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MULTI-SENSITIVITY, LYAPUNOV NUMBERS AND ALMOST

AUTOMORPHIC MAPS

WEN HUANG, SERGĬI KOLYADA AND GUOHUA ZHANG

Abstract. In this paper we study several stronger forms of sensitivity for con-

tinuous surjective selfmaps on compact metric spaces and relations between
them. The main result of the paper is an analog of the Auslander-Yorke di-

chotomy theorem, which states that a minimal system is either multi-sensitive

or an almost one-to-one extension of its maximal equicontinuous factor. For
minimal dynamical systems, we also show that all notions of thick sensitivity,

multi-sensitivity and thickly syndetical sensitivity are equivalent, and all of

them are much stronger than sensitivity.

1. Introduction

Throughout this paper (X,T ) denotes a topological dynamical system, where X
is a compact metric space with metric % and T : X → X is a continuous surjective
map. If X is a singleton then we call (X,T ) trivial.

The notion of sensitivity (sensitive dependence on initial conditions) was first
used by Ruelle [31]. According to the works by Guckenheimer [20], Auslander and
Yorke [7] a dynamical system (X,T ) is called sensitive if there exists a positive δ
such that for every x ∈ X and every neighborhood Ux of x, there exist y ∈ Ux and
a nonnegative integer n with %(Tn(x), Tn(y)) > δ.

Recently several authors studied different properties related to sensitivity (cf.
[1], [5], [30], [22]). The following proposition holds according to [5].

Proposition 1.1. The following conditions are equivalent :

1. (X,T ) is sensitive.
2. There exists a positive δ such that for every x ∈ X and every neighborhood
Ux of x, there exists y ∈ Ux with lim supn→∞ %(Tn(x), Tn(y)) > δ.

3. There exists a positive δ such that in any opene1 U in X there are x, y ∈ U
and a nonnegative integer n with %(Tn(x), Tn(y)) > δ.

4. There exists a positive δ such that in any opene U ⊂ X there are x, y ∈ U
with lim supn→∞ %(Tn(x), Tn(y)) > δ.

According to these properties were defined the following Lyapunov numbers [25]
(here we set sup∅ = 0 by convention):

Lr = sup{δ : for every x ∈ X and every open neighborhood Ux of x there exist

y ∈ Ux and a nonnegative integer n with %(Tn(x), Tn(y)) > δ};

2010 Mathematics Subject Classification. Primary 37B05; Secondary 54H20, 37B25.
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1Because we so often have to refer to open, nonempty subsets, we will call such subsets opene.

1



2

Lr = sup{δ : for every x ∈ X and every open neighborhood Ux of x there

exists y ∈ Ux with lim sup
n→∞

%(Tn(x), Tn(y)) > δ};

Ld = sup{δ : in any opene U ⊂ X there exist x, y ∈ U and there is

a nonnegative integer n with %(Tn(x), Tn(y)) > δ};
Ld = sup{δ : in any opene U ⊂ X there exist x, y ∈ U with

lim sup
n→∞

%(Tn(x), Tn(y)) > δ}.

So, various definitions of sensitivity, formally give us different Lyapunov numbers
– quantitative measures of these sensitivities. Nevertheless, as was shown in [25],
for topologically weakly mixing minimal systems all these Lyapunov numbers are
the same.

Some another way to measure the sensitivity of a system, by checking how large is
the set of nonnegative integers for which the sensitivity still happens, was initiated
by Moothathu in [30]. This is the main subject of this paper.

Let S be a subset of the set of all natural numbers (positive integers) N. S is
thick if for each k ∈ N there exists nk ∈ N such that {nk, nk + 1, . . . , nk + k} ⊂ S.
S is syndetic if there exists m ∈ N such that S ∩{n, n+ 1, . . . , n+m} 6= ∅ for each
n ∈ N. S is thickly syndetic if {n ∈ N : {n, n + 1, . . . , n + k} ⊂ S} is syndetic for
each k ∈ N. S is cofinite if S ⊃ {m,m+1,m+2, . . . } for some m ∈ N. Observe that
each syndetic set and any thick set has a nonempty intersection, which is called a
piecewise syndetic set.

Let δ > 0. For an opene U ⊂ X define

NT (U, δ) = {n ∈ N : there are x1, x2 ∈ U such that %(Tnx1, T
nx2) > δ}.

It is easy to see from Proposition 1.1 that (X,T ) is sensitive iff NT (U, δ) is infinite
for some δ and every opene set U ⊂ X.

Following [30] and [29], recall the following definitions of some stronger versions
of sensitivity. A topological dynamical systems (X,T ) is called

(1) thickly sensitive if there exists δ > 0 such that for any opene U ⊂ X,
NT (U, δ) is thick;

(2) thickly syndetically sensitive if there exists δ > 0 such that for any opene
U ⊂ X, NT (U, δ) is thickly syndetic;

(3) cofinitely sensitive if there exists δ > 0 such that for any opene U ⊂ X,
NT (U, δ) is cofinite;

(4) multi-sensitive if there exists δ > 0 such that for any positive integer k and

any opene U1, . . . , Uk ⊂ X,
k⋂
i=1

NT (Ui, δ) 6= ∅.

Inspired by [25], we may introduce the following Lyapunov numbers

Lm,r = sup{δ : for any positive integer k, for every xi ∈ X and any open

neighborhood Ui of xi, i = 1, . . . , k, there exist yi ∈ Ui and

a nonnegative integer n with min
1≤i≤k

%(Tnxi, T
nyi) > δ};

Lm,r = sup{δ : for any positive integer k, for every xi ∈ X and any open

neighborhood Ui of xi, i = 1, . . . , k, there exist yi ∈ Ui
with lim sup

n→∞
min

1≤i≤k
%(Tnxi, T

nyi) > δ};
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Lm,d = sup{δ : for any positive integer k and any opene Ui ⊂ X, there

exist xi, yi ∈ Ui and a nonnegative integer n with

min
1≤i≤k

%(Tnxi, T
nyi) > δ};

Lm,d = sup{δ : for any positive integer k and any opene Ui ⊂ X, there

exist xi, yi ∈ Ui with lim sup
n→∞

min
1≤i≤k

%(Tnxi, T
nyi) > δ}.

As we show in Section 2, these new Lyapunov numbers Lm,r,Lm,r,Lm,d and Lm,d
are all related to each other. In particular, for a nontrivial weakly mixing system
Lm,d = Lm,d = diam(X) and Lm,r = Lm,r > 0 (Proposition 2.4); for a system

with a dense set of distal points Lm,r = Lm,r (Proposition 2.6). An analogue of
Proposition 1.1 also holds for multi-sensitive systems (see Proposition 2.2).

The Lyapunov stability or, in another word, equicontinuity is the opposite side
of sensitivity. Recall that a point x ∈ X is called Lyapunov stable if for every
ε > 0 there exists a δ > 0 such that %(x, x′) < δ implies %(Tnx, Tnx′) < ε for any
n ∈ N. This condition says exactly that the sequence of iterates {Tn : n ≥ 0} is
equicontinuous at x. The system (X,T ) is called equicontinuous if {Tn : n ≥ 0}
is equicontinuous at any point of X. The well-known Auslander-Yorke dichotomy
theorem states that a minimal dynamical system is either sensitive or equicon-
tinuous [7] (see also [2]). Equicontinuity can be localized easily by introducing
equicontinuity points. Later the Auslander-Yorke dichotomy theorem was refined
in [3],[17]: a transitive system is either sensitive or almost equicontinuous (in the
sense of containing some equicontinuity points).

Such a dichotomy can also be found in the study of stronger versions of sen-
sitivity. By using Veech’s characterization of equicontinuous structure relation of
a system [33, Theorem 1.1], we show that an invertible minimal system is either
multi-sensitive or almost automorphic (Corollary 3.2). Recall that the concept of
almost automorphy, as a generalization of almost periodicity, was first introduced
by Bochner in 1955 (in the context of differential geometry [10]) and studied by
many authors starting from [11], [32], [34].

We may also measure the equicontinuity of (a point in) a system by checking
how large is the set of nonnegative integers where equicontinuity happens. More
precisely, we introduce the concept of syndetically equicontinuous points. It turns
out that this new notion of local equicontinuity is very useful. In fact, the re-
fined Auslander-Yorke dichotomy theorem [3], [17] also holds in our setting (The-
orem 5.4): a transitive system is either thickly sensitive or containing syndetically
equicontinuous points. Observe that for transitive systems thick sensitivity is equiv-
alent to multi-sensitivity (Proposition 4.1). Moreover, any nonminimal M-system
is thickly syndetically sensitive and for minimal dynamical systems all notions of
thick sensitivity, multi-sensitivity and thickly syndetical sensitivity are equivalent
and much stronger than sensitivity (Theorem 4.6). We also present three diagrams,
which illustrate a comparison between stronger forms of sensitivity for dynamical
systems.

Acknowledgements. The authors acknowledge the hospitality of the Max-
Planck-Institute für Mathematik (MPIM) in Bonn, where a substantial part of
this paper was written during the Activity “Dynamics and Numbers”, June – July
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2014. We thank MPIM for providing an ideal setting and Xiangdong Ye for sharing
his joint work [28].

The first author was supported by NNSF of China (11225105, 11431012), the
third author was supported by FANEDD (201018) and NNSF of China (11271078).

2. Lyapunov numbers

In this section we are interested in relationships between those introduced Lya-
punov numbers Lm,r,Lm,r,Lm,d and Lm,d.

It is easy to see that (X,T ) is multi-sensitive iff Lm,d > 0, and

(2.1) Lm,d ≥ Lm,r ≥ Lm,r and Lm,d ≥ Lm,d ≥ Lm,r.
Moreover, we have the following

Lemma 2.1. Lm,d ≤ 2Lm,r.

Proof. We only need consider the case Lm,d > 0. The proof follows [25, Proposition
2.1] and we provide it for completeness.

Let ε > 0 be small enough with Lm,d > 2ε. Now, let k ∈ N and xi ∈ X with a
neighborhood Ui for each i = 1, . . . , k. Set V0,1 = U1, . . . , V0,k = Uk. Take

n0 ∈
k⋂
i=1

NT (V0,i,Lm,d −
ε

2
)

and then there exist y0,1 ∈ V0,1, . . . , y0,k ∈ V0,k such that

(2.2) min
1≤i≤k

%(Tn0xi, T
n0y0,i) >

Lm,d − ε
2

.

Moreover, we can choose open neighborhoods V1,1 of y0,1 (with V1,1 ⊂ V0,1), . . . ,

V1,k of y0,k (with V1,k ⊂ V0,k) such that

(2.3) max
0≤n≤n0

max
1≤i≤k

diam(TnV1,i) ≤
ε

2
.

Again take

n1 ∈
k⋂
i=1

NT (V1,i,Lm,d −
ε

2
)

and hence n1 > n0 by (2.3). We continue the process and define recursively (for
each m ≥ 2) open neighborhoods Vm,1 of some ym−1,1 (with Vm,1 ⊂ Vm−1,1), . . . ,

Vm,k of some ym−1,k (with Vm,k ⊂ Vm−1,k) and nm > nm−1 such that

(2.4) min
1≤i≤k

%(Tnm−1xi, T
nm−1ym−1,i) >

Lm,d − ε
2

and

(2.5) max
0≤n≤nm−1

max
1≤i≤k

diam(TnVm,i) ≤
ε

2
, nm ∈

k⋂
i=1

NT (Vm,i,Lm,d −
ε

2
).

Since by the construction, for each i = 1, . . . , k,
⋂
m≥1

Vm,i 6= ∅, we can take a point

yi from the intersection (and so yi ∈ Ui). Directly from (2.4) and (2.5) we have

lim sup
n→∞

min
1≤i≤k

%(Tnxi, T
nyi) ≥

Lm,d
2
− ε.

Thus the conclusion follows from the arbitrariness of ε > 0. �
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As a consequence, we have the following

Proposition 2.2. The following conditions are equivalent:

1. (X,T ) is multi-sensitive.
2. There exists a positive δ such that for any positive integer k, for every
xi ∈ X and any open neighborhood Ui of xi, i = 1, . . . , k, there exist
yi ∈ Ui and a nonnegative integer n with min1≤i≤k %(Tnxi, T

nyi) > δ.
3. There exists a positive δ such that for any positive integer k, for every
xi ∈ X and any open neighborhood Ui of xi, i = 1, . . . , k, there exist
yi ∈ Ui with lim supn→∞min1≤i≤k %(Tnxi, T

nyi) > δ.
4. There exists a positive δ such that for any positive integer k and any opene
U1, . . . , Uk ⊂ X, there exist xi, yi ∈ Ui with
lim supn→∞min1≤i≤k %(Tnxi, T

nyi) > δ.

Recall that (X,T ) is called (topologically) transitive if NT (U1, U2) = {n ∈ N :
U1 ∩ T−nU2 6= ∅} for any opene subsets U1, U2 ⊂ X, and weakly mixing if (X ×
X,T × T ) is transitive. A point x ∈ X is called transitive if its orbit orbT (x) =
{Tnx : n = 0, 1, 2, ...} is dense in X. Denote by Tran(X,T ) the set of all transitive
points of (X,T ). Since T is surjective, (X,T ) is transitive iff Tran(X,T ) 6= ∅.

The system is called minimal if every point has a dense orbit or, equivalently,
if Tran(X,T ) = X. In general, a subset A of X is called invariant if TA = A.
If A is a closed, nonempty, invariant subset then (A, T |A) is called the associated
subsystem. A minimal subset of X is a nonempty, closed, invariant subset such that
the associated subsystem is minimal. Clearly, (X,T ) is minimal iff it admits no
proper, nonempty, closed, invariant subset. A point x ∈ X is called a minimal point
if it lies in some minimal subset. Since Zorn’s Lemma implies that every closed,
nonempty invariant set contains a minimal set. If (X,T ) is a transitive system with
a dense set of minimal points, then we call it an M-system [17].

Lemma 2.3. Let (X,T ) be a transitive system. Then Lm,d = Lm,d.

Proof. It suffices to show that Lm,d ≤ Lm,d in the case of Lm,d > 0. Let k ∈ N
and take opene U1, . . . , Uk ⊂ X. Let δ > 0 be small enough with Lm,d > δ.
By the definition there exist n ∈ N and x′i, y

′
i ∈ Ui for each i = 1, . . . , k with

min
1≤i≤k

%(Tnx′i, T
ny′i) > δ. Then, for each i = 1, . . . , k we could find opene x′i ∈

Vi ⊂ Ui and y′i ∈ Wi ⊂ Ui such that both diam(TnVi) and diam(TnWi) are small
enough, thus min

1≤i≤k
dist(TnVi, T

nWi) > δ.

Since (X,T ) is transitive, take z ∈ Tran(X,T ) and then choose si, ti ∈ N with
T siz ∈ Vi and T tiz ∈ Wi for each i = 1, . . . , k. Observe that once m ∈ N such
that Tmz is sufficiently close to z then T si+mz ∈ Vi and T ti+mz ∈ Wi for each
i = 1, . . . , k, and hence min

1≤i≤k
%(Tn+si+mz, Tn+ti+mz) > δ. Since z ∈ Tran(X,T ),

clearly there are infinitely many m1 < m2 < . . . in N such that each Tmjz is
close enough to z, and hence we obtain Lm,d ≥ δ by taking xi = T siz ∈ Ui and
yi = T tiz ∈ Ui for each i = 1, . . . , k, finishing the proof. �

Clearly that any nontrivial weakly mixing system is multi-sensitive [30], and a
classic result of Gottschalk states that x ∈ X is minimal iff NT (x, U) = {n ∈ N :
Tnx ∈ U} is a syndetic set for any neighborhood U of x.

By the same proof of [25, Theorem 4.1] one has:
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Proposition 2.4. Let (X,T ) be a nontrivial weakly mixing system. Then Lm,d =

Lm,d = diam(X) and Lm,r = Lm,r > 0.

Recall that S ⊂ N is an IP set (the family of all IP sets we denote by Fip) if
there exists {pk : k ∈ N} ⊂ N with {pi1 + · · ·+ pik : k ∈ N and i1 < · · · < ik} ⊂ S,
and is an IP∗ set if S ∩ T 6= ∅ for each IP set T ⊂ N. It is easy to see that the
intersection of an IP set and an IP∗ set is an infinite set. Remark that for an IP
set S ⊂ N, S = S1 ∪ S2 implies that either S1 or S2 is an IP set by Hindman’s
theorem (see for example [15, Theorem 8.12]), and from this it is not hard to see
that the intersection of any finitely many IP∗ sets is an IP∗ set (see for example [2,
Corollary 7.5]).

Lemma 2.5. Let δ > 0, k be a positive integer, and xi ∈ X with a neighborhood
Ui for each i = 1, . . . , k. If Lm,r > δ, then

N =

{
n ∈ N : min

1≤i≤k
%(Tnxi, T

nyi) > δ for some y1 ∈ U1, . . . , yk ∈ Uk
}
∈ Fip.

Proof. By the assumption, N 6= ∅ as δ < Lm,r. Now assume that

A = {pi1 + · · ·+ pij : 1 ≤ i1 < · · · < ij ≤ l} ⊂ N
for some {p1, . . . , pl} ⊂ N with l ∈ N. We shall find pl+1 ∈ N such that pl+1 +A0 ⊂
N with A0 = {0} ∪ A, and then obtain the conclusion by induction.

Take xs,i ∈ X with T p1+···+pl−sxs,i = xi for each s ∈ A0 and any i =
1, . . . , k. Since δ < Lm,r, obviously we may choose ql > p1 + · · · + pl and

ys,i ∈ T−(p1+···+pl−s)Ui for each s ∈ A0 and any i = 1, . . . , k such that

(2.6) min
s∈A0

min
1≤i≤k

%(T qlxs,i, T
qlys,i) > δ.

Set pl+1 = ql − (p1 + · · ·+ pl) ∈ N and x′s,i = T p1+···+pl−sys,i ∈ Ui for each s ∈ A0

and any i = 1, . . . , k. Then (2.6) means equivalently

min
s∈A0

min
1≤i≤k

%(T pl+1+sxi, T
pl+1+sx′s,i) > δ,

that is, pl+1 +A0 ⊂ N , which finishes the proof. �

A pair of points x ∈ X and y ∈ X is called proximal if lim inf
n→∞

%(Tnx, Tny) = 0.

In this case each of points from the pair is said to be also proximal to another.
We will say that a point x ∈ X is distal if it is not proximal to any another point
from the orbit closure orbT (x). Note that by [15, Theorem 9.11]: x ∈ X is distal
iff NT (x, U) is an IP∗ set for any neighborhood U of x (and hence any distal point
is minimal); and for distal points xi ∈ Xi of the system (Xi, Ti), i = 1, . . . , k, point
(x1, . . . , xk) ∈ X1×· · ·×Xk is also distal of the system (X1×· · ·×Xk, T1×· · ·×Tk).

Proposition 2.6. If the system (X,T ) contains a dense set of distal points. Then
Lm,r = Lm,r.

Proof. By (2.1) and Lemma 2.1 we have 2Lm,r ≥ Lm,r ≥ Lm,r. Thus we only need

prove Lm,r ≤ Lm,r in the case of Lm,r > 0.
Let δ > 0 be small enough with Lm,r > δ, and we take an open cover {V1, . . . , Vp}

of X with max
1≤i≤p

diam(Vi) < δ. Now let k ∈ N and xi ∈ X with a neighborhood Ui

for each i = 1, . . . , k, and for each s = (s1, . . . , sk) ∈ {1, . . . , p}k we set

Ns = {n ∈ N : Tnx1 ∈ Vs1 , . . . , Tnxk ∈ Vsk}.
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Observe that

N =

{
n ∈ N : min

1≤i≤k
%(Tnxi, T

nyi) > Lm,r − δ for some y1 ∈ U1, . . . , yk ∈ Uk
}

is an IP set by Lemma 2.5, and thenN∩Nt is also an IP set for some t ∈ {1, . . . , p}k,
because N =

⋃
s∈{1,...,p}k

(N ∩Ns). Choose {q0, q1, q2, . . . } ⊂ N with {qi1 + · · ·+ qij :

j ∈ N and 0 ≤ i1 < · · · < ij} ⊂ N ∩ Nt, and hence q0 + T ⊂ N ∩ Nt for some
T ∈ Fip.

Since q0 ∈ N , there exist yi ∈ Ui for each i = 1, . . . , k such that

(2.7) min
1≤i≤k

%(T q0xi, T
q0yi) > Lm,r − δ.

Note that the set of distal points is dense in X, we may assume that all points
y1, . . . , yk are distal. Then all of T q0y1, . . . , T

q0yk (and hence (T q0y1, . . . , T
q0yk))

are also distal points. In particular,

M =

{
n ∈ N : max

1≤i≤k
%(T q0yi, T

q0+nyi) < δ

}
is an IP∗ set. Thus M∩ T 6= ∅, which is in fact an infinite set. Observing (2.7),
it is easy to check from the construction that %(T q0+rxi, T

q0+ryi) > Lm,r − 3δ for
each r ∈ M ∩ T and any i = 1, . . . , k (as r ∈ M and q0, q0 + r ∈ Nt). Then the
conclusion follows from the arbitrariness of δ > 0. �

As will be shown in Example 4.2, we can not require Lm,r > 0 under the as-
sumption of Proposition 2.6 even for a minimal system with positive topological
entropy.

3. Dichotomy of multi-sensitivity for minimal systems

The Auslander-Yorke dichotomy theorem states that a minimal dynamical sys-
tem is either sensitive or equicontinuous (see [2], [3], [7], [17]). The main goal of this
section is to prove an analog of the Auslander-Yorke theorem for multi-sensitivity
(see Theorem 3.1), which is the main result of this paper.

A continuous map φ : X → Y is called almost open if φ(U) has a nonempty
interior in Y for any opene U ⊂ X. Recall that if a dynamical system (X,T ) is
minimal then the map T : X → X is almost open ([27]).

Let (X,T ) and (Y, S) be topological dynamical systems. By a factor map π :
(X,T ) → (Y, S) we mean that π : X → Y is a continuous surjection with π ◦ T =
S ◦ π. In this case, we also call (X,T ) to be an extension of (Y, S) and (Y, S) to be
a factor of (X,T ), sometimes we also call π : (X,T )→ (Y, S) to be an extension. It
is easy to see that all of sensitivity, thick sensitivity, thickly syndetical sensitivity,
cofinite sensitivity and multi-sensitivity can be lifted from a factor to an extension
by an almost open factor map by the method used in the proof of [17, Lemma 1.6].
Note that any factor map from a system containing a dense set of minimal points
to a minimal system is almost open, as each factor map between minimal systems
is also almost open [6, Theorem 1.15].

Each dynamical system admits a maximal equicontinuous factor. In fact, this fac-
tor is related to the regionally proximal relation of the system. The regionally prox-
imal relation Q+(X,T ) of (X,T ) is defined as: (x1, x2) ∈ Q+(X,T ) iff for any ε > 0
there exist x′1, x

′
2 ∈ X and m ∈ N with max{%(x1, x

′
1), %(x2, x

′
2), %(Tmx′1, T

mx′2)} <
ε. Observe that Q+(X,T ) ⊂ X ×X is closed and positively invariant (in the sense
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that if (x1, x2) ∈ Q+(X,T ) then (Tx1, Tx2) ∈ Q+(X,T )), which induces the max-
imal equicontinuous factor (Xeq, Seq) of (X,T ). And if (X,T ) is minimal, then
Q+(X,T ) is in fact an equivalence relation by [6, 9, 13, 33] and [23, Proposition
A.4]. Denote by πeq : (X,T ) → (Xeq, Seq) the corresponding factor map. Re-
mark that (Xeq, Seq) is invertible, when (X,T ) is transitive, because each transitive
equicontinuous system is uniformly rigid [17, Lemma 1.2] and hence invertible.

Let X be a compact metric space. Recall that the function f : X → R+ is upper
semi-continuous if lim sup

x→x0

f(x) ≤ f(x0) for each x0 ∈ X. Let φ : X → Y be a

continuous surjective map. If there exists a dense subset Y0 ⊂ Y such that π−1(y)
is a singleton for each y ∈ Y0, then we call φ almost one-to-one. Note that such a
set Y0 can be always presented as a Gδ subset of Y , because

Y0 = {y ∈ Y : π−1(y) is a singleton} =
⋂
n∈N

{
y ∈ Y : diam(π−1(y)) <

1

n

}
.

If π : (X,T ) → (Y, S) is an almost one-to-one factor map between topological
dynamical systems, then we also call (X,T ) almost one-to-one extension of (Y, S).
Recall also that if a dynamical system (X,T ) is minimal, where X is a compact
metric space, then the map T : X → X is almost one-to-one [27, Theorem 2.7].

The main result of this paper is the following dichotomy for multi-sensitive min-
imal systems, whose proof will be presented at the end of this section.

Theorem 3.1. Let (X,T ) be a minimal system. Then (X,T ) is either multi-
sensitive or an almost one-to-one extension of (Xeq, Seq). Furthermore, (X,T ) is
not multi-sensitive iff (X,T ) is an almost one-to-one extension of (Xeq, Seq).

Let (X,T ) be an invertible system. Recall that x ∈ X is an almost automorphic
point of (X,T ) if Tnkx→ x′ implies T−nkx′ → x for any {nk : k ∈ N} ⊂ Z. (X,T )

is said to be almost automorphic if X = orbT (x) for an almost automorphic point
x ∈ X ([32]). The structure of almost automorphic systems was characterized in
[32]: a minimal invertible system is almost automorphic iff it is an almost one-to-one
extension of its maximal equicontinuous factor (Xeq, Seq).

Thus, directly from Theorem 3.1, we have the following

Corollary 3.2. Let (X,T ) be an invertible minimal system. Then (X,T ) is not
multi-sensitive iff it is almost automorphic.

Let us also remark that by Theorem 4.6 all notions of thick sensitivity, multi-
sensitivity and thickly syndetical sensitivity are equivalent for minimal dynamical
systems, therefore one can apply Theorem 3.1 and Corollary 3.2 to any of them.

Now we will use the following concepts of Furstenberg [15]. Let S ⊂ N. S is a
central set if there exists a topological dynamical system (X,T ) with x ∈ X and
opene U ⊂ X containing a minimal point y of (X,T ) such that the pair (x, y) is
proximal and NT (x, U) ⊂ S. S is a difference set if there exists {s1 < s2 < . . . } ⊂ N
with S = {si− sj : i > j}. S is a ∆∗-set if S has a nonempty intersection with any
difference set. We also call a difference set as a ∆-set. Note that each central set is
an IP set [15, Proposition 8.10], and hence contains a ∆-set [15, Lemma 9.1]; and
if (X,T ) is a minimal system, then NT (U,U) is a ∆∗-set for any opene U ⊂ X by
[15, Page 177].

Let π : (X,T )→ (Y, S) be a factor map between dynamical systems. We call π
proximal if any pair of points x1, x2 ∈ X is proximal whenever π(x1) = π(x2).
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Proposition 3.3. Let π : (X,T )→ (Y, S) be a factor, not almost one-to-one map
between minimal systems, where (Y, S) is invertible. Then inf

y∈Y
diam(π−1y) > 0.

Moreover, if π is also proximal, then (X,T ) is thickly sensitive.

Proof. Since (Y, S) is an invertible minimal system, it is not hard to show that
π−1(y) is not a singleton for any y ∈ Y . So, let us first prove that d :=
inf
y∈Y

diam(π−1y) > 0.

Let ψ : Y → [0,diam(X)] be given by y 7→ diam(π−1y), and hence for each
y ∈ Y one has ψ(y) > 0 as π−1(y) is not a singleton. Since the function ψ is upper
semi-continuous, Ec(ψ) - the set of all points of continuity of ψ, is a residual subset
of Y (see for example [15, Lemma 1.28]). Suppose that d = 0. So, there exists a
sequence of points yi ∈ Y such that lim

i→∞
ψ(yi) = 0.

Let yc ∈ Ec(ψ) and ε > 0. There exists opene V ⊂ Y containing yc such that
|ψ(yc)−ψ(y)| ≤ ε whenever y ∈ V . Since (Y, S) is minimal, there exists m ∈ N with
m⋃
j=0

S−jV = Y . By taking a subsequence (if necessary) we may assume that {yi :

i ∈ N} ⊂ S−kV for some k ∈ {0, 1, . . . ,m}. Since lim
i→∞

ψ(yi) = 0, in other words,

the diameter of π−1(yi) tends to zero, the diameter of π−1(Skyi) = T kπ−1(yi) also
tends to zero. Therefore lim

i→∞
ψ(Skyi) = 0, which implies that ψ(yc) ≤ ε by the

construction of V and m. Finally ψ(yc) = 0, a contradiction.

Take 0 < δ <
d

6
. Now assume that π is proximal. We shall prove that (X,T )

is thickly sensitive with a sensitive constant δ. Let x∗ ∈ X and m ∈ N and take
opene U ⊂ X containing x∗. Let V ⊂ U be an opene set containing x∗ with
max

0≤i≤m
diam(T iV ) < δ. Since a factor map between minimal systems is almost

open [6, Theorem 1.15], therefore for each i = 0, 1, . . . ,m: we can choose yi ∈

int(π(T iV )) (the interior of π(T iV )), ui ∈ π−1(yi) with dist(ui, T
iV ) >

d

2
− δ

because diam(T iV ) < δ, and set

Wi = {x ∈ X : %(x, ui) < δ} ∩ π−1(int(π(T iV ))) 3 ui.

Obviously dist(Wi, T
iV ) >

d

2
− 2δ > δ for each i = 0, 1, . . . ,m.

Note that since (X,T ) is minimal, the set of all minimal points of the system
(Xm+1, T (m+1)), the product system of m+ 1 copies of (X,T ), is dense in Xm+1.
Hence we can take a minimal point (v0, v1, . . . , vm) ∈ W0 ×W1 × · · · ×Wm of the
system (Xm+1, T (m+1)), and let xi ∈ T iV with π(xi) = π(vi) (because π(vi) ∈
π(T iV )) for each i = 0, 1, . . . ,m. Since the factor map π : (X,T ) → (Y, S) is
proximal, it is not hard to show that

π′ : (Xm+1, T (m+1))→ (Y m+1, S(m+1)), (x′i : 0 ≤ i ≤ m) 7→ (π(x′i) : 0 ≤ i ≤ m)

is also a proximal factor map. In particular, ((x0, x1, . . . , xm), (v0, v1, . . . , vm)) is
proximal (under the action T (m+1)), and thus

S = NT (m+1)((x0, x1, . . . , xm),W0 ×W1 × · · · ×Wm)

is a central set and contains a ∆-set [15]. Finally S∩N 6= ∅ whereN = NT (V, V ) ⊂
NT (TV, TV ) ⊂ · · · ⊂ NT (TmV, TmV ) is a ∆∗-set [15]. Now for any n ∈ S ∩N and
each i = 0, 1, . . . ,m: on one hand Tnxi ∈ Wi as n ∈ S, and hence Tn+iV ∩Wi 3
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Tnxi as xi ∈ T iV ; on the other hand Tn+iV ∩ T iV 6= ∅ as n ∈ N , therefore
diam(Tn+iV ) ≥ dist(Wi, T

iV ) > δ. Thus

NT (U, δ) ⊃ NT (V, δ) ⊃ {n+ i : n ∈ S ∩ N , i = 0, 1, . . . ,m},

which implies that (X,T ) is thickly sensitive by the arbitrariness of U and m. �

The following lemma is just a reformulation of Theorem 1.1 in [33].

Lemma 3.4. Let (X,T ) be an invertible minimal system. Let x, x′ ∈ X and
πeq : (X,T ) → (Xeq, Seq) as introduced at the beginning of this section. Then
πeq(x) = πeq(x

′) iff for every opene U, V ⊂ X containing x and x′, respectively,
there exist n1,m1 ∈ Z such that Tn1x, Tn1+m1x ∈ U and Tm1x ∈ V .

Now let us show that it is also true for any (not only invertible) continuous

minimal map. Recall that the natural extension (X̂, T̂ ) of (X,T ) is defined as

X̂ = {(x1, x2, . . . ) : T (xi+1) = xi and xi ∈ X for each i ∈ N},

T̂ : (x1, x2, . . . ) 7→ (Tx1, x1, . . . ).

Then (X̂, T̂ ) is an invertible extension of (X,T ) with a factor map π̂ : (X̂, T̂ ) 7→
(X,T ), (x1, x2, . . . ) 7→ x1. It is not hard to check from the definitions that (X,T )
is minimal (sensitive, thickly sensitive, thickly syndetically sensitive, cofinitely sen-

sitive, multi-sensitive) iff (X̂, T̂ ) is minimal (sensitive, thickly sensitive, thickly
syndetically sensitive, cofinitely sensitive, multi-sensitive, respectively).

Lemma 3.5. Let (X,T ) be a minimal system and x, y ∈ X. Then (x, y) ∈
Q+(X,T ) iff for every opene U, V ⊂ X containing x and y, respectively, there
exist n,m ∈ N such that Tnx, Tn+mx ∈ U and Tmx ∈ V .

Proof. From the definition (x, y) ∈ Q+(X,T ) once for every opene U, V ⊂ X con-
taining x and y, respectively, there exist n,m ∈ N such that Tnx, Tn+mx ∈ U and
Tmx ∈ V .

Now assume (x, y) ∈ Q+(X,T ) and take opene U, V ⊂ X containing x and

y, respectively. Let (X̂, T̂ ) be the natural extension of (X,T ) with the factor

map π̂ : (X̂, T̂ ) → (X,T ). Since (X,T ) is minimal, (X̂, T̂ ) is an invertible min-

imal system. Hence Q+(X̂, T̂ ) is a closed invariant equivalence relation which

induced the maximal equicontinuous factor (X̂eq, T̂eq) of (X̂, T̂ ) and Q+(X,T ) =

(π̂×π̂)Q+(X̂, T̂ ) by [23, Lemma A.3 and Proposition A.4]. In particular, there exist

(x∗, y∗) ∈ Q+(X̂, T̂ ) and opene U∗, V∗ ⊂ X̂ containing x∗ and y∗, respectively, such

that π̂(x∗) = x, π̂(y∗) = y and π̂(U∗) ⊂ U, π̂(V∗) ⊂ V . Let π′eq : (X̂, T̂ )→ (X̂eq, T̂eq)
be the corresponding factor map. Then π′eq(x∗) = π′eq(y∗), and by applying Lemma

3.4 there exist n1,m1 ∈ Z such that T̂n1x∗, T̂
n1+m1x∗ ∈ U∗ and T̂m1x∗ ∈ V∗. More-

over, we choose opene W ⊂ X̂ containing x∗ such that T̂n1W ⊂ U∗, T̂n1+m1W ⊂ U∗
and T̂m1W ⊂ V∗. Since (X̂, T̂ ) is minimal, x∗ is recurrent in the sense that T̂ lkx∗
tends to x∗ for a sequence of positive integers l1 < l2 < . . . , and so NT̂ (x∗,W ) is
an IP set by [15, Theorem 2.17]. Hence there exists p1, q1 ∈ N such that

n = n1 + p1 > 0,m = m1 + q1 > 0 and {p1, q1, p1 + q1} ⊂ NT̂ (x∗,W ).

Thus T̂nx∗, T̂
n+mx∗ ∈ U∗ and T̂mx∗ ∈ V∗. Therefore Tnx, Tn+mx ∈ U and Tmx ∈

V by the above construction. This finishes the proof. �
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Using an idea of the proof of [32, Lemma 2.1.2] we obtain the following result,
which is of independent interest.

Proposition 3.6. Let (X,T ) be a minimal system and x, y ∈ X. Then (x, y) ∈
Q+(X,T ) iff NT (x, U) contains a ∆-set for any opene U ⊂ X containing y.

Proof. Sufficiency. Since NT (x, U) contains a ∆-set, there exist {s1 < s2 < s3} ⊂ N
with T s3−s2x, T s2−s1x, T s3−s1x ∈ U . Let x′ = x, y′ = T s2−s1x and m = s3−s2 ∈ N.
Then Tmx′, Tmy′ ∈ U and (x, y) ∈ Q+(X,T ) by the arbitrariness of opene U ⊂ X
containing y.

Necessity. Assume (x, y) ∈ Q+(X,T ) and take opene U ⊂ X containing y.
Choose positive real numbers η and ηk, k ∈ N such that η =

∑
k∈N

ηk and Bη(y) ⊂ U ,

where Bη(y) denotes the open ball of radius η centered at y. By applying Lemma
3.5 to Bη1(x) and Bη1(y), there exist n1,m1 ∈ N such that

Tn1x, Tn1+m1x ∈ Bη1(x) and Tm1x ∈ Bη1(y).

Let δ > 0 be small enough and applying Lemma 3.5 to Bδ(x) and Bη1(y), we have
n2,m2 ∈ N such that Tn2x, Tn2+m2x ∈ Bδ(x) and Tm2x ∈ Bη2(y). Since δ is small
enough, we can require additionally

max
0≤r≤n1+m1

%(T r+n2x, T rx) < η2 and max
0≤r≤n1+m1

%(T r+n2+m2x, T rx) < η2.

We continue the process by induction. Put lk =
k∑
i=1

(ni +mi) for each k ∈ N. Then

there exist nk+1,mk+1 ∈ N such that Tmk+1x ∈ Bηk+1
(y),

(3.1) max
0≤r≤lk

%(T r+nk+1x, T rx) < ηk+1 and max
0≤r≤lk

%(T r+nk+1+mk+1x, T rx) < ηk+1.

Set pk = mk + nk+1 and sk = p1 + · · ·+ pk for every k ∈ N. Then

%(T pi+···+pjx, y) = %(T
mi+

j∑
k=i+1

(nk+mk)+nj+1

x, y)

≤ %(T
mi+

j∑
k=i+1

(nk+mk)+nj+1

x, T
mi+

j∑
k=i+1

(nk+mk)

x) +

· · ·+ %(Tmi+(ni+1+mi+1)x, Tmix) + %(Tmix, y)

< ηj+1 + · · ·+ ηi (using (3.1)) < η,

for all i ≤ j. So, NT (x, U) ⊃ {sj − si : i < j} from the construction. �

Proposition 3.7. Let (X,T ) be a minimal system and let πeq : (X,T )→ (Xeq, Seq)
be not proximal. Then (X,T ) is thickly sensitive.

Proof. Since πeq : (X,T ) → (Xeq, Seq) is not proximal, there exist a not proxi-
mal pair of points x1, x2 ∈ X such that πeq(x1) = πeq(x2) (and hence (x1, x2) ∈
Q+(X,T ), as (X,T ) is minimal). Then d := inf

n∈N
%(Tnx1, T

nx2) > 0, and take

0 < δ <
d

3
.

We are going to prove that (X,T ) is thickly sensitive with a sensitive constant
δ > 0. Since (X,T ) is minimal, it suffices to show that NT (U, δ) is thick for any
opene U ⊂ X containing x1.

For any m ∈ N take opene V,W ⊂ U containing x1 and x2, respectively,
such that max

0≤i≤m
max{diam(T iV ),diam(T iW )} < δ. By the above construction
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min
0≤i≤m

dist(T iV, T iW ) > δ. Since (x1, x2) ∈ Q+(X,T ), NT (x1,W ) contains a ∆-

set by Proposition 3.6, and hence has a nonempty intersection with N , where
N = NT (V, V ) ⊂ NT (TV, TV ) ⊂ · · · ⊂ NT (TmV, TmV ) is a ∆∗-set [15]. Therefore
for every n ∈ NT (x1,W )∩N and i = 0, 1, . . . ,m we have: Tn+iV ∩T iW 3 Tn+ix1,
because Tnx1 ∈ W , and Tn+iV ∩ T iV 6= ∅, because n ∈ N . That gets
diam(Tn+iV ) ≥ dist(T iW,T iV ) > δ. Thus

NT (U, δ) ⊃ NT (V, δ) ⊃ {n+ i : n ∈ NT (x1,W ) ∩N , i = 0, 1, . . . ,m},

which implies that (X,T ) is thickly sensitive. �

Recall once more that a point x ∈ X is called Lyapunov stable if for every
ε > 0 there exists a δ > 0 such that %(x, x′) < δ implies %(Tnx, Tnx′) < ε for any
n ∈ N. This condition says exactly that the sequence of iterates {Tn : n ≥ 0}
is equicontinuous at x. Hence, such a point is also called an equicontinuity point.
Denote by Eq(X,T ) the set of all equicontinuity points of (X,T ).

Clearly if (X,T ) is sensitive then Eq(X,T ) = ∅, and (X,T ) is equicontinuous iff
Eq(X,T ) = X, and a thickly sensitive system is sensitive. Recall that a transitive
non sensitive system (X,T ) has zero topological entropy, Tran(X,T ) = Eq(X,T ),
and moreover a minimal system (X,T ) is equicontinuous iff it is not sensitive ([4,
Theorem 4.1] and [3, 17, 19]).

Lemma 3.8. Let π : (X,T ) → (Y, S) be a factor map and let y0 be a minimal,
equicontinuity point of (Y, S) such that π−1(y0) is a singleton. Then (X,T ) is not
thickly sensitive.

Proof. Assume, to the contrary, that (X,T ) is thickly sensitive with a sensitive
constant δ > 0. Let % be a compatible metric over Y . Since π−1(y0) is a singleton,
we can take opene W ⊂ X containing π−1(y0) such that diam(W ) < δ. There
exists opene V ⊂ Y containing y0 such that π−1(V ) ⊂ W . Let ε > 0 be small
enough such that {y ∈ Y : %(y, y0) < 2ε} ⊂ V . Since y0 ∈ Eq(Y, S), there exists
ε ≥ κ > 0 such that %(Sny, Sny0) < ε whenever %(y, y0) < κ and n ∈ N.

Take V ′ = {y ∈ Y : %(y, y0) < κ}, U = π−1(V ′) and set S = NS(y0, V
′). If

n ∈ S and y ∈ V ′, then Sny0 ∈ V ′ and %(Sny0, S
ny) < ε, and so %(y0, S

ny) < 2ε,
that gives SnV ′ ⊂ V . Note that S is syndetic, because y0 is a minimal point, and

TnU = Tnπ−1(V ′) ⊂ π−1(SnV ′) ⊂ π−1(V ) ⊂W

for each n ∈ S, which implies NT (U, δ)∩S = ∅, a contradiction to the assumption.
Thus (X,T ) is not thickly sensitive. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let πeq : (X,T ) → (Xeq, Seq) be the factor map as intro-
duced at the beginning of this section. If π is almost one-to-one, then (X,T ) is
not thickly sensitive by Lemma 3.8. Now assume that (X,T ) is not thickly sen-
sitive, then π is proximal by Proposition 3.7, and then π is almost one-to-one by
Proposition 3.3 (observing that (Xeq, Seq) is an invertible minimal system). This
finishes the proof, because a minimal system (X,T ) is thickly sensitive iff it is
multi-sensitive by Theorem 4.6. �
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4. Multi-sensitivity, thick sensitivity and thickly syndetical
sensitivity

In this section we prove that for minimal systems all of the following notions:
thickly syndetical sensitivity, multi-sensitivity and thick sensitivity are equivalent,
and show that all of them are much stronger than sensitivity. We begin with the
following

Proposition 4.1. If (X,T ) is multi-sensitive, then (X,T ) is thickly sensitive.
Moreover, if (X,T ) is transitive, then the converse also holds.

Proof. First assume that (X,T ) is multi-sensitive with a sensitive constant δ > 0.

Then Lm,r ≥
δ

2
by Lemma 2.1. Now take any opene U ⊂ X and k ∈ N. By the

definition of Lm,r one has that
⋂k
i=0NT (T−iU,

δ

3
) is an infinite set and we may

choose nk from it with nk ≥ k. Obviously {nk − k, . . . , nk − 1, nk} ⊂ NT (U,
δ

3
),

which implies that (X,T ) is thickly sensitive with a sensitive constant
δ

3
.

Now we assume that a transitive system (X,T ) is thickly sensitive with a sensitive
constant δ > 0. Let k ∈ N and U1, . . . , Uk be opene sets in X. Take a transitive
point x ∈ Tran(X,T ). Then there exists ni ∈ N such that Tnix ∈ Ui, where
i = 1, . . . , k. So, we may get an opene U ⊂ X such that TniU ⊂ Ui for every
i = 1, . . . , k. By assumption there exists s ∈ N with {s, s+1, . . . , s+n1+· · ·+nk} ⊂

NT (U, δ), and then one has s ∈
k⋂
i=1

NT (Ui, δ). That shows that (X,T ) is multi-

sensitive with a sensitive constant δ. �

Observe that Moothathu pointed out firstly in [30] that multi-sensitivity implies
thick sensitivity. As a direct corollary of Lemma 3.8, one has:

Example 4.2. There exists a minimal sensitive invertible system containing dense
distal points, which is in fact an almost one-to-one extension of an equicontinuous
system (hence not thickly sensitive by Lemma 3.8, and then not multi-sensitive).
Moreover, we can require the constructed system to have either zero topological
sequence entropy or positive topological entropy.

Construction. It is easy to check that the Denjoy minimal system (D, R) is a min-
imal sensitive invertible system containing dense distal points, which is an almost
one-to-one extension of an irrational rotation over the circle and has zero topolog-
ical sequence entropy. Where (D, R) is constructed as follows: Let (S, S) be an
irrational rotation over the circle and x0 ∈ S. We identify (x, 0) and (x, 1) for all
x /∈ {Skx0 : k ∈ Z}. Then set D to be the quotient space S× {0, 1} equipped with
this identification, where R acts naturally on D induced from the action S.

Now we consider a Toeplitz flow which is a minimal invertible system and has
positive topological entropy (thus it is sensitive), which in fact is an almost one-to-
one extension of an odometer (and hence contains dense distal points). See [12] for
the definition of a Toeplitz flow and a detailed construction of such a system. �

We say that (X,T ) is topologically ergodic (thickly syndetically transitive, respec-
tively) if the set NT (U, V ) is syndetic (thickly syndetic, respectively) for any opene
U, V ⊂ X. Recall that (X,T ) is weakly mixing iff NT (U, V ) is a thick set for any
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opene U, V ⊂ X [14], and (X,T ) is thickly syndetically transitive iff (X,T ) is not
only weakly mixing, but also topologically ergodic [24, Theorem 4.7].

A nonminimal M-system is thickly syndetically sensitive [29, Theorem 8]. Ob-
serve also that the intersection of finitely many thickly syndetic sets is also thickly
syndetic (and hence nonempty).

Proposition 4.3. If (X,T ) is thickly syndetically transitive, then (X,T ) is thickly
syndetically sensitive.

Proof. Assume (X,T ) is a thickly syndetically transitive system. We take opene
V1, V2 ⊂ X with δ = dist(V1, V2) > 0. Now let U ⊂ X be an opene subset. By
the assumption, both NT (U, V1) and NT (U, V2) are thickly syndetic, and hence
NT (U, δ) ⊃ NT (U, V1) ∩NT (U, V2) is also thickly syndetic. �

In fact, we have the following property of topologically ergodic systems and
provide a proof of it for completeness (see also [29, Theorem 8]).

Lemma 4.4. Let (X,T ) be a topologically ergodic system with two different minimal
subsets M1 and M2 of X. Then (X,T ) is thickly syndetically sensitive.

Proof. Let dist(M1,M2) > δ > 0. Take opene subsets U ⊂ X and Vi ⊂ X contain-
ing Mi, i = 1, 2 with dist(V1, V2) > δ. We shall prove that every NT (U, Vi), i = 1, 2
are thickly syndetic, and hence NT (U, V1) ∩NT (U, V2) is also thickly syndetic. In
fact, for any m ∈ N, we may choose opene Wi ⊂ Vi with T jWi ⊂ Vi for all
j = 0, 1, . . . ,m. Then

NT (U, Vi) ⊃
m⋃
j=0

NT (U, T jWi) ⊃ {n+ j : n ∈ NT (U,Wi), j = 0, 1, . . . ,m}

is thickly syndetic, because NT (U,Wi) is syndetic. �

By the same reason a thickly syndetically sensitive system is multi-sensitive.
The following Figure 1 presents a comparison between stronger forms of sensi-

tivity for general topological dynamical systems.

Thickly
syndetical sensitivity

Cofinite sensitivity Multi-sensitivity

Sensitivity Thick sensitivity

Figure 1. General case.

Proposition 4.5. If (X,T ) is a thickly sensitive M-system, then (X,T ) is thickly
syndetically sensitive.

Proof. Recall again that if (X,T ) is an M-system, then (Xk, T (k)), the product
system of k copies of (X,T ), contains a dense set of minimal points for any k ∈ N.
In fact we can say more. Let x ∈ Tran(X,T ) and U1, . . . , Uk be opene subsets in
X. There are n1, . . . , nk ∈ N such that Tn1x ∈ U1, . . . , T

nkx ∈ Uk. Since (X,T )
is an M-system, there is a minimal point x0 ∈ X sufficiently close to x such that



15

Tn1x0 ∈ U1, . . . , T
nkx0 ∈ Uk. Thus U1 × · · · × Uk contains the minimal point

(Tn1x0, . . . , T
nkx0) of (Xk, T (k)).

Let (X,T ), which is thickly sensitive, has a sensitive constant δ > 0. Let U be
an opene subset in X. Since NT (U, δ) is a thick set,

k⋂
i=0

NT (T−iU, δ) ⊃ {n ≥ k : {n− k, . . . , n− 1, n} ⊂ NT (U, δ)}.

Therefore there are a positive integer n0 ∈
k⋂
i=0

NT (T−iU, δ), n0 ≥ k, and

xi, yi ∈ T−iU with %(Tn0xi, T
n0yi) > δ, i = 0, 1, . . . , k. Moreover, we can choose

opene subsets Ui, Vi ⊂ T−iU such that %(Tn0x′i, T
n0y′i) > δ for all x′i ∈ Ui

and y′i ∈ Vi, i = 0, 1, . . . , k. Again, since (X,T ) is an M-system, the system
(X2k+2, T (2k+2)) contains a dense set of minimal points, and there is a minimal
point (z0, z

′
0, z1, z

′
1, . . . , zk, z

′
k) ∈ U0 × V0 × U1 × V1 × · · · × Uk × Vk. Obviously

S =

k⋂
i=0

(NT (zi, Ui) ∩NT (z′i, Vi))

is a syndetic set. From the construction we get that NT (U, δ) ⊃ {m+ n0 − i : m ∈
S, i = 0, 1, . . . , k}, which is a thickly syndetic set. �

Combining Proposition 4.1, Example 4.2 and Proposition 4.5 we have the fol-
lowing

Theorem 4.6. Let (X,T ) be a topological dynamical system. Then

(1) Thickly syndetical sensitivity =⇒ multi-sensitivity =⇒ thick sensitivity.
(2) Multi-sensitivity ⇐⇒ thick sensitivity, when (X,T ) is transitive.
(3) If (X,T ) is an M-system, then these three sensitivities are equivalent, and

all of them are much stronger than sensitivity, even when (X,T ) is minimal.
(4) If (X,T ) is a nonminimal M-system, then it is thickly syndetically sensitive.

The following Figure 2 presents a comparison between stronger forms of sensi-
tivity for M -systems.

Cofinite sensitivity

Thickly
syndetical sensitivity

Multi-sensitivity Thick sensitivity

Sensitivity

Figure 2. M-systems.

Let us mention about some another stronger form of sensitivity. Recall that a
pair of points x, y ∈ X is called a Li-Yorke pair if lim inf

n→∞
%(Tnx, Tny) = 0 while

lim sup
n→∞

%(Tnx, Tnx) > 0. A dynamical system (X,T ) is called spatio-temporally
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chaotic if for any point x ∈ X and its neighborhood Ux there is a point y ∈ Ux
such that the pair x, y is Li-Yorke [8], (X,T ) is called Li-Yorke sensitive if there
exists δ > 0 such that for any point x ∈ X and its neighborhood Ux there is a point
y ∈ Ux with lim inf

n→∞
%(Tnx, Tny) = 0 while lim sup

n→∞
%(Tnx, Tnx) > δ [5], and (X,T )

is called distal if any point of X is distal. Clearly that Li-Yorke sensitivity is much
stronger than sensitivity and a distal system contains no Li-Yorke pairs.

The following Figure 3 presents a comparison between stronger forms of sensi-
tivity for topological transitive systems.

Topologically
mixing

Cofinite sensitivity
Topologically
weak mixing

Li-Yorke sensitivity

Thickly
syndetical sensitivity

Multi-sensitivity Thick sensitivity Sensitivity

Figure 3. Topologically transitive systems.

Remarks: 1. Even for minimal systems cofinite sensitivity does not imply spatio-
temporal chaos, and hence Li-Yorke sensitivity. In fact, Example 4.7 provides a
cofinitely sensitive invertible minimal system containing no Li-Yorke pairs.

2. When a system (X,T ) is minimal, spatio-temporal chaos (and hence Li-
Yorke sensitivity) does imply multi-sensitivity. Assume that (X,T ) is a minimal
system which is not multi-sensitive. Then by the dichotomy theorem (Theorem 3.1)
(X,T ) is an almost one-to-one extension of its maximal equicontinuous factor. Take
x ∈ X such that π−1(x) is a singleton, where π is the factor map from (X,T ) to
its maximal equicontinuous factor. It is easy to see that (x, z) can not be proximal
for any z ∈ X (z 6= x). Therefore (X,T ) is not spatio-temporally chaotic.

3. In general, even for transitive systems, Li-Yorke sensitivity does not imply
thick sensitivity. In fact, there is a nonminimal E-system (and hence sensitive
system), such that 1) it contains a fixed point as its unique minimal set, and hence
the system is Li-Yorke sensitive by [5, Corollary 3.7]; 2)it is not thickly sensitive.
We will discuss more about such systems in the next section

For example, let (X,T ) be the system as in Example 5.2. Then by collapsing the
unique minimal set in (X,T ) into a fixed point we obtain a system (Y, S), which
is the system with the required properties. By Example 5.2, (X,T ) is not thickly
sensitive, and by the construction π : (X,T ) 7→ (Y, S) is almost open. Then (Y, S)
should be not thickly sensitive.

Question. Are all nonminimal M-systems Li-Yorke sensitive?
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Example 4.7. There exists an invertible minimal distal system (and hence con-
taining no Li-Yorke pairs) which is cofinitely sensitive.

Construction. Let α /∈ Q and (X,T ) be given by X = R2/Z2 and T : (x, y) 7→
(x + α, x + y). It is well known that (X,T ) is an invertible minimal distal system
(see [15, Chapter 1]). Now for any opene U ⊂ X take x0, y0 ∈ R/Z and δ > 0 with
(x0 − δ, x0 + δ)× {y0} ⊂ U . Since

Tn(x, y) =

(
x+ nα, nx+

n(n− 1)

2
α+ y

)
for any point (x, y) ∈ X and any positive integer n, the diameter of TnU is at least
the length of the circle R/Z when n is large enough. From which one has directly
that (X,T ) is cofinitely sensitive. �

5. More about thick sensitivity

This section is mostly devoted to the transitive, not thickly sensitive systems.
Recall that non sensitivity of a system is related to equicontinuity of points in
the system. More precisely, Tran(X,T ) = Eq(X,T ) for a transitive non sensitive
system (X,T ) and a minimal system (X,T ) is not sensitive iff Eq(X,T ) = X. In
this section, we link thick sensitivity of a system with another kind of equicontinuity
(i.e. syndetical equicontinuity) of points in the system.

We begin this section with recalling a definition of the topological sequence en-
tropy for the system (X,T ) by using one of the classical Bowen-Dinaburg def-
inition of topological entropy h(T ). For an increasing sequence N = n1 <
n2 < . . . of N and n0 = 0. For any integer k ≥ 1 the function %k(x, y) =
max0≤j≤k−1 %(Tnjx, Tnjy) defines a metric on X equivalent with %. Now fix
an integer k ≥ 1 and ε > 0. A subset E ⊂ X is called (k, T, ε)-separated
(with respect to N ), if for any two distinct points x, y ∈ E, %k(x, y) > ε. De-
note by sep(k, T, ε) the maximal cardinality of a (k, T, ε)-separated set in X and
hN (T, ε) = lim supk→∞

1
k log sep(k, T, ε). Obviously that hN (T, ε1) ≥ hN (T, ε2),

when ε1 < ε2. The topological sequence entropy of (X,T ) along the sequence N is
defined by

hN (T ) = lim
ε→0

lim sup
k→∞

1

k
log sep(k, T, ε).

As another corollary of Theorem 3.1 and [21, Theorem 4.3], one has that any
minimal thickly sensitive system (and hence multi-sensitive by Proposition 4.1) has
positive topological sequence entropy. In fact, we can obtain the following

Proposition 5.1. Let (X,T ) be a multi-sensitive system. Then (X,T ) has positive
topological sequence entropy.

Proof. We are going to define an increasing sequence of positive integers N = n1 <
n2 < · · · < ni < . . . and a sequence of (k + 1, f, ε)-separated subsets of X (with
respect to N ) with cardinality 2k, k = 1, 2, .... Then obviously we will have that
hN (T ) ≥ log 2.

Let (X,T ) be a multi-sensitive system with a sensitive constant 2δ > 0. Take
opene U(1), U(2) ⊂ X with dist(U(1), U(2)) > δ, and define V(1) = T−n1U(1), V(2) =

T−n1U(2) for a positive integer n1. Obviously that any two points x1 ∈
V(1), x2 ∈ V(2) are (2, T, δ)-separated. Since (X,T ) is multi-sensitive and has

the sensitive constant 2δ, the Lyapunov number Lm,r ≥ δ by Lemma 2.1 and
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hence there exist a positive integer n2 > n1 and 4 points x(1,1), x(1,2) ∈ V(1)
and x(2,1), x(2,2) ∈ V(2) with min

i∈{1,2}
%(Tn2x(i,1), T

n2x(i,2)) > δ. Therefore they

are (3, T, δ)-separated. More precisely min
i,j∈{1,2}

%(Tn1x(1,i), T
n1x(2,j)) > δ and

min
i∈{1,2}

%(Tn2x(i,1), T
n2x(i,2)) > δ. Take a small enough neighborhood U(i,j) of point

Tn2x(i,j) such that min
i∈{1,2}

dist(U(i,1), U(i,2)) > δ and set V(i,j) := T−n2U(i,j) ∩ V(i)
for i, j ∈ {1, 2}.

Now assume that by induction we have defined the sequence of positive integers
n1 < · · · < nk and 2k points xs in opene subsets Vs, s ∈ {1, 2}k such that

min
s,s′∈{1,2}k,s 6=s′

max
1≤q≤k

dist(TnqVs, T
nqVs′) > δ,

and therefore the set of points {xs ∈ Vs, s ∈ {1, 2}k} is (k + 1, T, δ)-separated.
Since (X,T ) is multi-sensitive, there exit nk+1 > nk and two points x(s1,...,sk,1) ∈

V(s1,...,sk), x(s1,...,sk,2) ∈ V(s1,...,sk) with %(Tnk+1x(s1,...,sk,1), T
nk+1x(s1,...,sk,2)) > δ

for any s1, . . . , sk ∈ {1, 2}k. So, the set of all these 2k+1 points is (k + 2, T, δ)-
separated (with respect to N ), because by the induction hypothesis any two dif-
ferent points x(s1,...,si,...,sk,l) 6= x(s1,...,s′i,...,sk,l) are also (k+ 1, T, δ)-separated (with

respect to N ) for any l ∈ {1, 2}. This finishes the proof. �

Recall that (X,T ) is a E-system [17] if (X,T ) is a transitive system admitting
an invariant probability Borel measure µ with full support, that is Tµ = µ and
µ(U) > 0 for all opene U ⊂ X. Note that any E-system is topologically ergodic
as shown in [18, Theorem 4.4] (and hence any E-system containing two different
minimal subsystems is thickly syndetically sensitive by Lemma 4.4), and a non
sensitive E-system is minimal equicontinous [17, Theorem 1.3]. It is easy to see
that any M-system is a E-system, and then conclude again that any nonminimal
M-system is thickly syndetically sensitive.

In fact, we have the following

Example 5.2. There exists a nonminimal E-system (X,T ) (and hence sensitive)
with positive topological entropy which is not thickly sensitive. Moreover (X,T )
admits an ergodic measure with full support and contains a unique minimal subsys-
tem.

Construction. We take a minimal invertible system (Y, S) with positive topological
entropy from Example 4.2, which is not thickly sensitive. By the classical variational
principle (see for example [35, Theorem 8.6]) we choose an ergodic measure ν of
(Y, S) with positive measure-theoretic ν-entropy hν(Y, S). Let ν =

∫
Z
νzdη(z) be

the disintegration of ν over the Pinsker factor (Z,D, η, R) of (Y,Bν , ν, S), where
(Y,Bν , ν, S) is the completion of (Y,BY , ν, S) and BY denotes the Borel σ-algebra
of Y (for the construction of such a disintegration see for example [15, Chapter 5,
§4]). Set λ =

∫
Z
νz × νzdη(z), which is in fact an ergodic measure of (Y ×Y, S×S)

with positive measure-theoretic λ-entropy and λ(X \∆Y ) > 0 by [16], where ∆Y =
{(y, y) : y ∈ Y } and X ⊂ Y ×Y is the support of λ, that is the smallest closed subset
of Y ×Y with λ(X) = 1. It is easy to see that (X,S×S) forms a transitive system
having a nonempty intersection with ∆Y , denoted by (X,T ), and then X ) ∆Y by
the minimality of (Y, S).

Now we shall finish the construction by proving that (X,T ) is not thickly sen-
sitive (and hence not thickly syndetically sensitive, which implies from Lemma 4.4
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that (X,T ) contains a unique minimal subsystem ∆Y ). The proof of it is direct.
Let % be a compatible metric over Y , and then over Y × Y we take the compat-
ible metric %1((y1, y2), (y′1, y

′
2)) = max{%(y1, y

′
1), %(y2, y

′
2)} for y1, y

′
1, y2, y

′
2 ∈ Y .

Thus diam(U1 × U2) = max{diam(U1),diam(U2)}, from which it is easy to show
that, if (X,T ) is thickly sensitive, then (Y, S) is also thickly sensitive. Assume
(X,T ) is thickly sensitive with a sensitive constant δ > 0. Then NS(U, δ) =
NS×S((U ×U)∩X, δ) is a thick set for any opene U ⊂ Y (reminder ∆Y ⊂ X). We
have a contradiction with the selection of (Y, S). �

In the following we introduce the concept of syndetically equicontinuous points of
a system and investigate it for transitive, not thickly sensitive systems. We say that
x ∈ X is a syndetically equicontinuous point of (X,T ) if for any ε > 0 there exist
opene U ⊂ X containing x and a syndetic set N ⊂ N such that %(Tnx, Tnx′) ≤ ε
whenever x′ ∈ U and n ∈ N . Denote by Eqsyn(X,T ) the set of all syndetically
equicontinuous points of (X,T ). Then Eqsyn(X,T ) ⊂ Eq(X,T ).

Since a thick set has a nonempty intersection with a syndetic set, one has read-
ily that, if (X,T ) is thickly sensitive, then Eqsyn(X,T ) = ∅. Equivalently, if
Eqsyn(X,T ) 6= ∅, then (X,T ) is not thickly sensitive. Note that Tran(X,T ) =
Eq(X,T ) for a transitive non sensitive system (X,T ). Similarly, we have the fol-
lowing

Proposition 5.3. Let (X,T ) be a transitive, not thickly sensitive system. Then
Tran(X,T ) ⊂ Eqsyn(X,T ).

Proof. Let δ > 0. Since the system (X,T ) is not thickly sensitive, there exists opene
U ′ ⊂ X such that NT (U ′, δ) is not thick. Or equivalently, there exists a syndetic
set N ⊂ N such that %(Tnx1, T

nx2) ≤ δ whenever x1, x2 ∈ U ′ and n ∈ N . Now
for any x ∈ Tran(X,T ) there exists m ∈ N with Tmx ∈ U ′ and hence there exists
opene U ⊂ X containing x with TmU ⊂ U ′. In particular, %(Tm+nx, Tm+nx′) ≤ δ
whenever x′ ∈ U and n ∈ N . That implies x ∈ Eqsyn(X,T ), because the set m+N
is syndetic. �

A direct corollary of Proposition 5.3 is the following

Theorem 5.4. Let (X,T ) be a topological dynamical system.

(1) Assume the system (X,T ) is transitive. Then (X,T ) is not thickly sensitive
iff Eqsyn(X,T ) 6= ∅.

(2) Assume the system (X,T ) is minimal. Then (X,T ) is not thickly sensitive
iff Eqsyn(X,T ) = X.

Let us show it may happen that Tran(X,T ) ( Eqsyn(X,T ) for a transitive not
thickly sensitive system.

Example 5.5. There exists a nonminimal E-system (X ′, T ′) (and hence sensitive)
with positive topological entropy which is not thickly sensitive and contains a unique
minimal subsystem such that:

either Tran(X ′, T ′) ( Eqsyn(X ′, T ′) = X ′ or Tran(X ′, T ′) ( Eqsyn(X ′, T ′) ( X ′.

Construction. Let (Y, S), (X,T ) and ergodic measure λ (over (X,T )) be as in
Example 5.2. Both (Y, S) and (X,T ) are not thickly sensitive, ∆Y is the unique
minimal subsystem of (X,T ), X is the support of λ with X ) ∆Y (and hence
λ(∆Y ) < 1) and (X,T ) has positive measure-theoretic λ-entropy.
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1. Case of Tran(X ′, T ′) ( Eqsyn(X ′, T ′) = X ′. Set (X ′, T ′) = (X,T ). We need
show that Eqsyn(X,T ) = X.

Since (Y, S) is not thickly sensitive, Eqsyn(Y, S) 6= ∅ by Proposition 5.3. Let
y0 ∈ Eqsyn(Y, S). Thus, for each δ > 0 there exists opene UY ⊂ Y containing y0 and
syndetic N ⊂ N such that %(Sny, Sny0) ≤ δ whenever y ∈ UY and n ∈ N . Hence
%(Sny1, S

ny2) ≤ 2δ whenever y1, y2 ∈ UY and n ∈ N , and finally %1(Tnx1, T
nx2) ≤

2δ by the construction of %1 whenever x1, x2 ∈ (UY × UY ) ∩X and n ∈ N . Now
take any x ∈ X and a positive integer m with Tmx ∈ (UY × UY ) ∩ X as ∆Y is
the unique minimal subsystem of (X,T ). Then, in fact, there exists opene U ⊂ X
containing x with TmU ⊂ (UY × UY ) ∩X, thus %1(Tm+nx, Tm+nx′) ≤ 2δ by the
construction of %1 whenever x′ ∈ U and n ∈ N . That implies x ∈ Eqsyn(X,T ),
because m+N is also a syndetic set.

2. Case of Tran(X ′, T ′) ( Eqsyn(X ′, T ′) ( X ′. Now we take (X ′, T ′) to be the
system constructed by collapsing ∆Y into a fixed point p0 of (X,T ). Let π :
(X,T )→ (X ′, T ′) be the corresponding factor map. It is easy to see that (X ′, T ′)
is an invertible nonminimal E-system and π is an almost open factor map. It implies
that (X ′, T ′) is not thickly sensitive, because (X,T ) is not thickly sensitive.

Observe that λ is an ergodic measure with full support X ) ∆Y , and λ(∆Y ) = 0
by the ergodicity of λ (note T∆Y = ∆Y ). Now take a measure λ′ as the projection
of measure λ over (X ′, T ′) (with respect to π). It is not hard to show that (X,T, λ)
and (X ′, T ′, λ′) are measure-theoretic isomorphic. Therefore the measure-theoretic
λ′-entropy of (X ′, T ′) is equal to the measure-theoretic λ-entropy of (X,T ). In
particular, (X ′, T ′) has positive topological entropy.

Moveover, from the above construction it follows that λ′ is an ergodic measure
of (X ′, T ′) such that X ′ is the support of λ′ (and hence the system (X ′, T ′) is
topologically ergodic). (X ′, T ′) has positive measure-theoretic λ′-entropy and X ′

contains no isolated points. Thus X ′ \ Tran(X ′, T ′) is a dense subset of X ′, in
particular, X ′ \ Tran(X ′, T ′) ) {p0} (see [26]). In fact, π : X \ ∆Y → X ′ \ {p0}
is a homeomorphism. Therefore we obtain that X ′ \ {p0} ⊂ Eqsyn(X ′, T ′), as
Eqsyn(X,T ) = X.

Finally we are going to show that p0 /∈ Eqsyn(X ′, T ′) and hence Tran(X ′, T ′) (
X ′ \ {p0} = Eqsyn(X ′, T ′) ( X ′. Recall that (X ′, T ′) is an invertible topologically

ergodic system and (X ′, (T ′)−1) is also a topologically ergodic system from the
definition. Let x∗ ∈ Tran(X ′, (T ′)−1) and take 0 < δ < dist({x∗}, {p0}). Choose
opene U∗ containing x∗ and opene U0 containing p0. By the proof of Lemma 4.4 one
has that N(T ′)−1(U∗, U0) (= NT ′(U0, U∗)) is thickly syndetic, which implies directly
from the definition of δ that NT ′(U0, δ) is thickly syndetic, as p0 is a fixed point of
the system (X ′, T ′). Hence p0 /∈ Eqsyn(X ′, T ′). The construction is done. �

Moreover, as a conclusion we have the following

Proposition 5.6. Let (X,T ) be a topological dynamical system. Assume that
(X,T ) satisfies one of the following conditions.

(1) (X,T ) is equicontinous.
(2) For every ε > 0 there exist a δ > 0 and a syndetic subset A ⊂ N such that

%(x, y) < δ implies %(Tnx, Tny) < ε for any x, y ∈ X and n ∈ A.
(3) Eqsyn(X,T ) = X.
(4) For every ε > 0 there exist a δ > 0 and m ∈ N such that %(x, y) < δ implies

min0≤i≤m %(Tn+ix, Tn+iy) < ε for any x, y ∈ X and n ∈ N.
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Then (1)⇐⇒ (2) =⇒ (3) =⇒ (4).

Proof. In fact, it suffices to prove (2) =⇒ (1) and (3) =⇒ (4).
(2) =⇒ (1): Let ε > 0. By the condition (2) there exist ε > δ > 0 and a syndetic
set A ⊂ N such that %(x, y) < δ implies %(Tnx, Tny) < ε for any x, y ∈ X and
n ∈ A. Since syndetic sets have “bounded gaps” in N, there exists m ∈ N such that
{n+ i : n ∈ A, i = 0, 1, . . . ,m} ⊃ {m+ 1,m+ 2, . . . }. Therefore there exists δ′ > 0
such that %(x, y) < δ′ implies %(T ix, T iy) < δ < ε (hence %(Tn+ix, Tn+iy) < ε, n ∈
A) for any x, y ∈ X and i = 0, 1, . . . ,m. So, %(x, y) < δ′ implies %(T jx, T jy) < ε
for any x, y ∈ X and j ∈ N, i.e. (X,T ) is equicontinuous.
(3) =⇒ (4): Let ε > 0. Since Eqsyn(X,T ) = X, for any x ∈ X there exist
opene Ux ⊂ X containing x and a syndetic set Ax ⊂ N such that %(Tnx, Tnx′) <
ε for all x′ ∈ Ux whenever n ∈ Ax (and hence %(Tnx′, Tnx′′) < 2ε whenever
x′, x′′ ∈ Ux). We take mx ∈ N such that {n, n + 1, . . . , n + mx} ∩ Ax 6= ∅ for
each n ∈ N, and therefore min

0≤i≤mx

%(Tn+ix′, Tn+ix′′) < 2ε for any x′, x′′ ∈ Ux and

n ∈ N. Observe that X is a compact metric space. So, we can take a set of points
{x1, . . . , xs} ⊂ X such that {Uxj

: j = 1, . . . , s} forms an open cover of X. Then
there exists δ > 0 such that any points x, y ∈ X with %(x, y) < δ are contained
in some Uxj . Set m = max{mxj : j = 1, . . . , s}. So, min0≤i≤m %(Tn+ix, Tn+iy) ≤
min0≤i≤mxj

%(Tn+ix, Tn+iy) < 2ε for each n ∈ N. This finishes the proof. �
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