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0. Introduction and formulation of the results.

In the last few years several papers appeared which concerned the connection between
holomorphically convex hulls and envelopes of holomorphy in certain situations. We take
here the following notion of holomorphically convex hulls. For a compact set K con-
tained in the closure of a strictly pseudoconvex bounded domain in C? we denote by
K% the hull with respect to the space O(Q) of functions holomorphic on {: K% =
{z € Q:|f(2)|] < max|f] for all functions f in O(£2)}. Hulls of this kind are interesting in
approximation theory. The set K is called O(f2)-convex if K = K®. The following theo-
rem summarizes some of the known results concerning connections between holomorphically
convex hulls and descriptions of certain envelopes of holomorphy.

We will say here that a continuous function u on a set A in C? has analytic extension
to a set D which is the union of Riemannian domains over C? if there is a uniquely
determined continuous function on DU A which is analytic on D and coincides on A with
u. Note that this definition implies that each connected component of D contains in its
closure a sufficiently large part of A. The definition does not include non-schlicht analytic
continuation to D.

Theorem A. Let ) C C? be a bounded strictly pseudoconvex domain with boundary of class
C?. Let K C 0% be compact and let u be the restriction to 9Q\ K of a function which is
analytic in a neighbourhood of O\ K. Then the following is true.

1) u has analytic extension to Q\ Ko,

2) There is a one-one-correspondence between connected components of 00\ K and
connected components of Q\ K a, namely, the boundary of each component of 1\ K
contains exactly one connected component of 0Q\ K and does not intersect any other
component of 00\ K.

3) Q\K Qs pseudoconvex (hence Q\ K% is the envelope of holomorphy of 00\ K ).

Remark. Clearly each component of 902\ K is contained in the boundary of some component
of 1\ K%, Indeed, consider for ¢ € 90 \ K a peak function for {2, we see that for some
neighbourhood Ug of ¢ the set Uy N is contained in ©\ K®. In this way we get for
each connected component of 0\ K a connected open set in Q \ K  whose boundary
contains the mentioned component of 9\ K .

Part 2 is interesting since it gives a geometric relation between compact sets and their
holomorphically convex hulls, the problem of geometric descriptions of holomorphically
convex sets being up to now a difficult problem.l Part 1 was proved by Stout [6] and
Lupacciolu [11] under the restriction 9§2 \ K being connected. They used integral formulas
for the proof. The 3. part was proved by Stodkowski [M13], see also [12] for eliminating
from Slodkowski’s proof what is needed in this situation. The proof of part 2 is contained
in the work of Alexander and Stout [2]. It uses a deep theorem of Stolzenberg [15]. For
another proof in case {1 being the ball see [1]. After part 2 was proved, part 1 followed
in full generality [17].



Part 1 of the theorem was generalized by Lupacciolu and Stout [6], [11]. They considered
continuous C R -functions (instead of analytic functions) and replaced the condition of strict
pseudoconvexity of Q by the following one:  is a bounded pseudoconvex domain in C?
with © having a Stein neighbourhood basis and 99\ K is connected (alternatively, Q is
compactly contained in a Stein manifold X, K = KX NaQ and O\ K? has to be replaced
by 2\ KX with KX being the hull with respect to holomorphic functions on X ).

We will remove here the condition of the existence of a Stein neighbourhood basis of Q (for
examples of smoothly bounded pseudoconvex domains without Stein neighbourhood basis see
[4]). To do this we divide the problem into two independant problems, the problem of analytic
extension of continuous C R -functions from hypersurfaces to their one-sided neighbourhoods
and the problem of describing envelopes of holomorphy of one-sided neighbourhoods of
I\ K for ) being a bounded pseudoconvex domain and K a compact subset of 0.
For the second problem we use exhaustion of {2 by relatively compact strictly pseudoconvex
domains and apply thcorem A to these domains. Instead of the hulls K® we have to
consider slightly smaller hulls.

Definition. Let §2 be a bounded domain in C? with boundary of class C%. Denote by A(Q)
the space of functions continuous in () and analytic in Q. The A()-hull of K is defined

in the following way: A(Q)-hull (K) = {z e:|f(2) £ max |f| forall f€ A(Q)} K
is called A(Q)-convex if A(92)-hull(K) = K.

Note that the A(Q)-hull of a compact set is always A(Q)-convex. For a real C? hypersurface
H in C? and a compact subset K of H we will use also the following definition.

Definition. K is called C' R(H)-convex if for each z € H \ K there exists a continuous
C R-function f on H with f(z) =1 and m§x|f| < L

As usually, a C R-function on a hypersurface is a function which satisfies the tangential
Cauchy-Riemann equations in the weak sense. Note, that for a compact set K in the
boundary A9 of a bounded domain in C2 the set 80 N A(Q)-hull (K} is C R(H)-convex
(GQ is assumed to be of class Cz).

We need also the notion of one-sided neighbourhoods. Let z be a point in a hypersurface
H in C®. Take a small neighbourhood U in C" of z such that U \ H consists
of two connected components. Each component is called a one-sided neighbourhood of
z (with respect to H). An open set in C? wich contains a one-sided neighbourhood of each
point of H is called a one-sided neighbourhood of H.

We will prove here the following two theorems.

Theorem 1. Suppose H is a connected hypersurface of class C? in C? with compact Leviflat
part (Le. the set of points of H, where the Leviform vanishes, is compact). Let K # H
be a compact subset of H which is CR(H)-convex. Then each continuous C R-function on
H\ K has analytic extension to a one-sided neighbourhood of each point z € H \ K (the
one-sided neighbourhood not depending on the C R-function).

Note that the condition on H is satisfied in particular if H is a connected closed hypersurface
of class C? in C%. If H bounds a pseudoconvex domain, then the one-sided neighbourhoods
are contained in the domain. Some condition like C R(H)-convexity of K is essential as is
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seen immediately from the remark that for the conclusion of theorem 1 it is necessary that
no connected component of H \ K is Leviflat.

Theorem 2. Let Q be a bounded pseudoconvex domain in C? with boundary 0§ of class
C?. Suppose K C 0Q, K # 09, is a compact C R(OQ) -convex set (i.e. K = QN A(Q)-
hull (K), but K is not necessarily A(SY)-convex). Then the following is true.

1. Let O be a one-sided neighbourhood of 30\ K, O C 2\ A-hull (K). Suppose each
connected component of O contains in its boundary exactly one component of 0Q\ K
and no other point of 0Q\ K. Let u be holomorphic in O. Then u has (uniquely
determined) analytic extension to 0\ A(Q)-hull (K).

2. The same one-one- correspondence between connected components of 00\ K and
connected components of Q\ A(Q)-hull (K) is true as in part 2 of theorem A.

By the assumption of the theorem (92\ K)N A(Q)-hull (K) = @, so each point of 02\ K
has a neighbourhood in C? not intersecting A(f2)-hull (K). This shows that a one-sided
neighbourhood O of 992\ K with the properties described in the first part of the theorem
always exists.

Note that the condition of CR(9)-convexity of K is essential for theorem 2. So, simple
examples show that for K not CR(H)-convex the correspondence between connected
components of 92\ K and those of 9%\ A(Q2)-hull (K) can be rather complicated.

Example 1. Q = BZN {Rez; <1—¢} (B? being the unit ball in C%,e > 0), K =
OB2N {Rez; =1 —¢}. 3N\ K consists of two connected components. The complement in
I of the set 9 N A(Q)-hull (K) = 8 n {Rez; =1 — ¢} 1is connected. The example can
easily be modified to give a domain with smooth boundary. This is also a counterexample
for part 1 of theorem 1 in case K is not C R(9%)-convex.

Example 2. Q is as in example 1, K = 9B N {Imz; =0} N {Rez; <1—¢}. I\ K
is connected. The complement in dQ of the set 3 N A(Q)-hull (K) = 3Q N {Imz = o}
has two connected components.

In the second part of this article we prove theorem 1 and in part 3 we deduce theorem 2 from
theorem A. In the first part we give a new proof of the first two assertions of theorem A.
This proof seems to us very natural. It is based on the observation that Oka’s characterization
principle for holomorphically convex hulls (see, for example, [4] p. 263/264) is in complex
dimension 2 essentially the same as what is needed for getting analytic continuation along
one-parameter families of one-dimensional analytic manifolds via Kontinuititssatz. Oka’s
underlying idea was to approximate functions which are holomorphic near a compact set by
functions which are holomorphic in a fixed larger domain by continuously moving poles of
meromorphic functions to the outside of the domain. So, as for the characterization of com-
plements of holomorphically convex hulls, as for analytic continuation via Kontinuititssatz
we need “curves” (i.e. continuous one-parameter families) of one-dimensional analytic vari-
eties (or, by Sard’s theorem of analytic manifolds) which don’t meet a compact set, the curve
connecting a variety through a given point with another variety outside the domain. The only
additional point for the proof of theorem A is some “monodromy consideration” for showing
that the envelope of holomorphy is schlicht.



1. Analytic continuation along families of analytic manifolds.

Proof of theorem A. Let z € O\ K a By definition of K @ there exists a function f=f:
which is holomorphic in a neighbourhood of € such that f(z) = 1 and rnl?x| fl<1-6

for some 6 > 0. By Sard’s theorem we can assume that 1 is a regular (non-critical) value
of the function Ref in a neighbourhood of . Indeed, almost all values of Ref are
regular. Since f is a non-constant analytic function, for each neighbourhood U of z (in
C?) the set f(U) is a neighbourhood of f(z) in C. So there are points z + 5 arbitrarily
close to z such that Imf(2+9) = 0 and (Ref) (z+1n) is a regular value for Ref.
Take instead of f the function fi, f1(¢) = f(¢ +n). (f(z+7))™", which is analytic in
a neighbourhood of Q if n is small enough. So, assume from the beginning that 1 is a
regular value of Ref and denote by Q a (connected) neighbourhood of (2, such that f
is analytic near ;. We will use the notation Ry = {{ € Q5 : Ref(¢) =1}. It is clear
that Ry N K = @. Since the gradient of Ref does not vanish on R; the same is true
(by Cauchy-Riemann equations) for Imf. So Ry is foliated into a one-parameter family
of analytic manifolds Vs, = {¢ € Qy: f({) =1+ it} of complex dimension one. If Vj,
is not empty, then each of its connected components has non-empty boundary contained in
Oy (since there are no compact analytic manifolds contained in C2?). We assume (by
shrinking §2; eventually) that the function u has analytic extension to a neighbourhood of
Re\Q.Put ry = RyNQand vy, = V5, N Q. Itis convenient to use the following

Definition. Let X be a topological space and S a subset of X' . We call a neighbourhood
U of S nicely choosen if each connected component of U intersects S.

Consider a small nicely choosen neighbourhood of 82\ K (in C? ) which carries an analytic
function with restriction to 9 \ K being equal to u (the function which occured in the
formulation of theorem A). Denote this analytic function also by .

The following proposition realizes analytic continuation of the function u along the family
of complex manifolds vy ;.

Proposition 1. There exists a nicely choosen neighbourhood Oy of 75 and a (uniquely
determined, univalent) analytic function uy in Oy such that uy coincides with u at all
points of Oy which are sufficiently close to 0S2.

Proof. The function f will be fixed during the proof of proposition 1, so for shortness we will
write v; (V;,resp.) instead of vy, (VL;,T‘CSP.). Set tmax = maxImf, tnin = minImf.
Ty s

Since for ( € Q the set f(f2) contains a neighbourhood of f({) in C, the set S; , =
{¢eQ: f(¢) =1+1itmax} is contained in HQ. We will say that for ¢ € [tyin,tmax] the
continuation property (C P) holds, if there is an analytic function u; in some nicely choosen
neighbourhood U; of 7y N {Imf >t} which coincides with u near dry N {Imf > t}. For
proving proposition 1 we have to show that C P holds for t = tp;,. For t close to tyax CP
holds since for those ¢ the set 7y N{Imf >t} C {z€0: f(z) =14iT:t <7 < tmax}
is contained in a small neighbourhood of S; , C 0 so that u is defined near this set.
Set t, = inf{t: CP holds for t} and suppose {, > tpip. The main step in the proof of
proposition 1 is the following

Lemma 1. There exists an analytic function vy, defined in a nicely choosen neighbourhood
wy, of Vi,, which coincides with u near Vi, \ vy, C Ry \ ry.
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Proof. By the definition of t, for ¢t > {, there exists a nicely choosen neighbourhood
Up of 7y N {Imf >t} and an analytic function uy in U; which coincides with u near
dryN{Imf > t}. Since the function u is defined near the set R\ ry, it is easy to see that
there exists a nicely choosen neighbourhood U, of R fN{Imf >t} and an analytic function
i in U; which coincides with u near (Ry\r;) N {Imf > 1t}.

Now we can apply the Cartan-Thullen argument (see [20], III. 16.1.). Suppose u is analytic
in an e-neighbourhood of GR; for some ¢ > 0. Let z € Vi, and 2z € V; (t > 1t,) be
close to z, say |z — z;] much smaller than ¢. By the Cartan-Thullen argument applied to
Vi and 0V; C OR; the Taylor series of iy around the point z; converges near z and defines
an analytic function near z. It is easy to see that this function does not depend on the
choice of the point z; € V; for t > ¢, and z: being sufficiently close to z. (Here we used,
that Ry and V; are smooth manifolds and the Taylor expansions around points z;, t > t,,
come from a unique analytic function near R;N{Imf > t,}. ) So, there is a nicely choosen
neighbourhood w;, of Vj, and a uniquely determined analytic function v, in w,, which
(by construction) coincides with u near V;, \ £, since all points in V;, \ Q are limit points
of Vi\ve (t>1,) and i\ v C (Rf\T_{) N {Imf > t}. It remains to show that vy,
coincides with u near Vi, N dQ. This follows from the next lemma and the construction
of the function w;,.

Lemma 2. Let C be a connected component of Vy, N 0. There exists a point z € C which
is the limit point of a sequence {z1,}; 5., 2t, € Vi, \ v4,.

Proof. Suppose, in contrary, there is a small connected neighbourhood N (in Cz) of C, say
N C Qy, which does not intersect V;\ v¢ for t > t,. Then NNV C v; for t > ¢, close to t,.
But by Kontinuitiitssatz this contradicts the fact that £ is pseudoconvex.

End of the proof of the proposition 1. There is some o > 0 such that wy,
covers 75 N {t,—o < Imf <t,+ 0} and vy, coincides with u near the set dry N
{toc—o <Imf <t,+0c}. Indeed, w;, is a nicely choosen neighbourhood of V;,. The
compact set Sy, = {¢ € Q: f(¢) =1+1t,} is contained in Vj,, and 7y N {Imf =1t,} C
Sty 50 wy, covers FfN{to — o < Imf < to+ o} for small o > 0 (since on the compact set
7¢ \ wy, the continuous function Imf —t, does not vanish, it is greater than some o > 0
there). Further, vy, coincides with u in some neighbourhood M, (in C2) of V;, \ vy, =
Vi, \QDaryn{Imf =1t,}. Since Ory\ My, is compact and Imf # t, on dry\ Ny, we
have dryN{t, —oc < Imf <t, +o} C Ny, for small ¢ > 0.

Now the set wy, U Up,4g covers 7y N {Imf 21t, -0} (Up4g comes from the fact
that CP holds for t = o+§ > t,). For proving CP for t, — ¢ we set Ut,,_a =
(we, N {Imf < t,+§}) U (U;o+a N{Imf > t,+§ }) U Ty, where Iy, is the union of all
connected components of Uy, g Nwy, N {Imf= to+“} which intersect 7y. [';, is an open
subset of RyN{Imf = to+§} which contains 75N {Imf = t,+5}, so it is not hard to sce
that Uy, , is open (in C?) and contains 7;N{Imf > ¢, — o}. After removing from Uj,_,
superfluous connected components (i.e. those which don’t intersect 7y N {Imf > t, —o})
we get a nicely choosen neighbourhood Ui, of 7y N {Imf>1t,—0c}. Now the
function u;,—, defined to be equal 10 uy4g in Up—g N {Imf 22,47} and equal 10

oinUp—e N{Imf < t,+§} is a correctly dcﬁned analytic function in U;,—, which coin-



cides with u near dry N {Imf >t, — o}. This contradicts the definition of ¢;. Proposition
1 is proved.

The following proposition shows that the analytic continuation to 2\ K9 is univalent.

Proposition 2. Let z € @\ K%, Suppose f,g € O(Q) satisfy the conditions f(z) = g(z) =
i, max Ifl <1, max lgl < 1 and 1 is a regular value for both functions, Ref and Reg,

on Qs NQy. Let uy and u, be the functions defined by proposition 1. Then us and ug, are
analytic in a (connected) neighbourhood of z and coincide there.

Proof. Denote by 2, the connected component of £y N, which contains Q. Con-
sider the analytic manifolds {¢ € Q;: f(2) =1} ({{ € Q.:9(z) =1}, resp.) and let
Vi (Vj, resp.) be the connected components, containing z. We may assume, that V5 and V,
intersect transversally at z and therefore the functions f — 1 and ¢ — 1 define a coordinate
system in a neighbourhood of z. Indeed, otherwise we take instead of f the function
S+ 15, where 1,(¢) = 1(¢) = I(z) (¢ € Q) for a complex linear function ! with sufficiently
small coefficients. Clearly, one can assume that for some domain Qs D0, Qpp, C Qy,
the set {¢ € Qf41, : Re(f +1.)(¢) =1} is contained in a small neighbourhood of R and
the gradient of Re(f + {;) does not vanish on the intersection of this neighbourhood with
Qs41,. So usp = ugy, near z.

Take a curve vy on Vy which joines the point z with a point of Vy\ 0 (such a curve
always exists, otherwise V; must be contained in Q and, therefore, being relatively closed
in 2, it must be compact, which is not possible). V; NV, consists of isolated points,
so we can assume that z is the only point on the curve which is contained in Vy NV, .
Take a similar curve 5, on V,. Let Uy be a connected neighbourhood of v; on which the
analytic function iy is defined (i is equal to uy on Uy N and equal to u on Uy \ N,
see the proof of lemma 1). Let U; be a similar neighbourhood of 7, and assume that
UgNU, is aball B, around z of small radius p in coordinates (f — 1,9 — 1), B, C .
Define in Q, the function F' = 1 4 (f—1)(g—1). Then F = 1 on vy U~, and
VF =(f-1)gg+vflg—1) #0 on 7yU~, \ {z}. For small ¢ > 0 with 1 +¢
being a regular value of ReF put F, = (1+¢)'F, Vi, = {C€Q,: Fo(z) =1} and let
up, be the analytic function near g, constructed in proposition 1.

Lemma 3. If € > 0 is small enough and 1+¢ is a regular value of F' then there exists a curve
~¢ on Vp, ﬂ(U t U Ug) of the following kind: ~° is the union of three curves, ¢ = YUY Vg
such that +; C Vg, N Uy connects a point in Ug \ Q with a point zg € Us N Uy, similar
conditions hold for ~y;, and vf C Uy NU, joines zy with z,.

From lemma 3 proposition 2 follows. Indeed, the analytic function iy is defined on
¢ C Usu U,. Since 77 U 7§ is connected and is contained in Uy, and, moreover, near
7; \ @ we have iip, = u and iy = u, the equality @ip, = @y holds near the whole curve
7§ U~{. Similar arguments are true for yg U7, therefore near 7y 4y = ip, = i,. So, on
the connected set Uy N U, C 2, which contains +f, the desired equality u; = u, holds.

Proof of lemma 3. Consider a connected part of ¢, which does not contain z and joines a
pointin Us\§ with a pointin UzNU,. On this part we have F =1 and 7F # 0. From this
fact the existence of '7} for small € > 0 is clear. The existence of ~; follows in the same
way. For joining the endpoint 25 of v} with the endpoint z, of v by a curve 7y on Vg, N




UsNU,, we will show that the latter set is connected. In coordinates z; = f—1, z = g—1 the
set has the form {(z1,22) € By, z1zp =€}, where B, = {|z1]> + |22/ < p?}. This set is
topologically the product of a piece of a hyperbola {rira =€ : 71 > 0,12 > 0,77 + 1} < p?}
and the circle {(¢, ('1) : ( in the unit circle of the complex pla.ne}. Therefore Ve, NUsN
U, is connected and lemma 3 is proved.

End of the proof of theorem A. From proposition 1 and 2 follows the existence of a uniquely
determined analytic function ug in Q =\ K% which coincides with u near some points
of 80\ K, namely, near points contained in dry(C 8%\ K) for some f € O(Q) with
max |f| <1 and 1 being a regular value for Ref in (2. Clearly, if a connected component

of 902\ K contains such points, then ug coincides with v near the whole component. But
it is easy to see that each component @ of 92\ K contains such points. Indeed, take a point
p of & and consider a peak function fp, fp(p) =1, |fp| <1 on Q\{p}. Let 1 —e <1
be a regular value of the function Ref, with 1 — ¢ sufficiently close to 1. Then for the
function f = (1 —¢)™'f, we have |f| <1 on K and the set 8r; C A9 is close to p and
therefore it is contained in &. So, part 1 of theorem A is proved.

Part 2 follows immediately. Considering an analytic function near 902\ K which is equal
to different constants on different components of 90\ K shows that the boundary of each
connected component of () intersects no more than one connected component of d{2\ K. By
the maximum principle there is no component of @ with boundary not intersecting 9 \ K
(and, therefore, contained in Ko ).

Theorem A is proved completely.

2. Analytic extension of CR-functions to one-sided
neighbourhoods of hypersurfaces.

Proof of theorem 1. Let z € H \ K. If through 2z there is no germ of a one-dimensional
analytic manifold contained in H (in other words, z is a minimal point of H ) by the theorem
of Trepreau [19], [21] each continuous C' R -function on H \ K has analytic extension to a
one-sided neighbourhood of z not depending on the C R-function). Suppose z € H\ K isnot
minimal and denote by X, the maximal connected one-dimensional analytic manifold through
z contained in H. By a manifold M contained in H we always mean the image of an
abstract manifold under a smooth injective inclusion into A with injective differential. Note
that M must not be a relatively closed submanifold of H , moreover, the manifold topology
on M must not coincide with the topology on M induced by the topology of H . The fact
that X, is the maximal connected one-dimensional analytic manifold through z contained
in H means that if Y, is a connected one-dimensional analytic manifold, z € Y; C H,
then Y, C X..

Since K is CR(H)-convex and z ¢ K, there exists a continuous CR-function f on H
such that f(z) = 1, m}a(.x|f| =1-6 < 1. Consider the part {¢ € X, :|f(¢)] > 1-§} of
X, which is “far” from K and denote by D, the connected component of this set which
contains z. We will prove two lemmas.

Lemma 4. There exists a point p € D, such that each continuous C R -functionon H\ K has
analytic extension to a one-sided neighbourhood of p (not depending on the C R -function).



The second lemma is known. It is a result on propagation of one-sided analytic extendability
of C'R-functions along analytic submanifolds (for the propagation of analyticity see [8], for
the one-sided variant see [20]). For convenience of the reader who is not familiar with
microlocal technics we give the sketch of a simple proof based only on the theorem of
Trepreau [19], [21]. '

Lemma 5. Let M be a connected hypersurface of class C* in C"n > 2. Let X C M
be a connected analytic manifold (in the same sense as before) of complex dimension n — 1.
Suppose for some point p € X all C'R-functions on M have analytic extension to a one-
sided neighbourhood of p (not depending on the C R -function). Then the same is true for
all points ¢ € X.

The two lemmas together imply the theorem.

Proof of lemma 4. Consider the closure (in H) D, of D,. Since D, is contained
in the Leviflat part of H the set D, is compact. Take a point 3 € D, such that
lf(m)| = rrba.xlfl(z |f(z)| =1). If 5 is a minimal point of H we are done. Indeed,

by Trepreau’s theorem continuous C R -functions on H \ K have analytic extension to a
one-sided neighbourhood of 7 and one can take for p a point of D, sufficiently close to 7.

Remark. Since continuous C R -functions on H are analytic on analytic manifolds contained
in H one can assume by the maximum principle (applied to f|D,) that € D, \ D,. If,
for example, D, is an analytic disc with smooth boundary @,, smoothly inbedded into H,
then the proof is easy. Indeed, in this case D, \ D, = 8,. If ¢ € §; is not a minimal point
then obviously ¢ € X, and |f(¢)] =1-§. Since |f(y)| > 1 and 7 € §,, n is minimal.
The general case needs a more detailed consideration of the set D,.

So, suppose now, 7 is not minimal. Denote by X, the maximal connected one-dimensional
analytic manifold through n contained in H . Let B, be a small ball around 7 intersected
with H such that |f| > l—g on By. If B, is small enough, the real and the imaginary part
of the complex tangent vector to H at points of B, define two linearly independant real
vector fields of class C'. Denote by U, all real vector fields on B, of unit length which
are linear combinations (with coefficients being real C!-functions) of these two vector fields.

Let A, be a small analytic disc on X, around n with smooth boundary and compact
closure A, in X,, such that A, C B,. Each point p of A, can be joined with 5 by an
integral curve of some vector field v € Dy, that means by a curve v =7, : [0,7,] — A,,
such that ¥(0) = n, ¥(Ty) =p, 7' (t) = v(7(t)) for t € [0,T,]. By the compactness of
A,, one can take these curves from a set I' of curves with uniformly bounded length, so
Ty, £T < oo foral v €T.

Let {, be a sequence of points of D, tending to 7, (n close enough to 7. Then for
each v € T and each n one can define the integral curve +, : [0,7y] — H of the
vector field v by the conditions v,(0) = (n, 7u(t) = v(a(t)) for ¢t € [0,T,] and
({0, Ty]) C By. (This fact is well known, see, for example [9] Corollary V.4.1.). If for
some vy € I, some n and certain ¢ € [0,7)] the point v, (¢) is minimal, we are done. Indeed,
set T,Sn) = sup {¢ € [0,74] : 7a(7) are not minimal points of H for 0 < 7 < t}. Obviously,
0<T™ < T, and 7, (T,S")) is 2 minimal point of H. For 0 < ¢t < T{™ the ~,(t)
are not minimal points of H. Since |f| > 1-4 on 7,([0,7}]) and 7,(0) = (v € D; the



set 7,,([0,’1"5“)]) is contained in D;. So, 7n (T,s“)) is a minimal point contained in the
closure D, and we conclude as before.

In the other case the whole disc A, is contained in D, (see [9] Corollary V.4.1.). By the
maximum principle applied to f|A, we get flA, = const = f(n) with |[f(5)] > 1 and
therefore f|X, = f(n) and X,, C H \ K. It is now enough to prove lemma 4 for X,
(instead of X; ). Indeed, suppose this is done, then by lemma § one-sided analytic extension
holds for all points of X, hence also for 5 and so also for points ¢, € D;, (, close to 7.

So, we will prove lemma 4 for X,. Cover H by small relatively open sets B,,, 7 €
B, C H, such that for B,, the set of vector fields %U,, can be defined as above. We will
consider piecewise integral curves of vector fields from U,,; ie. curves s : [0,T] — H
such that the intervall [0,T] can be devided into subintervails [T, Tj41], 7 =0,---,Tw,
with 0 = 75 < T3 < - < Ty = T, and to each j corresponds an integral curve
of some By,,, say B,y : s({T5,Tj41]) is contained in B, ;) and s'(t) = v;(s(t))
for t € [T},Tj+1] for some v; € Dy, (;). Following [8] for a point p € H the set
{q € H : g can be joined with p by a piecewise integral curve} is called the orbit through
p. By [8] an orbit of H is a manifold contained in H the tangent space of which at each
point contains the complex tangent space of H at the same point. So, as is easily seen
directly, an orbit is either an open subset of H either an analytic manifold.

It is clear now that X, consists of all points ¢ which can be joined with n by a piecewise
integral curve s of vector fields from 2,, with the whole curve contained in the set of
non-minimal points of H . For proving lemma 4 for X, it is enough to show that there is
a piecewise integral curve s* : [0,7*) — H with s*(0) =5, s*(¢) being non-minimal for
t <T* but s*(T™*) being a minimal point of H . In other words, we have to show that X,
is not an orbit. Suppose, in contrary, it is: Using again Corollary V.4.1. of [9] we see that
the set X, (closure in H ) is the union of orbits. No orbit, contained in X, can be an open
subset of H (the points of such an orbit would have a neighbourhood not intersecting X, ).
So, all orbits in X,, are analytic manifolds contained in H. But X, is contained in the
Leviflat part of H and therefore, by assumption on H, X, is compact. This is impossible,
see [6] page 309, and lemma 4 is proved for X,.

Sketch of the proof of lemma 5. Suppose the lemma is not true. Let Y,ZX be the non-
empty (relatively open) set of points in X for which each continuous CR-function on
M has analytic extension to a one-sided neighbourhood (not depending on the function).
Consider a smooth curve v : [0,1] — X connecting a point in Y with a point in X \ Y.
For a continuous C R-function © on M denote by A, the maximum of the following two
numbers: the maximum of u over a compact set in M containing ([0, 1]) in its interior
and the supremum of the analytic extension of u to a fixed one-sided neighbourhood O; of
4(0), @y being contained in the union of K and the one-sided neighbourhood of v(0) to
which all continuous C R-functions on M have analytic extension. Let ¢ be the supremum
of all t € [0,1] for which each continuous CR-function « on M has analytic extension
to a one-sided neighbourhood (not depending on u ) of #(¢), the extension being bounded
by Ay. Reparametrizing we will assume that ¢ = 1 and will show that there is analytic
extension (the extension bounded by A, ) to a one-sided neighbourhood of ~«(1). Take a
sequence t, € [0,1),t, T 1 and let V;, be small disjoint neighbourhoods (in C*) of ~(t,),
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such that 4(1) ¢ V;, for all n. Make a small (but non-trivial) deformation of H NV, for
all n in such a way that we obtain a new hypersurface H, of class C? with H; close
to H and (H, \ H) NV, contained in the one-sided (with respect to H) neighbourhood
O, of y(t,) to which all continuous C R-functions on H have analytic extension. For a
continuous C R -function u on H define a function u; on Hy by u; = uon Hy N H and u;
being equal to the analytic extension of u on V, N (H; \ H) for all n. It is standard to
verify that for H; close to H the function u; is a continuous C R -function on H;. This is

clear near points of H'\ (U Va U {7(1)}) and follows easily from the definition of one-sided

analytic extension near poinnts of HiNV, (n > 1). It remains to see that u is continuous at
4(1). For this we use that the one-sided analytic extension of u near points of ([0,1)) is
bounded by A,. Further, if the deformations of H NV, are non-zero only on a sufficiently
small compact part of V,, then the harmonic measure of V,, N H with respect to O, at
points of V, N (H; \ H) is bounded away from zero uniformly for n. These facts together

imply that CGV.,Ig(axm\H)WI(C) —u(y(1))}] = 0 for n — oo.

Now «(1) € H; is a minimal point of H;. Indeed, H; contains a large piece of the analytic
manifold X, namely X \ |JV,, with (1) being in the closure of this set. An analytic

manifold through ~(1) of di’ll'nension n — 1 contained in H; must contain all points of this
set in a small neighbourhood of (1) and so, by uniqueness theorems for analytic manifolds,
it must coincide with X in a small neighbourhood of ~«(1). But by the construction of H;
no neighbourhood of 4(1) on X is contained in H;. So, 4(1) is a minimal point of H;.
Trépreau’s theorem gives an analytic extension of u; to a one-sided neighbourhood (with
respect to Hp) of (1) (not depending on u), the extension being bounded by A,, and it
is clear now that » has an analytic extension to a one-sided neighbourhood of ~(1) (with
respect to H ), which does not depend on u. So, in contrast to the assumption, v(1) € Y.
The contradiction proves that ¥ = X.

3. Reduction to the case of strictly pseudoconvex domains.

Proof of theorem 2. Let O be the one-sided neighbourhood of 902 \ K described in the
formulation of theorem 2.

Take two other one-sided neighbourhoods @; and O, of 90\ K with O; UdQ C O,U0
and O, U 990 C OUOQ. Assume that each connected component of O; ( Oy resp.) contains
in its boundary exactly one connected component of 0\ K and no other point of 90\ K.

Our aim is now to construct strictly pseudoconvex domains (2, relatively compact in
Q (R, €Q) and compact sets K, C 0Q, such that Q, \ K% C Quy \ K%+ and
U (Q,, \ Rn") O O\ A(R)-hull (K). After that we will apply theorem A to each €, and
Take an arbitrary small number 6; > 0. Denote by U(6;) the §;-neighbourhood in C? of
AQ)-hull (K),U(6) = {¢ € C?: dist{¢, A(Q)-hull (K)) < & }. Since (9Q\ K)U U(&)
covers 012, the set Oy UU(6) covers a one-sided neighbourhood of 9f2.

By theorem 2.6.11. in [10] and Sard’s theorem we can choose a strictly pseudoconvex domain
Q) with C? boundary, Q; € Q and 9% C U(6;)U0;. Consider the compact set Q3 N Oy
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and cover it with a finite number of connected components of d; N O, (each component
intersecting O, ). Call the components C(l), j € Ji with Jj, containing a finite number of
elements. Put K; = 00\ U C(l) Since |J C(l) is contained in ONAQ; and ONA(Q)-

JE€N JEL
hull (K) = @, the interior int K; of K; with respect to 0€}; is a neighbourhood (in 8);)

of A(Q)-hull (K) N dN,. Take for each j € J; a curve 7)(_1) contained in O; U (90 \ K)
which connects a point in §2; which is very close to some point in C'J(l) N O; with a point
in 80\ K. Clearly 7{") does not intersect A(2)-hull (X).

Suppose now, that for [ < n the strictly pseudoconvex domains {; € 2, the compact sets
K; C 98y, the finite sets J; and the curves 7}'), j € Ji, are constructed and construct 41
and K,41. The compact set 09, \ K,U {J 7( ) does not intersect A(Q)-hull (K'), therefore

JEJn _
for sufficiently small 8,41 > 0, &n41 < 65, each compact subset S of U(6n41)NQ has the

property A(Q)-hull (S)N< 9N \ Kn U U 7 p = 0. Indeed, foreach z € Q. \ K,U {J ~;
jEJn 1€

there exists a function f; € A(Q) with f,(z) =1 and A(n) hull(K) |fzl £1 -6, 6, >0.

Cover 0, \ KxU |J v; with finitely many balls B,, around 2 suchthat |f; —1| < —3-L on
jen
B., and take 6n41 > 0 so small that |f,,(¢)] £ 1-26;, for each ! and each ( € U(8n41).
Let now 0,4, be a strictly pseudoconvex domain with C? boundary, Q, € Q.41 € 9,
such that Q41 C O; U U(bp+1). Cover the compact set 0€dy41 N O with a finite
number C}“H) (7 € Jut+1) of connected components of 0Qn41 N Oz, each connected
component intersecting 0. Define Kpy1 = 0Qn1\ U C}"H). It is clear that K, 41 C
JEJnt1
U(bpt1) N0y, A(Q)-hull (K)NOQny1 C int Kpyr. The curves 7 (] € Jnt1) are

constructed as before: 7("+1) COV(OO\ K ) and connects a point in §,4; close to some
point in CJ( N0, with a point in 90 \ K.

Now by the choice of 6,41 we have A(Q)-hull{(K,41) N (60,,\1(,. Uy 'yj) = 0,
J€Jn

therefore, since K,?_:]“ C A(Q)-hull (K,41), we have K?ﬁ‘ N, C int K, (the interior

of K, with respect to 82,) and Oy \ K%' 5 U 75 0 Qo
JEJn

By the Runge approximation property ([10], theorem 4.3.2) for each {2, and each
compact K C 1, the equality K% = K% holds, where K® denotes the hull
of K with respect to the space O(Q) of all functions holomorphic in @, K® =

{zeQ:|f(z)|5m§.x|f|forallf€0(ﬂ)} So K%, N80, C int K, and by the local

maximum principle ([10], theorem 7. 2 10 and [5] theorem II1.8.2) the inclusion Kn 1 N, C
K holds. The inclusion Qn41 \ Kn_:’l" S 0, \ K8~ is proved.

Now for each n theorem A gives an analytic function u, in \K @ which coincides

with u near 00 \ Kn = ) C™. Prove, that up4a|Qs \ K@ = us. By theorem A
JeJn

the set 0, \ K& has cardJ, components Ag.“), and CJ(-") C 8A§~“) (s € J,). For each
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j € Jn the set A£~") U ,~yJ(_n) is connected, where ‘7,('") is a connected part of 71(-") N Qpg1

which joines a point of €, with a point of 0Qn4+1 N O;. Therefore Ag.“) U &:IJ(,")) is

contained in Ag"“) UC,(“'H) for some connected component Af""'l) of Q41 \f{n;‘_{‘ with
C,(“+l) - BAg"H}. S0 u,41 coincides with u near '"y}“), and therefore 41 = u, in A;").

So, we get a well defined analytic function on the set Q@ = |JQ,\ K% Call it ug. Suppose

the domains {2, are choosen such that U2, = (1 and the numbers 6, > 0 tend to zero. It is
easy to see that then |J Q. \ K% 5 Q\ A(Q)-hull (K). Indeed, if z € 0\ A(Q)-hull (K),
n>

then z € 2, for n 27110 and there exists f € A(Q) with f(z) =1 and mf?x|f| <1-§
for some 6 > 0. For some neighbourhood U of A(f2)-hull (K) we have by continuity
|f| < 1—=6 on UNK. By construction K,, C U5, NQ,, sofor n >ny K, CUNQ, and
therefore z € K. So' Q D 0\ A(Q)-hull (K') © O and from the construction of uq it is
immediately clear that ug = v in O;. (Indeed, ug = u, in {1, \ f(,?", un 1S equal to u at
least near points of 99, N O; and for each component of O; the intersection with 9Q, is
not empty for n large enough). Part 1 of theorem 2 is proved. Part 2 follows immediately
as in the proof of theorem A.

Note, that part 2 of theorem 2 holds also with respect to @ = | (Qn \ K,?") (instead of

U\ A(Q)-hull (K) ). The only thing which, maybe, is not obvious, is that the boundary of
each connected components of Q meets 900\ K. But Q D O, so if a connected component
of @ intersects a component of O then it contains the whole component of O. Since each
component of ¢ intersects O (for large n each component of ¢ contains some component
of 0, \ K ) the assertion is clear.

Remark 1. In case 2 has C® boundary it follows from [7] and [3] that @ = Q2 \ A(Q)-
hull (K). Indeed, by [7] & is the spectrum of the algebra A(f2), so A(Q)-hull (K) is
the spectrum of the uniform closure of the algebra of restrictions of elements of A(Q)
to K. By the local maximum principle ([15], theorem III.8.2) and the fact that A(f)-
hull (K) N 8Q, C K, we have A(R)-hull(K) N Q, C A(Q)-hull (K,). By [3] A(Q)-
hull (/) = O(f)-hull (K,). So, (see the remark below) for bounded pseudoconvex domains
Q1 C C? with C*™ boundary the envelope of holomorphy of one-sided neighbourhoods O
of U\ K ( O and K as in the in theorem 2) is equal to Q \ A(f2)-hull (X).

Remark 2. The set Q, \ I;’,?“ is pseudoconvex by the local maximum principle and
Stodkowski’s theorem [13] (see also [12]). So U (Q,, \ f(,‘?») is pseudoconvex by the
n

Behnke — Stein theorem (see [22], I11.16.10). The proof of theorem 2 shows that the envelope
of holomorphy of the one-sided neighbourhood O of 9Q\ K (O, and K as in theorem 2)
is schlicht and coincides with @ \ TRA(Q)-hull (K) where JRA(Q)-hull (K) denotes the
“inner regularization” of the A(Q)-hull (K) defined in the following way. A smoothly
bounded strictly pseudoconvex domain D with compact closure in § is called admissible
if it has the form D = {u < 0} for a smooth plurisubharmonic function u in § with
{u < ¢} relatively compact in Q for each ¢ € R. Note that for admissible domains O((Q2)
is dense in @(D). For an admissible domain D put Kp = 8D N A(R)-hull (K). The
inner regularization of A(Q)-hull (X) is now defined as follows: z € QN (IR- A(f)-
hull (K)) iff z € O(Q)-hull (Kp) for all admissible domains D containing z. It is clear,
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that TRA(Q)-hull (K) C A(Q)-hull (K) (since Kp C A(£2)-hull (K) for each D, we have
O(Q)-hull (Kp) € A(Q)-hull (Kp) C A(Q)-hull (K).) We don’t know if in general the inner
regularization coincides with the A(Q)-hull (K).

Note also, that the smoothness assumption for 9 in theorem 2 is not essential (in that case
we will not speak on C R(0€)-convex sets, but on compact sets K with K = 90t N A(Q)-
hull (K).)

The present methods can be applied to other two-dimensional Stein manifolds instead of C2.
We will not formulate here corresponding results.

Acknowledgements: The author was supported by the Max-Planck-Institut fiir Mathematik in
Bonn during the preparation of this paper. She would like to thank the Max-Planck-Institut
for the hospitality.

13,



References

1.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Alexander, H.: A note on polynomial hulls. Proc. Amer. Math. Soc. 33, 389-391
(1972)

Alexander, H., Stout, E.L.: A note on hulls. Bull. London Math. Soc. 22, 258-260
(1990)

Catlin, D.: Boundary behavior of holomorphic functions on pseudoconvex domains.
J. Diff. Geom. 15, 605-625 (1980)

Diederich, K., Fomnass, J.E.: An example with nontrivial nebenhuelle Math. Ann.
225, 275-292 (1977)

Gamelin, Th.: Uniform algebras. Prentice-Hall, INC., Englewood Cliffs, N.J. 1969
Greenfield, S.J.: Cauchy-Riemann equations in several variables. Ann. Scuola Norm.
Sup. Pisa 22, 275-314 (1968)

Hakim, M., Sibony, N.: Spectre de A(Q) pour des domaines bornés faiblement
pseudoconvexes réguliers. J. Funct. Anal. 37, 127-135 (1980)

Hanges, N., Treves, F.: Propagation of holomorphic extendability of CR-functions.
Math. Ann. 263, 157-177 (1983)

Hartman, Ph.: Ordinary differential cquatlons John Wiley & Sons: New York —
London — Sydney 1964

Hormander, L.: An introduction to complex analysis in several variables. D. van
Nostrand Company, INC.: Princeton, New Jersey — Toronto — New York — London
1966

Lupacciolu, G.: A theorem on holomorphic extension of CR-functions. Pacif. J.
Math. 124, 177-191 (1986)

Rosay, I.P., Stout, E.L.: Rad6’s theorem for CR-functions. To appear

Stodkowski, Z.: Analytic set-valued functions and spectra. Math. Ann. 256, 363-386
(1981)

Stolzenberg, G.: Polynomially and ratlonally convex sets. Acta Math. 109, 259-289
(1963)

Stolzenberg, G.: Uniform approximation on smooth curves. Acta Math. 115,
185-198 (1966)

Stout, E.L.: Analytic continuation and boundary continuity of functions of several
complex variables. Proc. Royal Soc. Edinburgh 89 A, 63-74 (1981)

Stout, E.L.: Removable singularities for the boundary values of holomorphic func-
tions. Proc. Mittag-Leffler special year in complex variables: Princeton Univ. Press
Sussmann, H.J.: Orbits of families of vector fields and integrability of distributions.
Trans. Amer. Math. Soc. 180, 171-188 (1973)

Trépreau, J.-M.: Sur le prolongement holomorphe des fonctions CR définies sur une
hypersurface réelle de classe C? dans C2. Invent. Math. 83, 583-592 (1986)
Trépreau, J.-M.: Sur la propagation des singularités dans les variéiés CR. Bull. Soc.
math. France 118, 403450 (1990)

Tumanov, A.E.: Extending CR-functions on manifolds of finite type to a wedge.
Math. Sborn., Nov. Ser. 136, 128-139 (1988)

Vladimirov, V.S, Fonctions de plusieurs variables complexes. Dunod: Paris 1971

14



