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Let X be a compact Kdhler manifold of complex dimension
2 , .

n with cy = 0 . Then we can change the Kihler metric in the
same cohomology class to get a Ricci flat metric: the Ricci
tensor represents the first Chern class, and because the first
Chern class of X 1s cohomologically zero, Yau's solution of
the Calabi conjecture gives us the éossibilityiof replacing
the given metric by an Einstein-Kdhler metric which is Ricci
flat.

Which manifolds of this type exisf?

The structure theorem, as given in Beauville's paper [1])(see also [11])

which is based on results of Calabi [5] and Bogomolov [2], tells



us that the universal covering of such an X 1is always
isomorphic to a product of the form

CkaV.xHX. .
i ]

The Vis are simply connected Kdhler manifolds of dimen-
sion greater than or equal to three with trivial canonical
class. The Vis have the following Hodge numbers:

0,0 0,1

0o n% -9 n%2-0,..., 0001

=O'ho,n

=1

The xﬁs are simply connected holomorphic symplectic even
dimensional Kdhler manifolds with trivial canooioal bundle
(also called hyperkdhlerian), this implies that there exists

a holomorphic two-form ¢ , such that w;wz,...,wk/z give:.
all holomorphic forms up to factors,-where k is the dimen-
sion of Xj ~and wk/z is the non-vanishing section of the
canonical bundle. The described decomposition of the universal
covering of X 1is unique. The proof of this structure theorem
uses the Einstein-Kdhler metric [17]. Actually, the theorem

says a little more: .
There exists some finite unramified cover Xf of X ,

X" =T ani xnxj ;- with a Torus Tk .

What are the consequences of this fact in dimension three?



Suppose that we have a Kdhler manifold .X of dimension three

with c? = 0 and e(X) # 0 . Then e(xf) # 0, so no torus can

occur in the decomposition of Xf as above. Because there
are no factors Xj either (they are evendimensional), there

exists some finite cover Xf of X of the form Xf =V ,

where V 1is of the type described above.

Therefore Xf and also X have the following invariants:

ho’o 0’3 OI1

= 1 = h ‘,h' =0 =h

1,1

By duality, the only variable Hodge numbers are h and

h2 ] From general theory on Hodge numbers the Euler number

1,1 2,1

e(X) of X is 2h 2h

The most obvious examples are complete intersections of k

smooth hypersurfaces in P3+k(C) in general position:

a) A Quintic in P4 with Euler number =200 .

b) The intersection of a Quartic and a Quadric resp. two
Cubics in P5 with Euler number -176 resp. -144.
¢) The intersection of a Cubic and two Quadrics in P6

with Euler number -144,

d}) The intersection of four Quadrics in P7 ; its Euler

number is =-128.

These are the only examples we can get by taking smooth
complete intersections, because the first Chern class of a

smooth intersection of k hypersurfaces of degree d1"“’dk



in P3+k(c) vanishes if and only if

M~

d, = k+4
i

[ %
1}
—

For these examples see (6], p.11.

Other important examples are double (resp. triple) coverings '

of P3(C) , branched along smooth octic (resp. sextic) surfaces;
the Euler nuﬁbers of these threefolds are equal to -296

(resp. =-204).

Physicists studying superstring theory are interested in Bdimensional
Kihler manifolds which have- c? = 0 and absolute value of the
Euler number as small as possible, but not equal to zero. In
order to get such ﬁanifolds, they take the examples given

above, look for some groups acting freely on the manifolds,

and divide by these group-actions.

The Euler number of the quotient is then the Euler number of

the given manifold divided by the order of the group.

For example, the group Z5 X ZS acts freely on the Quintic

in P4(C) given by

4

:z: z? =0

i=0

-

the quotient is a manifold with Euler number -8 ; see [6],
p-16.

Another method for getting new examples with different Euler
.numbers will be described in this paper: we introduce singula-

rities and then resolve them in different ways.



II.

Let us consider the double covering of P3(C) ' branchéd
along an octic surface which is allowed to have singularities.
Assume first, that these singularities are locally of type
g(u,v,z) =0, where g is a homogenous polynomial defining a smooth
curve of degree 4 in'the plane at infinity with u,v,z as homogenous
coordinates. Therefore the surface singularity is the vertex of the
cone over the curve g . The threefold singulﬁrity is given in
local affine coordinates by

w2~+g(u,v,z) = 0 .

— . . P I S B L T L T )

Blowing up the singular point of the branch divisor in P3 ’

the exceptional divisor D 1s isomorphic to P2 . The proper
transform B of the branching surface B cuts out a curve

of degree 4 of this exceptional divisor. A -singular point p
of the threefeold is then resoclved into. a double cover of P2 P
branched élong the curve of degree 4. This is.a del-Pezzo-
surface, which is isomorphic to P2 blown up. in seven points.
So the Euler number of the surface, which replaces the singular

point of the threefold, is 10.

The Milnor number of a hypersurface singularity of type

is i131(ni-1). Thus the third Betti number of the Milnor fiber of
the given singularity g(u,v,z)=0 is 27, at least in the case
45y +z%,, but this holds also for any ¢ . When the singular
point is taken out of the threefold, the Euler number changes in

the same manner as if the Milnor fiber is taken out of a smooth

- . g-'.‘:_.-.:u



model. So in our examéle the Euler number descreases by 1-27,
that means: it increases by 26. Gluing in the del Pezzo-

surface enlarges the Euler number again by 10. So with every
singularity of the described type the Euler ﬁumbér of X , which

3 , branched along. B ,

is the double covering of the blown up P
increases by 36.

What is the canonical class of X ?

Let p be the blowing up and 7w the covering map from X to

B3 . Then we have the following formulas:

K,y =-4p"H + 2D

P

Ky =1T*(K +-1—']§)

X 33 2

B = p*B-o0rd B D ;

H 1is a generic hyperplane in P3 . Because B~ 8H and

ordPB = 4 , Kﬁ is trivial.

Now let us construct an octic surface with 8 singularities of
type (4,4,4) . The Euler number of X is then equal to

-296 + 8 . 36 = -8 ., In homogenous coordinates X ¢

o’'"" 3

consider the quartic

X +xg+x

[FS 1N

with one singularity. Now change the coordinates to T T

0,---' 3
in the following way:



XT -VXO = T?
X, = X, = T%
X3 = Xp = Tg
Xy = T )

The transformation map is of degree 8, the inverse image of the
3
4

quartic .21 X, = 0 is an octic with 8 singularities of the
i= ,

type we require.

A similar example 1s given by the triple covering of P3(C) ’
branched along a sextic surface with singularities locally of
‘type glu,v,z) =0 , where g is a homogeneous polynomial defining

a smooth curve of dégree 3. For example, the threefold singularities
are locally given by

Blowing up, these points are replaced by cubic del Pezzo-surfaces:
they are triple coverings of P2 , branched along a cubic curve,
and have Euler number 9. Because the Milnor number of such sin-
gularities is 16, every resolution of a singularity of this type
increases the Euler number, compared with the smooth case, by 24.
Analogous to the octic case, the canonical bundle again remains

trivial, because prde = 3 for all singular points p and

Constructing a sextic surface with 8 such singularities, we



reach the Euler number -204+8 .24 = -12 ., Here we 'proceed as

before: the sextic (in affine coordinates)

2 3 _
zg%(xi - 1) =0

has 8 singularities of type (3,3,3)

The group, generated by
(X4 sXyrXq,W) > (X,,X3,%,,WE3)

with £3 a primitive third root of unity, operates on the

singular threefold

3

- :§: (xi - 1)3 WS =0 .
i=1.
The only fixpoints are the singular. points P1 = (1,1,1,0)
and P2 = (-1,-1,-1,0) . The group operation induces an operation

on the resolution, which is a fixpoint-free automorphism of the
cubic surfaces resolving P1 and P2 . The quotient is a smooth
Kdhler manifold with trivial canonical bundle and Euler number

-,—12/3 = -4 ,

I1I.

Let us return to the double covering of P3

{(C) , branched
along an octic surface and assume that the singularities of
the branching surface now are ordinary nodes, described locally

by the equation



Blowing up a singular point of the octic in P3 , the proper
transform of this surface cuts out an irreducible conic curve
of the exceptional P2 . So the singularity of the threefold is
resolved into a double covering of P2 , branched along an
irreducible conic curve. This surface is isomorphic to P1* P1 .
But now the canonical bundle of the new smooth threefold is

no longer trivial. So we must look for another way of resolving
the singularities.

We proceed by taking the so called "small resolution", which can
be described as follows:

In suitable local analytic coordinates, a threefold singularity

of the type we want to have is given by the equation

:% ui =0

i=1

In other coordinates this can be written as

0,6, = 650,
The local meromorphic function

b by

[

has a point of indeterminancy at the critical point

¢{ = ¢, = ¢5 = ¢, = 0 ..The graph of this meromorphic function



L at that critical point; the

is smooth and contains a P
singularity is replaced by a set of codimension two. Therefore
this kind of resolution does not influence the canonical class.

For details see [10]. The meromorphic function

gives us a different small resolution. So globally there exist 2% different

small resolutions (s=# of double points). Another.way to get these

1

resclutions is to blow down each P of one of the ruiings of

the exceptiohal P1 xP1 we constructed before. This can be done,

since both fibre and base of the P1 xP1 have intersection (-1)

with the P! x P
Computing the Milnor number we see that the Euler number increa-
ses by 2 with every small resolution of a singularity. Now a
different problem comes into the game:

: . N

It is uncertain whether or not at least some of the small resolutions X are
still Kihler. This depends on the number of double points and

"their special position. In general the manifolds ¢ are only

Moigezon : the transcendence degree of the function field is 3.

" The resultsof Moiéezon [12] tell us that a manifold is projec-
tive algebraic if and only if it is Moisezon and Kdhler. So in
our examples the properfies "Kdhler" and "projective algebraic"

are equivalent. | \
If we take, for example, the émutov octic with 108 nodes as

branching surface - this octic is given in affine coordinates

by the equation



v v
T8- the Cebysev polynomial of degree 8 - there is no small

resolution which is Kdhler; all exceptional curves are

v
homologous to zero. But if we take the Cmutov octic with
144 nodes, given by

i T8(xi)+1 = 0 ’

i=1

A
there exist some X which are projective algebraic; see [16].

These are Xdhler manifolds with trivial canonical bundle and

Euler number =296+ 2144 = -8

v
For the general construction of Cmutov hypersurfaces see [15]

or the appendix_of this paper.

Iv.

A similar example is given by the quintic émutov hyper-

surface in P4(C)

M.

T.{x.) =0
i=1 5 d



This threefold has 96 nodes, and because the Euler number of
a smooth quintic in P4 is -200 , the small resolutions_
of that singular variety have Euler number -8. Again there

exist some projective algebraic small resolutions.

Now let £(x,y) =0 Dbe the quintic curve in the affine plane,
“which is given by the product of the five-lines-of-a-regular..

pentagon.



As a function of two real variables x and y , f has rela-
tive extrema in thé'center a of the pentagon and in one point
bi of each triangle B, . So both partial derivativgs of £
vanish at these six points and at fhe ten intersection points
of the five lines. The function f can be 'normalized, guch
that - £(b;) = -1  for all i = 1,...,5 ; by

symmetry f(bi) = f(bj) for all i and Jj . Consider the

threefold given in four affine coordinates by the equation
flu,v)-£fl(z,w}) = 0 .

At the singular points all partial derivatives vanish, so
if (u,v,z,w) 1is a singular point of the threefold, (u,v)
and (z,w) are critical points of f . There are three

possibilities:

“f{u,v) = 0 = £(2z,w) (100 points)
f(u,v) =-1= f(z,w) ( 25 points)
f{u,v) = a = f(z,w) { 1 point ) , a=>0

So our threefold has 126 nodes, the Euler number of a small
" resolution is =200 + 2 126 = 4—52. In this case there exist

.projective algebraic small resolutions, as Chad Schoen pointed

out. The hypersurface in IP4(¢)

f(u,v) - 2f(z,w) = 0

has only - 100 singularities coming from the intersection points



of the lines. Here the small resolutions have Euler number 0,
so this example is not interesting for the physicists.

We can get other examples by
flu,v) - E(z,w) =0 ,

where ¥ arises from a little perturbation of the line con-
figuration of £ . A suitable choice of ¥ gives us a three-
fold with 101 nodes: f must have the value +a at the critical
point inside the pentagon.:and values different from -1 at all
critical points inside the triangles. The Euler number of a
small resolution is +2 . It might be, that in this special

case there is no projective algebraic small resolution.

In our next example a family of threefolds is described
by the affine ‘equation

fi{x,y,z) +tm'h =0 (meN) ,

‘where f has some surface singularities of type

Ar(rz 1) , Dr(rz 4) , E_ , E and E

6 7 8

These singulérities are given by the local egquation

22 + glx,y}) =0 ,



where g haé a curve singularity of type ar,dl'_,es,e7 , Or

e8.. These are

a, x2 + yr+1 =0
dr : x(y2-+xr-2) =0
€ x3 + y4 =0
e, x(x2-+y ) =0
eg ! x? + y5 = 0 .

In [3] and [4] Brieskorn investigates threefolds which fiber
into surfaces and looks for resolutions of the surface singu-
larities of singular fibers. Because the parameter t gives
us a fibration of our threefold into a family of surfaces, the.
results of Brieskorn give us small resolutions of our three-
fold singularities in those cases, where h is the so called
Coxeter number of the singularity. That means:

If the expohent of t in the equation of the threefold is

a multiple of the Coxeter number of a singularity occuring
in £ , then there exist small resolutions of this singularity.

The Coxeter numbers are

h(Ar) = r+1

, h(Dr) = 2r -2
h(EG) =12
h(E7) = 18

h(EB) = 30 .



The Milnor number of every singularity is a product of the
Milnor number of the surface singularity of f - which is

the index r - and (m-h-~-1) , because the variabie t does
not appear in the polynomial £ . So every singularity enlarges

the Euler number by
r«{m+-h=-1}) -1+ (r+1) = r+.m-+h

The Dynkin diagram of the singularity shows, that the resolving
curve is a line configuration consisting of r projective
lines with (r-1) intersections points; its Euler number is

equal to
re2-(r=-1) =r+1

Now let us have a look at a more special case of this general

example:

f(x,y)-l-zz-rt8 =0

with £ = 0 a curve of degree 8 .

"If £ is smooth, the threefold is smooth, too, and has trivial
canonical bundle and Euler number -296 .

Now f 1s allowed to have singularities of type ayrd5,a4 o
and 'ds . In.these cases we get small resolutions of the singu-

larities of the threefold, because the Coxeter numbers of
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A1,A3,A7 , and D5 are divisors of 8 . The Euler number of

a small resolution is
e = =296 + 8 « Ir ;

Zr 1is the sum of the indices of all singularities of f
This sum is smaller than or equal to 37 ; see [13], p.291. We

give two examples with

Ir = 36 .

In this case we reach

First f consists of four conics which touch each other 'such that
f has 12 singularities of type ag - In the other example f
is a product of Persson's tri-conical configuration ([13] p.292)

and two lines as in the following picture:
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At the points a and b we have a7—singularities; those

at the points c to g are of type ag . Finally we get 7
a1-singularities: the four intersection points of the two
lines and the big conic, fhen two imaginary points, where

the small conics intersect, and the intersection point of the

. two lines. Again the sum of the indices is 36

DIQ

In this chapter we want to construct some threefolds:with
large positive Euler number.First let us have a look at
the intersection of four quadrics in P7 with Euler number

~128 . To construct an example of such a threefold, we take

8 planes

in P3(C) in general position. The functions



2
21/21

give us a smooth threefold in P7 ; a braﬁched‘covering of P3

of degree 27 . The quadrics in P7 are given by the equations

the four 8-tuples (a1j""’a8j) are linear independent

solutions of

Now we want to introduce singularities; the‘eight planes

are chosen in special position. We allow, that through any
point may pass up to four of the planes; however assume that
no three of the planes have a line in common. If we‘have a
plane configuration with t points belongihg to four planes,

the threefold'has 8 - t double points.

Take, for example, the plane configuration of a regular
octahedron. Eaéh of the six points of the octahedron belongs to
" four planes. The eight planes divide into four pairs which are‘
parallel. To each pair belongs an intersection line in the
plane of infinity. These four lines intersect in six points.

So t is equal to 12 , the threefold has 96 singularities.

A small resolution gives us a manifold with trivial canonical

bﬁndle and Euler number



-128 + 2+ 96 = +64 .

Again it is an open problem whether the small resolutions
are projective algebraic.
Next we consider the intersection of two cubics in P5(C) with

Euler number -144 . We construct such a smooth threefold by

functions

2/8, (L =2,...,6) ,

where

are six planes in P3(C) in general position. We get a
covering of P3(C) of degree 35 . To introduce singularities,
again we choose the plane configuration so; that up to four
planes pass through an arbitrary point. Again we assume,

that no three of the planes have a line in common. A configu-
ration with t of such points gives 3+t threefold singu-
larities of type (3,3,3,3) ; the resolution of every singu-
larity is a cubic del Pezzo-surface (see Chapter 11).

" The canonical.bundle remains trivial, the Euler number in-
creases by 24 :3 .t .

Let the plane configuration be that one of a regular cube:

in this situation we have three pairs of parallel planes and

therefore three intersection lines in the plane of infinity.



These three lines intersect in three points} so t is equal
to three and the threefold has 9 singularities. The Euler

number of the resolution is equal to

-144 + 9 . 24

+ 72 C e

Another example 'with Euler number +72 is described in [6],

p.12, I know it from E. Calabi.

In this context a very interesting example is constructed by

7 ot P3(0)

B. Hunt, He considers a covering of degree 2
branched along the plane-configuration of the following special
type: six planes are the planes of a regular cube, the seventh
is a plane passing through three edges of the cube as in the

picture, and the eighth is the plane at infinity.
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This construction leads to a plane configuration with 3
fivetuple and 3 quadruple points. The threefold has 24
ordinary double points and 12 singularities, given in C5

by the two equations

—_
—
+
[}
L]
3]
N
+
(9]
w
N
(%)
+
Q
-9
N
oo
+
(o]
w
N
wn
il
O
.

cy # cy if i # 3 . To compute the Milnor number of these

singularities, we consider a small deformation

i=1

5
2— .
ottt

its Euler numbér is equal to e(X) -e(¥Y) , where X 1is the

complete intersection of two quadrics in P5 and Y 1is the

complete intersection of two guadrics in P4 ; X is

described by

2

Z2= a2
i 0

=

|t

Y is a P2 blown up in 5 points (a del Pezzo-surface),
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i}

e (Y) 8 , and because 83(X) = 4 (see [8] p.465) we get
e(X) = 0 . So the Euler number increases by 8, when the sin-
gularity is taken out. The singularity can be resolved by a
(2,2) complete intersection in P4 ; the rgsolﬁing surface is
again a P2 blown up in 5 points with Euler number 8. This
resolution does not influence the canonicél class, so a reso-
lution of all singularities of this type and a simultaneous

small resolution of the double points gives a smooth three-

fold with trivial canonical bundle and Euler number

~128+ 12+ 16 +24 -2 = +112 . .

It is not known whether there exists such a "mixed"

resolution which is K&hler. For details see [9].

DIIX.

To construct our last example, let

9(23124125) = 0

be a smooth curve of degree 10 in P2 . Consider the three-

fold

2 5 _
214—224-g(z3,z4,25) = 0
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in a weighted projective space.

Choose new variables u? =z, and ug = 22' and look at Y

given in P4 by the equation

r

£
-
t
o
Y

u

i
—

R

n
—

form a group & of order 10,

2 5
{21 vz, +tg-= 0} =Y/6G

is our given threefold in the weighted projective space.

This group operation is not free: the subgroups, consisting

of those transformations with o =1 and § = 1 respectively
leave the surfaces {u1 = 0} and {u, = 0} respectively
fixed; the curve {u1 =0, u, = 0} is the fixpoint set of

the full group &6 . So

ery/6) = &)+ [(5-1) + 2-1)Je(F) + (5-1)-(2-1)e(C) |

10

"where F is a smooth surface of degree 10 in P3 and C 1is

a smooth curve of degree 10 in P2
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e(Y) = -5900, e(F) = 660 , e(C) .= =70 ,
SO

e(y/6) = -288 .

The canonical divisor on Y/6 1is computed as follows:
Let f be the quotient map ¥ —> ¥/6 and H a generic

hyperplane in P4 . Then

where D = {z,= O}IY/G and B = {z, =0}] Then

Y/6

H
*
jos]

11
—f——
c
—= U
]

o
——

[

?
8, ]
o

=

So

*
therefore the.canononical bundle on Y/& must be triviai;
see also [14], p.21.

"If g=0 has t singularities of type a, , the threefold

has t singularities of the form

u o+ v2 + w + t7 =0 .

As described in chapter V, the Euler number increases by 20,



‘where f(to,t
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if we resolve such a singularity by a small resolution.

The equation

2
5 5 5 55 55 55
(23”4"25)“4<z3z4+z325”45)'

fl
o

gives us a curve of degree 10 with 15 a, singularities; see

[13] , p.311. This equation is of the form f(zg;zz,zg) =0 ,

tz) = 0 is the conic in the following picture:

1!’

The small resolutions of the threefold have Euler number

~288 + 15+ 20 = +12 . Are they projective algebraic?
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APPENDIX

b4
Let Td(x) be the Ceby\éev polynomial in one variable

of degree d , defined by

Ty (cosa) = cos(da)

We have
| (d/21, \Jray a-29/. 2\3
Td(x) = Z (-1) (Zj) X 3(1-x )
3 =0
At the points

k
Oy 3= cos?, 1sksd-1 ,
Té(x) has simple zeros; they are maxima (if k is even)} and

minima (if k is odd)} of Td as a real function. The values

at these points are

+ 1 if k is even
T (a,) =
Sak - 1 if k is odd )

The Emutov hypersurface of degree 4 in Pn(C) is given in

n affine coordinates by the equation

n 0 if n is even

+1 if n 1is odd
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What are the singularities of this hypersurface?

All partial derivatives vanish if and only if

X
1}

0 for all j ;

this is the case iff for all j = 1,...,n there exists a

k€{1’--.'d_1'} r SUCh that

X. = COS (Bﬂ[) = .
] d k

So in affine coordinates the singularities are the points

Q. A
( i’ A ) ,

1 n

where -[n/2] of the indices i are odd and the other are

j

even. The singularities are nodes, because

2
d T4

5 (ak) Z 0 for all k

dx

Homogenizing does not influence the singularities, all of them
are contained in the affine piece described above. .

v :
The Cmutov hypersurfaces have many nodes, for fixed n

. asymptotically

n
([n?z]) (g) nodes for dl——> o

If n=3 , the number of nodes is %wi(d-Z)z if d is even



ool w
o}

and %(d—1)3 if a is odd: asymptotically we get
ordinary double points, the best 'example known.

We can generalize our construction and consider all cases

0- if n 1is even

n Bj
> (-1 Ty (xs) = By
j=1 J (=1) if n is odd

with 80’81""'Bn.6{_1'+1} . If nz3 , all these hypersurfaces
are irreducible. We get the largest number of double points for

the hypersurfaces

n
zi 1 Td(xj) = -1 if n is odd
J
and
n L .
Z (-1)9 T (x.) =0 if n 1is even.
3= d ]

If n=3 and d 1is even, these hypersurfaces have

3 4% (a-2) nodes: the octic has 144 double points.
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