minimal right almost split map ⊕n
i=1Xi→M

with Xi indecomposable. We denote by α(M) = n the number of the indecomposable summands
and say M has n middle terms. We say M has an indecomposable middle term in case α(M) = 1.
In [4], we have shown that any non-injective Gabriel-Roiter factor module over a representation-
finite hereditary algebra has an indecomposable middle term. Our purpose of this paper is the
study of the Auslander-Reiten sequences terminating at Gabriel-Roiter factor modules over tame
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hereditary algebras. It turns out that all but finitely many Gabriel-Roiter factor modules have
indecomposable middle terms. More precisely, if Λ is of type Ãn, D̃n, then the Gabriel-Roiter factor
modules possessing decomposable middle terms have dimension vectors smaller than δ, the minimal
radical vector (Theorem 4.1,4.3); if Λ is of type Ẽ6,7,8, then any non-injective Gabriel-Roiter factor
module has indecomposable middle term (Theorem 4.7).

2 Preliminaries

In this section, we present some preliminaries which will be used later on. For details, we refer to
[1], [5], [7]. Let Λ = kQ be a path algebra with the underlying graph of type Ãn, D̃n, or Ẽ6,7,8.
The dimension vector for a Λ-module M is denoted by dim M . We call a module M sincere if
(dim M)i ≥ 1 for each i, and thin if (dim M)i ≤ 1 for each i.

We have a bilinear form 〈a, b〉 = aC−tb for all a, b ∈ Zn where C is the Cartan matrix and t

denotes the transpose of a matrix. Moreover, given two modules X, Y ∈ modΛ, we have

〈dim X, dim Y 〉 = dim Hom(X, Y )− dim Ext1(X, Y )

We denote by q the quadratic form on Z defined by q(a) = 〈a, a〉. Then q is positive semi-definite
with one-dimensional radical Zδ, that is, q(δ) = 0 and h = rδ for some r ∈ Z whenever q(h) = 0.
We list the underlying graphs of the quivers of tame hereditary algebras and indicate δ for each case.

Ãn : 1 1 · · · 1
==

1
��

==
1

1 1 · · · 1
��

D̃n : 1
==

1

2 2 · · · 2
��

==

1
��

1

Ẽ6 : 1

2

1 2 3 2 1

Ẽ7 : 2

1 2 3 4 3 2 1

Ẽ8 : 3

2 4 6 5 4 3 2 1

We have a decomposition of the Auslander-Reiten quiver ΓΛ for Λ into the preprojective part
P, the preinjective part I and the regular one R, where R is a sum of stable tubes Tλ of ranks
rλ ≥ 1, for λ ∈ P1(k) = k ∪ {∞}. A tube of rank 1 is called homogeneous and that of rank > 1 is
called exceptional. Note that Tλ is exceptional for at most three λ ∈ P1(k). For indecomposable
Λ-modules X, Y , if Hom(X, Y ) 6= 0 and X and Y do not belong to the same connected component
of ΓΛ, then X is preprojective or Y is preinjective. For each tube Tλ, we call the modules lying
on the mouth regular simple modules. For each regular simple module E ∈ Tλ, we denote by
E = E[1]→E[2]→E[3]→· · · the unique infinite path in Tλ of irreducible monomorphisms.

The defect of a Λ-module X is defined to be 〈δ,dim X〉 = −〈dim X, δ〉. We thus get a defect
function which is also denoted by δ : δ(X) = 〈δ,dim X〉. It is well-known that an indecomposable
Λ-module X is preprojective, (resp. regular, preinjective) if and only if δ(X) is negative (resp. zero,
positive).

Lemma 2.1 ([2]). Assume that X and Y are indecomposable preprojective modules such that the
defect of X is δ(X) = −1. If 0 6= f ∈ Hom(X, Y ), then f is injective.
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Proof. Since Im f is a submodule of Y , it is a preprojective module. We thus have −1 = δ(X) =
δ(Im f)+δ(Ker f). It follows that either δ(Im f) = 0 or δ(Ker f) = 0. But f 6= 0 implies δ(Ker f) = 0.
Therefore, Ker f = 0 and f is injective.

Corollary 2.2. Assume that Λ is of type Ãn.
(1) All non-zero maps between indecomposable preprojective modules are injective and the corre-
sponding factors are regular modules. In particular, all irreducible maps between indecomposable
preprojective modules are monomorphisms.
(2) All non-zero maps between indecomposable preinjective modules are surjective and the corre-
sponding kernels are regular modules. In particular, all irreducible maps between indecomposable
preinjective modules are epimorphisms.

Proof. Note that in this case, all indecomposable preprojective modules are of defect −1. (2) is dual
to (1).

3 The Gabriel-Roiter measure

In this section, we assume that Λ is a finite dimensional k-algebra. Let N1={1, 2, · · · } be the set
of natural numbers and P(N1) the set of all subsets of N1. We consider the set P(N1) as a totally
ordered set as follows: If I,J are two different subsets of N1, write I < J provided the smallest
element in (I\J) ∪ (J\I) belongs to J. Also we write I � J provided I ⊂ J and for all elements
a ∈ I, b ∈ J\I, we have a < b. We say that J starts with I provided I = J or I � J . It is easy to
check that:
(1) If I ⊆ J ⊆ N1, then I ≤ J .
(2) If I1 ≤ I2 ≤ I3, and I3 starts with I1, then I2 starts with I1.

For each Λ-module M , we denote by |M | the length of M . Let µ(M) be the maximum of the
sets {|M1|, |M2|, · · · , |Mt|} where M1 ⊂ M2 ⊂ · · · ⊂ Mt is a chain of indecomposable submodules
of M . We call µ(M) the Gabriel-Roiter measure (briefly GR measure) of M . If M is an
indecomposable Λ-module, then a chain of indecomposable submodules M1 ⊂ M2 ⊂ · · · ⊂ Mt = M

with µ(M) = {|M1|, |M2|, · · · |Mt|} is called a Gabriel-Roiter filtration (briefly GR filtration) of
M . We call an inclusion T ⊂ M of indecomposable Λ-modules a Gabriel-Roiter inclusion (briefly
GR inclusion) provided µ(M) = µ(T )∪{|M |}, thus if and only if every proper submodule of M has
Gabriel-Roiter measure at most µ(T ). In this case, we call T a Gabriel-Roiter submodule (briefly,
GR submodule) of M . Note that a chain M1 ⊂ M2 ⊂ · · · ⊂ Mt = M is a GR filtration if and only
if all the inclusions Mi ⊂ Mi+1 are GR inclusions. The factor module of a GR inclusion is called
Gabriel-Roiter factor (briefly GR factor). A short exact sequence 0−→T

f−→ M
g−→ X−→0 is

called a GR sequence provided f is a GR inclusion.

We now begin to present some basic properties of the Gabriel-Roiter measure. We fix a finite
dimensional k-algebra Λ.

Main Property (Gabriel). Let X, Y1, · · · ,Yt be indecomposable modules and assume that there
is a monomorphism f : X −→ ⊕t

i=1Yi. Then
(1) µ(X) ≤ max{µ(Yi)}.
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(2) If µ(X) = max{µ(Yi)}, then f splits.
(3) If max{µ(Yi)} starts with µ(X), then there is some j such that πjf is injective, where πj :
⊕t

i=1Yi −→ Yj is the canonical projection.

For the proof, we refer to [8].

From the Main Property, we obtain many interesting consequences of the Gabriel-Roiter inclu-
sions. We now collect some properties which will be useful later on.

Proposition 3.1. Let δ : 0−→T
l−→ M

π−→ M/T−→0 be a GR sequence. Then the following
statements hold:
(1) T is a direct summand of all proper submodules of M containing T .
(2) M/T is indecomposable.
(3) Any map to M/T which is not an epimorphism factors through π.
(4) All irreducible maps to M/T are epimorphisms.
(5) If all irreducible maps to M are monomorphisms, then l is an irreducible map.
(6) M/T is a factor module of τ−1T and M/T ∼= τ−1T if and only if δ is an Auslander-Reiten
sequence.

The proof can be found in [8] and [4].

Proposition 3.2. Assume that T is a GR submodule of M . Then there is an irreducible monomor-
phism T→X with X indecomposable and an epimorphism X→M .

Proof. Assume that l : T→M is the inclusion map and T
f=(fi)−→ ⊕r

i=1Xi is the minimal left almost
split map. Then we obtain the following commutative diagram:

T
f=(fi)//

l

��

⊕Xi

g=(gi)||zz
zz

zz
zz

M

Assume that gi is not an epimorphism for each i. The induced monomorphism (gifi) : T→⊕Xi→⊕i

Im gi implies µ(T ) ≤ max{µ(Im gi)} ≤ µ(T ) since T is a GR submodule of Y and Im gi is a proper
submodule of M . By the Main Property, we obtain that the map (gifi) splits, thus (fi) splits.
But f = (fi) is an almost split map. The contradiction implies there is an index j such that gj

is an epimorphism. Since |X| ≥ |M | > |T |, we obtain that fj is a monomorphism. Now we take
X = Xj .

Remark. We may also require that the composition of the maps T→X→M obtained in the
proposition is a monomorphism. This follows from the fact that the subset consisting of all non-
monomorphisms in Hom(T,M) is a subgroup, see [11] for details.

4 The Auslander-Reiten sequences terminating at Gabriel-

Roiter factor modules

In this section, we study the Auslander-Reiten sequences terminating at Gabriel-Roiter factor mod-
ules. Throughout the section, Λ will be a tame hereditary algebra.
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Theorem 4.1. Assume that Λ is of type Ãn. If 0→T→M→M/T→0 is a GR sequence, then
dim M/T ≤ δ. In particular, all but finitely many GR factor modules have indecomposable middle
term.

Proof. We keep in mind that any irreducible map to a GR factor is an epimorphism (Proposition
3.1). Corollary 2.2 implies there is no preprojective GR factor module. If X is an indecomposable
regular module but not regular simple, then there is always an irreducible monomorphism to X.
Therefore, a GR factor module is either a regular simple module or a preinjective module. If M/T

is regular simple, then dim M/T ≤ δ.

Since an indecomposable preinjective module always has decomposable middle term with exactly
two summands, we need to show that there are only finitely many preinjective GR factor modules.
If M/T is preinjective, we have the following two cases to consider: (1) T is preprojective, M is
regular and (2) T is regular, M is preinjective. In both cases, we get an irreducible monomorphism
T→X and an epimorphism X→M by Proposition 3.2. Note that X/T is a regular module. Since
X/T is a factor of irreducible monomorphism T→X and any irreducible map to X/T is surjective,
then X/T is a regular simple module. In particular dim X/T ≤ δ. The epimorphism X→M implies
(dim X)i ≥ (dim M)i, and hence (dim X/T )i ≥ (dim M/T )i. Therefore, we have dim M/T ≤ δ.
Since an indecomposable preinjective module is uniquely, up to isomorphism, determined by its
dimension vector, there are only finitely many indecomposable preinjective modules with dimension
vector < δ. Thus, all but finitely many GR factor modules have indecomposable middle term.

The next example shows that there exists non-injective preinjective Gabriel-Roiter factor module
which has decomposable middle term.

Example. Let Λ = kÃ2,2 with Ã2,2 = 2
��=

=

1

@@��

��=
= 4

3

@@��

. We list the components of the AR-quiver

in the following (only one exceptional regular component is presented here since the other one is
”symmetric”):

preprojective component:
1

0 1
0

$$JJJ
J

��

1
1 2

2

$$JJJ
J

//
3

2 3
2

· · ·

0
0 1

0

::tttt

$$JJJ
J

1
1 2

1

::t
t

$$J
J

1
0 1

1

OO

��

2
1 2

2
· · ·

0
0 1

1

::tttt
OO

2
1 2

1

::tttt

//
2

2 3
3

· · ·

preinjective component: · · ·
3

3 2
2

//
1

2 1
2

$$JJJ
J

��

1
1 0

0

$$JJJ
J

· · ·
2

2 1
2

::tttt

$$JJJ
J

1
1 0

1

::t
t

$$J
J

1
2 1

1

OO

��

0
1 0

0

· · ·
2

3 2
3

//
2

2 1
1

::tttt
OO

0
1 0

1

::tttt
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...
...

...

•
''NNNNNNN •

''NNNNNNN •

2
2 2

2

$$JJJ
J

77ppppppp
2

2 2
2

$$JJJ
J

77ppppppp

1
1 1

2

::tttt

$$JJJ
J

2
2 2

1

::tttt

$$JJJ
J

1
1 1

2

1
1 1

1

$$JJJ
J

::tttt
1

1 1
1

$$JJJ
J

::tttt

1
1 1

0

::tttt
0

0 0
1

::tttt
1

1 1
0

...

��
3

3 3
3

JJ

��
2

2 2
2

LL

��
1

1 1
1

LL

We now show the non-injective preinjective module τI1 =
1

1 0
1

is a GR factor module.

Since all irreducible maps in the preprojective component are monomorphisms, all GR inclusions
of preprojective modules are irreducible maps (3.1). We can easily calculate the GR measures for

preprojective modules. Set E1[1] =
1

1 1
0

, E2[1] =
0

0 0
1

. These are two regular simple

modules. Clearly, P2 =
1

0 1
0

is, up to isomorphism, the unique GR submodule of both E1[1]

and E2[2], whereas E1[2] contains E1[1] as a GR submodule. Thus we have µ(E2[2]) = {1, 2, 4}
and µ(E1[2]) = {1, 2, 3, 4}. It is easy to see that τ−1P4 =

1
0 1

1
is a GR submodule of E2[3]

and any homogeneous regular simple module. Thus µ(E2[3]) = {1, 2, 3, 5} and µ(H1) = {1, 2, 3, 4}.
Here we denote by H1 any homogeneous regular simple module. These are the GR measures for all

indecomposable modules whose dimension vectors are smaller than X =
2

2 1
2

.

Corollary 2.2 implies that the GR submodules of X are regular modules. An easy calculation
shows all homogeneous regular simple modules are submodules of X, thus they are GR submodules
by comparing the GR measures. Thus, µ(X) = {1, 2, 3, 4, 7} with GR factor module τI1.

We now introduce some notations. Assume that Λ is of type D̃n or type Ẽ6,7,8. Fix a vertex
j ∈ Q0, a sectional sequence to j is a sequence of vertices i1, i2, · · · , is = j such that ik and
ik+1 are connected by an edge. The sectional sequence to j is complete if i1 is an ending vertex
of Q. If M = τ−rPj is an indecomposable preprojective module, then we say a sectional path
Xi1→Xi2→· · ·→Xis

= M is complete if τ rkXik
= Pik

and ii, i2, · · · , is is a complete sectional
sequence to j. A sectional path X1→X2→· · ·Xs = M to M is said to be maximal if any path
Y→X1→· · ·Xs = M of irreducible maps is not a sectional path for any Y . Then, a maximal
sectional path X1→X2→· · ·→Xs = M being not complete implies that X1 is projective.

For each indecomposable preprojective module M , we denote by (→M) the subquiver of the AR
quiver consisting of all maximal sectional paths to M . We say (→M) is complete if each maximal
sectional path to M is complete. We may also define (M→) for a preprojective module M . Note that
(M→) is complete if M is not projective. Similarly, we have (N→) and (→N) for an indecomposable
preinjective module and (→N) is complete if N is not injective.

The following lemma will be used in the proof of the theorems that follow:
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Lemma 4.2. Let

0→A1

(
f1
g1

)

→ B1 ⊕A2
(h1,f2)→ B2→0

and

0→A2

(
f2
g2

)

→ B2 ⊕A3
(h2,f3)→ B3→0

be two exact sequences. Then the sequence

0→A1

(
f1

g2g1
)

→ B1 ⊕A3
(h2h1,−f3)→ B3→0

is exact.

Proof. Straightforward.

Theorem 4.3. Assume that Λ is of type D̃n and N is a GR factor module.
(1) If N is preprojective or regular, then α(N) = 1.
(2) If N is preinjective with α(N) ≥ 2, then dim N ≤ δ.
(3) All but finitely many GR factor Λ-modules have indecomposable middle terms.

Proof. We only prove (a) and (b), because the statement (c) easily follows from (a) and (b),

Let 0→T→M→N = M/T→0 be a GR sequence. If M/T is regular, then it is a regular simple
module and thus α(N) = 1. Since there are only n + 1 indecomposable injective module and any
indecomposable injective module is a thin module, we may assume that N is not injective. Clearly,
for any indecomposable non-injective module X with α(X) = 3 or 4, there exists an irreducible
monomorphism ending at X. As an upshot, we assume that α(N) ≤ 2 and N is neither regular nor
injective.

We first consider the case that N = M/T is a preprojective module. If α(N) = 2, then we get
the following full subquiver of the AR quiver:

Xt+1

##FF
FF

Y1

##GGGGG Yt
s

##HHHHH

Y ′
0

// Xt

;;xxxxx
//

##FF
FF

Y ′
1

// • · · · •

;;vvvvvv //

##HHHHH Y ′
t

h // Zt

Xt−1

;;xxxxx

G
G

Zt−1

;;vvvvv

X1 g

""DDD
D Z1

v
v

N

<<yyyy

""EEE
E

V1

f <<zzzz
W1

H
H

Vr−1

w
w

##GG
GG

G
Wr−1

##HH
HH

U ′
0

// Vr

;;xxxx

##FFF
FF

// U ′
1

// • · · · •

;;vvvvv

##HHH
HHH

// U ′
r

// Wr

Vr+1

;;xxxx
U1

;;xxxxx
Ur

;;vvvvv
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First assume that the maximal sectional path Xt+1→Xr · · ·→X1→N is complete. Then Xt+1 is
obviously a preprojective module with defect −1. It follows from Lemma 2.1 that the composition
of the irreducible maps Xt+1→· · ·→X1→N is a monomorphism. Then it factors through M which
implies M ∼= Xi for some 1 ≤ i ≤ t. If the sectional path Xt+1→Xr · · ·→X1→N is not complete
(Xt+1 is zero), then some Xj is projective and by the property of projective modules, the composition
Xj→· · ·→X1→N factors through M . We obtain again that M ∼= Xi for some 1 ≤ i ≤ j. By the
same reason, we have M ∼= Vs for some 1 ≤ s ≤ r. This contradiction tells N is not a GR factor.
Therefore a preprojective GR factor has an indecomposable middle term and (a) follows.

Now we show (b) and assume that N = M/T is a preinjective module with α(N) = 2. We use
the above quiver and consider it as a full subquiver of the preinjective component.

Since N is not injective, we have that (→N) is complete, thus Xt+1 6= 0. If the composition of
the irreducible maps Xt+1→· · ·→X1→N is a monomorphism, then it factors through M . Therefore
M ∼= Xi for some 1 ≤ i ≤ t. In particular, M and N both have defect 2. Then T has defect 0
and thus it is a regular module. Thus the unique irreducible monomorphism T→R satisfies that
there is an epimorphism R→M . It follows that (dim R)i ≥ (dim M)i and hence, (dim R/T )i ≥
(dim M/T )i = (dim N)i for each i. Note that R/T is a regular simple module with dimension vector
dim R/T ≤ δ. Thus, dimN < δ.

Now we assume that the compositions Xt+1(Y ′
0)→Xt→· · ·→X1→N and Vr+1(U ′

0)→Vr→· · ·V1→N

are all epimorphisms. We first assume that Zt,Wr are not zero. Starting with two short exact se-
quences:

0→Xt+1→Y ′
1 ⊕N→Z1→0

0→Y ′
1→Y2 ⊕ Z1→Z2→0

we obtain the following short exact sequence by using Lemma 4.2:

{
0→Xt+1→N ⊕ Yt→Zt→0 if t is even
0→Xt+1→N ⊕ Y ′

t→Zt→0 if t is odd

So |Zt| − |Yt| = |N | − |Xt+1| < 0 or |Zt| − |Y ′
t | = |N | − |Xt+1| < 0. It follows that Yt(Y ′

t ), Zt are
injective. By the same reason, Yt, Y

′
t , Zt, Ur, U

′
r,Wr are all injective. An easy calculation shows that

(dim N)j = dim Hom(N, Ij) ≤ 1 for all j ∈ Q0.

Now assume that Zt or Wr is zero, then some Zi or Wj is injective. An easy calculation shows
that dim Hom(N, Ij) ≤ 2 for all non-extending vertices j ∈ Q0 and dim Hom(N, Ii) ≤ 1 for all
extending vertices i ∈ Q0. Hence dim N ≤ δ.

Note that there are only finitely many indecomposable preinjective modules whose dimension
vectors are smaller than δ. The proof is complete.

Lemma 4.4. Let Λ be a hereditary algebra and 0→T→M→M/T→0 be a GR sequence such that
M/T is not injective. Let 0→τ(M/T )→X→M/T→0 be an Auslander-Reiten sequence. Then
|τ−1M | ≥ |τ−1X| and equality holds if and only if X ∼= M .

Proof. Since M/T is not injective, by using τ−1 ∼= Ext1(D−,Λ), we get the following two short exact
sequences:

0→M/T→τ−1X→τ−1(M/T )→0
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0→τ−1T→τ−1M→τ−1(M/T )→0

Therefore, |τ−1M | = |τ−1X|− |M/T |+ |τ−1T | ≥ |τ−1X|, and equality holds if and only if |τ−1T | =
|M/T |. Recall that if T is a GR submodule of M , then M/T is a factor module of τ−1T and
τ−1T ∼= M/T if and only if 0→T→M→M/T→0 is an Auslander-Reiten sequence (3.1). Thus,
|τ−1T | = |M/T | if and only if τ−1T ∼= M/T , if and only if M ∼= X.

Lemma 4.5. Assume that Λ is of type Ẽ6,7,8 and Y is an indecomposable preprojective Λ-module
with α(Y ) ≥ 2. Then there is an irreducible monomorphism ending at Y .

Proof. We may assume that Y is not projective. Then (Y→) is complete and we can find in the
AR quiver a complete sectional path Y→Y1→· · ·→Yr+1 with α(Yi) = 2 for all 1 ≤ i < r + 1 and
α(Yr+1) = 1

Y

""EE
EE

X

f =={{{{

!!B
BBB

Y1

C
C

X1

==zzzz

C
C Yr

""FFF
F

Xr

==||||
Yr+1

The irreducible map f : X→Y is an epimorphism implies the irreducible map Xr→Yr is an epimor-
phism. This contradiction shows that f is injective.

Lemma 4.6. Assume that 0→T→M→M/T→0 is a GR sequence over a representation-finite hered-
itary algebra of type An. Then M/T is a uniserial module.

See [4] for a proof.

Theorem 4.7. Assume that Λ is of type Ẽ6,7,8 and 0→T→M→M/T→0 is a GR sequence of Λ-
modules. Then α(M/T ) = 1 if M/T is not injective.

Proof. We give a detailed proof for Ẽ8. The proofs for the cases Ẽ6 and Ẽ7 are similar.

If M/T is a preprojective module with α(M/T ) ≥ 2, we can always obtain an irreducible
monomorphism to M/T by Lemma 4.5. Hence α(M/T ) = 1.

Now we assume that M/T is a preinjective module. We assume for a contradiction α(M/T ) ≥ 2.
If α(M/T ) = 3, there is an irreducible monomorphism to M/T since M/T is not injective (Note
that for Ẽ6, we may not get an irreducible monomorphism to M/T . But we can get irreducible
monomorphisms Z1→Z2→M/T such that the composition is monomorphism). We thus consider
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the case α(M/T ) = 2 and look at the following subquiver of the AR quiver:

X3

!!DDD
D •

$$IIIIII

X2

!!DDD
D

==zzzz
•

&&MMMMMMM

X1

::uuuuuu
//

$$III
II

U // V

&&MMM
MMM

X

88qqqqqqq
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&&MMM
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::uuuuu

$$IIIII N

88qqqqqq

&&MMM
MMM τ−1N
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==zzzz

!!CCC
C Y

gy
88qqqqqqq

&&LLL
LLL τ−1Y

&&

88qqqqq

Z3

=={{{{

!!B
BB

B Y1

$$HHH
HH

g ::uuuuu
τ−1Y1

τ−1g 88rrrr

%%

τ−2Y1

Z4

>>||||
Y2

h ==||||
τ−1Y2

99rrrr
τ−2Y2

99

(1). We use above quiver and assume that M/T = X. Since X is not injective, we easily obtain
a short exact sequence 0→Z4→X→N→0 by using Lemma 4.2. In particular, the composition of
irreducible maps Z4→· · ·→Z1→X is a monomorphism. It follows that M ∼= Zi for some 1 ≤ i ≤ 3.
On the other hand, again by Lemma 4.2, we have a short exact sequence 0→X3→X ⊕ U→V→0.
Thus |X| − |X3| = |V | − |U | > 0 if U is not injective. In this case, the composition of irreducible
map X3→X2→X1→X is a monomorphism. Again, M ∼= Xj for some 1 ≤ j ≤ 2. This contradiction
implies that M/T = X is not a GR factor module. If U is injective, then V and τ−1X are injective.
Since the irreducible map Z1→X is surjective (3.1), we have that N (or τ−1Y , or τ−2Y1) is injective.
(Namely, the irreducible map Z1→X is surjective implies gy is surjective. Since τ−1Y = 0 implies
N is injective, we may assume that τ−1Y 6= 0. It follows that τ−1g is surjective. If τ−1Y is not
injective, we have τ−2Y1 6= 0 and the irreducible map τ−2Y2→τ−2Y1 is an epimorphism. It follows
that τ−2Y1 and τ−2Y2 are both injective modules.) Thus the original quiver of Ẽ8 is of the following
form with vertex 5 (or 6,7) a source.

1OO

2 3 4 oo 5 6 7 8 9

We can easily get (dim M)i = dim Hom(M, Ii) ≤ 1 for all i. Therefore we may view M and
M/T = X as kA8-modules, where A8 is obtained from the graph Ẽ8 by deleting the vertex 1.

By the above observation, X = M/T is not a uniserial module. This contradicts Lemma 4.6 .

(2). Now we consider the case that M/T = N as in the above full subquiver of the AR quiver.

As before, the composition gygh is injective and hence, M lies on the sectional path Y2→Y1→Y→N .
Thus M ∼= Y or M ∼= Y1. If M ∼= Y , then |τ−1M | = |τ−1Y1| < |τ−1Y |+ |τ−1X| which contradicts
Lemma 4.4. So we assume that M ∼= Y1.

Case 1. τ−1Y1 and τ−1Y2 are both injective.

In this case, we have τ−1Y and τ−1N are injective modules and the irreducible map τ−1Y1
τ−1g→ τ−1Y

is an epimorphism. Then |τ−1Y1| − |τ−1Y | = 1 since τ−1Y1 is injective. X is not injective implies
τ−1X 6= 0. Also the irreducible map τ−1X→τ−1N is an epimorphism since Y1→τ−1Y2 is surjective.
Thus |τ−1X| > |τ−1N | 6= 0 and |τ−1M | = |τ−1Y1| = |τ−1Y |+ 1 < |τ−1Y |+ |τ−1X|.
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Case 2. τ−1Y1 is injective but τ−1Y2 is not.
In this case, there is an irreducible map from τ−1Y1 to the simple injective module τ−2Y2 which
means τ−1Y1/socτ−1Y1 has two direct summands. So |τ−1Y1| − |τ−1Y | = |τ−2Y2|+ 1 = 2. we have
|τ−1M | = |τ−1Y1| = |τ−1Y |+ 2 ≤ |τ−1Y |+ |τ−1X| since τ−1X is not simple.

Case 3. τ−1Y1 is not injective.
In this case, τ−2Y2 and τ−2Y1 are not zero. gy is an epimorphism implies the irreducible map
τ−2Y2→τ−2Y1 is an epimorphism and hence τ−2Y2, τ−2Y1 are injective modules. |τ−1Y1|−|τ−1Y | =
|τ−2Y2| − |τ−2Y1| = 1. Therefore |τ−1M | = |τ−1Y1| = |τ−1Y |+ 1 < |τ−1Y |+ |τ−1X|.

Note that the above three cases are all the possibilities since gy is an epimorphisms. In all the
cases, we get |τ−1M | ≤ |τ−1Y |+ |τ−1X| which contradicts Lemma 4.4.

(3). Now we consider the case that M/T = Y in the above picture. Then Y is not injective
implies 0→Y2→Y→τ−Y1→0 is a short exact sequence. In particular the composition of irreducible
maps gh : Y2→Y is a monomorphism, thus factors through M . It follows that M ∼= Y1. On the
other hand, |τ−M | = |τ−Y1| < |τ−Y1|+ |N | since n 6= 0, and we get a contradiction.

(4). In case M/T = Y1, M/T is not injective implies that the irreducible map Y2→Y1 is a
monomorphism, a contradiction. Thus M/T is not a GR factor. For the same reason, M/T cannot
be at the position of X2.

This finishes the proof.
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