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§o. Introduction.

In finite dimensions, the theory of symmetrie spaees, polar representations, and
isoparametrie submanifolds of Euc1idean spaees are all c10sely related. For example,
the following are known:
(1) The isotropy representation of symmetrie spaee G/ K at eI( (whieh is ealled

an s·representation) is polar. Moreover, Dadok proved in [D] that up to orbital
equivalence these are the only polar aetions on Euclidean spaces.

(2) The orbits of s·representations are generalized full or partial flag manifolds.
(3) The principal orbits of apolar representation are isoparametrie ([Tel]).
(4) Thorbergsson proved in [Tb] that an irreducible, full, compact, isoparametrie

submanifold of codimension r 2: 3 in Euclidean space must be a principal orbit
of some s-representation.

(5) There are many codimension two isoparametrie submanifolds ([OT1,2], [FKM])
that are not orbits of any orthogonal representations. Nevertheless these subman·
ifolds share many of the geometrie and topological properties of flag manifolds.

So it is natural to ask whether there are analoguous results in infinite dimensions.
A start in this direction is made in [Te2], where we proved an infinite dimensional
analogue of (3). In this paper, we give a general construction for polar actions on
Hilbert space, study the submanifold geometry of the infinite dimensional orbits of
these actions, and discuss their relations to "infinite dimenisonal symmetrie spaees".

Let us first recall same definitions from transformation group theory ([PTI]).
A smooth isometrie action of a Hilbert Lie group G on a Hilbert manifold Al is
called proper if 9n . X n~ 'Yo and X ll ~ Xo in M implies that {gn} has a eonvergent
subsequence in G; and it is called Fredholm if given any x E Al the orbit map G~ M
defined by 9 ~ 9 . x is a Fredholm map. Note that isotropy subgroups of proper
actions are compact, and the orbits of Fredholm actions are of finite codimension. An
isometrie, proper Fredholm action is called polar if there exists a closed submanifold
S of M, which meets all orbits and meets them orthogonally. Such an S is ealled a
section for the action. We call

N(S, G) = {g E Gig· S C 5}1 Z(S, G) = {g E Gig· s = s Vs E 5}
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the normalizer and centralizer of 5 in G respectively. The quotient group

111(5, G) = N(5, G)/Z(S, G),

is a discrete group, called the generalized Weyl group associated to the polar action.
In [Te2], we obtained an infinite dimensional analogue of (3), and also showed

that the orbits of polar actions on Hilbert spaces have many of the special properties of
the finite dimensional complex or real flag manifolds. In particular, for a polar action
of a Hilbert Lie group Gon a Hilbert space V, we proved that the generalized Weyl
group W of the action is an affine Weyl group, the focal points of a principal orbit
are just the points on singular orbits, and the focal set meets the section in the union
of the reflection hyperplanes of 1V. The focal multiplicity of points on arefleetion
hyperplane is invariant under }V, so we can use them as markings for the Dynkin
diagram of 111, thereby associating to each polar action on a Hilbert space a marked
affine Dynkin diagram. Moreover, we also proved that:

(i) If A1 is a principal orbit in V then Al is an isoparametrie submanifold of V, Le.,
the normal bundle v( Al) is globally flat, aod the shape operators A1.1(z) and AV (lI)

are conjugate along any parallel normal field v.
(ii) the restrietion of the distance function Ja( x) = 11 x - a 1[2 to any G-orbit is a

perfeet Morse funetion, and the homology of an orbit can be computed directly
from W and its multiplicities in the same way as in [BS] for the finite dimensional
ease.

There are two known families of polar actions on Hilbert space. The first family
is given in [Te2]: the action 0 f the Hilbert Lie groupHI (SI) G) of H 1-loops of a
compact eonnected, semi-simple Lie group G on the Hilbert space HO(SI, g) given
by the gauge transformation

-I 1-19 . II = gug - 9 9

is polar. These orbits can be viewed as infinite dimenisonal analogue of complex
full or partial flag manifolds ([PS]). A second family was constructed by Pinkall and
Thorbergsson ([PiT]): Let G/!( be asymmetrie space of compaet type, and

Then the action of the Hilbert Lie group f( on HO([O,1t"], g) by gauge transformations
is again polar. The orbits can be viewed as infinite dimensional analogues of real flag
manifolds (see [Te3]).

Note that the first example is related to the Adjoint action of G on G, and the
second example is related to the !( x !( -action on G. Since both the Adjoint action
and the !( x ](-action on G are polar with flat seetions, this leads naturally to a
general construction of polar aetians on Hilbert spaces. Namely, if H is a c10sed
subgroup af G x G, and the action of H on G defined by (h ll h2) . x = h1xh-:;1 is
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polar with flat sections, then the action of the group P(C, H) of H 1-paths ginG
with (g(O), g(1)) E H on V = H()([O, 1], g) by gauge transformations

9· u = 9«9- 1 _ 9'9- 1

is polar.

Next we dicuss the relation between polar actions on Hilbert space and involutions
of affine Kac-Moody groups. Let L(G) = H 1(SI, G) denote the Hilbert Lie group
of Sobelov H1-Ioops in a compact, connected, simple Lie group G. Then tbe affine
Kac-Moody group L(G) of type 1 is a 2-torus bundle 1r : L(G) -+ L(G) (see
[PS]). There is a non-degenerate, Ad-invariant bilinear form on the affine algebra L(g)
([K),[PSD, and the Adjoint representation of L(G) on its Lie algebra gives rise to the
first example of polar action on Hilbert space above. We show that every involution
p on Ginduces an involution p. on L( G) such that j{ is the fixed point set of p. and
the Adjoint representation of j( on pgives rise to the second example of polar action
on Hilbert space above, where ]( is the fixed point set of p and pis the -1 eigenspace
of dp· on L(g). Let (1 be an outer automorphism of G of order k, and let L(G, u)
denote the subgroup of L( G) consisting of loops 9 that are Z-,:-equivariant, Le., satisfy
g(t + 21r/k) = u(g(t)). Then the subgroup L(G,u) = 1r-1(L(G,u)) is the affine
Kac-Moody group of type k. Moreover, we show that the Adjoint actions of affine
groups of type k on their Lie algebras give rise to the polar action of P( G, H) on
HO([O, 1], g), where H = {(x,u(x)) Ix E G}. Following the terminology from tbe
theory of finite dimenisonal symmetric spaces, we eall L(G) and L(G, (7) symmetrie
spaces of type II, and L(.G) / j( asymmetrie space of type 1.

The above discussion suggests that, as in finite dimensions, a elose relationship
does exist between polar actions on Hilbert spaces and isotropy representations of sym­
metrie spaees. However, the precise nature of tbis relation is still not well-understood.

The paper is organized as follows: In section 1, we associate to eacb polar H­
action witb flat sections on a compact Lie group G, a polar action on tbe Hilbert
space H()([O, 1], g), and we study the relation between the H-action and the associ­
ated infinite dimensional action. In section 2, we give description of the principal
curvatures of the principal orbits of the associated infinite dimenisonal action in terms
of the H -action. Finally, in seetion 3, we discuss the relation between tbe isotropy
representations of infinite dimensional symmetrie spaces and polar actions on Hilbert
spaces.

§1. P(G, H)-actions.

In this section, we give a general construction of polar actions on Hilbert spaces
from polar aetions on compact Lie groups with flat sections.

We first set up notations. Let G be a connected, compact, semi-simple Lie group,
equipped with abi-invariant metrie. Let
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denote the Hilbert Lie group of all Sobolev H1-paths from [0,1] to G and the Hilbert
space of HO-maps from [0,1] to 9 respectively. (One should think of elements of V as
representing connections (automatically flat) for the product principal G-bundle aver
[0,1]). Let Gact on V isometrically via gauge transformations:

It is obvious that given any 'U E V there exists g E Gsuch that u = -g'g-1". This
proves that Gacts transitivelyon V. Using the same proof as in [Te2], we see that this
action is proper and Fredholm. So one way to produce interesting proper Fredholm,
isometrie actions on Hilbert space is to find closed, finite eodimension subgroups of
G, whose orbits in V' give interesting geometrie and topological manifolds. In the
following, we will give a method of finding subgroups of G, whose action on V is
polar.

Let H be a c1osed, connected subgroup of G x G, acting on G by

Let
P(G,H) = {g E G= H 1([0,1],G) I (9(0),9(1)) EH}.

Note that the homomorphism

'1J : G --+ G x G, 9 ~ (g(O), g(1))

is a submersion and P(G,H) = \l'-l(H). It follows that P(G,H) is closed and has
finite codimension in G, hence the action of P(G, H) is also proper and Fredholm.

Next we define two operators

E : H(\[O, 1], g) --+ H1([O, 1], G),

as folIows: let E( lt)( t) be the parallel translation in the trivial prineipal bundle I x G
over I = [0, 1] defined by the connection u(t )dt, and <I> (u) the holonomy; i.e.,
E(u) : [0,1] --+ G is the unique solution of the initial value problem:

{
E-1EJ =U

E(O) = e,

and
<1>(u) = E(u)(1).

1.1 Proposition. Witlz notations as above,
(i) E(g 'll) = g(O)E(u)g-l, <1>(g. 'H) = (9(0),9(1))· <1>(u),
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(U) v E P(C, H) . u if and only il iJ!(v) EH· iJ!( u).

PROOF. It is easy to prove (i) by a direct computation. Ta see (ii), let v E
P(G, H) . u. Theo it follows from (i) that <p(v) EH· <p(u). Conversely, suppose
<I>(v) = h1<I>(u)hi l for some (h11 h'2) E H. Let g(t) = E(v)-1(t)h1E(u)(t). Then
(g(0),g(1)) = (h 1, h'2), and

E(g· u) = g(O)E(u)g-l = hIE(u)E(u)-lh11E(v) = E(v),

which implies that 9 . II = v. •

We recall ([PTlDthat a section for a polar action is automatically totally geodesie.
Moreover it is well-known that a compact, flat, totally geodesic submanifold of G
containing e is a torus subgroup.

1.2 Theorem. Let the notation be as above, and suppose the H -action on G is polar
with /lat sections. Let A be a torus section through e and let adenote its Lie algebra.
Then:
(1) the P(C, H)-action on V is polar, and the space 0 = {Cl la E a} is a section,

where a: [0,1] -t 9 denotes the COl1stant map with value a,

(2) the generalized Weyl group lV = lV( 0, P( C, H)) is an affine Weyl group,
(3) il'l1: P(G,H) -t H is the homomorphism defined by 'l1(g) = (g(O),g(l)),

then w(N( 0, P(G, H)) = N(A, H), q, maps Z( 0, P(G, H)) isomorphically
onto Z(A, H), and

A = I(er(tIJ) n N( 0, P(G, H)) = {g(t) = exp(At) IA E A(A)},

where A( A) is the unit lattice 01 A:

A(A.) = {A E al exp(A) = e},

(4) q, induces a surjective homomorphism [rom 1V to W = 1V(A, H), W is iso­
morphie to }V/A, and l,t.. is the semi-direct product o/lV with A,

(5) W maps the isotropy subgroup P(C, H)ä isomorphically to Hexp(a); in fact its
inverse is the map <p : Hexp(a) --+ P(G, H)ä defined by (h1, h';.) 1--+ g(t) =
exp( -at )lq exp( at),

(6) u E V is a singular point 01 the P(C, H)-action il and only il <1>(u) E G is a
singular point of the H -action.

PROOF. We prove each statement of the theorem seperately below.

(1) Ta see that 0 meets every P( G, H)-orbit, we let 'U E V. Since A meets
every H -orbit, there is a E a such that cI> (u) EH· exp(a). But E( a) = exp( ta), so
q,( Ci) = exp( a). By 1.1 (H), we have aE P(G, H) . u. Ta prove 0 is orthogonal to
P(G, H) . a for all a E a, we note that

T(P(G,H)· a)ä = ([tt,a] - u/lu E H1([O, l],g), (u(O),u(l)) E ~}.
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For b E a, we have [a, b] = 0 and

({u,a] -u' , b) = fl({u,a] - a' , b)dt
in

= fl(u, [a, b]) - (tl, b)'dt = 0 - (u(l) - u(O), b) = 0,
io

where the last equality follows from the fact that

T(H'e)c={x-yl(x,Y)E~} 1.. a.

(2) 1t was proved in [Te2] that the generalized Weyl group of a polar action on
Hilbert space is an affine Weyl group.

(3) First we prove q,(N( &,P(Ci,H)) C N(A.,H). Let 9 E N( Q,P(G,H)).
Then for a E a there exists b E a such that 9 . a = b. Using 1.1 (i) and the fact
that E(a) = exp(ta), E(b) = exp(bt), we have exp(b) = g(O)exp(a)g(I)-I. This
proves that (g(O), g(1)) E N(A, H).

Next we prove that N(A.,H) C w(N( &,P(G,H)). Let (hl,h'l.) E N(A,H).
Then hlAh~1 = iL In particular, this implies that hlh;;1 E A, hlA = Ah'l.'
hli!.hi l = A.h'2hil = .4., and hl ah~1 = a. Now given al E a, there exists bl E a
such that hl exp(adh~1 = exp(b1). Set

Then it is easily seen that (g( 0), g( 1)) = (h I, h'2), and a direct computation shows
that

9 . Cl = bl + exp( -b1t)h1(a - al)hi 1 exp(b1t).

Since hl ahl l = a and a is abelian, 9 . a = b1 + h1(a - al )hl 1 E Cl.
Ta compute the intersection of Ker( w) and N ( n, P (G, H) ), we assurne that

gE N( Q,~(G,H)) and g(O) = g(l) = e. Then for a E a, there exists bE a such
that 9 . a = b, so 1.1 (i) implies that

g(t) = E(h)-lg(O)E(ii) = exp((a - b)t).

But g(1) = exp(a - b) = e, Le., (a - b) E A. Conversely, let ,,\ E A(A), and
g(t) = exp("\t). Then 9 E P(G, H), 9 E I(er(q,), and g' a is the constant map with
constant equal to a - A. This proves that 9 E I(er( q,) n N (Q, P(G, H)).

Now let gE Z( &,P(G,H)). Since g·Ö = Ö, 9'g-l = O. So g(t) = h1 is a
constantmap. Butg·et = hlahi1 = a. Thisimpliesthatq,(g) = (hl,h l ) E Z(A,H),
and q, maps Z( Q, P( G, H)) injectively into Z( A, H). To prove surjectivity we let
(h l ) h'2) E Z(A., H). Then hl eh:;l = e implies that hl = h'2. Set g(t) = hl . Since
hlahi1 = a, g' a= et for all a E a.

(4) is a consequence of (3).
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(5) If 9 E P(G, H)ö., then from E(iL)(i) = exp(ia) and 1.1 we have exp(ai) =
g(O)exp(at)g-l. Soexp(a) = g(O)exp(a)g(l)-l, Le., '!I(g) E Hexp(a)' Conversely,
if h1 exp(a)h-:;l = exp(a), then set g(t) = exp( -at)h1 exp(at), a direet eomputation
as above implies that 9 . a = a.
(6) follows from (5). •

Let N be a submanifold of G, and O(G, e, }l) the set of all Hl_paths in G such
that ,(0) = e and ,(1) E N. It is known that (cf. [PI]) O(G, e, N) is a Riemannian
Hilbert manifold,

T(O(C,e,N)).., = {u,lu E H 1([O,1],g)},

and the Riemannian inner product on T(n( C, e, N)).., is

(U"V,) = f\u'(t),v 1(t))dt.
in

If N is an H -orbit in G, then P(C, H) acts on O( G, e, N) by 9 * , = g(O),g-l,
and this action is isometrie and transitive.

1.3 Corollary. With the same notation and assumption as in 1.2, let N be the H -orbit
through exp(a) in G, and

F : O( C, e, N) ~ HO([O, 1), g),

Then F is an isometrie, equivariant embedding, and the image 0/ F is equal (0

P(G, H)· (L.

1.4 Remark. Let 1\11 be a Riemannian manifold, G a compact Lie group acting on
M isometrically, p E lvI a regular point, and N a G..orbit in lvI. Let

[.:n(lvJ,p,N)~R, [.(,) = [I 1I,'(t)ll~dt
10

denote the energy functional. Bott and Samelson proved that (cf. [ES]) if the G-aetion
on M is variationally complete, then [. is aperfeet Morse function, and the homology
of n(M, p, N) can be computed explicitly in terms of the singular data of the G­
action. Moreover, they sho\ved that the following H -actions on Gare variationally
complete:

(i) the action of the diagonal group H = 6(G) = {(g, g) I9 E G} on G, i.e., the
Adjoint action of C on G,

(H) the action of H = !( x !( on G, where G/!( is asymmetrie space.

By results of Hermann ([He]) and Conlon ([Cl]) there are two more families of
variational complete actions on G:
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(iii) the aet ion of H = !(1 x !('2 on G, where both G/ !(1 and G/ K'2 are symmetrie
spaces,

(iv) the action of H = G( a) = {(g l a(g)) I9 E C} on G, where a is an automor-
phism of G; the action of G(a) on G will be called the a-action.

Conlon noted that the above four families of aetions are polar with flat sections, and
he proved that in general polar aetions with flat seetions are variationally complete
(Conlon called these sections !( -transversal domains [C2]).

1.5 Examples. Applying 1.2 to the examples (i)-(iv) in 1.4 gives many polar actions
on Hilbert spaces. In fact, the first and second families of examples described in the
introduction are the P(G l H)-action on V corresponding to examples (i) and (ii) in
1.4 respectively. Note also that under the isometrie embedding F in 1.3, the path
space n(G, e, H . exp(a)) is embedded in the Hilbert space V = HO([O, 1], g) as
a taut submanifold with constant principal curvatures, and the energy functional [
corresponds to the square of the norm in the Hilbert space V, i.e., [(g) = 11 F(g) 1[2.

1.6 Theorem. (Conlon [C2)) Let lvI be a simply connected, complete Riemannian
manlfold) !( a compact Lie grollp acting on 111 isometrically) and M s the set 0/
singular points. Suppose the !(-action on M is polar with a flat section E) and the
!(-action on 111 is not transitive. Then

(i) A1" =1= 0)
(ii) M li nE is the union o[finitely many totally geodesic hypersur[aces {PI, ... , Pr })

(iii) the generalized Weyl group T'V(E, ]() is a Coxeter group generated by the re­
jiections 01 E in the Pi.

In the following, we will discuss further structures of the generalized Weyl group
for polar H -action on G with a flat section A (here G need not be simply connected).
First we consider the rank of the affine Weyl group T'V of the P(G, H)-action on V.
Let TV c Iso(R k ) be a Coxeter group, {Ci 1i E I} the set of reflection hyperplanes
of Tl1, and 'U i E Rk the unit normal to ei . Then the rank of W is the dimension of
the linear span of {'lli li E I}. In particuiar, the Dynkin diagram of a rank k, finite
Coxeter group has 1.: vertices, and that of a rank kinfinite Coxeter group has k + 1
vertices. Recall also that the codimension of the principal orbits of an action is called
the cohomogeneity. For a polar action the cohomogeneity is the dimension of a section
[PTl].

1.7 Theorem. Let the assumptions and notations be as in Theorem 1.2.

(i) the rank o[ the affine Weyl group I'V = T'V( n, P( C, H)) is equal to the coho·
mogeneity o[ the H -action on G) which is equal to the dimension o[ A)

(U) i[ the H -action is not transitive) then the H ·action on G always has singular
points) or equivalently the P( G, H).action has singular points.

PnOOF. We may assume that 111 = P( G, H) . (} is a principal orbit. Suppose
that the rank of IV is less than thc dimension of a. Then there exists 0 =1= b E a such
that the line Rb docs not meet any reflcction hyperplane of W. SO there is no foeal
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point for lvi on the line Rb. This implies that the shape operator Ab = O. But

T Alfl = {'UI lu E H 1
( [0 l 1], g), ('U (0), u(1)) E ~},

AbCt/) = [u, b] = O.

So [u, b] = 0 for all u E T Mfl, which implies that [x, b] = 0 for all x E g. Since 9 is
semi-simple, b = 0, which is a contradiction. This proves (i).

(il) follows directly from the proof of (i). Since the set of foeal points of M is
the set of singular points for the P(G, H)-action ([Te2]), if the action has no singular
points then Al has no foeal points. This implies that all shape operators Ab = 0 for

bE v(M)fl' Then the above computation implies that b = O. Hence dim( il) = 0,
Le., the H -action is transitive. This proves (ii). •

1.8 Theorem. Let the assumptions and notations be as in Theorem 1.2. The slice
represelltation o[ the H -action at exp( a) and the slice representation of the P(G, H)­
action at aare equivalent polar representations. In fact,
(1) the slice represelltation o[ the H -action at exp(a) is given by

(2) the normal plane v( P( G, H) . a)ö is

{v(t) = exp( -at)bexp(at) [bexp(a) E v(H· exp(a))exp(a)},

and the slice representation at CL is given by 9 . v = gvg- I ,

(3) f : v( H . exp( CL) )exp(a) ~ v( P( G, H) . a)ä defined by

bexp(a) ~ v(t) = exp(-at)bexp(at)

is an equivariallt isolnorphism, i. e' J

where <p is as in 1.2 (5).

PROOF. It is known ([PTI]) that the slice representations of a polar action are
also polar. Tbe proof of (1)-(3) will be given sepcrately below.

(1) Given (h I , h'2) E Hexp(a), then we havc h1 exp(a)h21 = exp(a). So if
bexp( a) E v( H . exp( a) )exp(a)J then we have

(h l , h'2)' bexp(a) = hlbexp(a)h~1 = h1bh11 exp(a).

(2) Let M = P( C, H) . a C V = HU([D, 1), g). By a direct computation, we
obtain that

Tlvlö, = {[u, a] - u' [u E HI([O, 1], g), (u(O), u(1)) E ~},
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v(A1) ä = {V E V IVi = [v, CL], (V (1), y) = (V (0), X) V( x,y) E ~}.

It is easy to see that if Vi = [v, a] then there exists bEg such that v( t) ­
exp( -at)bexp(at). In order for V E V(lvJ)ä' V must also satisfy the condition
(v(O),x) = (v(l),y) for all (x,y) E ~,so

(v(l), y) = (exp( -a)bexp(a),y) = (bexp(a),exp(a)y)

= (v(O),x) = (b,x) = (bexp(a),xexp(a)).

It follows that

(bexp(a), x exp(a) - exp(a)y) = 0, \fex, Y) E ~.

But
T(H . exp(a))exp(a) = {x exp(a) - exp(a)y I(x, y) E ~},

so (2) follows.
(3) is a consequence of (1) and (2). •

1.9 Theorem. Let the assumptions and notations be as in Theorem 1.2. Then,
(1) there exists a E a such that the affine Weyt group W = W( CI, P(G, H)) is the

semi-direct product 0/ the finite Weyl group IIVä and a lattice group Ab where
Wä is isotropy subgroup 0/ lV at a" and Al is a lattice group containing the uni!
lattice A( A) and is i1lvariant llflder lVä,

(2) the Weyl group 0/ the slice represe1ltati01l 0/ the H -action at Q = exp( a) is
the isotropy subgroup I/Fa oi Hl = I'V( A, H), and the Weyl group oi the slice
represelltation 0/ the P( G, H)-action at CL is llViH

(3) lVä is isomorphie to llVa ,

(4) the generalized Weyl group l'V( A, H) 0/ the H -action on G is the semi-direct
product 0/ i/Va and the abelia1l group Al / A(A).

PROOF. It follows from the standard theory of affine Weyl groups ([Bo]) that
there exists a. E asuch that

(i) lV is the semi-direct product of the isotropy subgroup vll ä and a lattice group Al,
(il) if W is of rank k, then TVü is a finite Weyl group of rank k,

(ili) a is a vertex of a Weyl chamber of 1/1/ , and ll/ä is maximal among all isotropy
subgroups of llt..

It is known that ([PTl]) the slice representation of a polar action is polar, and the Weyl
group of the slice rcprescntation at x is equal to the isotropy subgroup at x of the
generalized Wcyl group of the polar action. So f!Va and TVä are the Weyl groups of
the slice representations of the H-action and P(G, H)-action at a and a respectively.
lt follows from 1.2 (3)-(5) that \lJ(g) = (9(0), g(l)) induces an isomorphism from
Wä to H'(}. This proves (1)-(3), and statement (4) is then a consequence of (1) and
1.2 (4). •
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Let X be a Riemannian ](-manifold. Then a submanifold ß (possibly with
boundary) cf ..Je is called a fundamental domabJ for the ](-action if it meets each
!(-orbit in exactly one point. For example, a Weyl chamber in a is a fundamental
domain of the action of the affine Weyl group 1/T' on a.
1.10 Proposition. With the same notation and assumption as in 1.2. Let T be a Weyl
chamber in a. Then
(1) T is a fundamental domain for the P(G, H)-action on V,
(2) T and exp(T) are isometric,
(3) exp(T) is a fundamental domain for the H -action on G.

PROOF. The orbit spacc of a polar action is isometrie to the orbit space of
its seetion under the action of thc gcneralized Weyl group ([Te2]). Since T is a
fundamental domain for tbc lV-action on 0, (1) follows.

Let 4> bc as in 1.1 and W bc as in 1.2. Then cI> ( a) = exp(a). It follows form
1.1 that cI> IT is injeetive, and <1>( T) = exp(T) meets every H -orbit. This proves (3).
Since A is flat, exp : a ----? A is a local isomctry. So T is isometrie to exp(T). •

1.11 Proposition. Suppose the H -action on G is polar with a torus A as a section,
and the action is not transitive. Let k denote the cohomogeneity oi the H -action, i.e.,
k = dim(A).
(1) If k = 1, then 1V(A, H) is Z~ or a dihedral group.
(2) If k > 1, then H'(A, H) is a rank k or k + 1 clystallographic group (i.e., a Weyl

group).

PROOF. By 1.7 (i), the affine Weyl group lt" = W( n, P(G, H)) has rank k,
so W is generated by (k: +1) reflect ioos. BY1.2 (4), W induces a homomorphism ~

from W onto TV(A, H), so TV(A , H) is a finite group generated by (k + 1) order two
elements, which implies that it is a Coxeter group ofrank at most k+l. Eut 1.9 (1) and
(2) imply that the rank of Hl(A, H) is at least k. So the rank of 1V(A, H) is either k
or k +1. Eut ll' is an affine Weyl group, so 1V satisfies the crystallographic condition
if k > 1. Hence the image ~(lV) = lV( A, H) also satisfies the crystallographic
condition if k: > 1. •

We end of this section, with two conjeetures:
1.12 Conjecture. If the H -action on G is of cohomogeneity 1, then the generalized
Weyl group is crystallographic. More generally if lvI is an isoparametric hypersurface
of G, then the number g of distinct principal curvatures of !vI must be 1,2,3,4 or 6.

1.13 Conjecture. Given any polar action of a Hilbert Lie group L on a Hilbert space
V, one can find same compact Lie group G and a closed subgroup H of G x G such
that:
(1) the action of H on G is polar with flat seetions,
(2) the L-action is orbital equivalent to the P(C, H)-action, Le., there exists an

isometry from V to H() ([0"1], g) that maps L-orbits onto the P(G, H)-orbits.
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§2. The submanifold geometry of P( C, H)-orbits.

It is a consequenee of seetion 1 that the submanifold geometry of the orbits of
apolar H -action on G with flat sections determines the submanifold geometry of
orbits of the associated P(G, H)-action in the Hilbert space V = HO([O, 1], g). For
example, the curvature distributions, the eurvature normals, and the marked Dynkin
diagram of 111 can be explicitly computed from the data of the H -action on G. These
geometrie data of !vI have been given in [Te2] when the H -action is the Adjoint action
on C, and in [PiT] when the H ~action is the I( x I( ~action on C (here K is the fixed
point set of an involution on G). They are all obtained from well·known root space
decompositons with respect to the flat seetion. In the following, we will give the
relation between the geometry of A1 and the H -action.

To simplify the notation, we may assume that e E G is a regular point for the
H ·action. So 111 = P( G, H) .Öis a principal orbit, and is isoparametric in V ([Te2]).
Note that v( lvJ)ö = 0, and given b E a the veetor field b(g . 0) = gbg- l is a parallel
normal field on 111. Moreover, there exist a smooth subbundle Eu of TM, finite rank
smooth vector subbundles {E j li E I} (the E~s are ealled the curvature distributions),
{Vi 1i E I} C a, and parallel normal fields {Vi li E I} (Vi 's are caHed curvature
normals) such that
(1) T 111 = Eu ffi L: {Ej Ii E I},
(2) the shape operator A·b IEi = (b, vd idL'; for i E I, and Ab IEo = 0,
(3) Eu is integrable, and leaves of Eo are affine subspaces of V,
(4) each Ei, i E I, is integrable, and the leaf Si( x) of Ei through x E M is a

standard sphere, called the curvature sphere for Ei,
(5) if ei = {I) E Cl I(b, 'Vj) = 1}, then {ei l'i E I} is the set of reflection hyperplanes

of the affine Weyl group l,lt· for the P( C, H)~action, (this determines Vi in terms

of lV),
(6) if rnj denotes the rank of Ei, then the 1n/s are invariant under W,
(7) the marked affine Dynkin diagram associated to 1\1 is the diagram fOT W with

the vertex corresponding to a simple root ej marked by 1ni = rank Ei.

Let T be a Weyl ehamber in a for the llV -action on a. Then T determines
{ei li E I}. By 1.10, T is isometrie to a fundamental domain of the H ·action on G. So
{Ei li E I} and {Vi li E I} can be computed explicitly from the Euclidean geometry
of the fundamental domain of H -action on G, which is a A;-simplex (k = dim( a)).
Since Ei(g· Ö) = gEj(Ö)g-l, to find the relation between E j and the H·action it
suffices to find the relation betwee.n Ei(Ö) and the H -action.

2.1 Proposition. With the same notation as above, choose ai E a such that o'i E Ei
and CLj does not lie in ej tor any j E I, j -; i. Let O'i = exp( aj). Then
(1) ~e C ~o; = {(x, O'i1xO'i) Ix E g} n ~,
(2) [or i E I, the map (x,O'i1xnd 1-+ v(t) = exp(-ajt)[x,ai]exp(ait) gives a

well-defined isomorphism troln ~ 0; / ~ e to Ei (Ö ),
(3) [~e, a) = 0,
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(4) Eo(Ö) == {u E H tl ([O,l],3o) I ~)I1L(t)dt E T(He)e}, where 30 is the centralizer
ofa in g, i.e., 30 == {x E gl [x, a] == O}.

PROOF. Since e is assumed to be a regular point for the H -action, He fixes A
pointwise. So we obtain (3), and (Je C ~a for any a E A. Note that (h 1, h'2) E Ha if
and only if h'2 == a- 1h 10'. This proves (1).

It is known that (cf. [Te2]) P(G, H)äi . Öis the curvature sphere Si(0) of Ei
through Ö, so Ei(Ö) == T(P(O,H)o'i . Ö)ö' By (1) and 1.2 (5), we have

P(G, H)ä == {g(t) == exp( -at)h 1 exp(at) I(h 1, exp( -a)h 1 exp(a)) EH},

an (2) follows by a straightfonvard computation.
To prove (4), we recalL that

T 111ö == {u' I'll E H I ( (0, 1Lg), (u (0), 11, ( 1)) E ~},

== {v E HO([O, l], g) I r1

v(t)dt E T(He)e},
Jo

Aob(u') == [u, b].

So for v == 11,' E T ]"1ö , we have v E Eo if and only if [u, b] == 0 for all b E a. This
implies that u( t) E 30, which proves (4). •

In the following we give more detailed geometrie description for the cohomo­
geneity one actions, and for the 0" -actions.

2.2 Cohomogeneity one actions.

Suppose the H -action on G is of cohomogeneity 1, IV(A, H) is the dihedral
group of order 211., and A is a circle of length e. Let b E a be a unit vector such that
exp(eb) == e. We may assurne that f! == 1 and e is a singular point for the H -action.
Then

{ßj == exp(jb/2n) 10 :s; j < 2n}

is the set of singular points on A, {exp(tb) 10 :s; t :s; 1/2n} is a fundamental domain
for the H -action, and the affine Wey1graupI/V == IV(0, P (G, H)) is the semi-direct

product of Z'2 with the lattice group Al == {jb/n Ij E Z}. For 0 ~ t :::; 1/2n, let

Mt denote the P(0, H)-orbit through the constant path tb. Let ml and m'2 denote
the dimension of He/Ho and H[3J / H u respectively, where Q == exp( tb) for some
o< t < 1/2n. Then {A1t 10 < t < 1/2n} is a family of isoparametrie hypersurfaces
of V, and the marked Dynkin diagram associated to Mt is At marked with multiplicity
(mh m'2), the non-zero principal curvatures of Mt are {.A j == ((j /2n) - t )-1 Ij E Z},
and the multiplicity of .A j is r111 if j is even, and is m'2 if j is odd. Moreover,
(1) Mo and M 1/'271 are smooth submanifolds of V with codimension 1 + ml and

1 + n1'2 respectively, and ],,10 U 1I{1/'271 is the set of focal points of Mt in V for
o< t < 1/2n,
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(2) given 0 < t < 1/2n, V ean be written as the union of B o U BI such that
(i) Bu is the normal disk bundle of radius t of Mo in V,

(ii) BI is the normal disk bundle of radius 1/2n - t of Ml/'2n in V,
(iii) Bon BI = aBo = aBI = 1I1t ,

(iv) let bi = din1( H i( Alt, Z'2)), and p( x) = L:: bix i the Poincare series of M,
then

00

= L x k(m 1+1n 2)(1 + x 1nl + xm:l + x m1+m:1).
k=O

2.3 The CF -actions.

Let H = G(CF) = {(g, a(g)) I9 E G} be as in 1.4 (iv), where a is an outer
automorphism of order l' on G (r = 2 or 3). Let Jt be the fixed point set of a on g,
and P = Jtl... Note that He is the diagonal group of ](, and the slice representation at
e is the Adjoint representatioo of ]( on Jt, Let ° be a maximal abelian subalgebra of
Jl. Then a is a section of the P( G, H )-action.

Since {ad(a) : g -+ 9 ICl E a} is a family of eommuting skew-adjoint operators,
there exist ([H]) positive root systems .6.0 aod .6.1 (subset of 0+), x o , Yo' E ~ for
er E .6.0 , r ß, S ß E P for ß E l~>l, aod a linear subspace Po of P, which give the
foUowing decompositions of .ff aod p:

such that

Jl = 0 + L Rxo + Ryo,
o Ello

p = Po + L Rrß + RSß'
ßElll

[ Cl, X (\] = - Q' ( a)yCi , [ CL, Yo] = 0' ( a )x 0' ,

[a,1'ß] = -ß(a)sß, [a, so] = ß(a)1'ß'

a( 'Ho) = u o , CF(Pß) = e'21ri/rPß,

where Uo = X o + iyo, ]Jß = 1'ß + i8ß' aod r = order (a). Let M = P(G, H) . a
be a principal orbit for some a E a, Theo the normal plane of M at Er: is n, and for
bE 0, the shape operator of 1\1 in the direction of bis

Let al, .. , ,am be a basis for 0, Then we have:

ease (1) order (a) = 2. Let {qj} be a basis for Po. Then by (*) and a direct
computation, we see that the real aod imaginary parts of U ü e'2nit, pße(2n+l)it, aj e'l.nit,

and qje('2n+l)t form an eigenbasis for A_bwith a(b)/(a(a)+2n), ß(b)/(ß(a)+2n+l),
oand 0 as eigenvalues respectively. So the reflection hyperplanes of W( Cl, P(G, H))
in ° are the affine hyperplanes defined by C\'( t) = 2n, ß(t) = 2n +1, for Q E .6.0 ,

ß E l~q and 11. E Z.
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Case (2) order(a) = 3. By a direct computation we obtain that the real and
imaginary parts of uoe:~llil, ppe(:{Il+l)il, pße(an+1)it J (l,je:{nit, qje(:~n+l)it, and qje(:{n+1)it

form an eigenbasis for 44b with o:(b)/(ü(a)+Sn), ß(b)/(ß(a)+Sn+l), ß(b)/(ß(a)+
3n + 2), 0,°and °as eigenvalues respectively, where {qj, qj} is a basis of the
complexify of (Po)c such that a(qj) = e'2Td/:{qj (hence a(qj) = e-11r/:~qj). So the
reflection hyperplanes cf I'V( Cl, P( G, H)) in aare the affine hyperplanes defined by
o:(t) = Sn, ß(t) = 3'12 + 1, ß(t) = 3n + 2 for 0: E 60, ß E l~q and n E Z.

§3. Involutions oe Kac-Moody algebras and the P(G, H) ..actions.

In this section, we review the construction of affine Kac-Moody algebras ([K])
and affine groups ([PS]). We also construct automorphisms on affine groups from given
automorphisms on compact Lie groups and discuss their relations with the P(G, H)­
actions of section 2.

Let G be a compact, simply connected, simple Lie group, and ( , ) the normalized
bi-invariant inner product on 0, Le., (ha, ha) = 2 for the shortest simple coroot of
g. Let L(O) = HtI(Sl, 0), t the angle variable in Sl, and let u' denote du/dt. Let
{u, v]o(t) = (u(t), v(t)]. Then L(g) is a Lie algebra. The affine Kac-Moody algebra
of type 1 is a two dimensional extension over L( fl):

L(g) = L(g) +Re +Rd

with the bracket operation defined by

[u, v] = ['/l, v]o +w( tl, 'V )e,

[d,u] = 1/

[c, u] = [c, d] = 0,

where w is the 2-cocyle defined on L( g) by

w(u, v) = ~ r
1rr

(u(t), v'(t)) dt.
2n io

(Note that [, ] is only defined on a dense subspace Hl (51, g) cf L(g); see 3.4 for
a discussion of this point.) Let (, ) denote the bi-linear form on L(g) defined as
foliows:

(u, v) = r"21r(u(t),v(t))dt,
in

(c, cl) = 1, (u, c) = (e, c) = (d, d) = 0.

Then (,) is Ad-invariant, i.e.,

([C 1]], () = (C [17, (]) , Ve,17, ( E L(fl) .
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Next we construct two types of automorphisms on t(g) from automorphisms on
G: Given u : G -? G, an automorphism of order k, we will use the symbol u also to
denote the induced automorphism on g. Let

& : L(g) ~ L(9)

be the linear map defined by

&(ll)(t) = U(ll( -27r/k + t», &(c) = c, &(d) = d.

Let p be an involution on G, and

p' : L(O) -? t(O)

the linear map defined by

p'(ll)(t) = p(u( -t», p'(e) = -e, p'(d) = -d.

3.1 Proposition. Let u : 0 -? 9 be an automorphism 0/ order k on the simple Lie
algebra 0, and ( , ) the normalized Ad·invariant form on g. Then

(i) (u(x), u(y» = (x, y),
(ü) w(&(u),&(v» = w(u,v)J

(iii) w(u· (u), u' (v» = -w(u, v), il u is an involultion.

PnOOF. Since u is an automorphism of 0, (x, y) = (u( x), u(y» is an Ad·
invariant inner product on O. But 0 is simple implies that (u( x), u( x) = c(x, x) for
same c > O. Since u k = id, ck = 1. This implies e = 1, which proves (i). Using (i),
the definition of the cocycle w, and a direct computation, (ii) and (iii) follows. •

As a consequence, we have

3.2 Corollary. If u and p are automorphisms 01 g 0/ order k and 2 respectively, then
& and p. are automorphisms 0/ L( 0) 0/ order k and 2 respectively.

The fixed point set L(O, a) of & is called the affine Kac·Moody algebra 0/ type
k if u is an order k outer automorphism of g. It is obvious that

t(g, a) = L(g, u) + Re + Rd,

where
L(g,u) = {u E L(g) lu(t) = u(1l(-27r/k +t»}.

It can also be easily seen that
t(o) = .ff + p,

is the decomposition into the 1 and -1 eigenspaces of p. , where

~ = {u E L(g) Iu( -t) = p(u(t»},

p= {u E L ( g) Iu(- t) = - P(lL (t ))} + Re +Rd.
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3.3 Construction of L(G).

We review briefly the construction of L(G) as given in Chapter 4 of [PS]. The
first step is to construct the central extension of the loop group L (G) == H 1( SI, G)
given by the 2-cocycle w. The left invariant 2-forrn on L(G) deterrnined by the 2­
cocycle w will also be denoted by w. Since the inner product on 9 is normalized,
the 2·forrn ~~iw is an integral cohomology dass of L(G), so there exists a principal
SI.bundle, t.p : P --jo L(G) with a connection l·form ß such that the curvature of
ß is 'P. w, (Le., the ehern dass of this principal bundle is [w /27riJ). Theo the group
L(G) of bundle isomorphisms of P that preserve the conoection ß and cover a left
translation 19 for some 9 E L( G) is the central extension by Si given by the cocyle
w.

We fix a base point Yo E ,+,-1 (e). For a curve 1 : [0, 1] --jo L(G), let

denote the parallel translation along 1 given by the connection ß. Suppose F E L(G)
aod F covers the left translation eg on L( G). Since F· (ß) == ß,

F 0 II j == II.Qj 0 F.

So F is uniquely determined by 9 E L(G) and F(yo), Le., L( G) is the set of pairs
(9, y), where 9 E L(G) and y E <p-l(g).

There is also an explicit construction of L(G) given in [PS] (p. 47), which
we will use to lift autornorphisrns a and p. to L(G): Let (9, p, z) be a tripIe with
9 E L( G), p a path in L( G) joining e to 9 and z E SI. Then F can be constructed by
using parallel translation. For y E 'P- 1(h), we choose some curve 1 in L(G) joining
h to e, let

F(y) == ll.;.} z(ITp(ITj(y))).

This is well-defined and in L(G). For if 11 and I~ are curves joining x to e, then since
L(G) is simply connected, 111* 1'2 (the loop obtained by the inverse of 11 followed
by I~) bounds a surface S in L(G). But 51 is abelian, so "curvature is infinitesimal
holonomy", i.e., we have C(/II * 1(1)IIjt (y) == IT j2 (y) for all y E <p-I(x), where

C(11 1 * I~) = exp (i fs w).

This also proves that (9t,P1, Zl) and (9'2'P~, Z1) gives the same F if aod only if

91 == 9'2, ZI = C(p'2 *PlI )Z1i

aod we call two such tripIes equivalent. Define multiplication of tripIes by
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Then the group of equivalence classes of these tripies is the Hilbert Lie group L(G),
whose Lie algebra is the central extension .L(g) = L(g) + Re of L(g) by w.

It is easily seen that eis . (g l P, Z) = (eiS . g, eis . P, z) defines a continuous
action of SI on .L(G), where (eis. g)( t) = g( s + t) and eis. p denotes the path
(eis. p)(r) = eis. p(T). Then the semi-direct product L(G) = SI ~ L(G) given by
this SI-action is a topological group, which is the group model for the affine algebra
L(g).

3.4 Remark. Although L(G) is a Hilbert manifold, and a topological group, (Le., the
group multiplication is continuous), it is not a Hilbert Lie group, because the map

HI(SI, G) X 51 ----t H1(Sl, G), (/, g) ~ fog

while smooth in the second variable is only continuous in the first variable ([P2], [PS]).
As a result, the Lie bracket of the corresponding "Lie algebra" L(g) is only defined
on a dense subspace. It should also be noted that L(G) is a Hilbert manifold locally
modeled on the product of the H I-space and R'2, but the Ad-invariant metric is the
product of the HO metric on the HI-space and the Lorentz metrie on R'2, so L(G) is
only a Lorentz manifold in the weak sense. Dur goal in reviewing this eonstruetion of
affine groups is to suggest a good infinite dimensional analogue of s-representations
and their relation to polar aetions on Hilbert spaces. As we will now see, while the
above problems make it diffieult to give a rigorous definition of infinite dimensional
symmetrie spaees, they do not interfere with the eonstruetion of the desired polar
aetions.

3.5 Thc Adjoint action of L(G).

Let
7f : L(G) ----t L(G) l (eis, (g) p, z)) ~ 9

denote the natural projeetion. Then the Adjoint action of L(G) on its Lie algebra
L(g) ([K], [PS]) is given by

Ad(g)(u) = gug- 1 + (gu9- 1
, g'9- 1) C,

1
Ad(g)(d) = -g'9- 1 +d - "2(9'g-l, g' g-l) c,

if 9 = (1, (g,p, z)). Note that the interseetion R oo of the sphere of radius -1 with
the hyperplane {u +1'C + sd E L( g) Is = 1}, Le.,

n°o = {u + l' C + cl I u E L ( 9), r = - (1 + !(u, u) )} l

is a horosphere of the infinite dimensional hyperbolic spaee. Henee Jl:='O is invariant
under the Adjoint action of L(G) on L( g), and Roo is isometric to the Hilbert space
L(g) = HO(Sl) g) via u + 1'C + d l-+ u. Moreover, the action on JlOO faetors
through L(G), and the eorresponding action on L(g) is equivalent to the action of
L(G) ~ P(G ,6(G)) on L(g) ~ HO([O,l], g) by gauge group transformations.

18



3.6 Tbe automorphislß CI on L(G).

Let a be an automorphism of order k on G. Then

a : L(G) ~ L(G), a(g)(t) = a(g( -21r/k + t))

is an automorphism 00 L( G). It follows from the coostruction of L(G) in 3.3 that

(eiB,(g,p,z» ~ (eiB,(a(g),a(p),z»

is a well~defined automorphism on t(G), whieh will still be denoted by a. Then
the fixed point set t(G, a) of CI is the affine group of type k, and t(g, a) is its Lie
algebra. Again

R~ = {u + r c + cl I u E L(g, a), r = - (1 + ! (u, tL) )}

is invariant under the Adjoint action of L(G, a), and R:: is isometrie to L(g, lT) via
the map tL + rc + cl ~ u. Moreover, the action on R~ factors through L(G, lT),
and the corresponding action on L( fl, a) is equivalent to the action of L(G, a) ~
P(G, G( a» on L( fl, a) ~ HO( [0,1], g) by gauge group transfonnations, where
G( lT) = {(x, a( x» 11: E G}.

3.7 Involution p. on L(G).

Let p be an involution on G, and ]( the fixed point set of p. Then

p' : L(G) ~ L(G), p'(g)(t) = p(g( -t»

is an involution on L(G). Note that p' (ei8 . g) = e- i8 . p. (g). Using this equality and
the construction of L(G) in 3.3, it follows that

(e i8 ,(g,p,z» ~ (e-is,(p+(g),p+(p),z-l»

is a well~defined involution on L(G), which will still be denoted by p*. Tben the
fixed point set of p. on L(G) is

which is isomorphie to

{g E L(G) Ip(g(-t» = g(t)} ~ P(G,]( X ]().

Let L( g) = ~+Pdenote the 1, -1 eigendecomposition of p. on L( g) as before. Tbeo
~ is the Lie algebra of L(G)p, and the Adjoint action of L(G)p leaves pinvariant, and
induees on pthe isotropy representation of the "symmetrie spaee" L(G)/L(G)p at the
identity eoset. This isotropy action also leaves Re: = JlOO np invariant. Moreover,
Ft; is isometrie to {u E L(g)lp(u(-t» = -u(t)} via the map u+rc+d ~ u,

and the the action of L(G)p on Re: is equivalent to the P(C,]( x K)-action on
HO([O, 1]' g).
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3.8 Natural embeddiog of t(G)jt(G)p iota t(G).

Let p be an involution on G, and ]( the fixed point set of p. Theo the finite
dimensional symmetrie space G j]( can be naturally embedded in G as the orbit N
through e ofthe action of G(p) = {(x, p(x)) Ix E G} on G, Le., N = {xp(x)-ll x E

G}. Similarly in infinite dimension, the involution pt induces an action of t(G) on
t(G) via h * y = hypt(h)-l, and the orbit i1 of this action through the identity
gives a natural embedding of t(G)j t(G)p into L(G). We also note that e E M,
the restriction T of the isometry x I---? x-Ion t(G) to M induces an isometry of M,
T( e) = e, and eITe is -id on T l\lc ' So if p = 9 * e E 11.1, then Tp = gTg- l has the
property that Tp(p) = P and d( Tp)p is -id on T A/p • This is the characteristic property
of a globally symmetrie space. Ta describe 1\1 explicitly, we compute directly and see
that

Ni = {( eia , (g, p, z )) 1g(t) = h(t )p( h( - s - t)) -1 für SOlne h E L(G) }.

Note that for g(t) = h(t)p(h( -s-t))-t we have 9 = e-is/'l..((eis/'J..h)pt(eiBj'J..h)-l).
So the loop part 7r(1\1) = 51 . 1\1, where

Al = {hp t ( h)- 1 I h E L(G)} C L(G).

Next we claim that

M = {g E L( G) Ig(t)-l = p(g( -t)), g(O), g( 7f) E N} rv fJ( G, N, N),

where fJ( G, N, N) denote the Hilbert manifold of H1.paths in G with end points
in N. It is easy to see that lI/I is contained in the fight hand side. Now suppose
given gE L(G) such that g(t)-l = p(g(-t)) and g(O),g(7r) E N. Then there exist
x, y E G such that a:p(x)-l = g(O) and yp(y)-l = g(1r). Let r : [0, 1r] ~ G be any
Hl.map such that 1'(0) = x,r(1r) = y, and define

h(t) _ {'1'(t), if t E (O,1r];
. - g(t)p(1'(2rr - t)), if t E [1r,27r].

Tben h E L(G) and hpt(h)-l = g, i.e., 9 E 111.
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