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UNIVERSAL LEFSCHETZ FIBRATIONS
AND LEFSCHETZ COBORDISMS

DANIELE ZUDDAS

Abstract. We construct universal Lefschetz fibrations, that are defined in analogy
with the classical universal bundles. We also introduce the cobordism groups of Lef-
schetz fibrations, and we see how these groups are quotient of the singular bordism
groups via the universal Lefschetz fibrations.
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Topological Lefschetz fibrations over a surface have been given considerable atten-
tion in the last decade, because of their applications to symplectic and contact topo-
logy, see for example [8, 24, 1, 19]. This led to several generalizations, including achiral
Lefschetz fibrations and their relations with branched coverings and braided surfaces
[3, 31, 14], broken Lefschetz fibrations [15, 4, 5], and Morse 2-functions [17, 18].

We are going to further generalize Lefschetz fibrations by allowing the base man-
ifold to have arbitrary dimension. The singular image of a Lefschetz fibration is a
codimension-2 submanifold of the target manifold, and the monodromy is a homo-
morphism to the mapping class group of the fiber. Actually, to understand the larger
amount of information that a generalized Lefschetz fibration carries with respect to a
standard one (that is, over a surface), we need several types of monodromies, each one
capturing some aspects, but not others.

Universal Lefschetz fibrations have been introduced in [32] in analogy with the
universal bundles, under the additional assumption for the base surface to have non-
empty boundary. The purpose of the present paper is twofold: to relax this restriction
by allowing the base surface to be closed, and to start building a (co)bordism theory
for Lefschetz fibrations, along the lines of the classical bordism theory. Main results
include: a characterization of universal Lefschetz fibrations in dimension two (The-
orem 16) and three (Theorem 19), an explicit construction of these fibrations, and an
application to Lefschetz cobordism groups (that are defined in Section 4), proving that
these groups are quotients of certain singular bordism groups in dimension two and
three (Proposition 27 and Corollary 28). We will give some computations, and further
developments, in a forthcoming paper.

Throughout this paper all manifolds and maps are assumed to be smooth. We con-
sider only oriented compact manifolds and (local) di↵eomorphisms that preserve the
orientations, if not di↵erently stated.
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1. Definitions, preliminaries and notations

By the standard definition, a Lefschetz fibration is, roughly speaking, a smooth
map over a surface with only non-degenerate (possibly achiral) complex singularities.
In order to state our results we propose the following generalization.

For f : V ! M we denote by eAf ⇢ V the critical set of f , and by Af = f( eAf) the
critical image of f .

Definition 1. Let M and V be manifolds of dimensions respectively m+2 and m+2k
with m > 0 and k > 2. A Lefschetz fibration f : V ! M is a map such that:

(1) near any singular point ã 2 eAf , f is locally equivalent to the map f0 : Rm
+ ⇥

Ck ! Rm
+ ⇥ C defined by f0(x, z1, . . . , zk) = (x, z2

1 + · · · + z2
k) for x 2 Rm

+ =
{(x1, . . . , xm) 2 Rm | xm > 0} and (z1, . . . , zk) 2 Ck;

(2) f| : eAf ! M is an embedding;
(3) f| : V � f�1(Af) ! M �Af is a locally trivial bundle with fiber a manifold F

(the regular fiber of f).

Note that in case Af = 6O, f is an honest bundle.

Definition 2. We call f| : V �f�1(Af) ! M�Af the regular bundle associated with
f .

We see below that there is also a singular bundle associated with f . The following
proposition is a simple consequence of the definition.

Proposition 3. Let f : V ! M be a Lefschetz fibration. Then

(1) eAf is a proper submanifold of V of dimension m;
(2) Af is a proper submanifold of M of codimension two;

(3) f| : eAf ! Af is a di↵eomorphism;
(4) the regular fiber F ⇢ V is a submanifold of dimension 2k � 2.

For m = 0, f is an ordinary (possibly achiral) Lefschetz fibration. So, a generalized
Lefschetz fibration looks locally as an ordinary one times an identity map. Throughout
the paper we assume k = 2. This implies that F is a surface.

In general, Af can be non-orientable. However, if Af is orientable, by fixing an
orientation on it we can define the positive and the negative singular points and values:
ã 2 eAf is a positive singular point of f if the local coordinates (x, z1, z2) considered in

the definition can be chosen to be compatible with the orientations of V and of eAf .
Otherwise, ã is said to be a negative singular point. Accordingly, a = f(ã) is said to be
a positive or negative singular value. This positivity or negativity is locally invariant,
hence the connected components of Af inherit it.

Two Lefschetz fibrations f1 : V1 ! M1 and f2 : V2 ! M2 are said to be equivalent if
there are orientation-preserving di↵eomorphisms ' : V1 ! V2 and  : M1 ! M2 such
that  � f1 = f2 � '. This implies that  (Af1) = Af2 and that '( eAf1) = eAf2 . If Af1

and Af2 are oriented, we assume also that  | : Af1 ! Af2 is orientation-preserving. If
f1 and f2 are equivalent, we make use of the notation f1

⇠= f2.
Let f : V ! M be a Lefschetz fibration with regular fiber F = Fg,b, the oriented

surface of genus g with b boundary components, and let N be a n-manifold.

Definition 4. A map q : N ! M is said to be f -regular if q and q|@N are transverse
to f .
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If q : N ! M is f -regular then eV = {(x, v) 2 N ⇥ V | q(x) = f(v)} is a (n + 2)-
manifold and the map ef : eV ! N defined by ef(x, v) = x is a Lefschetz fibration. The
map eq : eV ! V defined by eq(x, v) = v sends each fiber of ef di↵eomorphically onto a
fiber of f , hence the regular fiber of ef is still F . Moreover, we have A ef = q�1(Af).

Definition 5. We say that ef is the pullback of f by q. We denote it by ef = q⇤(f).

Let L(F ) be some class of Lefschetz fibrations with fiber F .

Definition 6. We say that a Lefschetz fibration u : U ! M with fiber F is L(F )-
universal (or universal with respect to L(F )) if (1) for any f : V ! N that belongs to
L(F ) there exists a u-regular map q : N ! M such that q⇤(u) ⇠= f , and (2) any such
pullback for an arbitrary q : N ! M belongs to L(F ), up to equivalence.

In other words, u is L(F )-universal if and only if the class L(F ) coincides with the
class of pullbacks of u obtained by those maps q : N ! M such that N is the base of
a Lefschetz fibration that belongs to L(F ).

Monodromies. Now we consider connected Lefschetz fibrations. The non-connected
ones con be easily handled by considering the restrictions to the connected components.

Let Mg,b be the mapping class group of Fg,b, namely the group of self-di↵eomorphisms
of Fg,b which keep @Fg,b fixed pointwise, up to isotopy through such di↵eomorphisms.

Let also bMg,b be the general mapping class group of Fg,b, whose elements are the isotopy
classes of orientation-preserving self-di↵eomorphisms of Fg,b (without assumptions on
the boundary).

The regular bundle associated with f : V ! M has a monodromy homomorphism
b!f : ⇡1(M �Af) ! bMg,b.

Definition 7. We call b!f the bundle monodromy of f .

For a codimension-2 submanifold A ⇢ M , let N(A) be a compact tubular neigh-
borhood of A in M , endowed with its disk bundle structure B2 ,! N(A) ! A. Take
the base point ⇤ 2 M � N(A), and let N(⇤) ⇢ M � N(A) be a small ball around ⇤.
We join N(⇤) with each component of N(A) by a narrow 1-handle, and let N(A) be
the result. By construction, the manifold N(A) is uniquely determined, up to di↵eo-
morphisms, by the normal bundle of A in M , although its embedding in M in general
is not unique. If A is connected, we have N(A) ⇠= N(A).

We denote by µ1(M,A) the subgroup of ⇡1(M�A) generated by the meridians of A
in M . Note that µ1(M,A) is the kernel of the homomorphism induced by the inclusion
i⇤ : ⇡1(M �A) ! ⇡1(M), so it is a normal subgroup.

Let f : V ! M be a Lefschetz fibration, and let f̄ : V ! N(Af) be the restriction
of f over N(Af).

Taking a fiber of N(Af) ! Af , that is a transverse 2-disk B2, the restriction of f over
it is a Lefschetz fibration f 0 : V 0 ! B2 with only one singular point. So, its monodromy
is a Dehn twist [19] about a curve c ⇢ F , which is said to be a vanishing cycle. Thus,
the singular fiber is homeomorphic to F/c. The vanishing cycles that correspond to
di↵erent components of Af might be topologically di↵erent as embedded curves in F .
However, the local model of f near a singular point implies that the restriction of f
over a component of Af is a locally trivial bundle over that component with fiber F/c
(the total space is not a topological manifold).
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Definition 8. We call f| : f�1(Af) ! Af the singular bundle associated with f .

Note that the singular fiber F/c is homeomorphic to a (possibly disconnected) sur-
face Fc, with two points p1 and p2 identified. The surface Fc is obtained by surgering F
along c. Moreover, any self-homeomorphism of F/c lifts to a unique homeomorphism
of (Fc, {p1, p2}). If c is non-separating, then Fc

⇠= Fg�1,b is connected, so in this case

the monodromy of the singular bundle is a homomorphism !1
f : ⇡1(Af) ! bMg�1,b,2,

where bMg,b,n denotes the general mapping class group of Fg,b with n marked points
(mapping classes are allowed to permute the marked points and the boundary com-
ponents). In general, we have to consider the general mapping class group of a surface
with two marked points and with at most two components (each one containing a
marked point).

Definition 9. We call !1
f the singular monodromy of f . If Af is not connected, we

intend that !1
f is the collection of the singular monodromies of the components of Af .

Remark 10. If the vanishing cycles are all non-separating and g > 2, the singular
bundle is determined by the singular monodromy.

We already know that the monodromy of a meridian of Af in N(Af) is a Dehn twist.
Then, there is a canonical homomorphism !f : µ1(N(Af), Af) ! Mg,b that sends a
meridian to the corresponding Dehn twist.

Definition 11. We call !f the Lefschetz monodromy of f .

We say that f is an allowable Lefschetz fibration if the monodromy of an arbitrary
meridian of Af is a Dehn twist about a curve c ⇢ F that is homologically essential in
F . For the sake of simplicity, we assume that the Lefschetz fibrations we consider are
allowable, if not di↵erently stated. However, most results of this paper hold also in the
non-allowable case, by suitable modifications.

Consider the canonical homomorphism � : Mg,b ! bMg,b that sends a mapping class

['] 2 Mg,b to the mapping class ['] 2 bMg,b.
The Lefschetz and the bundle monodromies are related by the following commutative

diagram

µ1(N(Af), Af)
i∗ π1(M − Af)

Mg,b
β

Mg,b

ωf ωf

where i⇤ is induced by the inclusion i : N(Af)�Af ,! M �Af .
There is also a compatibility condition between the bundle monodromy and the

singular monodromy. Roughly speaking, the monodromy of a loop contained in N(Af)
must preserve the vanishing cycle associated to this component.

Let ⇧1(F ) = ⇡1(Di↵(F ), id). We say that F is exceptional if ⇧1(F ) 6= 0. It is
known that Fg,b is exceptional if and only if (g, b) 2 {(0, 0), (0, 1), (0, 2), (1, 0)}, see
for example [20]. However, an allowable Lefschetz fibration with fiber the disk or the
sphere is necessarily an honest bundle, and for this reason we assume that the fiber
is not the sphere or the disk. So, the only exceptional fibers we admit are the torus
and the annulus. Moreover, for any (g, b) 6= (0, 0), ⇡i(Di↵(Fg,b), id) = 0 for all i > 1,
⇧1(T 2) ⇠= Z2, and ⇧1(S1 ⇥ I) ⇠= Z, see [9, 10, 20].
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In order to state our results, we need a further invariant of Lefschetz fibrations.
Consider an element [↵] 2 ⇡2(M�Af), ↵ : S2 ! M�Af , and let ef = ↵⇤(f) : eV ! S2.

It follows that ef is a locally trivial F -bundle. Decompose S2 = D1 [@ D2 as the union
of two disks D1 and D2, and trivialize ef over Di, that is ef�1(Di) ⇠= Di ⇥ F . The
two trivializations di↵er by an element ⌧ 2 ⇧1(F ) along @D1 = @D2

⇠= S1. This
defines a homomorphism !s

f : ⇡2(M � Af) ! ⇧1(F ), such that !s
f([↵]) = ⌧ . This

homomorphism is nothing but the one that fits in the homotopy exact sequence of the
associated Di↵(F )-bundle over M �Af .

Definition 12. We call !s
f the structure monodromy of f .

Now, consider the pullback ef = q⇤(f), with f : V ! M and q : N ! M being base
point preserving. Let q⇤ : ⇡i(N) ! ⇡i(M), and let q|⇤ : ⇡i(N �A ef) ! ⇡i(M �Af) and
q|⇤ : ⇡1(A ef) ! ⇡1(Af) be the homomorphisms induced by the restrictions q| : N�A ef !
M � Af and q| : A ef ! Af (we consider the collection of these homomorphisms when
A ef is not connected).

The following proposition is simple and the proof is left to the reader.

Proposition 13. Suppose that q(N(A ef)) ⇢ N(Af). We have q⇤(µ1(N(A ef), A ef)) ⇢
µ1(N(Af), Af), ! ef = !f � q|⇤, b! ef = b!f � q|⇤, and !sef = !s

f � q|⇤. Moreover, the singular

bundle of ef is the pullback of the singular bundle of f by q|A ef , hence !1ef = !1
f � q|⇤.

The twisting operation. Consider a Lefschetz fibration f : V ! M with exceptional
fiber F . Let  2 ⇧1(F ). We are going to construct a new Lefschetz fibration f : V !
M . Consider an oriented 2-disk D ⇢ M � Af , and take a tubular neighborhood
C ⇥B3 of C = @D. Fix the (isotopically unique) trivialization of f over C ⇥B3 that
extends over D. This determines a fiberwise embedded copy of C ⇥B3⇥F in V , that
is the preimage of C ⇥ B3. Now, twist f over C by means of  . To do this, remove
Int(C⇥B3⇥F ) from V , and glue it back di↵erently by composing the original attaching
di↵eomorphism to the right with  : C ⇥ B3 ⇥ F ! C ⇥ B3 ⇥ F which is defined
by  (x, y, z) = (x, y, x(z)), where (up to some identifications)  : C ! Di↵(F ),
 : x 7!  x, satisfies  x0 = idF for some x0 2 C.

What we get is a new Lefschetz fibration f : V ! M . We call f the twisting of f
by  . The twisting operation has been considered by Moishezon in [28] as one of the
main tools needed to classify positive genus-1 Lefschetz fibrations over the 2-sphere.

Remark 14. By results of Moishezon [28, Part II] the twisting of f is equivalent to
f if !f is surjective.

Theorem 15. Suppose is given the datum L = (M,A,F,!, b!, ⇣), where A ⇢ M is a
codimension-2 submanifold, F is a not exceptional connected surface, ! : µ1(M,A) !
M(F ) and b! : ⇡1(M � A) ! bM(F ) are two homomorphisms that fit in the above
commutative diagram, and ⇣ is a bundle over A with fiber F/c, c ⇢ F a simple
curve that depends on the component of A, such that ⇣ is compatible with ! andb! in the above sense. Then there exists a Lefschetz fibration fL : VL ! ML with
fiber F , uniquely determined by L up to equivalence, such that AfL = A, !fL = !,b!fL = b!, and having singular bundle equivalent to ⇣. Moreover, for another datum
L0 = (M 0, A0, F 0,!0, b!0, ⇣ 0) we have fL

⇠= fL0 if and only if ⇣ ⇠= ⇣ 0 and there are
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di↵eomorphisms  : (M,A, ⇤) ! (M 0, A0, ⇤0) and h : F ! F 0 such that !0 � ⇤ = h⇤ �!
and b!0 � ⇤ = h⇤ � b!, where  ⇤ : ⇡1(M �A) ! ⇡1(M 0�A0) is the isomorphism induced
by  |M�A, and h⇤ is the canonical isomorphism induced by h between the relevant

mapping class groups h⇤ : M(F ) ⇠= M(F 0) or h⇤ : bM(F ) ⇠= bM(F 0). If F is exceptional,
the same holds up to twistings.

Actually, this is a consequence of know general facts in fiber bundles theory, so we
give only a sketch of the proof.

Proof (sketch). By the classical theory of fiber bundles, b! determines uniquely an F -
bundle over M � IntN(A), see for example [13, Chapter 5]. On the other hand, !
and ⇣ determine a Lefschetz fibration over N(A). Glue these fibrations by a suitable
fibered di↵eomorphism. This proves the existence. For the unicity, notice that any such
fibered di↵eomorphism extends to the interior of N(A). Indeed, this is well-known in
dimension two, and working on the tubular neighborhood N(A) thought as a disk
bundle B2 ,! N(A) ! A, one can adapt the two-dimensional case in a fiberwise
fashion. Of course, the only ambiguity occurs when F is exceptional, and this can be
handled by a suitable twisting. ⇤

Note that the twisting action of ⇧1(F ) is transitive on the set of possible structure
monodromies for a fixed (M,A,F,!, b!). However, the structure monodromy cannot
be used to resolve the ambiguity of the twisting action, as it can be easily seen by
considering genus-1 Lefschetz fibrations over a closed surface.

Hurwitz systems and the monodromy sequence. By a Hurwitz system for a codi-
mension-2 submanifold A ⇢ M we mean a sequence (⇠1, . . . , ⇠n; ⌘1, . . . , ⌘k) where
{⇠1, . . . , ⇠n} are meridians of A that normally generate µ1(N(A), A), and {⌘1, . . . , ⌘k}
are generators for ⇡1(M �A) which are non-trivial in ⇡1(M).

Once a Hurwitz system is fixed, we can represent the Lefschetz and the bundle mono-
dromies of f by a sequence of Dehn twists and mapping classes (�1, . . . , �n; �1, . . . , �k),
that we call the monodromy sequence of f . The elements of the monodromy sequence
are given by �i = !f(⇠i) 2 Mg,b, and �i = b!f(⌘i) 2 bMg,b.

Note that the Dehn twist �i is determined by a curve ci ⇢ F , and by its sign. The
curves (c1, . . . , cn) are the vanishing cycles of f with respect to the given Hurwitz
system.

2. The characterization theorems

We denote by Cg,b the finite set of equivalence classes of homologically essential
curves in F = Fg,b up to orientation-preserving di↵eomorphisms of F . Note that
#Cg,b = 1 if b 2 {0, 1}.
Theorem 16. A Lefschetz fibration u : U ! M with regular fiber F is universal with
respect to the class of Lefschetz fibrations over a surface and with fiber F , if the
following three conditions hold:

(1) b!u is an isomorphism;
(2) !u and !s

u are surjective;
(3) any class of Cg,b can be represented by a vanishing cycle of u.

On the other hand, as a partial converse, u being universal implies (2), (3), and the
surjectivity of b!u.
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In particular, for g > 2 and b 2 {0, 1}, u is universal if b!u is an isomorphism and
!u is surjective.

It follows that there exist universal Lefschetz fibrations for any fiber.

The surjectivity of !s
u means that any locally trivial Fg,b-bundle over S2 is the

pullback of u by a map S2 ! M �Au.

Remark 17. If u is universal we cannot conclude that b!u is an isomorphism. The
reason is that any Lefschetz fibration can be embedded in a larger Lefschetz fibration
by preserving the universality. For example we can add a 1-handle H1 to the base (if
it has boundary), along with a fiberwise attachment of H1 ⇥ F to the total manifold.
So, we can add non-trivial elements to ker b!u.

This theorem generalizes the following proposition, which has been proved in [32].

Proposition 18. A Lefschetz fibration u : U ! S over a surface with regular fiber
F is universal with respect to bounded base surfaces if and only if the following two
conditions are satisfied:

(1) !u and b!u are surjective;
(2) any class of Cg,b can be represented by a vanishing cycle of u.

Proof of Theorem 16. Suppose that u : U ! M satisfies the conditions of the state-
ment and let f : V ! S be a Lefschetz fibration with regular fiber Fg,b over a surface
S.

If S is closed let S0 ⇢ S be the complement of a disk in S, with Af ⇢ IntS0, and let
f 0 : V 0 = f�1(S0) ! S0 be the restriction of f over S0. Otherwise, if S has boundary,
put S0 = S and f 0 = f .

We claim that there is a connected surface G ⇢ M transverse to Au, such that
G\N(Au) is connected, the meridians of Au that are contained in G\N(Au) normally
generate µ1(N(Au), Au), and G is ⇡1-surjective in M .

We start the construction of G by considering a 2-disk G0 ⇢ N(Au)�Au centered at
⇤. Then we attach 2-dimensional bands G1, . . . , Gn ⇢ N(Au), each one representing a
meridian of Au so that they normally generate µ1(N(Au), Au). The band Gi is attached
to G0 along an arc for each i > 1. Then we attach suitable 2-dimensional orientable
1-handles to G0 (chosen to be disjoint from Au) which realize a finite set of generators
for ⇡1(M). The resulting surface satisfies the conditions of the claim.

Now consider the Lefschetz fibration u0 = u| : U 0 ! G which is the restriction of u
over G, with U 0 = u�1(G) ⇢ U . It turns out that u0 satisfies the conditions (1) and (2)
of Proposition 18, hence u0 is universal for Lefschetz fibrations over bounded surfaces.
Then f 0 ⇠= (q0)⇤(u0) = (q0)⇤(u) for a u-regular map q0 : S0 ! G ⇢ M .

The loop � = q0(@S0), homotoped to represent an element of ⇡1(M � Au), satisfiesb!u(�) = 1. Therefore, � is trivial in ⇡1(M � Au) because b!u is an isomorphism. So,
the map q0 extends to a u-regular map q : S ! M such that q(S � S0) ⇢ M �Au.

Now, if F is not exceptional, we immediately conclude that f = q⇤(u), proving that
u is universal.

Otherwise, if F is exceptional, q⇤(u) di↵ers from f by a twisting determined by an
element  2 ⇧1(F ). Since !s

u is surjective, there is a map q00 : S2 ! M �Au such that
!s

u([q
00]) =  .
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Up to a small homotopy relative to q�1(Au), we can assume that there is a small
disk D ⇢ S such that q|D : D ! M � Au is an embedding. Similarly, we can assume
that there is a small disk D0 ⇢ S2 such that q00|D0 is an embedding.

We can form the connected sum q000 = q # q00 : S # S2 ⇠= S ! M by identifying @D
with @D0, and by connecting their images by a tube contained in M � Au. It follows
that (q000)⇤(u) ⇠= f .

Proof of the (partial) converse. Let u : U ! M be universal with fiber Fg,b. By letting
S to be a suitable surface with boundary, it can be easily constructed a Lefschetz
fibration f : V ! S such that b!f and !f are surjective, and such that any element
of Cg,b can be represented by a vanishing cycle (meaning that there are su�ciently
many singular points of f). Since f = q⇤(u) for some u-regualar map q : S ! M , it
immediately follows that b!u and !u are surjective, and condition (3) of the statement.

Regarding the surjectivity of !s
u, this immediately follows by representing arbitrary

Fg,b-bundles over S2 by a pullback of u (regarding a surface bundle as a Lefschetz
fibration without singular points).

Finally, the last sentence follows by the discussion in next section. ⇤

In case of Lefschetz fibrations over 3-manifolds we have the following result.

Theorem 19. Let u : U ! M be a Lefschetz fibration with fiber F which satisfies
the following conditions:

(1) b!u and !s
u are isomorphisms (so, ⇡2(M �Au) = 0 for F not exceptional);

(2) !u and !1
u are surjective;

(3) any class of Cg,b can be represented by a vanishing cycle of u;
(4) Au is connected.

Then u is universal for Lefschetz fibrations over 3-manifolds and with fiber F .

Proof. Let f : V ! Y be a Lefschetz fibration, with Y a connected 3-manifold. We
want to show that f is a pulback of u. The singular image L = Af is a curve in Y ,
that is a disjoint union of circles and arcs.

Claim. If Y is closed there is a handle decomposition of the form

Y = H0 [ n1H
1 [ n2H

2 [H3

such that:

(1) H0 \ L is a possibly empty set of trivial arcs;
(2) H1 \ L is either empty or the core of H1 for any 1-handle;
(3) H i \ L = 6O for any higher index handle.

Proof of the claim (sketch). Start from an arbitrary handle decomposition, with only
one 0-handle and one 3-handle. Observe that, up to isotopy, we can assume that L is
disjoint from the 2- and the 3-handles, and that its intersection with any 1-handle is
either empty or a number of parallel copies of its core. It is now straightforward to
add new 1-handles and complementary 2-handles to normalize the intersections with
the 1-handles. By adding canceling pairs of 1- and 2-handles again we can normalize
also the intersection with the 0-handle, and this proves the claim.

Now proceed with the proof of the theorem. First, up to take the double, we can
assume that Y is closed. Consider a handle decomposition of Y as that of the claim.
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Over H0, f is a product f0⇥id : V0⇥I ! B2⇥I ⇠= H0, with f0 : V0 ! B2 a Lefschetz
fibration. It follows that f0 is a pullback of u, because u is universal for Lefschetz
fibrations over a surface by Theorem 16. So, there is a u-regular map q : H0 ! M such
that q⇤(u) = f|H0 .

Next, we extend this map q handle by handle, and after each step we continue
to denote by q also the extension. If H1 does not intersect L, the monodromy of a
loop that passes through it geometrically once can be easily realized by a map to
M � Au that extends q because b!u is surjective, and this map trivially extends over
the 1-handle.

If H1 intersects L, we can find an arc in Au between the two endpoints q(S0⇥ {0}),
where H1 = B1⇥B2 � S0⇥{0}. This arc can be suitably chosen to realize the singular
monodromy of f along the core of H1, by using the fact that Au is connected and !1

u

is surjective. This means that q can be extended over the core of H1, hence to H1.
Extending q to the 2-handles is possible because b!u is an isomorphism. If F is

exceptional, we might also need to modify the map q on H2 in order to adjust the
twisting, by an argument similar to that in the proof of Theorem 16.

Finally, extending q to the 3-handle H3 is also possible because over the attaching
sphere ⌃ of H3, f is a trivial bundle. So, [q|⌃] 2 ker!s

u = 0, and this implies that
q|⌃ : ⌃! M �Au is homotopic to a constant in M �Au. Therefore, q can be extended
over H3.

We get q : Y ! M which is u-regular, such that f = q⇤(u). ⇤

3. Construction of universal Lefschetz fibrations

Now we give explicit constructions of universal Lefschetz fibrations. First, we handle
the case of Lefschetz fibrations over a surface, and for the sake of simplicity we assume
b 2 {0, 1}, although a similar construction can be made in general. Thereafter, we
extend this construction to dimension three.

Dimension 2. Consider a finite presentation of Mg,b = h�1, . . . , �k | r1, . . . , rli with gen-
erators �1, . . . , �k and relators r1, . . . , rl. We assume that each �i corresponds to a
positive or negative Dehn twist about a non-separating curve in Fg,b. Note that in this
case #Cg,b = 1.

If b = 1, a presentation of bMg,1 can be obtained from that of Mg,1 by adding as
a further relator the Dehn twist r0 about a boundary parallel curve, expressed in
terms of the generators �i, that is bMg,1 = h�1, . . . , �k | r0, r1 . . . , rli, where r0 should
be substituted by a product of the form r0 = �"1i1 · · · �"p

ip , with ij 2 {1, . . . , k} and

"j 2 {�1, 1}. Otherwise, if b = 0, we have bMg,0 = Mg,0.
Now, consider a Lefschetz fibration v : V ! B2 with regular fiber Fg,b and k singular

values, having (�1, . . . , �k) as the monodromy sequence with respect to some Hurwitz
system. By abusing notation, we denote by (�1, . . . , �k) also the elements of the Hurwitz
system. That is, we consider ⇡1(B2 �Av) = h�1, . . . , �ki.

By Proposition 18, v is universal for Lefschetz fibrations with regular fiber Fg,b over
bounded surfaces.

Put v0 = id⇥v : B2 ⇥ V ! B2 ⇥ B2 ⇠= B4. Clearly v0 is a Lefschetz fibration with
regular fiber Fg,b, and it is universal with respect to bounded base surfaces. Moreover
Av0 = B2 ⇥Av is a set of mutually parallel trivial disks in B4.
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Each relator ri is a word in the generators �i, so it can be represented by an embedded
meridian �i of @Av0 in S3. Moreover, up to homotopy, we can assume that the simple
loops �i are pairwise disjoint.

Note that !v0 and b!v0 are surjective. In order to kill the kernel of b!v0 we add a
2-handle H2

i to B4 along �i with an arbitrary framing (for example with framing 0),
for all i. Let M2 be the resulting 4-manifold.

Let Li = H2
i \ S3 be the attaching region of H2

i . Now, attach the trivial bundle
H2

i ⇥Fg,b to B2⇥V by a fiberwise identification Li⇥Fg,b
⇠= (v0)�1(Li). This is possible

because �i has trivial bundle monodromy. Let U2 be the resulting 6-manifold.
We get a new Lefschetz fibration u2 : U2 ! M2 defined by v0 in B2 ⇥ V ⇢ U2, and

by the projection onto the first factor in H2
i ⇥ Fg,b for all i.

If Fg,b is not exceptional, by Theorem 16 we immediately conclude that u2 is uni-
versal.

If F is exceptional, in our situation we have F = T 2, and so ⇧1(T 2) ⇠= Z2 [20].
The two generators of this group correspond to two oriented torus bundles q1 and q2

over S2. Making the fiber sum of u2 with idB2 ⇥q1 and idB2 ⇥q2 produces a Lefschetz
fibration, which we still denote by u2 : U2 ! M2, that satisfies all the conditions of
Theorem 16, hence a universal one.

Dimention 3. Start with the Lefschetz fibration v0 of the above construction. First,
we make the singular image connected. Since the Dehn twists �i are conjugate to each
other, we can add a suitable oriented band between the i-th and the (i+1)-th disks of
Av0 , so that the monodromy extends over this band. After adding these bands for all
i 6 k � 1, we get a Lefschetz fibration v00 : V 00 ! B4. Note that Av00 is a ribbon disk
in B4.

At this point, we want to make the singular monodromy surjective. To do this, we
modify also the base manifold as follows. Consider a finite set of generators for the
mapping class group of Fg,b/c ⇠= Fg�1,b, with c a non-separating vanishing cycle of v00,
and take two points a1, a2 2 @Av00, chosen to be very close to each other.

Let g : Y ! B2 be a Lefschetz fibration with fiber F , having 0 as the only singular
value, with monodromy given by that of a meridian of @Av00 in S3 that bounds a disk
in S3 with center at the point a1.

Add a 1-handle H1 = B1⇥B1⇥B2 ⇠= B1⇥B3 to B4, with attaching sphere {a1, a2}.
Then v00 extends over H1 by the product idB1 ⇥ idB1 ⇥g : B1⇥B1⇥Y ! H1. Actually,
we attach H1 trivially around a1 and by realizing one generator of the mapping class
group of F/c around a2. This is straightforward by taking into account the local
product structure of v00 near a1 and a2. Proceed in a similar way to realize any generator
by attaching further 1-handles.

We end with a Lefschetz fibration v000 such that Av000 is connected (and of genus 0),
the singular monodromy is surjective, and the Lefschetz and bundle monodromies are
surjective. So, after adding suitable 2-handles, we make the bundle monodromy an
isomorphism.

If F = T 2 we have to make !s
v000 surjective, and this can be done by fiber sum with

two torus bundles over the sphere, multiplied by the identity map, in analogy with the
construction in dimension two.

We obtain a Lefschetz fibration u0 : U 0 ! M 0 over a 4-manifold M 0, which is universal
for Lefschetz fibrations over surfaces.



11

As the last step, we have to kill the kernel of !s
u0 . To do this, simply take a finite

set of generators for ker(!s
u0) and let ↵ : S2 ! M 0 �Au0 be such a generator.

Consider the product u00 = u0 ⇥ idB2 : U 0 ⇥ B2 ! M 0 ⇥ B2. In the 5-manifold
M 0 ⇥ S1 ⇢ @(M 0 ⇥ B2) the map ↵ can be perturbed to an embedding, so it can be
represented by an embedded sphere ⌃ ⇢ M 0⇥S1�Au00. Add a 3-handle H3 along this
sphere, and extend u00 over H3 by a trivial F -bundle. This is possible because ⌃ is in
the kernel of !s

u00. Continue in this way to kill all the generators of the kernel. We end
with a Lefschetz fibration u3 : U3 ! M3 over a 6-manifold M3 which is universal for
3-dimensional bases.

4. Lefschetz cobordism

For a Lefschetz fibration f : V ! M we denote by �f : (�V ) ! (�M) the same
Lefschetz fibration between the same manifolds with reversed orientation. Note that f
and �f have the same oriented fiber. Let f1 : V1 ! M1 and f2 : V2 ! M2 be Lefschetz
fibrations with fiber Fg = Fg,0 such that dimM1 = dimM2 = m, and with Mi and Vi

closed.

Definition 20. We say that f1 and f2 are cobordant if there exists a Lefschetz fibra-
tion f : W ! Y with the same fiber Fg such that @W = V1t(�V2), @Y = M1t(�M2),
and f|@W = f1 t (�f2) : V1 t (�V2) ! M1 t (�M2). In particular, if f2 = 6O, we say
that f1 is cobordant to zero or that it bounds.

The cobordism of Lefschetz fibrations is clearly an equivalence relation. We denote
by ⇤(g,m) the set of equivalence classes. We remark that we are considering only
oriented, compact, not necessarily connected Lefschetz fibrations.

There is a general theory of (co)bordism in several flavours. The book of Conner
and Floyd [7] is a good reference for general bordism theory. On the other hand, in
[2] it is considered the cobordism of maps having only singularities of some prescribed
class specified by an invariant open subset of the space of k-jets. However, Lefschetz
fibrations do not seem to fit well in this general setting, because of the rigidity of
Lefschetz fibrations between closed manifolds. In [29] both the source and the target
are allowed to change up to cobordism. In these theories there is no control over the
fiber. However, to the author’s knowledge, there is no a similar theory specific to
Lefschetz fibrations.

Definition 21. The sum of two cobordism classes is defined by [f1] + [f2] = [f1 t
f2 : V1 t V2 ! M1 tM2].

It turns out that this operation is well-defined (does not depend on the representat-
ives), and ⇤(g,m) with this operation is an abelian group which we call the Lefschetz
cobordism group of genus g and dimension m. The identity element is the empty fibra-
tion (or equivalently, the class of a Lefschetz fibration that bounds), and the inverse
is given by �[f ] = [�f ]. Indeed, f � f bounds f ⇥ idI : V ⇥ I ! M ⇥ I.

We define another operation on ⇤(g,m). Let Di ⇢ Mi � Afi be a small ball, for
i = 1, 2. So, fi is a trivial bundle over Di, that is f�1

i (Di) can be identified with
Di ⇥ Fg.

Let M1 # M2 = (M1� Int(D1))[@ (M2� Int(D2)) be the result of the identification
D1

⇠= �D2 restricted to the boundary, that is the ordinary connected sum. Also let
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V1 #Fg V2 = (V1� Int f�1
1 (D1))[@ (V2� Int f�1

2 (D2)) be the result of the identification
f�1

1 (D1) ⇠= D1 ⇥ Fg
⇠= �D2 ⇥ Fg

⇠= �f�1
2 (D2), again restricted to the boundary.

Definition 22. The fiber sum of f1 and f2 is the Lefschetz fibration f1 # f2 : V1 #Fg

V2 ! M1 # M2 defined by fi on Vi � Int(f�1
i (Di)), i = 1, 2.

Note that, in general, the fiber sum operation depends on the choice of a gluing
di↵eomorphism h 2 Mg that occurs in the above identification between the preimages
of the balls. Actually, there is not a canonical choice for h. However, the following
holds.

Proposition 23. We have [f1] + [f2] = [f1 # f2]. Therefore, the fiber sum does not
depend on the choice of the attaching di↵eomorphism up to cobordism. It follows that
any class in ⇤(g,m) has a connected representative.

Proof. Take the product (M1tM2)⇥I, and add an orientable 1-handle H1 = B1⇥Bm

to it, with attaching region (D1 tD2)⇥ {1}. Also glue H1 ⇥ F to (V1 t V2)⇥ I along
(f�1

1 (D1)t f�1
2 (D2))⇥ {1} ⇠= (D1 tD2)⇥Fg with a fibered attaching di↵eomorphism

such that the fiber is mapped onto itself by the identity on D1⇥Fg and by the attaching
di↵eomorphism occurring in the fiber sum on D2 ⇥ Fg. We get a cobordism between
f1 + f2 and f1 # f2, and this concludes the proof. ⇤

There is an obvious forgetful homomorphism � : ⇤(g,m) ! ⌦SO
m+2 �⌦SO

m defined by
�([f : V ! M ]) = ([V ], [M ]). This is surjective on the second component, since for
any M there is the trivial fibration M ⇥ Fg ! M .

Now we consider the case m = 2. For f : V ! S let n+(f) be the number of positive
singular points of f , and let n�(f) be the number of negative singular points. There
are two canonical homomorphisms �, ⌘ : ⇤(g, 2) ! Z, defined by �([f ]) = Sign(V ),
and ⌘([f ]) = n+(f)� n�(f).

Proposition 24. � and ⌘ are well-defined homomorphisms.

Proof. It is obvious that � is well-defined and a homomorphism. Let us prove the
proposition for ⌘. Let h : W ! Y be a cobordism between f1 : V1 ! S1 and f2 : V2 !
S2. The singular image of h is a properly embedded compact curve in the 3-manifold
Y . So, Ah is a disjoint union of circles and arcs. Circles do not contribute to ⌘. If an
arc has both endpoints in S1 (or in S2), these are two opposite singular points of f1

(or f2), so they cancel. If there is one endpoint in S1 and the other in S2, these are
singular points of, respectively, f1 and f2 of the same sign. Since any singular point of
fi is the endpoint of an arc, we get ⌘(f1) = ⌘(f2), and so ⌘ is well-defined. That ⌘ is
a homomorphism is immediate. ⇤

Remark 25. By results in [11], � and ⌘ are surjective for g > 2. In fact, it is proved
that any lantern relation contributes ±1 to the signature and (obviously) to ⌘, so by
putting su�ciently many lantern relations or its inverses, in the monodromy sequence
of a Lefschetz fibration over the sphere, we realize all signatures and get the surjectivity
of ⌘. These fibrations are achiral.

Remark 26. The signature defines an isomorphism ⌦SO
4
⇠= Z. So, � is equivalent to

the forgetful homomorphism �.

We conclude by showing a remarkable relation with the singular bordism groups,
implying that ⇤(g, 2) and ⇤(g, 3) are finitely generated.
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Let ⌦n(X) denote the n-dimensional singular bordism group of X. Recall that the
elements of ⌦n(X) are the bordism classes of oriented singular n-manifolds in X, that
is pairs of the form (N, q), with N a closed oriented n-manifold, and q : N ! X.
These groups can be expressed in terms of singular homology with coe�cients in the
cobordism ring ⌦SO

⇤ , modulus odd torsion [7].

Proposition 27. Let f : V ! M be a Lefschetz fibration with fiber Fg. For any n
there is a canonical homomorphism f⇤ : ⌦n(M) ! ⇤(g, n), defined by f⇤([(N, q)]) =
[q⇤(f)].

Proof. Let (N, q) be a representative of a class of ⌦n(M), so q : N ! M . Up to a small
homotopy we can assume that q is f -regular. Then we can take the pullback q⇤(f).

If (N 0, q0) is bordant to (N, q), where q0 : N 0 ! M is f -regular, there is a bordism
Q : Y ! M , where Y is a cobordism between N and N 0, and Q|@Y = q t (�q0). Up to
homotopy relative to the boundary, we can assume that Q is f -regular. Then, Q⇤(f)
is a cobordism between q⇤(f) and (q0)⇤(f).

It follows that the map f⇤ : ⌦n(M) ! ⇤(g, n), f⇤([(N, q)]) = [q⇤(f)], is a well-defined
homomorphism. ⇤

Corollary 28. If u : U ! M is universal with respect to Lefschetz fibrations over n-
manifolds, then u⇤ : ⌦n(M) ! ⇤(g, n) is surjective. Therefore, there are epimorphisms
un⇤ : ⌦n(Mn) ! ⇤(g, n) for n = 2, 3, with un : Un ! Mn the two universal Lefschetz
fibrations constructed in Section 3.

Proof. Let [f : V ! N ], dimN = n, be an element of ⇤(g, n). Since u is universal,
there is q : N ! M such that f = q⇤(u), and so [f ] = u⇤([(N, q)]). ⇤

Note that there is also the epimorphism u3⇤ : ⌦2(M3) ! ⇤(g, 2).

Corollary 29. There is an epimorphism � : H2(M2) ! ⇤(g, 2).

Proof. The canonical homomorphism µ : ⌦2(M2) ! H2(M2) defined by µ([(N, q)]) =
q⇤([N ]) is an isomorphism because H⇤(M2) has no torsion and Hi(M2) = 0 for i 6=
0, 2 (indeed, M2 is B4 union 2-handles) [7, Chapter II]. Therefore, u2⇤ � µ�1 is an
epimorphism. ⇤
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