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§0. Introduction.

In finite dimensions, the theory of symmetric spaces, polar representations, and
isoparametric submanifolds of Euclidean spaces are all closely related. For example,
the following are known:

(1) The isotropy representation of symmetric space G/K at eX (which is called
an s-representation) is polar. Moreover, Dadok proved in [D] that up to orbital
equivalence these are the only polar actions on Euclidean spaces.

(2) The orbits of s-representations are generalized full or partial flag manifolds.

(3) The principal orbits of a polar representation are isoparametric ([Te1]).

(4) Thorbergsson proved in [Th] that an irreducible, full, compact, isoparametric
submanifold of codimension r > 3 in Euclidean space must be a principal orbit
of some s-representation,

(5) There are many codimension two isoparametric submanifolds ([OT1,2], [FKM])
that are not orbits of any orthogonal representations. Nevertheless these subman-
ifolds share many of the geometric and topological properties of flag manifolds.

So it is natural to ask whether there are analoguous results in infinite dimensions.
A start in this direction is made in [Te2], where we proved an infinite dimensional
analogue of (3). In this paper, we give a general construction for polar actions on
Hilbert space, study the submanifold geometry of the infinite dimensional orbits of
these actions, and discuss their relations to “infinite dimenisonal symmetric spaces”.

Let us first recall some definitions from transformation group theory ([PT2]).
A smooth isometric action of a Hilbert Lie group G on a Hilbert manifold M is
called proper if n T = Yo and z,, — z¢ in M implies that {g,} has a convergent
subsequence in ; and it is called Fredholm if given any z € M the orbit map & — M
defined by g ~ ¢ - = is a Fredholm map. Note that isotropy subgroups of proper
actions are compact, and the orbits of Fredholm actions are of finite codimension. An
isometric, proper Fredholm action is called polar if there exists a closed submanifold
S of M, which meets all orbits and meets them orthogonally. Such an § is called a
section for the action. We call

NS, & ={ge@lg-SCS}, Z(5&)={ge@lg-s=sVseS)}
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the normalizer and centralizer of S in G respectively. The quotient group
W(S,G) = N(S,6)/2(S,G),

is a discrete group, called the generalized Weyl group associated to the polar action.
In [Te2], we obtained an infinite dimensional analogue of (3), and also showed

that the orbits of polar actions on Hilbert spaces have many of the special properties of
the finite dimensional complex or real flag manifolds. In particular, for a polar action
of a Hilbert Lie group & on a Hilbert space V, we proved that the generalized Weyl
group W of the action is an affine Weyl group, the focal points of a principal orbit
are just the points on singular orbits, and the focal set meets the section in the union
of the reflection hyperplanes of W. The focal multiplicity of points on a reflection
hyperplane is invariant under W, so we can use them as markings for the Dynkin
diagram of W, thereby associating to each polar action on a Hilbert space a marked
affine Dynkin diagram. Moreover, we also proved that:

(i) If M is a principal orbit in V' then M is an isoparametric submanifold of V, i.e,,
the normal bundle v(M) is globally flat, and the shape operators A,(;) and A,y
are conjugate along any parallel normal field v.

(ii) the restriction of the distance function fo(z) = ||z — a||? to any G-orbit is a
perfect Morse function, and the homology of an orbit can be computed directly
from W and its multiplicities in the same way as in [BS] for the finite dimensional
case.

There are two known families of polar actions on Hilbert space. The first family
is given in [Te2]: the action of the Hilbert Lie group H!(S!, G) of H'-loops of a
compact connected, semi-simple Lie group G on the Hilbert space H'(S?, g) given
by the gauge transformation

g u=gug ' —g'g”"

is polar. These orbits can be viewed as infinite dimenisonal analogue of complex
full or partial flag manifolds ([PS]). A second family was constructed by Pinkall and
Thorbergsson ([PiT]): Let G/K be a symmetric space of compact type, and

K ={g € H'([0,7],G)|9(0),9() € I}.

Then the action of the Hilbert Lie group K on H'([0, 7], g) by gauge transformations
is again polar. The orbits can be viewed as infinite dimensional analogues of real flag
manifolds (see [Te3]).

Note that the first example is related to the Adjoint action of G on G, and the
second example is related to the J x I{-action on . Since both the Adjoint action
and the K x K -action on G are polar with flat sections, this leads naturally to a
general construction of polar actions on Hilbert spaces. Namely, if H is a closed
subgroup of G x G, and the action of H on @ defined by (hy, hy) - = = hyzh;’ is

2



polar with flat sections, then the action of the group P(G, H) of H!-paths ¢ in G

with (¢(0),¢(1)) € H on V = H'([0,1], ¢) by gauge transformations
g-u=gug” —g'g”!

is polar.

Next we dicuss the relation between polar actions on Hilbert space and involutions
of affine Kac-Moody groups. Let L(G) = H'(S!,G) denote the Hilbert Lie group
of Sobelov H!-loops in a compact, connected, simple Lie group G. Then the affine
Kac-Moody group L(G) of type 1 is a 2-torus bundle 7 : L(Q) — L(G) (see
[PS]). There is a non-degenerate, Ad-invariant bilinear form on the affine algebra f}(g)
([K),[PS]), and the Adjoint representation of L(@) on its Lie algebra gives rise to the
first example of polar action on Hilbert space above. We show that every involution
p on G induces an involution p* on L(G) such that K is the fixed point set of p* and
the Adjoint representation of K onp gives rise to the second example of polar action
on Hilbert space above, where I\ is the fixed point set of p and p is the —1 eigenspace
of dp* on L(g). Let ¢ be an outer automorphism of G of order k, and let L(G, o)
denote the subgroup of L(G) consisting of loops ¢ that are Zj-equivariant, i.e., satisfy
g(t + 27 /k) = o(g(t)). Then the subgroup L(G,o) = n~1(L(G, o)) is the affine
Kac-Moody group of type k. Moreover, we show that the Adjoint actions of affine
groups of type k on their Lie algebras give rise to the polar action of P(G, H) on
HY([0,1], @), where H = {(z,0(z)})|z € G}. Following the terminology from the
theory of finite dimenisonal symmetric spaces, we call L(G) and L(@, o) symmetric
spaces of type II, and L(G)/K a symmetric space of type .

The above discussion suggests that, as in finite dimensions, a close relationship
does exist between polar actions on Hilbert spaces and isotropy representations of sym-
metric spaces. However, the precise nature of this relation is still not well-understood.

The paper is organized as follows: In section 1, we associate to each polar H-
action with flat sections on a compact Lie group G, a polar action on the Hilbert
space H'([0,1], @), and we study the relation between the H-action and the associ-
ated infinite dimensional action. In section 2, we give description of the principal
curvatures of the principal orbits of the associated infinite dimenisonal action in terms
of the H-action. Finally, in section 3, we discuss the relation between the isotropy
representations of infinite dimensional symmetric spaces and polar actions on Hilbert
spaces.

§1. P(G, H)-actions.

In this section, we give a general construction of polar actions on Hilbert spaces
from polar actions on compact Lie groups with flat sections.

We first set up notations. Let G be a connected, compact, semi-simple Lie group,
equipped with a bi-invariant metric. Let

G =HY[0,1],6), V=H0,1],9)



denote the Hilbert Lie group of all Sobolev H!-paths from [0, 1] to G' and the Hilbert
space of H"-maps from [0, 1] to g respectively. (One should think of elements of V as
representing connections (automatically flat) for the product principal G-bundle over
[0,1]). Let G act on V isometrically via gauge transformations:

g-u=gug™t —g'g7".
It is obvious that given any « € V there exists ¢ € G such that u = —g'g~!. This
proves that ¢ acts transitively on V. Using the same proof as in [Te2}, we see that this

action is proper and Fredholm. So one way to produce interesting proper Fredholm,
isometric actions on Hilbert space is to find closed, finite codimension subgroups of

(3, whose orbits in V give interesting geometric and topological manifolds. In the

following, we will give a method of finding subgroups of ¢, whose action on V is
polar.

Let H be a closed, connected subgroup of G x G, acting on G by
(hi,hy)-g= hlgh.;l.

Let
P(G,H)={ge G=H'[0,1,G)] (9(0),9(1)) € H}.

Note that the homomorphism
T:G—-GxG, g (9(0),9(1)

is a submersion and P(G, H) = ¥~!(H). It follows that P(G, H) is closed and has

finite codimension in G, hence the action of P(G, H) is also proper and Fredholm.
Next we define two operators

E:H([0,1],9) —» HY[0,1],6), @:H"([0,1),8) = G
as follows: let E(w)(t) be the parallel translation in the trivial principal bundle I x G

over I = [0,1] defined by the connection wu(t)dt, and ®(u) the holonomy; i.e.,
E(u) :[0,1] — G is the unique solution of the initial value problem:

E-'E' =u
E(0) =e,

and

O(u) = E(u)(1).

1.1 Proposition. With notations as above,
(i) E(g-u)=g(0)E(uw)g™!, &(g-w)=(g(0),9(1)) (v),
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(i) ve P(G,H) u ifand only if ®(v) € H - B(u).

Proor. It is easy to prove (i) by a direct computation. To see (ii), let v €
P(G,H) - u. Then it follows from (i) that ®(v) € H - ®(u). Conversely, suppose
®(v) = hy®(uw)h;! for some (hy, hy) € H. Let g(¢) = E(v)~(t)h E(u)(t). Then
(g(O),g(l)) = (hlsh2): and

By - w) = g(0)E(w)g™" = mE(w)E(w)""hi ' E(v) = E(v),

which implies that g - v =v. =

We recall ([PT1]) that a section for a polar action is automatically totally geodesic.
Moreover it is well-known that a compact, flat, totally geodesic submanifold of G
containing e is a torus subgroup.

1.2 Theorem. Let the notation be as above, and suppose the H -action on G is polar

with flat sections. Let A be a torus section through e and let a denote its Lie algebra.

Then:

(1) the P(G, H)-action on V is polar, and the space a = {a|a € a} is a section,
where a : [0,1] — @ denotes the constant map with value q,

(2) the generalized Weyl group W = W( a,P(G, H)) is an affine Weyl group,

(3) if ¥ : P(G,H) — H is the homomorphism defined by ¥(g) = (g(0), ¢(1)),
then ¥(N{ 4, P(G,H)) = N(A,H), ¥ maps Z( &, P(G, H)) isomorphically
onto Z(A, H), and

A=Ker(T)NN( &, P(G,H)) = {g(t) =exp(At) | A € A(A)},
where A(A) is the unit lattice of A:
A(A) = {X € al exp(r) = e},

(4) U induces a surjective homomorphism from W 1o W = W(A, H Y, W is iso-
morphic to W | A, and W is the semi-direct product of W with A,

(5) ¥ maps the isotropy subgroup P(G'\, H); isomorphically to H.gy ), in fact its
inverse is the map ¢ : Heya) — P(G,H); defined by (hy, hy) — ¢(t) =
exp(—at)h exp(at),

(6) v € V is a singular point of the P(G, H)-action if and only if ®(u) € G is a
singular point of the H -action.

ProoFr. We prove each statement of the theorem seperately below.

(1) To see that & meets every P(G, H)-orbit, we let © € V. Since A meets
every H-orbit, there is ¢ € a such that ®(u) € H - exp(a). But E(d) = exp(ta), so
®(a) = exp(a). By 1.1 (ii), we have ¢ € P(G,H) - u. To prove a is orthogonal to
P(G,H) - a for all a € a, we note that

T(P(GaH) ) &)& = {[ua&] — |u € HI(IO, 1}’g)a (u(O),u(l)) € h}
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For b € a, we have [«,b] = 0 and

([w,a] =, b) = /(; (fu,a] =, b)dt
1
= ) (u,[a,b]) = (v, d)'dt =0 — (u(1) — u(0), b) =0,

where the last equality follows from the fact that
T(H-e)={z-yl|(zy)€h} L a

(2) It was proved in [Te2] that the generalized Weyl group of a polar action on
Hilbert space is an affine Weyl group.

(3) First we prove ¥(N( 4, P(G,H)) C N(A,H). Let g € N( 4, P(G, H)).
Then for a € a there exists b € asuch that g -a = b. Using 1.1 (i) and the fact
that E(&) = exp(ta), B(b) = exp(bt), we have exp(d) = g(0)exp(a)g(1)~!. This
proves that (¢(0),g(1)) € N(4, H).

Next we prove that N(A,H) C ¥(N( &, P(G,H)). Let (h1,hy) € N(4,H).
Then hlAh;l = A. In particular, this implies that hlh‘jl € A, hfA = Ahy,
hART! = AhyhT! = A, and hyah]' = a. Now given a; € a, there exists b; € a
such that h; exp(a;)h;! = exp(d;). Set

g(t) = exp(=bit)hy exp(a,t).

Then it is easily seen that (¢(0),¢(1)) = (h1, hy), and a direct computation shows
that
g-a=by +exp(=bit)hi(a — a))hi exp(bit).

Since h]ahl‘1 = a and a is abelian, ¢ - @ = b; + hy(a — al)hl'l € a.

To compute the intersection of Ker(¥) and N( a, P(G, H)), we assume that
g € N( & P(G,H)) and ¢(0) = ¢(1) = e. Then for a € a, there exists b € a such
that g - @ = b, so 1.1 (i) implies that

() = E(3) 7 g(0)E(a) = exp((a — b))

But g(1) = exp(a — b) = ¢, i.e., (a —b) € A. Conversely, let A € A(A), and
g(t) = exp(At). Then g € P(G, H), g € Ker(¥), and ¢ - & is the constant map with
constant equal to a — A. This proves that ¢ € Ker(¥) N N(a, P(G, H)).

Now let g € Z( &, P(G,H)). Since g-0 =0, ¢'¢"' = 0. Sog(t) = hy is a
constant map. But g-a@ = hyah! = a. This implies that ¥(g) = (h1,h1) € Z(4, H),
and ¥ maps Z( &, P(G, H)) injectively into Z(A, H). To prove surjectivity we let
(h1,hy) € Z(A, H). Then hyeh;' = e implies that hy = hy. Set g(t) = h;. Since
hlahl'1 =a,¢-a=4aforalla€a

(4) is a consequence of (3).



(5) If g € P(G, H)s, then from E(a)(t) = exp(ta) and 1.1 we have exp(at) =
g(0) exp(at)g™'. So exp(a) = g(0) exp(a)g(1)~", i.e, ¥(g) € Hexpa). Conversely,
if hy exp(a)h;! = exp(a), then set g(t) = exp(—at)h) exp(at), a direct computation
as above implies that g - @ = a.

(6) follows from (5). =

Let N be a submanifold of G, and (G, e, N') the set of all H!-paths in G such
that v(0) = e and v(1) € N. It is known that (cf. [P1]) (G, e, N) is a Riemannian
Hilbert manifold,

T(QG e, N))y = {uy|u € H'([0,1],0)},

and the Riemannian inner product on T(Q(G,e, N)), is

1
(wy,07) = [ (' (1), /(1)) dt.

If N is an H-orbit in G, then P(G, H) acts on Q(G,e,N) by g x v = g(0)yg™ ',
and this action is isometric and transitive.

1.3 Corollary. With the same notation and assumption as in 1.2, let N be the H-orbit
through exp(a) in G, and

F:Q(G,e,N) - H'([0,1},9), F(m)=7"".

Then F is an isometric, equivariant embedding, and the image of F is equal to

P(G,H)-a.

1.4 Remark. Let A be a Riemannian manifold, G' a compact Lie group acting on
M isometrically, p € M a regular point, and N a G-orbit in M. Let

1
£ QM pN) =R, £ = [ @)

denote the energy functional. Bott and Samelson proved that (cf. [BS]) if the G-action
on M is variationally complete, then £ is a perfect Morse function, and the homology
of Q(M,p, N) can be computed explicitly in terms of the singular data of the G-
action. Moreover, they showed that the following H-actions on G are variationally
complete:

(i) the action of the diagonal group H = A(G) = {(g,9)]g € G} on G, ie., the

Adjoint action of G on G,
(i) the action of H = I x K on G, where G/K is a symmetric space.

By results of Hermann ({He]) and Conlon ([C1]) there are two more families of
variational complete actions on G:



(ili) the action of H = K| x Ky on G, where both G/K and G/ K, are symmetric
spaces,

(iv) the action of H = G(o) = {(g,0(g))|g € G} on G, where ¢ is an automor-
phism of G; the action of G(o) on G will be called the o-action.

Conlon noted that the above four families of actions are polar with flat sections, and
he proved that in general polar actions with flat sections are variationally complete
(Conlon called these sections K -transversal domains [C2]).

1.5 Examples. Applying 1.2 to the examples (i}(iv) in 1.4 gives many polar actions
on Hilbert spaces. In fact, the first and second families of examples described in the
introduction are the P(G, H)-action on V' corresponding to examples (i) and (ii) in
1.4 respectively. Note also that under the isometric embedding F' in 1.3, the path
space (G, e, H - exp(a)) is embedded in the Hilbert space V = H"([0,1],g) as
a taut submanifold with constant principal curvatures, and the energy functional £
corresponds to the square of the norm in the Hilbert space V, ie., £(¢) = || F(g) |l %

1.6 Theorem. (Conlon [C2]) Let M be a simply connected, complete Riemannian
manifold, K a compact Lie group acting on M isometrically, and M; the set of
singular points. Suppose the K -action on M is polar with a flat section &, and the
K -action on M is not transitive. Then
(i) M, # 4,
(ii) M,NE is the union of finitely many totally geodesic hypersurfaces {Py, ..., P.},
(iii) the generalized Weyl group W(Z, ) is a Coxeter group generated by the re-
flections of ¥ in the P;.

In the following, we will discuss further structures of the generalized Weyl group
for polar H -action on G with a flat section A (here G need not be simply connected).
First we consider the rank of the affine Wey! group W of the P(G, H)-action on V.
Let W C Iso(R*) be a Coxeter group, {£;|: € I} the set of reflection hyperplanes
of W, and u; € R the unit normal to ¢;. Then the rank of W is the dimension of
the linear span of {u;|7 € I}. In particular, the Dynkin diagram of a rank k, finite
Coxeter group has & vertices, and that of a rank £ infinite Coxeter group has k + 1
vertices. Recall also that the codimension of the principal orbits of an action is called
the cohomogeneity. For a polar action the cohomogeneity is the dimension of a section
[PT1].

1.7 Theorem. Let the assumptions and notations be as in Theorem 1.2.
(i) the rank of the affine Weyl group W = W( &, P(G, H)) is equal to the coho-
mogeneity of the H-action on G, which is equal to the dimension of A,
(ii) if the H-action is not transitive, then the H-action on G always has singular

points, or equivalently the P(G, H )-action has singular points.

PROOF. We may assume that M = P(G, H) - 0 is a principal orbit. Suppose
that the rank of W is less than thc dimension of a. Then there exists 0 # b € a such
that the line Rb docs not meet any reflection hyperplane of W. So there is no focal
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point for A on the line Rb. This implies that the shape operator A; = 0. But
TMy = {u'|ue€ Hl([O,l], g), (u(0),u(1)) € b},

Ay = [, B = 0.

So [u, b] = 0 for all v € T'Mj;, which implies that [z,b] = 0 for all z € g. Since g is
semi-simple, b = 0, which is a contradiction. This proves (i).

(ii) follows directly from the proof of (i). Since the set of focal points of M is
the set of singular points for the P(G, H)-action ([Te2]), if the action has no singular
points then A has no focal points. This implies that all shape operators A; = 0 for

b € v(M);. Then the above computation implics that b = 0. Hence dim( &) = 0,
i.e., the H-action is transitive. This proves (ii).

1.8 Theorem. Let the assumptions and notations be as in Theorem 1.2. The slice
representation of the H-action at exp(«) and the slice representation of the P(G, H )-
action at a are equivalent polar representations. In fact,

(1) the slice representation of the H -action at exp(a) is given by

(h1, hy) - (bexp(a)) = (hibhy) exp(a),
(2) the normal plane v(P(G,H) - &); is
{v(t) = exp(—at)bexp(at)|bexp(a) € v(H - exp(a))exp(a)}

and the slice representation at @& is given by g - v = guvg~},

(3) f: v(H - exp(a))expta) — v(P(G, H) - &) defined by
bexp(a) — v(t) = exp(—at)bexp(at)
is an equivariant isomorphism, i.e.,
e((h, he)) - f(bexp(a)) = f((h, hy) - bexp(a)),

where @ is as in 1.2 (5).

ProoF. It is known {[PT1]) that the slice representations of a polar action are
also polar. The proof of (1)}-(3) will be given seperately below.

(1) Given (hi,hy) € Hexpa), then we have by exp(a)hy' = exp(a). So if
bexp(a) € v(H - exp(a))exp(a)» then we have

(h1, hy) - bexp(a) = hybexp(a)hy! = hibhT! exp(a).

Q) Let M = P(G,H) -a CcV = H[0,1],¢). By a direct computation, we
obtain that

TM; = {[v,a] — ' |v € HY([0,1],9), (u(0),u(1)) € b},

9



v(M)a = {v e V|v' =[v,4], (v(1),y) = (v(0),2) ¥(z,y) € b}.

It is easy to see that if v’ = [v,&] then there exists b € g such that v(t) =
exp(—at)bexp(at). In order for v € v(M)z; v must also satisfy the condition

(v(0),z) = (v(1),y) for all (z,y) € b, so

(.v(l), y) = (exp(—a)bexp(a),y) = (bexp(a),exp(a)y)
= (v(0),z) = (b,z) = (bexp(a), z exp(a)).

It follows that

(bexp(a), zexp(a) —exp(a)y) =0, V(z,y) € h.

But
T(H ) exp(“))exp(a) = {:" exp(a) - exp(a)y l (371 y) € b}a
so (2) follows.
(3) is a consequence of (1) and (2).

1.9 Theorem. Let the assumptions and notations be as in Theorem 1.2. Then,

(1) there exists a € a such that the affine Weyl group W = W( &, P(G, H)) is the
semi-direct product of the finite Weyl group Wi and a lattice group Ay, where
Wi is isotropy subgroup of W at &, and A, is a lattice group containing the unit
lattice A(A) and is invariant under I’i"a,

(2) the Weyl group of the slice representation of the H-action at o = exp(a) is
the isotropy subgroup W, of W = W(A, H), and the Weyl group of the slice
representation of the P(G, H)-action at @ is Wi,

(3) W;, is isomorphic to W,,,

(4) the generalized Weyl group W (A, H) of the H-action on G is the semi-direct
product of W, and the abelian group A, JA(A).

Proor. It follows from the standard theory of affine Weyl groups ([Bo]) that
there exists @ € @ such that
(i) W is the semi-direct product of the isotropy subgroup W, and a lattice group A,
(i) if W is of rank k, then W is a finite Weyl group of rank k,
(iii) & is a vertex of a Weyl chamber of W, and W; is maximal among all isotropy
subgroups of W
It is known that ([PT1]) the slice representation of a polar action is polar, and the Weyl
group of the slice representation at z is equal to the isotropy subgroup at z of the
generalized Weyl group of the polar action. So W, and W, are the Weyl groups of
the slice representations of the H-action and P(G, H)-action at « and & respectively.
It follows from 1.2 (3)—(5) that ¥(¢) = (¢(0),¢(1)) induces an isomorphism from

W, to W,. This proves (1)-(3), and statement (4) is then a conscquence of (1) and
12(4).
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Let X be a Riemannian K -manifold. Then a submanifold A (possibly with
boundary) of X is called a fundamental domain for the K-action if it meets each
K-orbit in exactly onc point. For example, a Weyl chamber in a is a fundamental
domain of the action of the affine Weyl group W on a.

1.10 Proposition. With the same notation and assumption as in 1.2, Let T be a Weyl
chamber in . Then

(1) 7 is a fundamental domain for the P(G, H )-action on V,

(2) 7 and exp(T) are isometric,

(3) exp(T) is a fundamental domain for the H-action on G.

Proor. The orbit spacc of a polar action is isometric to the orbit space of
its section under the action of the generalized Weyl group ([Te2]). Since T is a
fundamental domain for the W-action on 4, (1) follows.

Let ® be as in 1.1 and ¥ be as in 1.2. Then ®(a) = exp(a). It follows form
1.1 that & | 7 is injective, and ®(7) = exp(7) meets every H-orbit. This proves (3).
Since A is flat, exp : a — A is a local isometry. So 7 is isometric to exp(7). =

1.11 Proposition. Suppose the H-action on G is polar with a torus A as a section,

and the action is not transitive. Let k denote the cohomogeneity of the H-action, i.e,

k = dim(A).

(1) If k = 1, then W(A, H) is Zy or a dihedral group.

(2) Ifk > 1, then W (A, H) is a rank k or k+1 crystallographic group (i.e., a Weyl
group).

ProOF. By 1.7 (i), the affine Weyl group W = a, P(G, H)) has rank k,
so W is generated by (k 4+ 1) reflections. By 1.2 (4), lIl mduces a homomorphism ¥
from W onto W(A, H), so W(A, H) is a finite group generated by (k+ 1) order two
elements, which implies that it is a Coxeter group of rank at most k+1. But 1.9 (1) and
(2) imply that the rank of W( A4, H) is at least k. So the rank of W(A, H) is either k
or k+1. But W is an affine Weyl group, so W satisfies the crystallographic condition

if £ > 1. Hence the image (W) = W (A, H) also satisfies the crystallographic
condition if k > 1. =

We end of this section, with two conjectures:
1.12 Conjecture. If the H-action on G is of cohomogeneity 1, then the generalized
Weyl group is crystallographic. More generally if A/ is an isoparametric hypersurface
of G, then the number ¢ of distinct principal curvatures of M must be 1,2, 3,4 or 6.

1.13 Conjecture. Given any polar action of a Hilbert Lie group L on a Hilbert space

V', one can find some compact Lie group G and a closed subgroup H of G x G such

that:

(1) the action of H on G is polar with flat sections,

(2) the L-action is orbital equivalent to the P(G, H)-action, i.e., there exists an
isometry from V to H"([0,1], g) that maps L-orbits onto the P(G, H )-orbits.
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§2. The submanifold geometry of P(G, H)-orbits.

It is a consequence of section 1 that the submanifold geometry of the orbits of
a polar H-action on G with flat sections determines the submanifold geometry of
orbits of the associated P(G, H)-action in the Hilbert space V = H°([0,1], g). For
example, the curvature distributions, the curvature normals, and the marked Dynkin
diagram of M can be explicitly computed from the data of the H -action on . These
geometric data of M have been given in [Te2] when the H -action is the Adjoint action
on G, and in [PiT] when the H -action is the /X' x J{-action on G (here K is the fixed
point set of an involution on ). They are all obtained from well-known root space
decompositons with respect to the flat section. In the following, we will give the
relation between the geometry of M and the H -action.

To simplify the notation, we may assume that e € G is a regular point for the
H-action. So M = P(G, H)-0 is a principal orbit, and is isoparametric in V" ([Te2]).
Note that »(M); = &, and given b € a the vector field b(g - 5) = gbg~" is a parallel
normal field on M. Moreover, there exist a smooth subbundle Ey of T M, finite rank
smooth vector subbundles {E; |z € I} (the E}s are called the curvature distributions),
{vi|¢ € T} C a, and parallel normal fields {9;|2 € I} (¥;’s are called curvature
normals) such that
(1) TM = E,® Z{E;|i € I},

(2) the shape operator A; | E; = (b,v;) idy, fori € I, and A | Ey = 0,
(3) Ey is integrable, and leaves of Ey are affine subspaces of V,
(4) each E;, i € I, is integrable, and the leaf S;(z) of E; through z € M is a

standard sphere, called the curvature sphere for E;,

(5) if & = {b e @|(b,v;) =1}, then {& | € I} is the set of reflection hyperplanes
of the affine Weyl group W for the P(G, H)-action, (this determines v; in terms

of W),

(6) if m; denotes the rank of E;, then the m;’s are invariant under W,
(7) the marked affine Dynkin diagram associated to A is the diagram for W with

the vertex corresponding to a simple root ¢; marked by m; = rank E;.

Let 7 be a Weyl chamber in @ for the W-action on & Then 7 determines
{€i |7 € I}. By 1.10,  is isometric to a fundamental domain of the H -action on G'. So
{€i|7 € I} and {v; |7 € I} can be computed explicitly from the Euclidean geometry
of the fundamental domain of H-action on G, which is a k-simplex (k = dim(a)).
Since E;(g - 0) = gE:{(0)¢™", to find the relation between E; and the H-action it
suffices to find the relation between E;(0) and the H-action.

2.1 Proposition. With the same notation as above, choose a; € a such that a; € ¢;

and a; does not lie in £; for any j € I, j # 1. Let a; = exp(«;). Then

(1) be C b, = {(z,07'2zes) [2 € g} NY,

(2) for i € I, the map (2,07 'za;) = v(t) = exp(—a;t)[z,a;] exp(a;t) gives a
well-defined isomorphism from Yo, /9. to Ei(0),

(3) [be,a] =0,
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(4) Ey(0) = {u € H'([0,1],30)| [, u(t)dt € T(He).}, where 3, is the centralizer
ofaing, ie, 30 ={x € gl|(z,a] =0}.

Proor. Since e is assumed to be a regular point for the H -action, H, fixes A
pointwise. So we obtain (3), and b, C b, for any o € A. Note that (hy, hy) € H, if
and only if 2y = o~ !hi«. This proves (1). X

It is known that (cf. [Te2]) P(G,H); - 0 is the curvature sphere S;(8) of E;
through 0, so E;(0) = T(P(G, H);, - 0)5. By (1) and 1.2 (5), we have

P(G,H)a = {g(t) = exp(—at)h exp(at) | (h1,exp(—a)hy exp(a)) € H},

an (2) follows by a straightforward computation.
To prove (4), we recall that

TM; = {u'|lue H’([O,l], g), (u(0),u(1)) € b},

= {v e 7(0,1],9)] A o(t)dt € T(He),),
Ap(u') = [u, b).

So for v = v’ € T'M,, we have v € E, if and only if [u,b] = 0 for all b € a. This
implies that «(t) € 3, which proves (4). =

In the following we give more detailed geometric description for the cohomo-
geneity one actions, and for the o-actions.

2.2 Cohomogeneity one actions.

Suppose the H-action on G is of cohomogeneity 1, W( A, H) is the dihedral
group of order 2n, and A is a circle of length €. Let b € a be a unit vector such that
exp(£b) = e. We may assume that £ = 1 and e is a singular point for the H-action.
Then

{B; = exp(jb/2n)|0 < j < 2n}

is the set of singular points on A, {exp(th) |0 <t < 1/2n} is a fundamental domain
for the H -action, and the affine Weyl group W = W(a, P(G, H)) is the semi-direct
product of Z, with the lattice group A, = {jb/n|j € Z}. For0 <t < 1/2n, let
M, denote the P(G, H)-orbit through the constant path tb. Let m; and my, denote
the dimension of H./H, and Hp /H, respectively, where « = exp(tb) for some
0 <t<1/2n. Then {M,|0 <t < 1/2n} is a family of isoparametric hypersurfaces
of V', and the marked Dynkin diagram associated to M is A, marked with multiplicity
(m2), my), the non-zero principal curvatures of M; are {\; = ((j/2n)—t)"1{j € Z},
and the multiplicity of A; is m, if j is even, and is my if j is odd. Moreover,
(1) M, and M)y, are smooth submanifolds of V' with codimension 1 + m; and
1 + my respectively, and M U My, is the set of focal points of M, in V for
0<t<1/2n,
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(2) given 0 <t < 1/2n, V can be written as the union of By U B; such that
(i) By is the normal disk bundle of radius ¢t of My in V,
(ii) By is the normal disk bundle of radius 1/2n — ¢t of M)y, in V,
(11]) B[) N Bl = 53“ = 3Bl - I\{[t,
(iv) let b; = dim(H;(M;, Z,)), and p(z) = 5 b;z* the Poincaré series of M,

then
(L4 z™)1 + z™)

1 — ,cml-l-mg

p(z) =

o0
Z 2 k(my+m;) 1-{-:12"“ +3:m’ +$m1+mg)
k=0

2.3 The o-actions.

Let H = G(o) = {(g9,0(¢))|¢ € G} be as in 1.4 (iv), where o is an outer
automorphism of order » on ¢ (r = 2 or 3). Let R be the fixed point set of ¢ on g,
and p = R1. Note that H, is the diagonal group of K, and the slice representation at
e is the Adjoint representation of J{ on £. Let a be a maximal abelian subalgebra of
R. Then a is a section of the P(G, H )-action.

Since {ad(a): g — g|a € a} is a family of commuting skew-adjoint operators,
there exist ([H]) positive root systems A, and &) (subset of a*), z,,y, € R for
a € Ny, rz,s3 € p for B € A, and a linear subspace py of p, which give the
following decompositions of St and p:

R=G+Z Ray + Ry, P=P()+Z RT‘3+R35,

a€d fedy
such that ,
la,24] = —a(a)ya, la,ys] = ala)z,, Ve € Dy,
la,r5] = —B(a)ss, la,s4) = Bla)rg, VB € Ay, (%)
0(‘[10) = Uqg, 0(]);3) = e21ri/rp’3’

where u, = T4 + o, p3 = rg + 183, and 7 = order {(¢). Let M = P(G,H)-a
be a principal orbit for some o € a. Then the normal plane of M at & is &, and for
b € a, the shape operator of M in the direction of b is

Ay, ] — ') = —[u, ).

Let a;,...,qa, be a basis for a. Then we have:

Case (1) order (o) = 2. Let {q;} be a basis for p;. Then by (*) and a direct
computation, we see that the real and imaginary parts of u,e?™, pgel2ntlit g pnit
and ¢;e®*"+V* form an eigenbasis for A; with a(b)/(a(a)+2n), ﬂ(b)/(ﬂ(a)+2n+1),
0 and 0 as eigenvalues respectively. So the reflection hyperplanes of W( @, P(G, H))
in a are the affine hyperplanes defined by a(t) = 2n, B(t) = 2n + 1, for « € A,
ﬂ € A] andn € Z.
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Case (2) order(o) = 3. By a direct computation we obtain that the real and
imaginary parts of u, elhul’ 13'36(3!1+1):t} pﬁe(lin+2)ti’ (Ljeiin:!, qje(i‘m-}-l)zt, and qje(iin-l-‘l)zt

form an eigenbasis for A; with a()/(a(a)+3n), B(b)/(B(a)+3n+1), B(b)/(B(a)+
3n + 2), 0,0 and 0 as eigenvalues respectively, where {¢;,g;} is a basis of the

complexify of (pq)¢ such that o(q;) = e?™/%q; (hence o(g;) = e~ #"/3g;). So the
reflection hyperplanes of W( &, P(G, H)) in a are the affine hyperplanes defined by
a(t)=3n,B8(t)=3n+1,8(t)=3n+2fora € Ny, B € Ayandn € Z.

§3. Involutions of Kac-Moody algebras and the P(G, H)-actions.

In this section, we review the construction of affine Kac-Moody algebras ([K])
and affine groups ([PS]). We also construct automorphisms on affine groups from given
automorphisms on compact Lie groups and discuss their relations with the P(G, H)-
actions of section 2.

Let G' be a compact, simply connected, simple Lie group, and (, ) the normalized
bi-invariant inner product on g, i.e., (ka, ha) = 2 for the shortest simple coroot of
g. Let L(g) = H"(S', g), t the angle variable in S', and let «' denote du/dt. Let
[u,v]o(t) = [u(t),v(t)]. Then L(g) is a Lie algebra. The affine Kac-Moody algebra
of type 1 is a two dimensional extension over L{g):

~

L(g) = L(a)+ Rc+ Rd
with the bracket operation defined by

[w, v] = [, v], + w(u,v)e,

[d, 'u] =u

[e, 1) = [e,d] =0,

where w is the 2-cocyle defined on L(g) by

r
w(u,v) = %A (u(t), (1)) dt.

(Note that [, ] is only defined on a dense subspace H'(S',g) of L(g); see 3.4 for

a discussion of this point.) Let {, ) denote the bi-lincar form on L(g) defined as
follows:

ir
(1, v) = /0 (u(t),v(2)) dt,
(c,d) =1, (u,c)=/{c,c)={d,d)=0.
Then (,} is Ad-invariant, i.e.,

(&), ¢) = (& [m <), Y&,m,¢ € L(g)
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Next we construct two types of automorphisms on ﬂ(g) from automorphisms on
G: Given ¢ : G — @, an automorphism of order k, we will use the symbol o also to
denote the induced automorphism on g. Let

6 : L(g) — L(a)
be the linear map defined by
G(u)(t) = o(u(=27/k + 1)), 6(c)=r¢, o(d)=d.

Let p be an involution on &, and

the linear map defined by

p'(u)(t) = p(u(-1)), p'(e)=—¢, p'(d)=—d.

3.1 Proposition. Let o : g — @ be an automorphism of order k on the simple Lie
algebra g, and (, ) the normalized Ad-invariant form on g. Then

() (a(z),0(y)) = (z,y),

(i) w(6(u),6(v)) = wlu,v),

(iti) w(o*(u),0'(v)) = —w(u,v), if o is an involultion.

PRroOOF. Since o is an automorphism of g, {z,y) = (o(z),o(y)) is an Ad-
invariant inner product on g. But g is simple implies that (o(z), o(z)) = ¢(a, z) for
some ¢ > 0. Since o* = id, ¢¥ = 1. This implies ¢ = 1, which proves (i). Using (i),
the definition of the cocycle w, and a direct computation, (ii) and (iii) follows. =

As a consequence, we have

3.2 Corollary. If o and p are automorphisms of g of order k and 2 respectively, then
& and p* are automorphisms of L(g) of order k and 2 respectively.

The fixed point set L(g, o) of & is called the affine Kac-Moody algebra of type
k if o is an order k outer automorphism of g. It is obvious that

I(g,0) = L(g,0) + Re + Rd,

where
L(9,0) = {u € L(g) |u(t) = o(u(~2r/k +1))}.

It can also be easily seen that ) .
L(g) = R+,
is the decomposition into the 1 and —1 eigenspaces of p*, where
f={u € L(g) |u(—t) = p(u(t))},
b= {u € L(g) [u(~t) = —p(u(t))} + Re + Rdl.

16



3.3 Construction of L(G).

We review briefly the construction of L(G) as given in Chapter 4 of [PS]. The
first step is to construct the central extension of the loop group L(G) = H(S!,G)
given by the 2-cocycle w. The left invariant 2-form on L(G) determined by the 2-
cocycle w will also be denoted by w. Since the inner product on ¢ is normalized,
the 2-form 7w is an integral cohomology class of L(G), so there exists a principal
S'-bundle, ¢ : P — L(G) with a connection 1-form f such that the curvature of
B is p*w, (i.e., the Chern class of this principal bundle is [w/2%t]). Then the group
L(G) of bundle isomorphisms of P that preserve the connection 5 and cover a left
translation £, for some ¢ € L(G) is the central extension by S' given by the cocyle
w.

We fix a base point yy € ¢~ !(e). For a curve v : [0,1] — L{G), let
I, : 7' (7(0)) — @7} (x(1))

denote the parallel translation along ~ given by the connection 8. Suppose F € L(G)
and F covers the left translation ¢, on L(G). Since F*(8) = 3,

Foll, =1, o F.

So F is uniquely determined by g € L(G) and F(yy), i.e., L(G) is the set of pairs
(9,y), where g € L(G) and y € ¢~ '(g). )

There is also an explicit construction of L(G) given in [PS] (p. 47), which
we will use to lift automorphisms & and p* to L(G): Let (g,p,2) be a triple with
g € L(G®), p a path in L{G) joining e t0 ¢ and z € S'. Then F can be constructed by
using parallel translation. For y € ¢ ~!(h), we choose some curve « in L(G) joining

h to e, let
F(y) = H;7lz(ﬂp(H7(y))).

This is well-defined and in f;(G). For if 4, and -4 are curves joining = to e, then since
L(G) is simply connected, 7]’ * 7, (the loop obtained by the inverse of ¥, followed
by 72) bounds a surface S in L(G). But S! is abelian, so “curvature is infinitesimal
holonomy”, i.e., we have C(7; ! * 1)IL,, (y) = IL,,(y) for all y € ¢~'(z), where

Clrr" * y2) = exp (i / ).

s
This also proves that (g), p;, z;) and (g2, ps, 22) gives the same F if and only if
g =92 21=C(py*p7')z;
and we call two such triples equivalent. Define multiplication of triples by
(91,215 21) - (92, P25 22) = (9192, P1 * (91 - P2), 2122)-
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Then the group of equivalence classes of these triples is the Hilbert Lie group L(G),
whose Lie algebra is the central extension f,(g) = L(g) + Rc of L(g) by w.

It is easily seen that € - (¢,p,z) = (e - g,e” - p,z) defines a continuous
action of S! on L(G), where (e - g)(t) = g¢(s + t) and € - p denotes the path
(e - p)(r) = e - p(r). Then the semi-direct product L(G) = §'x L(G) given by
tpis S1-action is a topological group, which is the group model for the affine algebra
L(g).

3.4 Remark. Although fL(G ) is a Hilbert manifold, and a topological group, (i.e., the
group multiplication is continuous), it is not a Hilbert Lie group, because the map

H'Y(§',G)x §' = H'(S',G), (f,g)= fog

while smooth in the second variable is only continuous in the first variable ([P2], [PS]).
As a result, the Lie bracket of the corresponding “Lie algebra” L(g) is only defined
on a dense subspace. It should also be noted that L(G) is a Hilbert manifold locally
modeled on the product of the H'-space and R?, but the Ad-invariant metric is the
product of the H" metric on the H'-space and the Lorentz metric on R, so L(G) is
only a Lorentz manifold in the weak sense. Our goal in reviewing this construction of
affine groups is to suggest a good infinite dimensional analogue of s-representations
and their relation to polar actions on Hilbert spaces. As we will now see, while the
above problems make it difficult to give a rigorous definition of infinite dimensional
symmetric spaces, they do not interfere with the construction of the desired polar
actions.

3.5 The Adjoint action of L(G).

Let R .
7 L(G) = L(G), (€% (¢,p,2)) ¢

denote the natural projection. Then the Adjoint action of L(G) on its Lie algebra
L(g) ([K], [PS)) is given by

Ad(g)(w) = gug™ + (gug™',¢'97 ) ¢,
- - 1 ! - ! -
Ad(G)d) = —¢'g7" +d=5{dd7 ", d'g7") e,

if § = (1,(g,p,2)). Note that the intersection R of the sphere of radius —1 with
the hyperplane {v +rc+ sd € L(g)|s = 1}, ie,

R = {utre+d|ueLig)r=—(1+ Hu,u))},

is a horosphere of the infinite dimensional hyperbolic space. Hence R* is invariant
under the Adjoint action of L(G) on L(g), and R is isometric to the Hilbert space
L(g) = H"(S',qg) via u + rc + d — u. Moreover, the action on R™ factors
through L(G'), and the corresponding action on L(g) is equivalent to the action of
L(G) ~ P(G,A(G)) on L(g) ~ H'([0,1], g) by gauge group transformations.
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3.6 The automorphism & on L(G).

Let o be an automorphism of order k£ on G. Then
61 L(G) > L(G), a(9)(t) = olg(=2n/k +1)
is an automorphism on L(G). It follows from the construction of L(G) in 3.3 that
(€, (9,9, 2)) = (€°,(5(9),8(p), 2))

is a well-defined automorphism on L(G'), which will still be denoted by &. Then

the fixed point set L(G, o) of & is the affine group of type k, and L(g, o) is its Lie
algebra. Again

R® = {u+rc+d]|ue L(g,o),r=—(1+i{u,u))}

is invariant under the Adjoint action of L(G, o), and R is isometric to L{g, o) via
the map u + rc + d — u. Moreover, the action on RS factors through L(G, o),
and the corresponding action on L{g,c) is equivalent to the action of L(G,0) ~
P(G,G(c)) on L(g,0) ~ H"([0,1],4) by gauge group transformations, where
G(o) = {(2,0(x)) | = € G},

3.7 Involution p* on L(G).
Let p be an involution on &, and I the fixed point set of p. Then
p' i L(G) = L(G), p'(9)(t) = p(9(—1))

is an involution on L(G). Note that p* (e - g} = ™% - p*(g). Using this equality and
the construction of L(G) in 3.3, it follows that

= (€7, (0 (9), 0" (p),271)

(G), which will still be denoted by p*. Then the

(€",(g,p,2)
is a well-defined involution on L
fixed point set of p* on L(G) is

L&), ={(1,(g,p, 1)) 10'(9) = g, o' (p(r)) = p(7)},

which is isomorphic to
{9 € (&) | plg(=1)) = 9(1)} = P(G, K x K).

Let L(g) = &+ p denote the 1, —1 eigendecomposition of p* on L(g) as before. Then
R is the Lie algebra of L(G),, and the Adjoint action of L(G), leaves p invariant, and
induces on p the isotropy representation of the “symmetric space” L(G) /f/(G),, at the
identity coset. This isotropy action also leaves RS° = R® N p invariant. Moreover,
R is isometric to {v € L(g)|p(u(—t)) = —u(t)} via the map u + rc+d — u,
and the the action of L(G), on R5® is equivalent to the P(G, K x K)-action on
H([0, 1], 9).
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3.8 Natural embedding of L(G)/L(G), into L(G).

Let p be an involution on G, and K the fixed point set of p. Then the finite
dimensional symmetric space G/K can be naturally embedded in G as the orbit N
through e of the action of G(p) = {(z, p(z)) |z € G} on G, ie, N = {zp(z)~ ze
G}. Similarly in infinite dimension, the involution p* induces an action of L(G) on
L(G) via h+y = hyp'(h)~ ], and the orbit A/ of this action through the identity
gives a natural embedding of L(C)/L(G)p into L(C’) We also note that e € M,
the restriction 7 of the isometry z — 2~! on L(G) to M induces an isometry of M,
7(e) = e, and dr, is —id on TM,. So if p = gre€ M, then 7, = gTg™! has the
property that 7,(p) = p and d(7,), is —id on T M, This is the characteristic property

of a globally symmetric space. To describe M explicitly, we compute directly and see
that

M = {(¢”,(9,p,2)) | ¢(t) = h(t)p(h(=s — 1))~ for some h € L(G)}.

Note that for g(t) = h(t)p(h(—s—1))"' wehave g = e~ /2. ((e/2.h)p*(e*/2-h)~1).
So the loop part 7(A) = S'. M, where

M = {hp' ()} | he (@)} C L(G).
Next we claim that
M ={g e L(G) | g(t)™" = p(g(=1)), 9(0),¢9(r) € N} ~ Q(G,N,N),
where Q(G, N, N) denote the Hilbert manifold of H!-paths in G with end points
in V. It is easy to see that A is contained in the right hand side. Now suppose
given g € L(G) such that g(¢)~! = p(g(—t)) and ¢(0),g(7) € N. Then there exist

x,y € G such that zp(z)~! = ¢(0) and yp(y)~! = g(7). Let r : [0, 7] = G be any
H'-map such that r(0) = z,7(x) = y, and define

_ [ r(d), if ¢ € [0, 7];
A(t) = { d(Op(r(2m = 1)), ift € [m,2m).

Then h € L(G) and hp*(h)™' =g, ie, g€ M.
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