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Abstract

An algebra of operators associated with a smooth embedding i : X ~ M is
constructed. For elliptic elements of this algebra the finiteness theorem (Fred­
holm property) is proved. The connection with elliptic Sobolev problems is
indicated.

Introduction

1.By the relative elliptic theory we mean the elliptic theory associated with the pair
(M, X) where M is a smooth closed manifold and X is its submanifold. Thus, the
relative elliptic theory is an elliptic theory in the category of smooth embeddings.

The trivial (and non interesting) example of a relative elliptic operator is given by
a pair of elliptic operators given on manifolds M and X, correspondingly. Such an
'operator' can be written down in the form of a diagonal matrix operator

with elliptic (pseudodifferential) elements DM and Dx acting, for example, in Sobolev
spaces on the manifolds M and X.

·Supported by Max-Plank-Arbeitsgruppe "Partielle Differentialgleichungen und Komplexe Analy­
sis", Potsdam University and by Chair of Nonlinear Dynamic Systems and Control Processes, Moscow
State University.



This trivial example, however, shows tbat in tbe general situation a relative elliptic
operator must be, probably, represented by some (quadratic) matrix wbich, certainly,
must not to be a diagonal one. We first note that a posteriory this suggestion is quite
correct. However, it needs a serious explanation. The matter is that, by their sense,
the elements standing in the lower left and upper right corners of the supposed matrix
must be an operators acting from the space of functions given on one of the manifolds
ioto that on the another one. Hence, this matrix we can write down in the form

(
DMM DMX )

DXM Dxx
(1)

where indices show the direction of action of tbe corresponding operators (from tbe
right to tbe left). Apparently, even a non experienced reader will wonder what the
operators DMx and DXM are. It is more or less clear that these operators are not in
any case pseudodifferential ones, at least if this nation is meant in the classical sense.
ActualIy, classical pseudodifferential operators act from the spaee of funetions on same
smooth manifold into that given on one and the same manifold. The mentioned oper­
ators do not possess this property just by their definition. What are these operators?
What is their nature?

Let us try to propose some eandidates to the role of these operators. To begin with,
let us eonsider the operator Dx M. This operator aets from the spaee of funetions on
the whole manifold into that on the submanifold. Tbe most natural operator of tbe
kind is the restrietion operator (or boundary operator) indueed by the embedding
i : X ~ M. If one takes into aeeount that operators of the form (1) should form
an algebra witb involution, it beeomes clear that the operator DMX must be dual to
the previous one that is, to be an operator of eorestrietion or, as we shall eall it, a
eoboundary operator. Certainly, in the general case one should use as the operators
DMX and DXM a composition of the two above operators with some pseudodifferential
ones. Thus, at the first glance, our future theory is a theory of the operators of the
form

(
DMM CMMi .. ) (2)

i*BMM Dxx

where the operators i* and i* are elementary boundary and coboundary operators,
and the operators DMM , BMM , CMM , and Dxx are pseudodifferential operators on
the corresponding manifolds. Unfortunately, however, operators of the form (2) do
not form an algebra, what is certainly ineligible fact from the viewpoint of the elliptic
theory. ActualIy, the proof of the finiteness theorem (Fredholm property) is carried
out in the convenient and natural form with the help of constructing of the so-called
regulizers, that is, the inverse (up to the eompact ones) operators. Of course, this
method requires the algebra structure in the set of the operators considered and,
certainly, effective enough calculus.

As we have already mentioned above, unfortunately the set of operators of the type
(2) do not form an algebra.. The reason is (and this is shown in the paper) that the
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calculation of the product of the two operators of the kind gives in the upper left corner
of the resulting matrix the operator of more general structure than a pseudodifferential
one. This fact is not surprising since the factors induded in this operator are a fortiory
non pseudodifferential operators and one cannot in general expect the result to be a
pseudodifferential one l . Thus, it seems to be natural, in order to introduce the algebra
structure in the set of the considered operators, to extend the dass of pseudodifferential
operators by adding to the latter ones tbe operators of the type

arising in the composition. The remarkable fact is that after such an extension the
set of operators is dosed with respect to the composition and, hence, the question of
constructing of the needed algebraic structure is in principle solved.

Certainly, this is not tbe end. It would be desirable to give the description of the
recently introduced operators (which, as we have already mentioned, are not pseu­
dodifferential ones) in the known terms. Of course, the positive solution of the stated
problem is just a. good luck. In principle, the introdueed operators can have abso­
lutely new nature and be not known in the literature. Fortunately, in this case it is
not so. All the operators of the above type admit a representation in the form of the
operators which are rather well-known. For example, these operators can be inter­
preted as certain Fourier integral operators on special Lagrangian manifolds. In this
interpretation eaeh type of operators (boundary, eoboundary, ete) corresponds to its
own Lagrangian manifold. These operators admit also an adequate interpretation in
quite different terms. Namely, they ean be represented as a special dass of pseudod­
ifferential operators acting in sections of infinitely-dimensional bundles (1/'DO's with
operator-valued symbols). In different situations different treatments can be useful.
For example, in constructing a ealculus the convenient interpretation is Fourier inte­
gral operators, in formulation of the elliptieity conditions and in computation of the
index these operators ean be interpreted as pseudodifferential operators in seelions 0/
infinite-dimensional bundles and so on.

Thus, in the present paper the relative theory of pseudodifferential operators is
eonstructed as the theory associated with the smooth embedding i : X 1:...-+ M. In
the framework of this theory the notion of elliptieity of the eorresponding operator
is introdueed and the corresponding finiteness theorem is proved. Finally, the index
formula for the relative elliptic operators is written down.

2. The relative elliptic theory allows one to solve one of the important and inter­
esting problems in the theory of differential equations - the so-called Sobolev problem.
This problem is that in situation of a pair i : X 1:...-+ M one searches a solution to the
equation

Du =/ (mod X),

1In this connection we note that, nevertheless, the operator arising in composition in the lower
right corner of the result in fact is a pseudodifferential operator.
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where the comparison means that the equation is fulfilled everywhere on M except for
points of the submanifold X. Besides, some 'boundary conditions' are given on X and
the problem is, first, to present a correct statement of such a problem and, second, to
investigate its solvability (Fredholm property). The problem of such kind was formerly
considered by S. L. Sobolev [1] for the polyharmonic equation. The general statement
and the investigation of these problems was carried out by B. Sternin [2] who give
them the name Sobolev problems.

We remark that these problems possess aseries of interesting features. For example,
the number of 'boundary conditions' of the problem essentially depends on the index
of the Sobolev space in which the solution is searched for. In particular, in the space of
sufficiently smooth functions the Sobolev problem becomes, in essence, trivial. Later
on, a solution to an elliptic Sobolev problem is not in general an infinitely smooth
function even if the right-hand part of the equation is infinitely smooth. The solution
shall have singularities on the submanifold X.

3. The present paper develops ideas, methods and results contained in [2], [3],
[4]. More exactly, this paper gives a new glance on the theory of Sobolev's elliptic
problems and on the relative elliptic theory from the viewpoint of the modern theory
of differential equations. In particular, the interpretation of boundary and coboundary
operators in terms of Fourier integral operators presented in this paper is new, and
we used the results of papers [5], [6], [7] containing an extension of the algebra of
pseudodifferen tial operators.

In the period of almost thirty years which passed from the time when the first
paper [2] on the Sobolev problem had appeared, a lot of remarkable papers on the
elliptic theory were published. The notion of the coboundary operator introduced in
[3] is at present in general usage in the general theory of differential equations. In
these papers, independently and in different situations a lot of constructions elose to
those of the relative elliptic theory had appeared. In particular, the well-known at
present Bautet de Monvel's algebra [8] was created, which plays the most important
role in the theory of solvability of elliptic pseudodifferential operators on a compact
manifold with boundary. The like structures appear also in construction of algebra of
Mellin t/J DO'8 created by B.-W. Schulze [9], [10].

1 From Sobolev problem to operator
morphisms

1.1 Two physical examples

To illustrate the appearance of the notion of Sobolev problem, we begin with rather
simple physical examples. If we consider a thin film stretched on a one~dimensional

contour and try to sustain this film by a thin needle, then the film will on notice the
needle and the needle will come through the film without changing its form (or, maybe,
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a) b)

Figure 1: a) Needle goes through thin film. b) Needle supports thick membrane.

the film will be hroken down). However, if we try to sustain a thick membrane by the
same needle then we shall see that the form of this membrane shall be changed. In
other words, one cannot pose 'boundary conditions' for the equation for thin film in a
single point, but can pose such conditions for the equation of the thick membrane (see
Figure 1).

Mathematically, the nature of tbis phenomenon is as folIows.
The problem in the space R 2 describing a form of a two-dimensional thin film

stretched on a one-dimensional contour reads

{
ßu = 0,

ul r = 'P,
(3)

where the function r.p defined on a plane c10sed curve r describes the form of the
contour on which the considered film is stretched. If we try to sustain this film by a
needle in some point (xo, yo) E R2, this means that:

1) We suppose that the equation involved in the problem (3) is valid not in all
points of the domain bounded by r but in all its points except for the point (xo, Yo).
This will be in the sequel written down in the form

ßu =0 mod (xo, Yo) (4)

and means exactly that the distribution ßu is supported in the single point (xo, yo).
2) We supply problem (3) by the additional 'boundary condition' of the form

ul(ro,yo) = Uo

5
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with some fixed value of Uo.
However, as it follows from the well-known theorem on removable singularity for

harmonie funetions, any solution of the eomparison (4) whieh is bounded at the point
(xo, Yo) (the latter follows from the eondition (5) will be a harmonie funetion in the
whole domain (inc1uding the point (xo, yo)) and, henee, the value of this funetion at
this point is uniquely determined by the data of problem (3). Henee, the eondition
(5) is quite superfluous and must not be posed.

Quite another situation takes place for the problem deseribing (say, rigidly fixed)
thiek membrane

{

ß~u = 0,

I - 8ul_
U r - c.p, on r - c.p,

where 8/8n is a derivative along the outer normal direetion to the eontour f. Ir we
replaee the equation involved into the latter problem by the eomparison

(6)

we ean pose the additional condition of the type (5) sinee this eomparison possesses a
nontrivial continuous solution (whieh behaves as r~ In r near the point (xo, yo), r being
a distanee from this point; the funetion r 2 1n r is an exact solution to eomparison (6)
in the whole spaee R 2).

Thus, we see that for equations of enough high order one ean pose problems involv­
ing 'boundary conditions' on manifolds of enough high codimension. The problems
with such conditions are called Sobolev problems.

1.2 Boundary and coboundary operators

Let us describe now the general statement of the Sobolev problem. To avoid the
unessential difficulties, we shall consider such a problem on a smooth compact manifold
M without boundary (in this case one does not need any boundary conditions).

Let us introduce important notions in the theory of pseudodifferential operators
which will be of use in what folIows. Let M be a smooth compact manifold without
boundary and let

(7)

be a smooth embedding of codimension v. Later on, let E ~ M be a complex vector
bundle over M. By Coo (M, E) we denote the space of smooth sections of this bundle
over the manifold M.

The imbedding (7) induces a mapping

which will be called an elementary boundary operator induced by the embedding i.
From the Sobolev embedding theorem follows that this mapping extends up to the
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continuous mapping
i· : H" (M, E) -+ H tI

-
v !2 (X, El x )

for s > v /2 where by H· (M, E) we denoted the Sobolev space of sections of the bundle
E, corresponding to a real index s.

The eIementary coboundary operator is defined by the duality:

which in certainly continuous for s > v /2.
The above introduced elementary boundary and coboundary operators certainly

are not (classical) pseudodifferential operators. This follows at least from the fact
that these operators do not act in the whole Sobolev scale of spaces. The nature of
these operators will be discussed in detail a few lines below.

Let now E and F be two bundles over M and

be a pseudodifferential operator of order b. Then the composition i· 0 B is called a
boundary operator associated with the operator B. This operator extends up to the
continuous operator

(8)

for s > b+ v/2.
The coboundary operator associated with some pseudodifferential operator C of

order c is defined by duality:

(9)

This mapping is evidently continuous for s > c + v /2.
Let us try to find out what boundary and coboundary operators are like. We have

already remarked that these operators are not pseudodifferential ones.
1. Coboundary operator. For investigating the nature of these operators let us

try to make the things clear for, say, coboundary operator. First of all we notice
that outside some (arbitrary) neighbourhood of the submanifold X this operator is
an infinitely-smoothing one, so that in essential part this operator is just a germ on
the manifold X. Thus, we consider a neighbourhood of an arbitrary point on the
submanifold X and introduce in this neighbourhood the coordinates (x, t) such that
the equation of X is t = O. We have

Ci.! = (2~) n+v JJeilrt+p(x-x'llC(x, t,p, T)f(x') dTdpdx'
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where C(x, t,P, T) is the symbol of the operator C (p, T are dual variables to x, t,
correspondingly). The integral over T in the latter expression can be computed and
we come to the following expression for the operator Ci·:

where

Ci./ = (2~rJe;p(r-r'lc(x, t, p)/(x') dpdx' (10)

C(x,t,p) = C~rJe'T'C(x,t,p,T)dT. (11)

Operator (10) has the form of a pseudodifferential operator or, more strictly, a family
of pseudodifferen tial operators parameterized by t. However, its symbol (11) is not
a smooth function 0/ the parameter: it has singularities at t = O. The nature of
this phenomenon is quite clear. Operator (10) is, for example, a Green operator of
a boundary value problem (a potential), that is, an integral operator whose kernel is
'a Green function'. Such an operator always has singularities as t -+ O. Here is the
concrete example which confirms this fact.

Let the symbol of the operator C is equal to

1
C (x, t, p, T) = 1 2 2+p +T

(we suppose, for simplicity, that t and T are one-dimensional variables). Then, using
the residue theorem, one obtains

Evidently, the latter function has the singularity in t at t = 0, as required. Besides,
from the latter relation one can see that the operator wi th the symbol C(x, t, p) is
coocentrated 00 the manifold X since outside this manifold (that is, for t =I- 0) the
symbol C(x, t, p) decreases more rapidly than any power of Ipl.

2. Boundary operator. Similar to the case of coboundary operator, the boundary
operator is also concentrated on the manifold X. Thus, we consider also a neighbour­
hood of X and, using the above notation, write down the boundary operator in the
form

i'B / = (2~r+"JJe;[p(r-r')-T"')B(x, O,p, T')/(X', t') dpdTdx'dt' (12)

where B(x, t,P, T') is the symbol of the operator B. Let us rewrite this operator in
the form of a pseudodifferential operator. We have

i* B / = C~) n+" JJe;[P(r-r')+T'( '-"1IB(x, p, T')/ (x' , t') dpdTdx'dt' (13)
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where
B....... ( ') -i'T'tB( 0 ')X,P,T = e X, ,p,T . (14)

Thus, the boundary operator (12) is a pseudodifferential operator of the form (13)
whose symbol (14) is a rapidly oscillating one. It is easy to see that the non-smoothness
of a coboundary operator and the rapid oscillations of a boundary one are dual notions.

3. Lagrangian unijormization. The above considerations, of course, exactly express
the situation for the considered questions. In principle, we can try to introduce the
calculus with the above representations of the considered operators. Unfortunately,
this is not quite convenient in practice. The manipulation with non smooth or (and)
rapidly oscillating symbols supplies us with a lot of purely technical difficulties. For
example, it is necessary to describe the admissible character of non-smoothness of
symbols, the character of oscillations and so on.

In other words, while determining a dass of coboundary operators one needs
- first, to fix the type of singularities,
- and, second, to derive the rules of maintaining with such operators (calculus),

that is, to introduce the structure of the module over the ring of pseudodifferential
operators.

This program can be fulfilled with the help of the idea of the so-called Lagrangian
uniformization which, for example, can be realized by Maslov's canonical operator
method or with the help of Fourier integral operators theory. Namely, the above
operators can be represented as Fourier integral operators (see [11], [12], [13], and
others) on special Lagrangian manifolds which encounter the character of singularities
(oscillations) wi th smooth symbols.

Let us consider first the boundary operator. The corresponding Lagrangian mani­
fold is

where

N* (Ll (X)) C T* (X x M)

ß:X-+XxM

(15)

is a 'diagonal' embedding given by ß(x) = (x, x) and N* is a conormal bundle of a
submanifold.

Let us write down the local expression of this operator. It acts from the space
of functions given on one smooth manifold (M in our case) to that given on another
smooth manifold (X in our case). We shall mark the coordinates on the first manifold
by primes. Thus, (x', t' ) are coordinates on M (such that t' = 0 is an equation of the
submanifold X) and x are coordinates on X. Hy (p', T',p) we denote dual coordinates
for (x', t' , x) and call them impulse coordinates dual to physical coordinates (x', t' , x).

Now, the operator i* can be written down in the form

(i' Bu)(x) = (2111") n+v Jei(p'(Z-Z')-T't') B(x, 0, p', 1" )u(x', t') dp'd1"'dx'dt' . (16)

9



The equations of Lagrangian manifold (15) in these coordinates are

I I t' 0x=x,p=p, =

Let us describe the procedure of computing the phase function

r.p = p'(X - x') - T't'

of integrals of the type (16) in terms of the corresponding Lagrangian manifold.
We remark that on each Lagrangian manifold there exist an atlas consisting of

canonical charts. The coordinates in such charts are partly physical coordinates of the
phase space, partly its impulse coordinates, hut the set of these coordinates must not
contain any pair of coordinates dual to each other. For example, canonical coordinates
on ß(X) are (X,p', T') (the choice of canonical coordinates is not unique).

Now we can descrihe the phase function. It consists of the two terms

r.p = (-p'x' - t'T') + S (x, p', T')

where the first term is the surn of products of pairs of dual coordinates over all pairs
for which the impulse term of the pair is involved into the set of canonical coordinates
(the products corresponding to the primed variables are taken with the sign -) and
the function S is a solution of the equation

dS = pdx + x'dp' + t'dT'I.6(x) .

The structure of the right-hand part of the latter relation is c1ear from the considered
example; we note only that we change the sign of the term when this term corresponds
to an impulse coordinate or in case when it corresponds to the primed one (so that
the sign of the term x'p' is changed twice).

Evidently, the solution of the latter equation is S = Xp' and we come to the phase
function

'( ') 't'pX-X-T,

as required.
Similar, the elementary coboundary operator i. can be written down as a Fourier

integral operator associated with the Lagrangian manifold

(17)

where
ß-:X--+MxX

is a corresponding 'diagonal' emhedding. The local expression for the corresponding
Fourier integral operator is

(Ci.u) (x) = (2111") n+y Je,[P'(X-X')+T']C (x, p', T) u(x') dp'dTdx'.
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The equations of the corresponding Lagrangian manifold are

t = 0, x = x', p = p',

and the corresponding phase function is equal to

'P = -p'x' + Tt + S(x,p', T)

where
dS(x,p', T) = pdx + x'dp' - tdTL~.(x) = p'dx + xdp' = d(xp'),

as required.
Thus, we have shown that boundary and coboundary operators, (8) and (9) can

be written down in the form of Fourier integral operators associated with Lagrangian
manifolds (15) and (17), respectively. The symbols of these Fourier integral operators
coincide with the symbols of the pseudodifferential operators Band C. We have come
to the following definition.

Definition 1.1 A general boundary operator is a Fourier integral operator associated
with the Lagrangian manifold (15). A general coboundary operator is a Fourier integral
operator associated with the Lagrangian manifold (17).

The classes of symbols involved in general boundary and coboundary operators will
be discussed below (see Section 2).

1.3 Sobolev problems
i

Let us consider now the following problem for the pair X L.....J. M.

{
Du=! mod H6-m(M,X;E2 ),

i·Bu=g,
(18)

Here D is a pseudodifferential operator of order m in sections of bundles EI and E2

on the manifold M, B is a pseudodifferential operator of order b acting in sections
of bundles EI and F on the manifold M, and H6-m (M, Xj E2 ) is a subspace of the
Sobolev space H6-m (M, E2 ) which consists of functions (distributions) supported in
X. It follows from (8) that for the trace i*Bu to be correctly defined, we must suppose
that s - b> v /2.

Let us now investigate the solvability of problem (18).
Evidently, the comparison

which is an equation on the manifold M\X with respect to the unknown u is equivalent
to the following equation

Du + i~v = f

11



on the whole manifold M with respect to the two unknowns u and v. Here i~ is a
coboundary operator corresponding to the jet-operator in transversal variables (in local
coordinates this operator is astring containing all derivatives in transversal direction
up to the order L). Therefore, the following proposition is valid.

Proposition 1.1 Problem (18) with respeet to u is equivalent to a system 0/ equations

{
~u + i~v = /,
l. Bu=g,

with respect to the /unctions u and v defined on M and X correspondingly.
He re

{

[ &I] 'f v"m - s - 2' I m - s - 2' 15 nODmteger,
L=

JI 1 °f JI ' ,m - s - 2' - I m - s - '2 15 mteger.

(19)

(20)

The pro%f the stated assertion is quite simple. Actually, suppose that u is a
solution to the problem (18). Then the function Du - / is a distribution supported
in X. By the Schwartz theorem [14], such a distribution can be represented as a surn
of the delta function on X and its derivatives up to the order L whose coefficients are
functions on X belonging to the corresponding Sobolev spaces. Denoting the set of
these coefficients by v we obtain that system of equations (19) is valid for such choice
of v. We remark that the vector v is chosen in the unique way. The inverse assertion
is quite evident.

System (19) can be rewritten in the matrix form

( D i~) ( u ) (/ )i·B 0 v - 0 .

Thus, we had come to the necessity to consider the operators of the type

(21 )

which we call the operator morphisms. These morphisms (as weH as their general­
izations) shall be investigated in the next section. Let us discuss now the number
of 'boundary conditions' which must be involved to the stated problem. It is almost
evident that for the problem (18) to be well-posed one must, at least, require that the
number of 'boundary conditions' in (18) is equal to the degree of freedom allowed by
the comparison included into this problem. As we have seen, the difTerence Du - /,
being a distribution from the space H~-m (M, E2 ) supported in X, can be represented
in the form

Du - / = L cQ 8rl

lol$L
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where 6~) are transversal derivatives of the delta function concentrated on X of order
a and Co are some functions on X. The number of these functions is exactly the above
mentioned degree of freedom.

Therefore, the number of unknown functions allowed by the considered comparison
is equal to the number of multiindices a with laI :$ L. Thus, the dependence of the
number of 'boundary conditions' necessary for problem (18) to be well-posed on the
index s of the Sobolev space is given by relations (20).

Certainly, the fact that problem (18) involves the correct number of 'boundary
conditions' does not guarantee that the problem is well-posed. One should require
also that this problem must be an elliptic one. The exact formulation of this notion
for Sobolev problems will be given below (see Section 3). There is one more question
which is worth investigating in the above context. This question is what is the maxi­
mal number of 'boundary conditions' if we require that all these conditions are given
by differential operators. The matter is that, as we have seen above, the number of
conditions required for the well-posed Sobolev problem in the space Ifa (M) is given
by formula (20). From the other hand, the maximal order LI of derivative admitting
the restriction to the manifold X is equal to

{
[s - ~], if s- ~ is noninteger,

LI =
11 1 °C 11 0 0S - '2 - , I S - '2 IB mteger 0

(22)

Evidently, for existence of the Sobolev problem with purely differential 'boundary
conditions one must require that L] :::; L. However, the function (20) is a decreasing
one, whence the function (22) is an increasing one. Hence, the maximal number of
boundary conditions in a purely differential Sobolev problem is reached for such values
of s that L = LI. One can easily verify that this equality takes place for s = m/2.
Now we see that any Sobolev problem with differential conditions in the half-interval
containing m/2 is equivalent to the Sobolev·Dirichlet problem, in which one prescribes
values of all derivatives of u in transversal direction up to the order LD where

L D = ; - [~] - 1

Certainly, there exists Sobolev problem for values of s to the left from the interval
containing m/2. However, for such values of sone roust use pseudodifferential 'bound­
ary conditions'. On the opposite, to the right of the number m - v /2 there exists no
Sobolev problem. In other words, the following theorem on removable singularities is
valid.

Proposition 1.2 If
Du - f mod Ha-rn (M, X; E2 )

13
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Figure 2: The number of 'boundary conditions' depend on s.

for s ~ m - v /2, then the equation

Du =f

is valid on the whole manifold M.

The results of our considerations are shown on Figure 2. On this Figure L is
the 'number' of 'boundary conditions' (more exactly, the maximal order L = jaj of
derivatives of delta function included into the left-hand part of equation (19)) and s

is the index of the considered Sobolev space. The graph on this Figure illustrates the
dependence L = L(s). On this Figure we have also marked the region in which purely
differential Soholev problems are allowed, the interval where the Sobolev-Dirichlet
problem is well-posed and the region where in order to construct a well-posed Sobolev
problem one must use pseudodifferential 'boundary problems'.

2 Algebra of operator morphisms

2.1 Calculus

To investigate the Fredholm properties of a Sobolev problem, or, what is the same,
of an operator morphism, it is useful to introduce the structure of an algebra on the
set of morphisms of the type (21). The main reason for the necessity of introducing
of such a structure is that, a.s it is well-known, the Fredholm property of an operator
follows from the existence of the sO-called regulizer to this operator, that is, of the
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almost inverse2 operator. Let us try to find out the general form of operators which
form a minimal algebra containing operators of the form (21).

First of all, we note that the set of matrices of this form do not form an algebra.
Actually, the product of the two operators of this form is

).
The result differs from the initial form (21) by the following.

1) There exist an operator of the form i.i· B2 as a term of the upper left element
of the obtained matrix.

2) In the upper right corner of the result stands the operator D 1i.. with some
pseudodifferential operator D1 instead of i ...

3) The right lower element i" BI i. of the obtained matrix is not equal to zero.
Let us investigate the situation in more detail.
First of all, we note that the operator i·B1i. is a pseudodiiJerential operator on the

manifold X (see [15], [16]).This assertion can be verified in the following way. It is
quite evident that the operator i- B1i. does not depend on values of the symbol of the
operator BI outside any neighbourhood of the manifold X. Therefore, we can consider
this operator as pseudodifferential operator on X whose symbol is a pseudodifferential
operator acting in transversal directions, Now we have

where EJx is the delta function concentrated on the manifold X. Using L. Hörmander's
definition of a pseudodifferential operator [17], we obtain

and, hence, the operator i·B1i. is a pseudodifferential operator with the principal
symbol

1· \ -b '. -i>,sB i>.S C I' \ -b '- bl B C1m...... tele vx = 1m...... t sm X lUX,
>'-00 >'-00

where b is the order of the operator BI and smblx BI is a pseudodifferential operator
in transversal directions mentioned above. It is now easy to compute that

smb) (i' B,i.) = Jsmbl BI d,.

where the integration is taken over fibers of the conormal bundle to X. Thus, in the
lower right corner of the general morphism some pseudodifferential operator on tbe
manifold X sbould stand.

2That ia, the inverse operator in the quotient algebra with respect to the (two-sided) ideal of
compact operators,
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Later on, if we compose the operators of the obtained form, the number of terms
containing operators i" and i .. in the upper left corner will increase. Thus, we must
have some representations of such sums in order to write them down in same general
form. This form can be obtained as same Fourier integral operator (we recall that, due
to the results of Section 1 above, the operators i" and i. are Fourier integral operators).

After these preliminary considerations we are able to write down the general form
of an operator morphism:

(
Du.-+ 4>11 4>:n)

<P 12 D11

where D is a pseudodifferential operator on M, E is a pseudodifferential operator on
X, and the operators 4»1}' 4»21, (j;12 are Fourier integral operators associated with the
following Lagrangian manifolds

Lu = N· (Y11) ,
L21 = N· (Y21 ),

L12 = N· (YI2 ) ,

correspondingly. Here the manifolds Y11, J!21, and Y12 are given by

(23)

Y11 = {(a,ß) E M x M : a = ß E X},
Y21 = {(a, ß) E AI x X : Q = ß EX} ,
Y12 = {(0:, ß) E X x M : 0: = ß E X} .

The origin of the second and the third of Lagrangian manifolds (23) is dear. They
are Lagrangian manifolds associated with (co)boundary operators. What concerns the
first of manifolds (23), its form can be obtained from the following considerations.

Similar to the above considered (co)boundary operators, the operator of the form

Cl>11 is not a cIassical pseudodifferential operator just from the reason that this operator
is also concentrated on the manifold X. Now, following the uniformization scheme
carried out for (co)boundary operators, we shall investigate an operator of the type

Cl>11 and shall try to represent it in the form of a Fourier integral operator on the
corresponding Lagrangian manifold. .-

For simplicity, we consider the typical example of the operator of the form 4>11
which is a composition of coboundary and boundary operators. It has the form

(
1 )n+lIJCi.Ai· Bf = 271" ei [rt+p(x-x'l-r't1c(x, t,P, T)A(x,p)

x B(x, t, p, r')f(x', t') dpdTdT'dx'dt', (24)

we use the coordinate notation of Section 1. This operator can be written down in the
form of a pseudodifferential operator on the manifold M:

Ci.Ai· B f = C~) n+" Je*'(t-t')+p(x-x')] F(x, t, p, T')f(x', t') dpdT'dx'dt'
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with the symbol

F(x, t,p, r') = e-it
" Je;"G(x, t,P, r)A(x,p)B(x, t,P, r') dr.

As one should expect, the symbol of this operator which incorporates all 'defects'
hoth boundary.....and coboundary operators is a non-smooth rapidly oscillating symbol.
The operator ~11 can be uniformized, that is, represented in the form of Fourier
integral operator on a Lagrangian manifold L11 which was introduced above. This
is a Lagrangian manifold such that its restriction (in tbe natural sense) leads to the
manifolds which correspond to boundary and coboundary operators.

Let us consider now the question of computation of the phase function of integral
(24). Using the coordinates (X,t,p,T;x',tl,p',T') we can write down the equations of
the corresponding Lagrangian manifold in the form

x = x',p = p/,t = O,t' = o.

Let us choose (X,p', i, T') as canonical coordinates. Then the phase function must be
given by the equality

" t t' I S( , ')c.p=-xp + T- T + X,P,T,T,

where
dS = pdx + x'dp' - tdT + tldT /

ILll = d(Xp').

Therefore, we obtain S = xp', and the phase function

c.p = p'(X - x') +tT - t'T',

as required.
Now let us describe the classes of symbols used in the corresponding Fourier integral

operators which are simply the functions on the above Lagrangian manifolds.
Tbe symbols <})lb <}):H, and 4>12 of the operators Ci> 1b 4>21, and 4>12 must satisfy the

following inequalities (llsual in the theory of pseudodifferential operators):

ID~D~Di D~/(})ll (x, p, T, T') I :::;
:> GH U+ I(p r W) m.p (1 + Ip12) '-1" (1 + I(p, r ' )12

) !=J!I ,

for tbe operator 4)11. The corresponding symbol dass is denoted by 5mblll (m, k, I).
For operators of the type ~21 symbols must satisfy the estimates
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A : H· _ H·- a

The corresponding symbol dass will be denoted by 5mbl11 (m, k). Finally, the estimates
for symbols of operators of the type <ii 11 are

ID~ D~ D~,<I>12(X, p, T')I ~ C,,(J6 (1 + Ip12)~ (1 + I(p, T')12) !=/l ,

the corresponding symbol classes being denoted by 5mblt2(k, I).
Thus, in accordance to Definition 1.1 above, the operators of the type 4>12 and

4>21 are general boundary and coboundary operators, respectively. The operators of
the type i 11 has quite a different nature. Hs appearance is caused by an algebraic
structure. As we shall see below, operators of this kind are also involved into regulizers
for corresponding morphisms (see Section 3 above).

We present here the local expressions of all three types of mentioned above Fourier
integral operators:

iuf = (2~)2n+"Jei{Tt+p(r-r')-T"'}<I>ll (x, p, T, T')f(x', t') dpdTdT'dx'dt', (25)

i 21 f - (217r) n+" Jei{T.+p(r-r')} <1>21 (x, p, T)f(x') dpdTdx', (26)

i 12 f = (2~)n+" Jei{p(r-r')-T"'} <I> 12 (x, p, T') f (x', t') dpdT' dx'dt' , (27)

where we have used the local coordinates introduced above, n is a dimension of the
manifold X and 11 is a codimension of X in M.

Below we formulate theorems describing properties of the introduced operators 3.

First, we present three theorems describing the action of the constructed operators in
the Sobolev spaces.

Theorem 2.1 Operator (25) is a continuous operator in spaces

4>u : H lJ (M) ~ H lJ
-

r (M)

for the values 0/ s satisfying the inequalities

11 11

1+ '2 < s < k +1+ '2'

Here the order4 r 0/ this operator is equal to

r = m + k +1+ 11.

3The introdueed operators as weIl as the above symbol classes are similar to those introdueed in
the papers [5], [6], [7]. Therefore, we shall not present below the proofs of the theorems eoneerning
the properties of these operators and restriet ourselves only by the eorresponding formulations.

4The (Sobolev) order of an operator Ain the Sobolev seale H· ia the exact lower bound of the set
of numbers a for whieh the mapping

ia bounded. Here snd below the order of operator ia its Sobolev order.
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Theorem 2.2 Operator (26) is a continuous operator in spaces

Cli 21 : H"(X) -+ H"-r(M)

for the values 0/ s satisfying the inequality

s < k.

Here the order r of this operator is equal to

r = k + m + v/2.

Theorem 2.3 Operator (27) is a continuous operator in spaces

(J)12 : H"(M) -+ H"-r(X)

for the values of s satisfying the inequality

v
s > 1+ 2,

here the order r 0/ this operator is equal to

r = 1+ k + v/2.

All inequalities involved in the formulations of the above theorems can be easily
understood if one takes into account the particular form Ci.Ai'" B, Ci., and i·B of
the operators i ll , 4>21,and <in, respectively. For these particular forms all mentioned
inequalities are immediate subsequences of the Sobolev embedding theorem.

The following affirmation describes the compositions of operators of the introduced
type.

Theorem 2.4 Compositions of operators of the type (25) - (27) are as folIows:
1) Th e composition 0/ the two operators (j)~ 1 and 4>~1 is an operator 0/ the type

(25). The symbol <I-(x, p, T, T') of this operator is given by

<1>( x, p, r, r') = C~rJ<I>'(x, p, r, r")<I>"(x, p, r", r') dr".

This symbol belongs to the class 5mblll (m', k' +k" + I' +m" +v, I") if the /actors have
symbols from 5mblll(m', k', I') and 5mblll (m", k", I") respectively.

2) The composition 0/ the two operators Ci>~l and 4>~1 is an operator 0/ the type
(26). The symbol 4>( x, p, T) of this operator is given by

<1>( x, p, r) = (2~rJ<I>'(x, p, r, r")<I>"(x, p, r") dr".
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This symbol belongs to the dass 5mbh1 (m', k' + k" + I' +m" + v) il the /actors have
symbols /rom 5mbh 1(m', k', I') and 5mbh. (m", k") respectively.

3) The composition 0/ the two operators 4i~2 and 4i~1 is an operator 0/ the type
(27). The symbol c)( x, p, T') 0/ this operator is given by

<I>(x,p, r') = (2~rJ<I>'(x,p, r")<I>"(x,p, r", r') dr".

This symbol belongs to the dass 5mb112(k' + k" + I' + m" + v.I") il the /actors have
symbols Irom 5mbl12 (k', I') and 5mbl11 (m", k", I") respectively.

4) The composition 01 the two operators 4i;1 and 4i~2 is an operator 01 the type
(25). The symbol c) (x, p, T, T') 01 this operator is given by

cf>(x,p, T') = 4>'(x,p, T)«I>"(X,p, T').

This symbol belongs to the dass 5mbl}} (m', k' + k", I") i/ the lactors have symbols /rom
5mbh1(m', k') and 5mbI12 (k", I") respectively.

5) The composition 0/ the two operators 4i~2 and <f)~1 is a pseudodifferential
operator on the mani/old X. The symbol P(x,p) 0/ this operator is given by

P(x, p) = (2~rJ<I>'(x, p, r")<I>"(x, p, r") dr".

The order 0/ this operator is equal to k' + I' +m" +k" i/ the lactors have symbols /rom
5mbl12 ( k', I') and 5mbh1 (m", k") respectively.

Now we can write down the general form of an operator morphism. Namely, we
shall consider morphisms of the form

(28)

where Du is a pseudodifferential operator on the manifold M, Dn is a pseudodiffer­
ential operator on the manifold X, the operator 4)11 has the type (25) and 4>2b Cj;u
are general coboundary and boundary operators (26) and (27), respectively.

Theorems 2.1 - 2.3 allows one to write down the relations which are necessary for
operator (28) to be a continuous operator in the following Sobolev spaces:

(29)
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Theorem 2.5 Let the types (mll' k ll , 111 ), (m2h k2t), (k 12 , 112) 0/ operators 4>11, 4>11,
(i) 11, and orders m and 1 0/ the operators D ll and D11 satis/y the /ollowing relations:

0'1 = SI - m,
0"2 = 091 -I,
0"1 = SI - mll - k11 - 111 - V,

0"1 = 09 2 - m21 - k21 - v/2,
0"1 = SI - k 12 -112 - v/2,

and the /ollowing inequalities:

{

m ax { ~ - 111 , i +112 } < SI< i +kll + Ill ,

09 2 < k21 •

Then operator (28) is a continuous operator in spaces (29).

(30)

(31)

We remark that the orders of all the operators in (28) are chosen in such a way
(with the help of relations (30)), that if the orders of the operators D ll and D22 are
equal to zero, then the orders of all the rest operators also equals zero. With this
observation, we see that the following affirmation is a direct corollary of the preceding
Theorem.

Corollary 2.1 The set 0/ operator morphism.s (28) with m = I = 0, and fixed values

o/mij, kij , and hj such that mll + kll + 111 + V = 0, m21 + k21 + v/2 = 0, and
k12 + 111 + v /2 = 0 is an algebra 0/ operator morphisms acting continuously in spaces
(29) wilh SI = 0"1 and 82 = 0'2 provided that lhe numbers SI and S2 satis/y inequalities
(31 ).

Corollary 2.2 The set 0/ operators 0/ the form 1 + <ii ll where $11 is an operator 0/
zeroth order form an algebra.

To conclude this section we remark that all the notions introduced here are in­
variant with respect to the conjugation. In particular, the conjugate lo the operator
morphism is, in turn, an operator morphism and, hence, the constructed algebra is a
*-algebra (an algebra with involution) where the involution is given by the operation
of conjugation of operators acting in Banach spaces.

2.2 Ellipticity and finiteness theorems for morphisms

In this section we shall derive the conditions under which operator (29) determined
by operator morphism (28) possesses the Fredholm property. As it is weIl known, to
prove that it is sufficient to construct a regulizer for this operator, that is, the inverse
operator modulo compact ones. Thus, our first aim is to construct a regulizer for

21



operator (29). We remark that all our considerations will be carried out on the level
of principal terms of the considered operators in Sobolev spaces.

To construct the almost inverse for operator (29) one must construct the resolving
operator for the system of equations

(Dl1i~2il1 ~::) ( ~ ) = ( ~ ) ,

or, in the another form

(32)

.......

Du + <1»11

{
~D11 + i 11) U + i 21 V = f,
4>12u + D2'J v = g,

up to the principal term. This system will be solved by excluding of unknowns.
Namely, (it will be our first condition) we require first that the operator standing in
tbe upper left corner of matrix (28) is elliptic in the sense of the paper {5], {6], [7].

We remark that operators of the type (f)lh localized (up to the infinitely smoothing
operators in a neighbourhood of the manifold X) can be treated a.s pseudodifferential
operators on the manifold X with operator-valued coefficients in the space of operators
of special type in fibers of a tubular neighbourhood of X in M (see also the last
Section). These coefficients are simply integral operators in the variables T which are
dual to the variables transversal to X with respect to the Fourier transform. Later on,
Fourier integral operators form a module over the ring of pseudodifferential operators,
and the operator

can be rewritten in the form

Du + Cl>u = Du (1 + Di'il Cl>u)

Hence, it is clear that the invertibility5 of this operator is reduced to the two require­
ments:

1) the operator Du is invertible on the manifold M;

2) the operator (1 + DI/ Cj)u) is invertible on the manifold M.

We remark that the first condition means that the operator Du is an elliptic one.
Let us consider the second con~tion in more detail. Since, as we had mentioned
above, the operators of the tX'pe $11 form a module over the ring.......of pseudodifTerential
operators, the operator DIll ct- u isaiso the operator of the type ct- u . Later on, due to

Corollary 2.2 the inverse to (1 + D~ll ~u) can be found in the form (1 + 4>1)' Due

to Theorem 2.4 we obtain the following equation

<fI 1(T, T') + (2~rJ<fI(T, T")<fI 1(T", T') dT' = -<fI(T, T') (33)

5Here and below by invertibility we mean invertibility up to compact operators.
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for the symbol ~1 (T, T') of the operator <ii l . This equation must be fulfilled outside
some compact neighbourhood of the zero section in T* X. Actually, due to equation
(33) the composition

have the form (1 + 4)2) where 4)2 is an operator of the type 4>11 having zero order

with principa.l symbol vanishing outside a compact neighbourhood of the zero section
in T* X . The symbol of this operator a priory belongs to the space smbIll (m, k, I)
with m + k + I + lJ = O. However, since this symbol has a compact support in fibers
of T*X, it belongs also to the space smbh I (m, k - f, l) for some f > O. Hence, the
corresponding operator 4>2 has negative Sobolev order.

To understand what the condition of solvability of equation (33) means, we shall
show that this equation is equivalent to the dassical Fredholm integral equation of
the second kind with an integrable kernel. Actually, integral equation (33) must be
solvable in the dass of symbols ~1(T, T') which satisfy the estimates

Hence, if we denote

the bounded functions corresponding to the functions ~(T, T') and cI> 1(T, T'), then we
come to the dassical integral equation

which has an integrable kernel due to the inequality l+m < -lJ obtained from estimates
of Theorem 2.5 taken for Si = ai, i = 1,2 (see also Corollary 2.1). Thus, this equation,
which must to be solved in the space of bounded functions, is a usual Fredholm integral
equation of the second kind.

Thus, there exist a regulizer (Du + 4> 11 ) -1 for this operator which has the same

form:

(
.......) -1 1 .......

Du + cI>11 = D 11 + cI>/ll
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where the operator Ci>~1 is of the type (25) with the symbol from the symbol space

5mbl11 (-/11' -kll , -m))) if the operator 4))) has the symbol from 5mbll1 (mll, kl1 , /11)'

Therefore, from the first equation (32) we can derive u via v:

(34)

Substituting the latter relation in the second equation (32) we obtain the equation for
the unknown function v:

or, in another form

Due to Theorem 2.4 the operator acting on the unknown v in the left-hand side of the
latter relation is a pseudodifferential operator whose symbol can be easily computed
ba means of the mentioned theorem. We denote this operator by

der -- (-I --, ) --ß = D22 - ~12 Du + ~u <1»21. (36)

The second condition is the invertibility of operator (29) (which is equivalent to its
ellipticityas a pseudodifferential operator on X). Under such a condition we can find
the function v from (35)

and substitute this expression in (34)

u = ((D I/ + 4)~1) + (DIll + 4>~I) 4>21L\-14>12 (DIll + (i)~l)) f

- (D1/ + 4>~1) <i)21ß-19 .

(37)

(38)

Equations (37) and (38) show that the regulizer for operator (29) has the form

), (39)

where Ru = (DIll + 4)~1) is an inverse to Du +<1- 11 ,
Now we can formulate the main statement of this Section. First of all, we introduce

the following definition.
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Definition 2.1 The operator morphism (29) is called to be elliptic morphism if:
1) The operator D11 + 4)11 is an invertible one on tbe manifold M;
2) Tbe (pseudodifferential) operator (36) is an invertible operator on the manifold

X.

We remark that, in the ease when the operator 4)11 vanishes (as it takes plaee,
for exampIe, for morphisms associated with Sobolev problems) part 1) of the above
Definition is reduced simply to the ellipticity of the pseudodifferential operator Du as
weIl as operator (36).

The finiteness theorem is stated now as folIows.

Theorem 2.6 If operator morphism (29) is elliptic, then it possesses the Fredholm
property, that is, the kernel and the cokernel 0/ this morphism are finite-dimensional
spaces.

Proof. One ean easily verify by the straightforward computations that operator
morphism (39) is a two-sided regulizer for operator morphism (28) (these eomputations
are quite simple but a little bit long; we leave them to tbe reader). This completes
the proof.

In essence, we had shown that elliptic morphisms are exactly those which are
invertible in the above constructed algebra up to operators of lower order.

2.3 Index of elliptic morphisms

The last aim of this section is to construct the index formula for elliptic morphism.
Let

A = ( Dll.....+ <ii ll 4>:21) (40)
ep12 D22

be an elliptic morphism. To compute its index we construct a homotopy whieh will
connect the general elliptic morphism with the diagonal one. The mentioned homotopy
is as follows:

(41 )

It is easy to verify that:
1) morphism (41) coi neides wi th the initial morphism (40) for t = 0 and is a

diagonal one for t = 1;
2) the operator of the type (36) involved in the definition of ellipticity of morphism

(40) does not depend on t and coincide with that for the initial morphism.
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Thus, we see that the homotopy (41) is a homotopy in the dass of elliptic mor­
phisms connecting (40) with the following diagonal morphism

).
Thus, we come to the following statement.

Theorem 2.7 The index 01 any elliptic morphism (40) is equal to

index A = index D11 + index (1 +Dj}i 11 )

+ index (D22 - 4>12 (DJ} + i;1) 4>21) .

We remark that the first and the last summands in the latter expression are indices
of pseudodifferential operators on the smooth compact manifolds without boundary
M and X correspondingly. The second summand is the index of a pseudodifferential
operator on the manifold X with coefficients in the algebra of operators of special form
(see discussion precedi ng formula (33) above).

3 The Sobolev problem

In this section we apply the above developed theory to the investigation of the Sobolev
problem (18). As in Section 1 it was shown that this problem is equivalent to the
operator morphism of the form

(42)

(see (19), (21); here D is a pseudodifferential operator of order m and B is a pseu­
dodifferential operator of order b), it suffices to invest igate the fi ni teness propert ies of
morphisms of this particular form. However, to do this we need to make some (though
quite simple and natural) modification of the above theory. The matter is that opera­
tors 4>21 and i 12 corresponding to morphisms of the form (42) are, in general, matrix
operators. Actually, the operator 4>21 corresponding to (42) for L 2:: 1 is astring of
Fourier integral operators of the type (26) with the corresponding symbol string (TO)
with Q' running over the set of all natural multiindices with 10'1 ~ L.

Let us write down the conditions under which morphism (42) determines a contin­
uous mappi ng

(43)
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(44)

Since we have for the considered problem

ct-ll(x,p, T, T') = 0,

ct- 21 (X,P, T) = (T
Q

),

ct- 12(X,P, T') = B(x,p, T')

(where B(x,p, T'), as weIl as the corresponding operator (i)12 evidently roust be treated
as a column consisting of pseudodifferential operators B j of orders bj , j = 1, ... , J),
we see that:

1) In (43) the numbers 82 and (12 are not numbersG but columns:

82 = (8~, 10 1 ~ L), (12 = (01, j = 1, ... ,J)

where J is a......number of 'boundary , conditions in problem (18), that is, the height of

the column ct- 12 .

2) All the equalities and inequalities in the statement of Theorem 2.5 including
numbers mu, ku , and lu must be cancelled out, as well as those including I.

3) All the equalities and inequalities in the statement of Theorem 2.5 including
numbers m~1 and k~1 must be repeated for all values of 0' with lai::; L.

4) All the equalities and inequalities in the statement of Theorem 2.5 including
numbers kf.2 and t{2 must be repeated for all values of j with 1 ~ j ~ J.

We remark that due to the particular form of morphism (42) one has

m~1 = lai, k;1 = 0, k{2 = 0, t{2 = bj

where bj are orders of the operators Bj , j = 1, ... ,J. Therefore, the system of equal­
ities (30) and inequalities (31) becomes in this concrete case

and

{

(11 = 81 - m,

(11 = 8 2- 10'1 -~, 101 ~ L,

~ = 8 I - bj - ~, 1 ~ j ~ J,

(45)

{
~ +bj < 81, 1 ~ j ~ J, (46)

8 2< 0, 10'1 ~ L.

Using equalities (45) one can exclude all indices of the Sobolev spaces involved to
problem (18) expressing them via s = 81:

{

(11 = 8 - m,

8~ = 8 - m+ lai +~, lai ~ L,

11~ = 8 - bj - ~, j ~ J.

6In fact, we must nesessarily work in the situation of Douglis - Nirenberg systems [18].
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Substituting these expressions to the system of inequalities (46), we obtain the final
bounds for s such that the mapping (43) is a bounded operator:

v v- + max b· < s < m - L --.
2 l$i$J 1 2

Now we can write down the ellipticity conditions for Sobolev problem (18). Since,
as we have already mentioned above, the operator in is identically zero, the first
ellipticity condition in Definition 2.1 is reduced to the condition of ellipticity of the
pseudodifferential operator D. Let us write down the second condition. It claims, that
the operator

A d~ ;f: D-1;f:
L.l. - -'t'12 ""21 (47)

must be an elliptic pseudodifferential operator on the manifold X. Here ~12 and ~21
are operators of the type (26), (27) with symbols given by (44). In particular, it means
that operator (47) (which is a matrix operator) must be quadratic. This means, that
the number J of the 'boundary conditions' must be equal to the number of 'coboundary
conditions', that is, to the number of the multiindices a such that 10'1 ~ L.

Now Definition 2.1 of ellipticity of an operator morphism leads us to the following
refined formulation of the notion of ellipticity for a Sobolev problem (see [4]).

Definition 3.1 Sobolev problem (18) is called to be elliptic if
1) The operator D, involved in this problem is an elliptic pseudodifferential operator

on the manifold M.
2) The operator given by (47) is an elliptic operator on the manifold X.

The following statement is a direct consequence of Theorem 2.6.

Theorem 3.1 1/ Sobolev problem (18) is elliptic, then this problem is a Fredholm one,
that is, it has jinite.dimensionaI kernel and cokerneI.

Let us discuss now the operator statement of a Sobolev problem. Ir

{
Du == / mod H&-m (M,X; E2 ),

i*Bu=g,

is a Sobolev problem, then there exists an evident operator

corresponding to this problem, where b is the order of the operator B. From the
latter formula one can construct the conjugated operator and, hence, to write down
the problem which is conjugated to the considered Sobolev problem.
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Namely, if one takes into account that the space Ha-rn (M, X j E2 ) is simply an im­
age of the coboundary operator i~, then it becomes clear that the conjugated operator
IS

S- : Ker (i~) E9 H-a+b+II/'l (M, F) --+ H- tJ (M, Ed ,
and, hence, the conjugated problem is

where il is a composition of taking a jet of order L in the transversal direction and
elementary boundary operator. It is easy to see also that the (almost) inverse to
operator (48) has the form

S-l = (D- 1 (1 + i~ (_i·BD-li~)-l i-BD- 1) ,D-li~ (-i-BD-li~)-l). (49)

The fact that any Sobolev problem can be reduced to the operator morphism
together with the result of Theorem 2.7 leads us to the following statement.

Theorem 3.2 Let

{
Du =f mod HtJ-rn (M,Xj E2 ) l

i-Bu = g,

be an elliptic Sobolev problem. Then the Jollowing formula takes place

index S = index D + index ß

where the operator .6. given, in general by the formula (47) can be here written down
in the form

A _ _ '*BD-1'Lu - t l ••

Thus, we have reduced the computation of the index for a Sobolev problem to
the computation of two indices of pseudodifferential operators on smooth compact
manifold without boundary.

4 Concluding remarks

1. The general form of operator morphism

(
DIl......+ 4>11 t)21)

~12 D22

shows that there exists a g~neralization of the notion of Sobolev problem for the
operators of the form D11 +4>11' We shall not consider here this new dass of Sobolev
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problems in detail, but shall only remark that the obtained dass is a dass of non-Iocal
problems. This fact follows from a non·local nature of tbe operator i 11. I t is important
to note that such dass of Sobolev problems does not lead to the further extension of
the dass of operator morphisms. Thus, the dass of Sobolev problems of the mentioned
general kind is dosed not only with respect to the conjugation, but also with respect
to taking an almost inverse operator (see formula (49) above).

2. From the algebraic point of view tbe dass of operators of the form
.....

Du +~11

is an extension of the dass of pseudodifferential operators with the help of (non pseu­
dodifferential) operators of special form. Such kind of an extension (associated with
the embedding i : X c-+ M is a particular case of more general construction of
extension of algebra of pseudodifferential operators (associated not only with the em­
bedding but also with the pointed bundle 7r : M -+ X) was introduced by authors in
their reeent papers [5], [6], [7]. The algebra of operator morphisms eonstructed on the
base of this extension as weIl as the theory of the corresponding 'Sobolev problems'
gives a new interesting dass of non-Ioeal problems (cf. with the problems in the above
cited papers).

3.Taking into aecount the importanee of the above introduced operators (ji,ij, we
present here one more treatment of these operators which is not conneeted with the
Lagrangian uniformization. This interpretation is based on the fact that, as it was
already mentioned above, all these operators are concentrated on the submanifold X.
The natural question arises: can one interpret these operators (which are pseudod­
ifferential operators on M with non regular symbols) as pseudodifferential operators
of more general nature on the manifold X. The answer to this question is 'yes' if
one considers the category of pseudodifferrential operators on X acting in sections of
infinite-dimensional bundles. This interpretation occurs to be useful for darifying the
ellipticity conditions of Subsection 2.2 where, in essence, the ellipticity of operators
acting in sections of infinite-dimensional bundles was considered. Let us illustrate this
on the example of the operator 4>11' As we have mentioned above, this operator has
the form

(see formula (25) above). This operator can be represented in the form of pseudodif­
ferential operator on the manifold X:
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wi th the symbol R(x, p) at each poin t (x, p) is an operator of the form

where

(K(r,p)f) (T) = (2~) vJ~(r,p)(T, T')f(T') dT'

and cf>(z.p)(r,r') = cI»(x,p,r,r').
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