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Introduction and Summary of Results.

In this paper we will define and study an analytic discriminant on the moduli
space of polarized algebraic K3 surfaces. The tools that we employ to define our
analytic discriminant in the case of I{3 surfaces include: the Piatetski-Shaprio and
Shafarevich proof [PSS 71] of a global Torelli theorem for marked, polarized, alge-
braic K3 surfaces; Kulikov’s proof [Ku 77] of the surjectivity of the period mapping
and study of degenerating polarized, algebraic K3 surfaces of a fixed degree; Yau’s
theorem [Ya 78] on the existence of a Kahler-Einstein metric lying in any Kahler
class; the analytic part of the arithmetic Riemann-Roch theorem, in various forms
as in [Fa 92], [FS 90] or [GS 92], for the universal family of marked, polarized, al-

ebraic I3 surfaces of a fixed degree; our construction of a particular holomorphic
amily of holomorphic 2-forms on the moduli space of marked, polarized, algebraic
I3, which is analogous to the family of forms {dz} for elliptic curves; and our
construction of a {3 modular parameter, which is analogous to the g parameter
on the hyperbolic upper half plane.

We begin by showing that one can express the discriminant of an elliptic curve
through the Quillen metric on the determinant line associated to the trivial sheaf
when metrized with a flat metric. These calculations lead us to our definition of an
analytic discriminant for a polarized, algebraic K3 surfaces, which we then show
has many properties analogous to those for the elliptic curve discriminant. Let us
now sumrnarize the results in this paper.

In §1 we recall the discriminant for elliptic curves in a manner suitable for our
purposes. Let E denote an elliptic curve. By the uniformization theorem, there is
a flat metric on F, which is unique up to a multiplicative constant. Choose such
a metric p, and let A,(E) be the associated Laplacian which acts on the space of
smooth functions on E. Let det*A,(E) be the non-zero part of the determinant of
the Laplacian A ,(E) obtained through the usual zeta function regularization. It
is elementary to show that the quotient

det* A, (E)/vol (E)

is independent of the scale of the flat metric g, hence is an invariant of the elliptic
curve E. We define the (logarithmic) unmarked discriminant é,nm(E) to be

Sunm(E) = log [det* A, (E)/vol.(E)].

Further, we show that the unmarked discriminant is a potential for the canonical
Weil-Petersson metric on the moduli space of elliptic curves. Specifically, if pwp
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denotes the Weil-Petersson metric on the hyperbolic upper half plane h, then

—dd®byom = HwP.

Now, let us mark the elliptic curve E by choosing a canonical basis of the first
homology group H;(E,Z). With this, E can be viewed as the complex plane C
modulo the Z lattice generated by 1 and 7 where 7 € C with Im(7) > 0, meaning
7 is an element of h. We shall denote the marked elliptic curve by E,. Let z be the
usual holomorphic parameter on C, so one can take dz to be a holomorphic 1-form
on E,, and we have

Tin(r) = [ldelf32 = / dz A dz.
E,
The function on h defined by

det* A, (E.)/[vol,(E-)Im(T)]

is, in fact, the (inverse square of the) Quillen norm of a section of the determi-
nant line detH(O) over E,. By applying the arithmetic Riemann-Roch theorem,
and using the fact that the canonical sheaf on an elliptic curve is trivial, we have
that the above defined function on h is the absolute value of a non-vanishing holo-
morphic function. Recall that Im(7) is modular of weight —2 with respect to the
action by the discrete subgroup PSL(2,Z), and also recall that the quotient space
PSL(2,Z)\h, has precisely two elliptic points of order 2 and 3. Using these facts,
we conclude that there exists a non-vanishing holomorphic function f on h which
is a modular form of weight 2 with respect to the action by PSL(2,Z) such that

det” A (B, )/[volu(E;)Im(r)] = | £(r)]".

It is known that the space of non-vanishing modular forms of weight 12 with respect
to the action of PSL(2,Z) on h is 1 dimensional over C, and this is generated by the
Dedekind delta function A(r), which is the 24-th power of the Dedekind eta function
n(7). By direct computation, one can show that f = n?, but, for the purposes of
this paper, it suffices to note that, at this point, we have shown f = cn?, for some
constant ¢. Recall that if one views the elliptic curve E, as the zero set of a cubic
equation in P?, then the function f!? is a multiple of the discriminant of the cubic.
In this way, we have used Quillen metrics to obtain a realization of the classical
discriminant of an elliptic curve.

We can now take the same approach to define and then study an analytic discrim-
inant associated to any polarized, algebraic I3 surface. We use the term “analytic
discriminant” because in this article we only consider analytic properties of this
discriminant.

In §2 we present the background material needed to define our analytic discrim-
inant in the case of a polarized, algebraic I3 surface. Recall that a K3 surface is
a compact, complex, non-singular surface X, not necessarily algebraic, with trivial
canonical sheaf K and with H'(X,0) = 0. For this paper, all A3 surfaces under
consideration are algebraic. A polarization of the (algebraic) K3 surface is the
choice of an ample divisor class on X. There is an associated Kahler form pups
which is a rational multiple of the pullback of the Fubini-Study (1,1)-form on P¥
via a projective embedding of X induced by a power of the given ample divisor. By
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Yau’s theorem, there exists a Kahler-Einstein (1,1)-form, unique up to multiplica-
tive constant, which is cohomologous to ppg. Choose a scale of this form, say u.
Using the associated Kahler-Einstein metric, one can compute the analytic torsion
tor,(X) of the determinant line associated to the trivial sheaf O. We then prove
that the difference

tor, (X') — log vol,(X)

is independent of the scale of the Kahler-Einstein form p. We define the (loga-
rithmic) unmarked discriminant on (X, L) to be

Sunm (X, L) = tor,(X) — log vol ,(X).

Then dynm is a function on the moduli space of polarized '3 surfaces of a fixed
degree d, denoted by Mg. As in the case of elliptic curves, our unmarked discrimi-

nant is a potential for (a scaling of ) the Weil-Petersson metric on Mg. Specifically,
if pwp is the Kahler form of this metric, then

_ddcéunm = HWP,

which is analogous to the situation for elliptic curves. We prove this result by using
the arithmetic Riemann-Roch theorem and results due to Tian [Ti 88] and Todorov
[To 89] which state that the period map of a marked, polarized K3 surface also
gives a potential for the Weil-Petersson metric.

By a marking ¢ of a K3 surface one means a choice of a canonical basis of the
second integral homology group H2(X,Z). It is known that when endowed with
the inner product coming from cup product, the second integral homology group
H3(X,Z) is an even, unimodular lattice of rank 22 and signature (3,19). All such
lattices are isomorphic, and a marking amounts to a choice of an isomorphism of
Hy(X,Z) with a fixed lattice A satisfying these properties. The triple (X, L, ¢) is
called a marked, polarized I3 surface. One defines the degree to be the integer
d such that (L - L) = 2d — 2. It was shown by Piatetski-Shapiro and Shafarevich

that there exists a universal family of such triples, namely marked, polarized X3
surfaces of a fixed degree d, which we shall denote by

r: X = M¢

mp?

where Mﬁlp is called the moduli space. Additional work due to Kulikov shows that

the moduli space M4

mp can be represented by a Zariski open subset of the hermitian
symmetric space

hgs = S0O(2,19)/(S0O(2) x SO(19)).
By results due to Kulikov, there is a discrete subgroup I'y of SO(2,19) such that
Mg is a quotient
M[Fi) = Pd\Mip:
with natural projection
Tunm anp — Mg,

which is the map that discards the marking. Hencé, our unmarked discriminant
Sunm 18 @ real-valued function on a Zariski open subset Mg of the T'g\ hks;.

In order to define a marked discriminant on anp, we need to choose a non-
vanishing holomorphically varying family of holomorphic 2-forms on M¢ . which

mp?
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1s the analogue of chosing the family of forms {dz} on the moduli space of marked
elliptic curves. We choose such a family of forms {n} as follows.

Since anp is a Zariski open subset of a bounded hermitian symmetric domain,
the sheaf ”*)CX/M%,, is trivial. Kulikov shows that the boundary of I'y\ hk; relative
to the Baily-Borel compactification consists of points which can be represented by
two types of singular surfaces: P? noded along two distinct imbeddings of P! with a
node; and P? noded along distinct two imbeddings of a non-singular elliptic curve.

We show that from any point in p € anp, we can embed a disc D, into /\;fg

that D, contains m,,,m(p) and the point in ./\7[; corresponding to P? noded along
two imbeddings of unimoded P!, and such that D, contains no other boundary
point of Mg. There exists a unique, up to sign, holomorphically varying family of
holomorphic 2-forms {n} = {n(x, 1 ¢)} such that, when restricted to the 1 parameter
family of forms on the family of K3 surfaces over Dp, with a family of markings
constructed from the Clemens map as in Griffiths’s paper [Gr 70], 9(x,1,¢) limits to
a non-zero form on P? whose Poincaré residue along the node P! is a meromorphic

form on P! with residue £1 at the nodes of P!. A construction of this family of
forms is given in §5.

With the 2-form nx 4, we define, for each (X, L, ¢),the L? norm

Inx.Laolli: = —/n(,v,L,¢) AT(X,L,¢)-
X

If (X, L, ¢) is a marked, polarized '3 surface, we define the (logarithmic) marked
discriminant to be

5mar((Xa L’ (,‘b), n) = tOI’“(X) - lOg (VOIII(X) : ll’?(X,L,qb)“%z) g

Using the arithmetic Riemann-Roch theorem, we show that there exists a non-
vanishing holomorphic function f on anp such that

Smar =10g]f|2.

Konds proved that the commutator group [['4,I'g] is a finite group of order 16.

Therefore, we have that 32 is a non-vanishing, holomorphic modular form on M fnp

of weight 32 with respect to the action by the discrete group I'4. These results are
presented in §2.

In §3 we consider the special case of Kummer surfaces. Recall that a Kummer
surface is a particular example of a K3 surface obtained from an abelian surface
A by taking the quotient of A by the involution z — —z, then blowing up the 16
singular points. Any Kummer surface can be given a marking from the lattice of a
marked abelian surface, and, in addition, a polarization of degree 2 coming from the
theta divisor on the abelian surface. In the special case when the Kummer surface
comes from a product of elliptic curves, we show that the marked discrminant of
the Kummer surface is, up to a constant depending solely on the degree of the
polarization, the product of the discriminants of the elliptic curves.

In §4 we consider the behavior of our marked and unmarked discriminants for
degenerating families of K'3 surfaces. As stated above, Kulikov determined the
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types of degenerating families of polarized, algebraic K'3 surfaces that exist. For
any point in M g, we define a '3 modular parameter ¢ which is analogous to the

elliptic modular parameter g, = exp(27i7) on the upper half plane h. Using the
K3 modular parameter, we determine the asymptotic behavior of our marked and
unmarked K3 discriminants for a degenerating one parameter family of algebraic
K3 surfaces {(Xy, L, ¢¢)} with ¢t — 0. For example, if the limit '3 surface is P?
noded along two embeddings of a (marked) elliptic curve E, then the constant term
in the asymptotic expansion of the i3 discriminant is essentially the discriminant

of the elliptic curve E,. More precisely, there exist universal constants ¢; and ¢;
such that

610g5mar((Xt7Lta¢t)177!) = lOg I(I([XHLQ])I + Glog 5“1&1'(E7') + €1 + 0(1)7

and

6log dunm (X1, Le) = log |g([X, Le])| + 6 loglog |q([ X, Li])|
+ 6log dunm (Er) + c2 + o(1).

These formulas are analogous to known asymptotic expansions for the marked and
unmarked discriminants for elliptic curves.

As stated above, this paper concentrates on the analytic aspects of our K3
discriminants. In forthcoming papers, we will extend the analytic aspects of our
discriminants to define and study discriminants on Calabi-Yau manifolds and on
hyper-Kahlerian manifolds. In the case of the K3 discriminant, we will establish a
type of Kronecker’s limit formula which will relate our discriminant to the constant

term in an expansion of an Eisenstein series on anp. This result will use work of

Indik on non-holomorphic Eisenstein series on certain orthogonal groups. As stated
above, in the case of Kummer surfaces associated to products of elliptic curves, our
discriminant is essentially a product of the discriminants of the elliptic curves. So,
for this case, our analytic discriminant is essentially algebraic. In a future article
we will give an algebraic definition for our analytic discriminant.

While working on the results of this paper, the authors benefited from helpful
conversations with F. Bogomolov, J. Cogdell, S. Friedberg, D. Kazhdan, and S.
Lang. We thank these individuals for the assistance. We gratefully acknowledge
Lang’s assistance with the preparation of this manuscript. Finally, we wish to
extend thanks to R. Schulze-Pillot for pointing to an error in a previous version of
this manuscipt.
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§1. The Discriminant for an Elliptic Curve.

We begin our study of discriminants by reviewing the existing theory of analytic
discriminants for non-singular elliptic curves. The basic results of this section are
well established, but, as far as we know, have not been formulated in a manner that
readily extends to the setting of polarized K3 surfaces, which will be given in the
next section.

Throughout this section, we let E denote a connected, non-singular elliptic curve
that is defined over C. By a marking on £ we mean a choice of a canonical
basis L of the first homology group H;(F,Z), which has an intersection pairing of
signature (1,1). By the uniformization theorem, the marked elliptic curve (E, L)
can be realized as the complex plane C modulo the Z lattice that is generated by
the complex numbers 1 and 7 where 7 = a + ¢b with b > 0, so 7 is a point in the
upper half plane h. We shall denote the marked elliptic curve by E,. The marking
L then corresponds to the choice of cycles in Hy(E,,Z) given by the boundary of
the usual period parallelogram of E, in C spanned by 1 and 7. Throughout this
section we shall denote an elliptic curve by F and a marked elliptic curve by E,.

Let M, denote the moduli space of isomorphism classes of marked elliptic
curves with the requirement that an isomorphism preserves the complex structure
and the marking. The space Mupar can be realized as either the upper half plane
h or the open unit disc D in C under the analytic isomorphism

h->D
given by
T—1
T T,
T+
The space
Muynm = PSL(2,Z)\h (1.1)

parameterizes the isomorphism classes of unmarked elliptic curves. The moduli
space M mar possesses a natural invariant metric, called the Weil-Petersson met-
ric, which in the upper half plane model of Mp,,, can be expressed through the
positive (1, 1)-form

pwp = —dd°log(Im(r)). (1.2)

The form (1.2) is invariant under the action by PSL(2,Z), hence descends to a
metric on M, ;. The Weil-Petersson metric is characterized by the fact that My,
has constant Griffiths function (i.e., negative Gauss curvature) and the moduli space
(1.1) has volume 1/12.

Let K denote the canonical sheaf on E. Any positive (1,1)-form g on E induces
a metric p on the canonical sheaf X and, by duality, induces a (trivial) metric on
O, meaning the metric p is equal to the transition functions of O (see page 94 of
[La 87al]). If w denotes any non-zero holomorphic 1-form on E, then we have the
associated metric on K defined through the positive (1, 1)-form

p==—wAw (1.3)

t\j[«).

and volume

vol, (E) = | p. (1.4)
/
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The metric (1.3) is called a flat metric on E since such a metric has Griffiths
function that is identically zero (see page 100 of [La 87al]). Any two flat metrics are
real, non-zero, scalar multiples of each other, which corresponds to the fact that
any two non-zero holomorpﬁic one-forms scalar multiples of each other.

From the metric (1.3), we have an L?-norm of w, which is

2 _
lole = 5 [wna (15)
E

(see page 5 of [La 88]). There is a canonical choice of holomorphic 1-form w on any
marked, elliptic curve E,, namely

w =dz, (1.6)

where z 1s the standard local coordinate on the complex plane C. For this choice
of 1-form, we have '
dz||32 = %/dz A dz = Im(r). (1.7)
E.

The discussion given in [Fy 73], beginning on page 51, yields the following intrinsic
characterization of the form (1.6). Consider the degenerating family of unmarked
elliptic curves E, obtained by letting 7 — ic0 in (1.1) and |Re(r)| < 1/2. The limit
algebraic curve is holomorphically equivalent to a uninoded P!, which we denote
by P} 4. We can view P._, as P! with two distinct points p and ¢ identified. The
form (1.6) on E, varies holomorphically over the moduli space M ,m and limits to
a section of the canonical sheaf on P! , (see chapter 3 of [Fy 73]), which lifts to
a section of the line sheaf K(~p — ¢) on P!. The family of forms (1.6) is uniquely
characterized (up to sign) by the fact that the family varies holomorphically over
the moduli space (1.1) and limits to the meromorphic 1-form on P! with residue 1
at p and —1 at ¢.

Alternatively, the family (1.6) of holomorphically varying 1-forms can be de-
scribed as follows. Let E, be the degenerating family of marked elliptic curves
described above. Let {w,} be any holomorphically varying family of 1-forms, so w,
has two periods on E,. If we divide w, by the period of the vanishing cycle A in
H,(E,,Z), we obtain the family (1.6).

Since H°(E,K) = 1 for any elliptic curve E, two families of holomorphically
varying l-forms that vary over Mp,, differ by a multiplicative factor which is a
non-vanishing holomorphic function on My,,,. Hence if w is a family of holomorphic
1-forms that vary holomorphically over Mp,,,, the quantity

dd° log ||w]| 72

is well-defined. Combining this observation with (1.2) and (1.7) allows us to record
the following result.

Proposition 1.1. Let {w} be a family of holomorphic 1-forms that vary holo-
morphically over Mys,. Then we have

~dd®log ||wl|}a = pwp.



In other words, — log ||w||3. is a potential for the Weil-Petersson metric on M.

Let us now recall briefly the definition of analytic torsion and Quillen norms
associated to the trivial sheaf on F. This will lead natually to our definition of
discriminants associated to E,

Fix a positive (1,1)-form g on E and associated hermitian metric p on O. With
this data, there is a Laplacian A, that acts on the space of continuously twice-
differentiable sections of O. The Laplacian is positive and self-adjoint, and has-a
purely discrete spectrum. We denote the non-zero eigenvalues of &, by

0 < Aip) € Az(p) ..

By Weyl’s Law, we can define the spectral zeta function (,(s) for Re(s) suffi-
ciently large by .

e 17 dt
=1 0 1=1

The exponential sum in (1.8) is the trace of the heat kernel associated to the

Laplacian A, minus the integer h®(E, Q) = 1, which is equal to the dimension

of the zero eigenspace of A,. By the small time asymptotics of the heat kernel

(see [MP 49] or [See 67], for example), (,(s) has a meromorphic continuation to C

which is holomorphic at s = 0. The exponential of analytic torsion, also called
the determinant of the Laplacian, is defined by

det *A, = exp(—(,(0)).

The asterisk reflects the fact that the zero eigenvalues have been omitted in (1.8).

Theorem 1.2. Let p denote any flat metric on the elliptic curve E. Then the
quotient

det* A, /vol,(E)

is independent of the scale of the flat metric p on E, hence is an invariant of the
unmarked elliptic curve E.

Proof. Let u be any flat metric on E and ¢ € R*. Trivially we have
vole,(E) = ¢ - vol,(E).

By the definition of the Laplacian, the sequence of eigenvalues associated to A, is
related to the sequence of eigenvalues of A, through multiplication by the scalar

¢~ !. Therefore, we have
Cen(8) = *Culs),

from which we obtain the relation

det*Agy = %O det* A,
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Since u is a flat metric, the small time asymptotics of the heat kernel are of the

form
o0

—Ai(mt _ vol, (E) _ —c/t
J.=Z;e i e 14+ 0(e”*") ast—0,

for some positive constant ¢ (see page 149 of [Ch 84] or page 84 of [BGV 92)).

Combining this expansion with the proof of the meromorphic continuation of the
spectral zeta function (see, for example, section 1 of [JoLa 93]) yields

C#(O) = -1,
from which the theorem follows. 0O

Definition 1.3. Let E be an unmarked elliptic curve defined over C, and let
p denote any flat metric on E. The unmarked (logarithmic) discriminant

Sunm(E) of E is defined to be
dunm (E) = log [det* A, /vol,(E)] = —(,(0) = log vol,(E).
The unmarked (logarithmic) discriminant is a function
Sunm : Muam = R.

To continue, let us relate the unmarked discriminant to the Weil-Petersson met-
ric via Quillen norms, which we now describe. The determinant line detH(O)
associated to O is defined to be the 1-complex dimensional vector space

detH(O) = H°(E,0)Q [H'(E,0)]"!  H°(E,0) ® H°(E,K).

The above isomorphism is via Serre duality, which is an isometry of metrized line
sheaves (see page 97 of [De 88]). Let n denote a non-zero element of H°(E,Q),
which we can view as a constant function on F, and w denote a non-zero element
of H°(E,K), which we can view as a non-zero holomorphic 1-form on E. A metric
or norm on the line det H(O) is equivalent to the assignment of a length to the
element

Te=T=nAw

in det H(O). The square of the L*-norm on detH(Q) is defined by
1)1z = (1, n){w,w) = |nl*volu(E) - |lw]|Lz, (1.9)
and the square of the Quillen norm on detH(O) is defined by
TG = T2 - (det *A,) ™"
If we consider the marked elliptic curve E; and let w = dz, as in (1.6), and n = 1,
then
log | Tk, 1§ = —dunm(Er) +log |ldz||}z = —bunm(Er) + log(Im(r)).  (1.10)

The element Yk, in (1.9) is defined for a fixed marked elliptic curve E,. We
then view (1.10) as the function
Mmar = Ryo
given by
B [Tl

The following result shows that the unmarked discriminant can be used to obtain
a second potential for the Weil-Petersson metric on My,
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Theorem 1.4. Let {wg_} be a family of holomorphically varying 1-forms on
the moduli space Mo, Let Tg, = 1 Awg, where 1 corresponds to the constant
function 1 on E,. Then

dd° log || Y||% = 0.

Equivalently, we have
_ddc‘sunm = UWP-

In other words, —8yum Is a potential for the Weil-Petersson metric on Mynm.

Proof. The first assertion follows from the Quillen-Grothendieck-Riemann-Roch
theorem, using the fact that the canonical sheaf of an elliptic curve is trivial. The
second assertion follows from the first assertion, Proposition 1.1 and (1.7). There
are a number of references with general theorems that contain the statement of

Theorem 1.4, for example [BK 86] (see remark 12 on page 228), [BGS 87}, [Fa 92),
[FS 90], and [Qn 86]. The reader is referred to Theorem 3.10 of [Fy 92]. O

Corollary 1.5. There exists a holomorphic function f on h such that if E is
a marked elliptic and p is any flat metric on E., then

det” A, /[volu(Er)Im(r)] = |f(r)|".

Further, the function f!? is a non-vanishing weight 12 modular form on the

moduli space PSL(2,Z)\h.
Proof. The equation
dd®log (det* A, /[vol,(E;)Im(r)]) =0
follows directly from Theorem 1.4 and (1.9). Hence, locally on h the function
log (det* A, /[vol, (Er)Im(r))

is the real part of a holomorphic function, which we shall write as log f(7)? (see
page 82 of [Kr 82]). Since h is simply connected, log f(7)? is globally defined,

thus establishing the first assertion. It is immediate that f? is non-vanishing on
h. Finally, the invariance assertion follows from the observations that y,m is
PSL(2,Z) invariant and that the map

T = Im(7)

is of weight —2 with respect to action by the group PSL(2,Z). O

In Corollary 1.5, it is natural to consider the function f'? since the moduli space
Munm has precisely two elliptic points, with orders 2 and 3 (see page 6 of [La 76]
or page 86 of [Ser 73]). This point will be discussed further in §3.
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Definition 1.6. Let E, be a marked elliptic curve defined over C, and let
p denote any flat metric on E,;. The marked (logarithmic) discriminant
dmar(Er) is defined to be

6mar(ET') = log [det*A#/[VOIFI(ET)Im(T)“
= log | f()[*.

We also define
AIl'w,r = fw-

Let us now examine the asymptotic behavior of d,,m(E;) for a degenerating
family of elliptic curves obtained by letting 7 — oo and |Re(7)} < 1/2. By con-
sidering a contour integral for a fundamental domain for (1.1) in h, one shows, in
the notation of Corollary 1.5, that the function f(7)'? vanishes to first order as
T — 100 (see page 6 of [La 76] or page 85 of [Ser 73]). The asymptotic behavior
of the period ||dz||3, is given on page 53 of [Fy 73]. Combining these results with
Definition 1.6, we obtain the following theorem.

Theorem 1.7. Let {E;} denote the degenerating family of marked elliptic
curves obtained by letting T — too with |Re(7)| < 1/2. Let ¢ = exp(2ni7).
Then there exist constants c¢; and ¢, such that

68unm(Er) = log|g-| + 6loglog|q-| + 1 + o(1)

and

6amar(Er) = 10{5 |(IT| + ¢z + 0(1)

It is important to note that the asymptotics of dy5,n are independent of the

marking of E..

By combining (1.6), Corollary 1.5 and Definition 1.6, we obtain the following
realization of the analytic discriminant dynm(E-).

Theorem 1.8. There is a unique family of holomorphic 1-forms {wa. g, }, vary-
ing holomorphically over Mpa,, such that

1
6unm(Er) - 662 = log ”wﬁl',Er”%?'

Proof. Set C = e®2. Then, with notation as above, one sets
ware, (2) = C12. f(r)dz,

which is valid since f is non-vanishing on the simply connected space h. We then
have .
: -
log s 5, 12 = 5 [ ware A@are, = CVOI(r)PIn(r).

E
The rest follows from Corollary 1.5 and Definition 1.6. O

We shall call the form wa,, g, the Arakelov form on E;, and the corresponding
scale of the flat metric the Arakelov metric on the marked elliptic curve E.
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By Theorem 1.2 and Corollary 1.5, notice that if we scale the flat metric on the
marked elliptic curve E, so that

voly (E- )Im(r)[ f(7)] = 1,

then the determinant of the Laplacian is necessarily equal to 1. Such a scale of the
flat metric will be called the Ray-Singer metric (see page 174 of [RS 73]).

To conclude this section, let us express many of the above functions through
special functions. For any 7 € h, consider the function

A(T) = (2m)12e2miT ﬁ(l — g2minTy24, (1.11)

n=1

The function A(7) is, up to multiplicative constant, the unique cusp form of weight
12 with respect to the action on the symmetric space

h = SL(2,R)/SO(2)

by the arithmetic subgroup
I'=PSL(2,Z)

of the full group of isometries PSL(2,R) of h. We have chosen the scale in (1.11)
for algebraic significance. We use the notation

1Al(r) = (Im(r))*|A(7)].
The function A(7) can be realized as a special value of the Riemann theta function

o0
6(z) = 6(z,7) = Z exp(min®T + 2minz)

n=—o0

through the expression

[exp (”—;1) % (** 1)] Y M)A,

=

The Dedekind eta function 7(7) is a particular 24th root of A(7).

By carefully studying the asymptotic behavior of analytic torsion, one can show
that in Theorem 1.7 and Theorem 1.8 we have

c2 = —12log(2n)

(see [Jo 90] or [Wen 91]). The connection between the analytic function A(7) and
the discriminant of the marked elliptic curve E; is as follows. The Arakelov 1-form
is given by

WA, (2) = A(T)/12dz,

" f(7) = (@) A = (2m) n(r)? (1.12)
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(see [Fa 84], [Jo 90} or [Wen 91}). This yields the formula
60unm (Er) + 12log(27) = log ||A]|(7)

and

66mar(E7) + 12log(27) = log |Amar(Er)| + 12log(2r) = log |A(T)]

(see [Fy 92], [Jo 91], or [RS 73]). From this, one can directly verify Theorem 1.4
and Corollary 1.5, specifically we have

dd®log | Al| = —6pwp.

Finally, let us note an important number theoretic realization of the unmarked
discriminant. If we view E, as the zero set of a cubic equation in P?, given in
Weierstrass form, then A(7) is equal to the discriminant of the cubic (see page 214
of [Hu 87|, pages 43-45 of [La 87b], or pages 343-349 of [Sil 86]). In particular, if
our marked elliptic curve is defined over a number field K, then, up to a factor of
complex modulus one, the invariant ||wa, g, ||® is algebraic, and, in particular, is
expressible in terms of the primes of bad reduction of E over K.
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§2. The Discriminant for a Polarized K3 Surface.

Having established various analytic properties for marked and unmarked dis-
criminants associated to elliptic curves, we now proceed to develop an analogous
theory for polarized algebraic K3 surfaces. In this section we will define the marked
and unmarked discriminants associated to polarized K3 surfaces, following Defini-
tion 1.3 and Definition 1.6. Let us begin by recalling the properties of K3 surfaces
which will be necessary in our work. We refer to [Ast 85] for a more complete and
detailed discussion. For additional background material, we refer to the following
sources: (BPV 84], [Bea 83|, [Be 87|, [GH 78], [LP 80], or [Sh 67]. We will attempt
to address carefully, although quite briefly, all of the main points that we need.

A K3 surface X is a compact, connected complex analytic surface that is
regular, meaning ~' (X, 0) = 0, and its canonical sheaf K is trivial. Let

H*(X,C)= H*°(X,C)® H"(X,C)® H**(X,C)

be the Hodge decomposition. On any K3 surface X there is a unique {(up to
multiplicative constant) holomorphic and non-vanishing 2-form; choose such a form
w. The cohomology class

[w] € H*(X,C)

of w spans the subspace H2°(X, C) and satisfies the Riemann bilinear relations
W] [w]=0 and [w]-[®]>0. (2.1)

Equivalently, one can express (2.1) by

/wAw:O and /w/\15>0.

X X

Set
H"(X,R)= H"Y(X,C)n H*(X,R);

or equivalently
HYX,R)={ce H}X,R): ¢ [w] =0}.

We shall assume throughout that X 1s algebrazc.

A polarization of X is the choice of an ample line sheaf (or bundle) up to
isomorphism, or equivalently a divisor class for linear equivalence (see page 548 of
[PSS 71] or page 146 of [LP 80]). A pair (X, L) consisting of a I3 surface and a

polarization is called a polarized K3 surface. There is an integer d > 2 such that
(L-L)=2d -2,

and this integer is called the degree of the polarization.

Associated to a polarization, one has a Kahler form which is a rational multiple
of the pullback of the Fubini-Study form on P via a projective embedding induced
by a power of the ample divisor class. Let [L] be the cohomology class in H'1(X,R)
given by the imaginary part of this form. Yau ([Ya 78)]) proves that if an element [L]
of H1}(X,R) can be represented by a Kaher form, then it can be represented by a
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unique (up to multiplicative constant) Kahler form with zero Ricci curvature, called
compatible with the polarization. Such forms are called Kahler-Einstein
forms. Hence, one has a unique (up to multiplicative constant) Kahler-Einstein
form for every polarized K 3 surface (X, L), which yields a picture which is analogous
to the existence of a flat metric on every elliptic curve. Throughout this section, the
only metrics that we consider are the Kahler-Einstein metrics, and these metrics
will be represented by a Kahler-Einstein (1, 1) form pu.

A relation between a Kahler-Einstein form g and the holomorphic 2-form w on
X comes from Bochner’s principle, which implies that any holomorphic tensor on
a Kahler manifold X with a Kahler-Einstein form is parallel with respect to the
Levi-Civita connection of the Kahler-Einstein form, meaning

Vuw=20

(see Theorem 6.1 on page 119 of [KM 71| or page 194 of (GHL 90]). As a result,
the volume element vol, associated to the Kahler-Einstein form ¢ can be realized
as

vol, = —w A, (2.2)

for some w € H9(X,K), where K is the canonical sheaf. The volume of X is given

by
vol,(X) = —/w Ao = |jw|?-.

1\'

By (2.2), the choice of a scale of the Kahler-Einstein form p on X compatible with
a given polarization L determines the scale of a holomorphic 2-form w € H°(X, K).

From Noether’s formula (see page 9 of [Bea 83] or page 438 of [GH 78]}, it can be
shown that the second integral homology group H. (X, Z) has dimension hy(X,Z) =
22. The group H3(X, Z) is torsion-free (see page 212 of [Sh 67]) and, when endowed
with the symmetric bilinear form given by cup product, is an even unimodular
lattice of signature (3,19). From the structure theorem of even unimodular lattices
(see page 54 of [Ser 73]), there exists a basis

¢ ={v,-.., 722}
of Hy(X,Z) such that the intersection matrix @ = (v; - 7;) is block diagonal of the
form
Q=HaEZ, (2.3)

where H is the 2 x 2 hyperbolic matrix and Ejg is the 8 x 8 matrix corresponding
to the root system of type Fg (see page 52 of [Se 73|). Any basis ¢ of Hz(X,Z)
satisfying (2.3) will be called a canonical basis. We shall call the pair (X, ¢) a
marked K3 surface if X is a K3 surface and ¢ is a canonical basis of Hy(X,Z).
Two canonical bases of Hy(X, Z) differ by the action of an element of SOg(3,19; Z).
If X is polarization in addition, we call the triple (X, L, ¢) a marked, polarized,
K3 surface.

Associated to every marked K3 surface and w € H°(X,K), one has a period
mapping

7*—)]&; for'yGHg(X,Z). (2.4)
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If 7y is an algebraic homology cycle, then the integral in (2.4) is zero. If X is marked
with a canonical basis of homology ¢, then the point

wxma=(]%uwfw)epﬂ (2.5)

is the period associated to the marked K3 surface (X, ¢). By the Riemann bilinear
relations (2.1), the period (2.5) can be viewed as a point in the space

Q={z€PAQC)(22) =0,(2,2) >0} (2.6)
In fact, the Riemann bilinear relations (2.3) can be reformulated as follows. Let

Q= (vi )

be the symmetric matrix defined by the intersection of the cycles +; which form

a canonical basis of Hy(X,Z). Then the bilinear relations are equivalent to the
statements

P(X;9) Q- "P(X;¢) =0, and $(X;4)-Q B(X;¢)>0.  (27)
From (2.7) one can show that (2.6) can be realized as
2= 5006(3,19)/50(2) x SO(1,19).

At this point, one is led to consider the image of the period mapping into the space
§2, when considering marked K3 surfaces and when considering marked, polarized
K3 surfaces.

Let Y — D be a family of non-singular K3 surfaces over a polycylinder D. As
a C° manifold, Y is diffeomorphic to D x Y, where Y is a fixed K3 surface (see
page 257 of [BPV 84]). It follows that if we choose a marking of one fibre then
we have marked all Y, in the family Y — D, where t € D. It is a theorem, due
to Tiurina, Kodaira, Andreotti, and A. Weil, that if we choose w = w; to vary
holomorphically for ¢ € D, then the period map per : D — £ is holomorphic on
D. The local Torelli theorem for I3 surfaces asserts that the periods give local
moduli for small deformations of a given I3 surface (see, for example, [Ko 64] and
[PSS 71) as well as [Lo 80] and page 254 of [BPV]).

A global Torelli theorem for marked, polarized K3 surfaces was first given by
Piatetski-Shapiro and Shafarevich (see [PSS 71] or [Lo 80], {LP 80], and [Sh 67]). In

[PSS 71] it is proved that a moduli space anp of marked, polarized algebraic K3

surfaces of degree d exists and is a 19-dimensional complex manifold. Moreover, as
discussed by Piatetski-Shapiro and Shafarevich, there is a universal family

Y d
A — MO

of marked, polarized, algebraic K3 surfaces of degree d, from which one can define

the period map
d
mp

per: M° — Q,
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as follows. From the definition of the polarized I3 surface (X, L), [L] is a class of
type (1,1) with respect to the complex structure, so

w]-[L]=0 for we H°X,K).
Let A be the lattice H2(X,Z) in H%(X,R), and let H be the hyperplane
H={2e P(AQ C)|(z,[L]) =0}.

Define
L, =HnQ.

Then
anp =HNQ=50(2,19)/(SO(2) x SO(19)).

The global Torelli theorem for marked, polarized, algebraic J{'3 surfaces of degree
d asserts that the image of the period map lies'in Qﬁlp, and that the period map
is a holomorphic embedding. In particular, a marked, polarized, algebraic K3
surface of degree d is uniquely determined by its periods, and the image of My,
in  is a countable union of analytic submanifolds, indexed by the degree d of the

polarization.

The global Torelli theorem, together with results due to Kulikov [Ku 77}, show
that there is a discrete subgroup I'g of SO(2, 19) such that I‘d\anp contains I"d\anp
as a Zariski open subset, and this subset, which we denote by M g is a coarse moduli
space for polarized K3 surfaces of degree d without regard to marking. Thus

ME =T\ M

mp*
For further discussion, see also [Lo 80], [LP 80], [PeP 81], [Siu 83], and [To 80].

Remark 1. By using results due to Kobayashi-Todorov [T 89], one can analyze
the points in Qﬁlp which are not in Mﬁ,p. These points correspond to morphisms
¥ : X = X# where X# is a singular surface with only isolated double points
which come from blowing down (—2)-curves on the K3 surface. A further analysis
of this topic, and its connection with the results in this paper, will be considered
elsewhere.

As in the case of elliptic curves, there exists a canonical metric called the Weil-
Petersson metric on the moduli space Mﬁip. We give the definition in a manner
similar to that of §1.

Since H°(X,K) = 1 for any marked, polarized, algebraic K3 surface X of degree
d, two families of holomorphically varying 2-forms on K3 surfaces that vary over
Mﬁip differ by a multiplicative factor which is a non-vanishing holomorphic function

on M fup. Hence if w is a family of holomorphic 2-forms that vary holomorphically
over M4, the quantity

dd® log jjwl|2
is a well-defined closed (1,1) form. We define the Weil-Petersson metric on
Mﬁlp to be the Kahler metric corresponding to the Iahler form

pwp = —dd°log [wlZs,



18

which we call the Weil-Petersson form. Thus, by definition, —log||wl||3; is a
potential for the Weil-Petersson metric on anp. In an appendix to this section

we shall recall the definition of the Weil-Petersson metric given more classically in
terms of harmonic forms and deformation theory. However, we emphasize here that
only the definition we have given will be used in the present paper.

Next we recall the definition of analytic torsion associated to the trivial sheaf O
on X, from which we will obtain our definition of the unmarked discriminant.

Let (X, L) be a polarized, algebraic K3 surface of degree d, with compatible

Kahler-Einstein form p. Let d denote the Cauchy-Riemann operator associated to
the Dolbeault complex

o Q0T QO Q0

where, as above, %7 is the sheaf of smooth forms of type (0, q) with coefficients in
the trivial sheaf O, so

0% = 9,
Relative to the inner product of sections on K9, which is induced by the chosen

form p, the operator 0 admits a formal adjoint, wh1ch we shall denote by *. The
Laplacians we study are the operators of the form

Ay =8,00_, +3:5,
It is classical that A, has a discrete spectrum with associated eigensections that

form an orthonormal basis of L? sections of K9. Let us denote the non-zero eigen-
values of A, by the sequence

0 < AP0 < AP <

Define the spectral zeta function associated to A, to be

()= AP (), (2.8)

k=1
and the full spectral zeta function associated to O to be
2
Culs) = D (=1)7¢{P(s)
q=0
o0
qq/ [TrK,(X,K9)(t) — (X, O)] t" (2.9)

‘1—0 0

where TrI(, denote the trace of the appropriate heat kernel. By Weyl’s law, (2.8)
converges for Re(s) sufficiently large, and by Seeley’s theorem [See 67|, the series
(2.9) has a.meromorphic continuation to all s which is holomorphic in a neighbor-

hood of s = 0. Following Ray and Singer [RS 73], the analytic torsion associated
to O is defined by

tor, (X) = —¢,(0) = =D _(-1)°q (q)(s)

a=0 )
g=0

The analogue of Theorem 1.2 can now be stated.
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Theorem 2.1. Let (X, L) be a polarized, algebraic K'3 surface of degree d, and
let u be any compatible Kihler-Einstein form. Then for any ¢ € R*, we have

tor, (X)) — log vol,(X') = torc.,(X) — log vole., (X).

In other words, the quantity tor,(X) — logvol,(X) is an invariant of the polar-
ized, algebraic K3 surface (X, L).

Proof. The proof is almost identical to that of Theorem 1.2, but will be repeated
here for clarity. Let u be any Kahler-Einstein form on (X, L) compatible with the

polarization, and ¢ € R*. Trivially we have
vole. . (X) = ¢*vol, (X).

By definition of the Laplacian, the sequence of eigenvalues associated to A.., are
related to the sequence of eigenvalues of A, through multiplication by the scalar
c~!. Therefore, we have

Conls) = cCuls),

from which we obtain the relation
—Ceu(0) = =Cu(0) log ¢ — €, (0).
Since the form u is Ricci flat, Seeley’s theorem ([Se 67)) states

_ vol, (X)

TeK(X,K9)(t) = (ant)? +0@tY) ast—0,

for any N > 0 (see also page 150 of [Ch 84] or page 84 of [BGV 92]). From the
proof of the meromorphic continuation of the zeta function (see [JoLa 93}), this

implies that
2

Cu(0) = =D (~1)4gh*(X, 0) = -2,

¢=0
from which the theorem follows. O

Definition 2.2. Let (X, L) be a polarized, algebraic K'3 surface of degree d,
and let 1 denote any Kahler-Einstein form compatible with the polarization.
The unmarked (logarithmic) discriminant &,,n, ((X, L)) of (X, L) is defined
to be

Sunm (X, L) = tor,(X) — logvol,(X).

As in the case of elliptic curves, the unmarked (logarithmic) discriminant is an
invariant associated to any polarized, algebraic K3 surface, hence is a function on
Mg and should be written as

6unm(X7 L) = Junm([Xa L])

To continue, we shall describe another potential for the Weil-Petersson metric
via Quillen norms, analogous to Theorem 1.4, which will lead to our definition of
the marked (logarithmic) discriminant.
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For any marked, polarized, algebraic K3 surface .(X, L,¢) of degree d, the de-

terminant line detH(O) associated to the trivial sheaf O is defined to be the
1-complex dimensional vector space

detH(O) = det HO(X,0) @ detH (X, 0)~! ® det H2(X, O).

Since X is a K3 surface, the cohomology group H!(X, Q) is trivial, hence the vector
space detH!(X, O) is canonically isomorphic to C, which yields the isomorphism

det H(Q) = detH° (X, 0) ® detH*(X, Q)
=~ detH°(X,0) ® [detH°(X,K)] ™, (2.10)
where the isomorphism in (2.10) comes from Serre duality. Let n denote a non-
zero element of H(X, ), which we can view as a constant function on X, and

let w denote a non-zero element of H°(X,K), which we can view as a non-zero

holomorphic 2-form on X. A metric or norm on the line det H(Q) is equivalent to
the assignment of a length to the element

T=npAw™! | (2.11)
in detH(®). The square of the L2-norm on detH(O) is defined by
ITNZ2 = ), w) ™ = [nl*volu(X) - lwll 73,
and the square of the Quillen norm on detH(Q) is defined by
TG = 17172 - exp(toru(X)).

If =1, we have :
log ]|T||2Q = —dunm (X, L) — log [[w|i3.. (2.12)

The element T in (2.11) is defined for a fixed marked, polarized, algebraic K3
surface (X, L, ¢) of degree d. When necessary, we shall write this element as

T=Tx,1.6)-
We then view (2.12) as the function
M:.inp — R>0

given by
(X, L, ¢) = I Tx, 2,05

The following result, which is analogous to Theorem 1.4, shows that the un-
marked discriminant can be used to obtain a potential for the Weil-Petersson metric

on M2 .
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Theorem 2.3. Let {w(x 14} be a family of holomorphically varying 2-forms

on the moduli space M]‘ip,

to the constant function 1. Then

andlet T x g4 =1A w(_«\%,L.M’ where 1 corresponds

dd®log ||'I‘||E, = 2uwp.

Equivalently, we have
—ddSyom = HWP-

In other words, —6,,m is a potential for the Weil-Petersson metric on Mf’np.

Proof. As in Theorem 1.4, this result follows from the Quillen-Grothendieck-
Riemann-Roch theorem, using the fact that the canonical sheaf of a /{3 surface is
trivial, the second Chern class 011(2)(7')() of the tangent sheaf 7Tx integrates to 24
(see page 46 of [Ast 85] or page 590 of [GH 78]), and that the degree two component
of the Todd class of Tx is

td®(Tx) = 11—2 (b (Tx))? + b®(Tx)) = fﬁch(”(”?\')

(see page 20 of [FL 85]). The second assertion follows from the first assertion,
definition of the Weil-Petersson form, and (2.12). For further details, see page 330
of [To 88] or pages 164-165 of [FS 90], which references [BGS 87| (see also the
general arithmetic Riemann-Roch theorem for the full Chern character, as stated
in [Fa 92]). O

Corollary 2.4. Let {wx,1,6} be a holomorphic family of holomorphic 2-forms
over Mg,p. Then there exists a non-vanishing holomorphic function f, = f on

anp such that if (X, L, ¢) is a marked, polarized, algebraic K3 surface of degree
d and p is any compatible Kahler-Einstein form, then

bor, (X) = log(vol,(X)lwx,z.ll32) = logfu(X, L, #)[*.

The function |f,| varies like a modular form of weight 2 on Mﬁlp with respect
to the discrete arithmetic subgroup I'y.

Proof. The proof is immediate from the definition of the Weil-Petersson form and
Theorem 2.3, following the pattern of the proof of Corollary 1.5. The computation
of the weight of f comes from the invariance of

|ful X, L) lwx 1,6l 22

on anp with respect to the marking of (X, L). O

Remark 2. In [Ko 91] it is shown that the group I'y/[T4,T4] is a finite group
of order 16. Therefore, the function f3? is a non-vanishing holomorphic modular
form on Mﬁp of weight 32 with respect to I'y.

Remark 3. In a subsequent paper, we will show that f extends to a holomorphic
function on the symmetric space anp which vanishes on the complement of Mﬁlp.
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This will allow us to give an algebraic realization of our discriminant in terms of
automorphic forms on S0(2,19).

From the definition of the Weil-Peterson form we see that the function f in
Corollary 2.4 does not depend on the scale of the Kahler-Einstein forms u, hence
is a function of the marked, polarized, algebraic K3 surface (X, L, ¢) and the holo-
morphic family of holomorphic 2-forms w. For any marked elliptic curve, there is a
canonical choice of holomorphic 1-form, namely d=z.

Definition 2.5. Let (X, L, #) be any marked, polarized, algebraic {3 surface of
degree d. Let u denote any compatible Kahler-Einstein form, and let wx 1, 4 be
a holomorphic 2-form on (X, L, ¢). The marked (logarithmic) discriminant
Smarc([X, L, ¢],w) of (X, L, ¢) associated to the choice of wx |, 4 is defined to be
Smar([X, L, ¢},w) = tor, (X) — log(vol,(X)|wx, Ll 72)
= ]'Og |fw()(1 Lv¢)|2 '

We also define
Amar = flz-

In the next section we will study our discriminant for marked Kummer surfaces
of degree 2 as well as for certain Kummer surfaces of arbitrary degree associated
to abelian surfaces that are products of elliptic curves.

Appendix: To conclude this section, let us give the definition of the Weil-
Petersson metric via local deformation theory.

Let
w (X, L,8) — ME

be the universal family of marked, polarized, algebraic '3 surfaces of degree d. For
any t € M¢_ let {ys} be a C* family of Kihler-Einstein forms such that for every

mp?

te anp, ¢ is a Kahler-Einstein form on the polarized K3 surface (X, L;), where
(X¢, Ly) = 77 1(¢) and [Im(y,)] = L;. Let T; be the sheaf of holomorphic vector
fields on X,;. We define a hermitian metric on C®(X,,T; @ QV'") for all ¢ € Mﬁ,p
as follows. For each t € M fnp, 41t defines an isomorphism of sheaves

w0 — (7)Y ® (Q?*‘)V :
so we have a map
o c= (X Tie ) — o= (X (1) @ (%) ).
Let ¢1,¢2 € C*® (X, T ® 2%!) and define the hermitian inner product

(@1, P2)wp = /¢51 - ot(d2) - voly,,.
Xe

Foreach t € anp let

H(X,, T: @ ) C C=(X,, T: @ Q2
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be the harmonic subspace, and identify
Tyms, = H(X, T.@ ).

We now have defined a hermitian metric on the tangent space of anp. Any positive
scalar multiple of this metric will be called a Weil-Petersson metric.

The following result is from [To 89] and [Ti 88].

Theorem 2.6. There is a scalar multiple of the above metric such that the
associated (1,1)-form is equal to pwp.

For readers who are interested, the proof of Theorem 2.6 comes directly from
the results on page 641 of [Ti 88] and Theorem 2.6 of [To 89] (see also [Na 86] and
[Sch 85]).
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§3. The Discriminant for a Polarized Kummer Surface.

Let us now examine the discriminant defined in §2 considered as a function on
certain spaces of polarized Kummer surfaces of degree d. Recall that a Kummer
surface X is constructed as follows. Let A4 be a projective abelian surface, and let A
be the non-singular surface obtained by blowing up the 2-torsion points on A, so A
has 16 exceptional curves. The map z — —z of A to itself extends to an involution
of A (see, for example, page 99 of [Bea 83] or pages 171 and 246 of [BPV 84]), and
the quotient of A by this involution is the Kummer surface X associated to the

abelian surface A. It is a reasonably straightforward exercise to show that X is a
K3 surface (see page 99 of [Bea 83)).

The principal Siegel upper half space of dimension two, which we shall denote by
C,, consists of all 2 X 2 symmetric matrices { such that Im(§2) is positive definite
and all elementary divisors are 1. Let I3 be the 2 x 2 identity matrix. For any
Q € Cy, let L(§2) denote the Z lattice generated by the columns of I; and . Given
any Q € Cy, we have an associated projective abelian surface A(2) given by

A(Q) = C*/L(Q). (3.1)

The abelian surface (3.1) has a natural principal polarization corresponding to the
hermitian form H whose associated matrix is (Im(Q))~!. Throughout we shall
assume A(§2) is given this polarization, which induces a polarization L of degree 2
on the associated Kummer surface X.

The abelian surface (3.1) has a canonical basis of the 4 dimensional vector space
H1(A(Q),Z) given by the boundary of the period parallelogram in C? spanned
by the columns of I; and Q. In an appendix to §5 of [PSS 71} by D. B. Fuchs,
it is shown that one can construct a canonical basis of Hy(X,Z) consisting of
the 16 exceptional curves obtained by blowing up the two torsion points of the
associated abelian surface, together with a particular basis of the 6 dimensional
space A’ Hy(A(R),Z). In order to obtain a marking of the Kummer surface, one
must take the 16 exceptional curves with exponent 1/2. Hence, the abelian surface
A(Q) induces a marking ¢ of the Kummer surface X.

Let .
7 A(Q) = (X, )

be the projection map from the surface fi( ?) to the marked Kummer surface (X, ¢).
From the realization (3.1) of the abelian surface A(2), we can express a generator
of the one complex dimensional vector space H°(A(£2),K) via the standard holo-

morphic coordinates z; and z; on C2. With these coordinates, we take our choice
of holomorphic 2-form on A(f2) to be

waQ)y = d21 A dZQ. (32)

In the case Q is diagonal, so A(Q) is a product of elliptic curves E, and E.,

the form (3.2) can be characterized as follows. Let A;, B; be a canonical basis of
H\(E;,Z), and let Ay, B2 be a canonical basis of Hy(Er,,Z). Then the form (3.2)
is determined by the condition that its period relative to the cycle A; x Az is 1.

From (3.2) we obtain a generator of H°(A(f2),K), which we write as wicq)- Let
wx,s be the holomorphic 2-form on (X, ¢) such that

*
Wiy =T WX,
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Lemma 3.1. Let A(R?) be a abelian surface with associated marked Kummer

surface (X, ¢). Then
lwx gll7z = 2det(Im(£2)).

Proof. Tt is easy to show

- / WAR) /\(:JA(Q) = 4det(Im(Q)).
A(Q)

From the formula,

_ 1 _
wx,oll7e = /“’X.ni’ ANoxe =7 ] waQ) A Da@)
X ’ A(D)

the lemma follows. O

Let us now study our discriminants for polarized, algebraic '3 surfaces when
restricted to the certain spaces of polarized Kummer surfaces. With the above
discussion and Definition 2.6, let us set the notation

Junm(Q) = Junm([Xaquﬁ]’wX,qb) (33)

and
Amar(‘Q) = Amar([Xy L;¢]>°~’/\'.¢)) (34)

where wy ¢ is the holomorphic 2-form from Lemma 3.1. We shall view (3.3) and
(3.4) as functions on Cz. From Definition 2.6 and Lemma 3.1, we have

exp (66unm(£2)) = |Amar ()] |w1\',¢||1L2?
= |Anar(Q)] - (2det(Im(Q)))6. (3.5)

A special Kummer surface is a Kummer surface corresponding to an abelian
surface which is a product of elliptic curves. The following theorem evaluates the
discriminant for special Kummer surfaces with arbitrary polarizations.

Theorem 3.2. For any positive integers dy and d,, there is a constant ¢ such
that the following holds. Let A(Q) be a projective abelian surface which is a
product of elliptic curves, so

A(Q) =E,; X E,,.
Let D = Dy, a4, be the divisor
D =di(E;, x{0})+d.({0} x Ep,)
on A(Q). Let X = K() be polarized by the image of D minus the union of the

(—2)-curves on X which lie on the image of D, which indeed is a polarization
L = Lg, a, of degree d = 2(dy + dz). Let X be given the marking induced
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from the abelian surface A(Q?). Then the marked discriminant associated to the
marked, polarized Kummer surface (X, L, ¢) of degree d is given by

Amar((X, Ly 8),wx,8) = cA(11)A(72).

Proof. Restrict the function Ay, of (3.4) to the space of principally polarized
abelian surfaces that are products of marked elliptic curves. Then the function f is
viewed as a non-vanishing holomorphic function on h x h which is whose absolute
value changes like a modular form of weight 2 with respect to action by the group
PSL(2,Z) x PSL(2,Z). One can show that any character y of the fundamental
group of the space

.M.,nm = PSL(2,Z)\h

is such that x® is trivial (see page 4 of [La 76] or page 78 of [Ser 73]). Hence, f°
is a modular form of weight 12. The space of such forms is one dimensional and is
generated by the Dedekind delta function A (see page 11 of [La 76| or page 89 of
[Ser 73])). O

Remark 1. Consider the case when a general lummer surface K () is given the
polarization which is the image of the principal theta polarization of the associated
abelian surface A({2), minus the exceptional curves which lie on the theta divisor.
If © is not equivalent to a diagonal matrix under the action of Sps(Z), then we
indeed have a polarization, and in the other cases one does not. One can show that
the marked K3 discriminant extends to zero across this subset of C2. Further, by
arguing as in the proof of Theorem 3.2, using results due to Mumford [Mu 67] and
Powell [Po 78], we can relate the A3 discriminant to the weight 10 cusp form x1o0,
defined in [Ig 62].

Immediately from Corollary 2.5 we have the following analogue of Theorem 1.8,
which is valid for all marked, polarized, algebraic K3 surfaces of degree d. We
state the result here rather than in §2 because we needed Theorem 3.2 in order to
determine the constant ¢ of interest.

Theorem 3.3. There is a unique family of holomorphic 2-forms {war (x,1,4)}>
varying holomorphically over Mdmpa, such that, if ¢ = ¢(1,d — 1) is the constant
defined in Theorem 3.2, we have

. 1
csunm()L:L) - EC = log ||wAr,(X,L,¢)”iz'

We shall call wa, (x,1,¢4) the Arakelov 2-form on the marked, polarized, alge-
braic K3 surface (X, L, ¢) of degree 2. By choosing a particular holomorphic 2-form,
we have determined a scale of the K&hler-Einstein (1, 1)-form compatible with the
given polarization. We shall call this (1,1)-form the Arakelov-Kahler-Einstein
form on (X, L, ¢).
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§4. Asymptotic Behavior of the /{3 Discriminant Under Degeneration.

In this section we will study the asymptotic behavior of the marked and un-
marked discriminants for a one dimensional family of marked, polarized K3 surfaces
of degree d. Analytically, any family of '3 surfaces is a flat proper map

T: X —>D (4.1)

from a threefold X to the unit disc D in C such that for all ¢ # 0 the fibres
X, = n~!(t) are non-singular algebraic K3 surfaces. The family is said to be a
polarized family if there is a flat proper map

7:5->D
from a surface S to the unit disc D such that for all ¢ # 0 the fibres Cy = #71(¢) are

non-singular algebraic curves that can be imbedded into the K3 surface X, and
such that the imbedded curve, also denoted by C4, is an ample divisor on X;.

The family is said to be a marked family if we can choose representatives of a
canonical basis ¢y of H,(X,,Z) that vary continuously for all £ # 0. This naturally
brings up the question of monodromy, which will be discussed later. Also, it is
convenient to assume that the family (4. 1) is semi-stable, meaning the special fibre
Xo is reduced and has only normal crossing singularities. Locally, such singularities
are of the form z722 = ¢, in the case of a developing double point, or z12223 = ¢, In
the case of a developing trlple point. By Mumford’s semi-stable reduction theorem
(see [Mu 73]), any family of K3 surfaces can be reduced to a semi-stable family. So,
throughout this paper, we shall assume all families of K'3 surfaces are semi-stable.

The main result of this section is an analogue of Theorem 1.7 which determines
the asymptotic behavior of the marked and unmarked discriminants for a family
of {3 surfaces. In fact, the asymptotic results obtained in this section are derived
from Theorem 1.7 by appealing to the fact that special Kummer surfaces are dense
in the moduli space of all marked, polarized K3 surfaces of degree d (see page 256
of [BPV 84]) and the explicit evaluations the marked and unmarked discriminants
obtained in Lemma 3.1 and Theorem 3.2.

An outline of the discussion of this section is as follows. After discussing back-
ground information concerning the topology of degenerating polarized K3 surfaces,
we shall determine a particular family of holomorphically varying holomorphic 2-
forms, and we will choose a particular marking of any given family of Kulikov family
of K3 surfaces. With these choices, we then c%etermine the asymptotics of the asso-
ciated marked discriminant as well as asymptotics of the associated L? norm of the
chosen family of 2-forms. By combining these asymptotic formulas, we then obtain
the asymptotics of the unmarked discriminants. In the end, one should note that
the asymptotics of the unmarked discriminant is independent of the given choices,
hence is determined solely by the Kulikov family being considered.

When considering a family of algebraic curves that degenerate to the boundary
of the Deligne-Mumford (stable) compactification of the moduli space of algebraic
curves of a fixed genus, one has a complete description of the asymptotic behavior of
a canonical basis of the first homology group as well as a dual basis of holomorphic
1-forms (see chapter 3 of [Fa 73]). One could present a similar theory for families
of '3 surfaces (see, for example, various results that appear in the articles [Cl 77],
[Gr 70], [Pe 77], [St 77} and [To 76]). We will leave the complete presentation of
this picture for a future article.

We begin with the following theorem which is due to Kulikov [Ku 77] and
Persson-Pinkham [PeP 81]. We quote directly from [PeP 81].
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Theorem 4.1. Let m : X — D be a semi-stable degeneration of surfaces such
that:

a) The generic fiber X, for t # 0 has trivial canonical sheaf:
b) All components of the special fiber X, are algebraic.

Then there exists a semi-stable modification ' : X' — D of w : X — D such
that the canonical sheaf of the total space X' is trivial.

Further details and background information concerning Theorem 4.1 are given in
[PeP 81] and [Ku 77]. A family of algebraic X3 surfaces that fulfills the above
theorem will be called a Kulikov family of K3 surfaces. Throughout this section
we will assume that our family of '3 surfaces is semi-stable and is such that the
canonical sheaf of the total space is trivial.

Since m(D*) = Z, it is not necessarily possible to attach a consistent set of
markings to the polarized surfaces in a Kulikov family. Attached to each Kulikov
family, there is a monodromy operator 7" which can be described explicitly by
selecting t € D* and viewing

T € Aut(Hz(Xy,2Z), Ly)

as the Picard-Lefschetz transformation obtained by transporting cycles around the
origin t = 0 in D while preserving the polarization class L,. The operator T is
quasi-unipotent, meaning (T™ — I)® = 0 for some positive integer n. If we assume
that the family of surfaces is semi-stable, then (T — I)* = 0, which is equivalent to
saying that its logarithm

1

N=logT=(T-1I) 5

(T —1)? (4.2)

is a nilpotent endomorphism of Hy(X,Z) satisfying N® = 0 (see [To 76]).

There are three types of Kulikov families of K3 surfaces which are distinguished
by the structure of the logarithm of the monodromy operator (4.2) of the family.
It was proved in [To 76] that in the case of a semi-stable family of K3 surfaces,
we have the following possiblities for the Jordan decomposition of the monodromy
operator (see also of Theorem II on page 957 of [Ku 77]).

. T=1,or N=0
II. T has two Jordan cells of dimension 2, or N2 =0and N # 0 ;
III. T has one Jordan cell of dimension 3, or N® = 0 and N? # 0.

In [Ku 77] Kulikov proves a classification theorem for Kulikov families of K3 sur-
faces. Let m : X — D be a semi-stable family of polarized K3 surfaces such that
the canonical sheaf of the total space X is trivial. Then we have the following
topological classification of Kulilov families.

I. Xy is smooth;

II. X is a chain of elliptic ruled surfaces with rational surfaces on either end,
Xo contains only double curves, and all double curves are (isomorphic)
elliptic curves, say E;

III. Xp has components that are all are rational surfaces whose double curves on
each component form a cycle of rational curves, Xy contains triple points,
and the dual graph of Xj is a triangulation of P!.
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For type II and type III families, the special fibre Xy is a singular algebraic variety,
and the family is said to be a degeneration. The non-triviality of the monodromy
operator for degenerating Kulikov families is analogous to the stmilar phenomenon
in the case of elliptic curves, and of degenerating algebraic curves whose limits
are irreducible uninoded stable curves. In these situations, one can not choose a
consistent basis of homology for all ¢ € D; rather, in order to consider degenerating
marked varieties, one must restrict ¢ to a sector D, of the form

Do ={t€D:0< arg(t) < a < 27}

(see page 51 of [Fa 73]).

From the Kulikov classification theorem and the discussion in the beginning of §3,
any limit point of a semi-stable family of '3 surfaces can be obtained by degener-
ating special Kummer surfaces. Let us assume that the family of Kummer surfaces
are marked with an admissible basis of homology, meaning a basis of homology
induced from the associated abelian surface

A(Q) = Er, X En,.
The types of degenerating Kulikov families occur in the following situations:

II. 75 is fixed and 7, — 700, with |Re(m)| < 1/2;
IIT 7, and T, approach o0, with |Re(r1)] < 1/2 and |Re(r;)| < 1/2.

In the case of type II degeneration, there is a marking induced on any elliptic curve
that lies along the node of the limit, singular K'3 surface.

The following result, due to Borel [Bo 72], Griffiths [Gr 70], Piatetski-Shapiro
and Shafarevich [PSS 71], relates degeneration and compactification.

Theorem 4.2. Let Mg be the Baily-Borel compactification of I'4\hgks, and

assume ™ : X — D is a Kulikov family of polarized, algebraic K3 surfaces of
degree d. Then the induced period map

. * d
per : D* = M|

extends to a holomorphic map of D into ./\;ig. If the family is of type II or III,
meaning 7w : X — D is a degeneration, then

per(0) € /\;fg \ Mg.

As in the case of elliptic curves, one must choose a family of holomorphically
varying forms for all M fnp in order to study the asymptotics of the marked discrim-
inant. In the case of Kummer surfaces, such a family {w(x 4)} was determined in
Lemma 3.1. The following result states that this family of forms has an extension
to a holomorphic family of holomorphic 2-forms over the entire moduli space M fnp.

Theorem 4.3. There exists a holomorphically varying family of holomorphic
2-forms {n} on M such that if {X,L,¢] € Mg, is the marked, polarized

Kummer surface corresponding to the abelian surface A(}) with arbitrary po-
larization, then

NX,¢) = W(X,¢)
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Outline of Proof. Let m: X — M¢ p be the universal family of marked, polarized
K3 surfaces of degree d. By the existence of the universal family, the sheaf

o ’
Kxjms,

is trivial. Therefore, there exists a globally defined non-zero section, which cor-
responds to the existence of a globally defined holomorphlcally varying family of
holomorphic 2-forms, say {fj}. The problem remains to scale this family appropri-
ately, which can be done as follows. Consider a degenerating Kulikov family of type
111, and let v be the vanishing cycle of homology (see [To 76] and pages 280-287 of
[(Gr 70}) . For any polarized K3 surface X, in this family, let ¢(t) be the period of
7} with respect to the vanishing cycle; that is,

60 = [

¥

From the vanishing cycle v in this particular Kulikov family, one can use the de-
formation theory of K3 surfaces to define a cycle for any marked, polarized K3
surface of degree d, hence ¢ extends to a well-defined holomorphic function on all
of anp. With this, we define the new family of holomorphic 2-forms by n = 7/¢. -
This new family of holomorphic 2-forms is well-defined pmvided ¢ 1s never zero,
which can be established by showing that any point in M mp lies on a degenerating
Kulikov family of type III. Details will be given in the next section. [

As a corollary of the proof of Theorem 4.3, we have the following result.

Corollary 4.4. Let {n} be the holomorphically varying family of holomorphic
2-forms defined in Theorem 4.3.

a) Let 7 : X — D be a degenerating Kulikov family of type II. Then n limits to
a non-zero meromorphic 2-form ng on Xy with singularities at any elliptic
curves E that lie along the nodes. Further, the Poincaré residue of 1 is a
non-vanishing holomorphic 1-form on E.

b) Let w : X — D be a degenerating Kulikov family of type III. Then n limits to
a non-zero meromorphic 2-form ng on Xo with singularities at the uninoded

rational curves P} . that lie along the nodes. Further, the Poincaré residue

of ng is a meromorphic 1-form on P! _, that has residues equal to 1 and —1.

In this way, we see that the family of forms given by Theorem 4.3 is quite
analogous to the family of forms {dz} we considered in the setting of elliptic curves.

Given a degenerating Kulikov family of polarized K3 surfaces defined over a
sector Dy, one needs to give a marklng to this family. As discussed in the above
proof of Theorem 4.3, this point is discussed in detail in [To 76] and in [Gr 70],
pages 280-284. We refer the reader to these references for futher details. Roughly,
one can argue as follows. First, note that in the special case of families of special
Kummer surfaces, a marking is induced from the associated abelian surface (see
discussion in the beginning of §3). By deforming this family, we can extend this
marking to any degenerating Kulikov family, defined over D,. Similarly, one can
argue that the limit of any marked degenerating Kulikov family of type II defined
over D, induces a marking on any elliptic curve lying at the node.
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Before we can prove the analogue of Theorem 1.7, we need to define a parameter
measuring the degeneration for any degenerating Kulikov family. In the case of
elliptic curves, one has the elliptic modular parameter

gr = exp(2miT).

The following definition establishes a g-parameter for any type III degenerating
Kulikov family of polarized, algebraic {3 surfaces of degree d.

As discussed above, if 7 : X — D is a degenerating Kulikov family of polarized
K3 surfaces of type III, then the monodromy operator T has a single Jordan cell
of dimension 3. Hence, there is a free, three-dimensional submodule W (X, L;) C
H,(Xy,Z) for which the action of the monodromy operator is unipotent. That is,
with respect to a continously varying basis {A,, By, C1} of W(X,, L), the action of
the monodromy is by the matrix

1 1 1/2
01 1
0 0 1
Thus, there is a unique invariant 1-dimensional submodule, generated by +A, for
t € D. Let 1y be as in Theorem 4.3. In §5 we will prove

/“m::tl.

Ay

The vanishing cycle is the cycle A; such that the above integral is equal to 1. An
element B, in W(X,, L,) for which T(B;) = B, + A, will be called a transverse
cycle. Two transverse cycles differ by an additive factor of the form nA; where n
is an integer.

Definition 4.5. Let 7 : X — D be a degenerating Kulikov family of polarized
K3 surfaces of degree d. Let A, be the vanishing cycle of homology, and let B,

be a transverse cycle. The I{3 modular parameter associated to this family
is defined by

gr(t) = exp | 2m: / Tt
B,
Equivalently, if 71 is any non-zero holomorphic 2-form on X, then

x(t) = exp 27ri/77//ﬁ .

Bf Ay

We call ¢r : D - C the K3 modular parameter associated to the Kulikov
family 7 : X — D. The reason why we call ¢, a parameter is that it is indeed a
holomorphic parameter at 0 in D, that is

4x(0)=0 and qL(0) #0.

This follows directly from the asymptotics of the periods as given in [Gr 70]. Also,
notice that ¢ is independent of the choice of transverse cycle.

Various properties of the J{3 modular parameter will be presented in a separate
article. For this paper, we only need the following result, whose proof is based on
results that will be obtained in §5.
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Theorem 4.6. Let m : X; — Dy and mp : X3 = Dy be two degenerating
Kulikov families of type III. Assume there exists t; € Dy and ty € Dy such that
77 (1) and 77" (t2) are isomorphic polarized K3 surfaces, which we shall call
(X,L). Then

qm (t1) = gny(t2).

Proof. In Lemma 5.7 we will show that the families of algebraic, polarized K3

surfaces
m: Xy =D} and m:X; =D,

are diffeomorphic. From the construction of the vanishing and transverse cycles via
the Clemens map (see §5 or [Gr 70]), any such diffeomorphism necessarily maps the
vanishing cycle to vanishing cycle. Hence, the choice of an A cycle is determined.
After the vanishing cycle has been determined, the choice of a transverse cycle is
then determined up to additive factors of the form nA. Finally, since Ho(X,,K)
is 1-dimensional over C, it follows that the modular parameter is independent of
the choice of the holomorphic 2-form from which one computes A and B periods.
Therefore, the g-parameter is well-defined and is independent of 7. 0O

By Theorem 4.6, we can write

q([Xe, Le]) = gx(t)

where m71(t) is isomorphic to the polarized K3 surface (X;,L;). It is shown in
§5 that any point in Mg can viewed as a point in some degenerating Kulikov
family of type III. Since the A and B periods are locally holomorphic, ¢ is also
holomorphic. As stated above, we shall investigate further properties of the i3
modular parameter ¢ in a forthcoming article.

In order to consider the asymptotic behavior of the marked discriminant on a
degenerating Kulikov family, we need to marked the family over each sector Dy. A
construction of such a marking is given on pages 280-284 of [Gr 70]. We will assume
this construction, and refer the reader to [Gr 70] for further details. However,
there is one important point which we need to emphasize. When considering a
degenerating Kulikov family of type II, the marking of the degenerating family
over any sector is such that any elliptic curve E which lies along a node of the
limit K3 surface has a natural induced marking. Hence, for type Il degenerations,
the nodes of the limit surface can be viewed as marked elliptic curves, which, by
Kulikov’s classification theorem and Griffiths construction of the family of markings,
are isomorphic marked elliptic curves, which we denote by E.. We refer to page
282 of [Gr 70] for a more detailed discussion.

With all this, we have the following theorem which determines the asymptotic
behavior of the marked discriminant for Kulikov families of K3 surfaces.

Theorem 4.7. There exist constants ¢, and c¢; which depend only on the degree
d such that the following asymptotic formulas hold:

I If r: X = D is a type I Kulikov family of marked, polarized K3 surfaces
of degree d, then

log dmar((Xt, Lt, ¢1),7t) = log dmar((Xo, Lo, ¢0),70) + o(1);

II. If 7 : X — D, is a type II Kulikov family of marked, polarized K3 surfaces
of degree d, then

6log dmar((Xt, L, b)), me) = log |q([Xe, Li])| + 6log Smac(Er) + e1 + o(1);
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III. Ifr: X — D, is a type 11l Kulikov family of marked, polarized K3 surfaces
of degree d, then

610g 61’!1&1'(()(1) Lta Q(’t))n) = 210g |(I([Xt, Lt])l +c2 + O(l)

Proof. Part 1 follows directly from the holomorphicity, hence continuity, of the
marked discriminant on Mdmp As for part II and part III, it suffices to consider
Kulikov families of special Kummer surfaces. This follows since the marked dis-
criminant is holomorphic, and M;{,p is a Zariski open subset of a domain of holo-
morphy, hence the asymptotic behavior of the unmarked discriminant out to o(1)
depends solely on the limit point of the degenerating family. Also, the marking of
a degenerating Kulikov family as given in [Gr 70] coincides with the marking of
the Kummer surfaces as described by Fuchs in [PSS 71), which is what we used to
calculate the marked discriminants in §3. Finally, as noted above, any limit point
can be obtained by considering degenerating families of special Kummer surfaces.

By the evaluation of the marked discriminant for such families, as given in Theorem
3.2, the result follows from Theorem 1.7. 0O

By the Riemann bilinear relations, Theorem 4.7 and Definition 2.5, it suffices
to understand the asymptotics of the periods of the holomorphic family of 2-forms
{n} for Kulikov families with admissible bases of homology in order to determine
the asymptotics of the unmarked K3 discriminant, which, in the end, will not
depend on the choice of homology. For the asymptotics of the periods of {5}, one
can cite the results from page 286 of [Gr 70]. Alternatively, as in Theorem 4.7,
one can reduce the problem in hand to understanding asymptotics of the periods
for special Kummer surfaces, since the period map is holomorphic. However, the
family of forms w(x ¢) on families of Kummer surfaces is such that the periods are
associated to the 16 exceptional curves are all equal to zero since these cycles are
algebraic. Therefore, from our definition of an admissible basis of homology, the
problem actually reduces to understanding the asymptotics of the periods of the
abelian surface, which are reasonably well-known (see page 53 of [Fa 73]).

With all this, we obtain the following result.

Theorem 4.8. There exist constants c; and ¢4 which depend only on the degree
d such that the following asymptotic formulas hold:

I If r : X = D is a type I Kulikov family of marked, polarized I{3 surfaces
of degree d, then

log ||m¢|%: = log ||mol|Z2 + o(1);

II. If m: X — D, is a type II Kulikov family of marked, polarized K3 surfaces
of degree d, then ,

log ||me|1» = loglog |q([Xy, Li])| +log Im(r) + ¢5 + o(1);

III. If r: X — Dgq is a type 111 Kulikov family of marked, polarized K3 surfaces
of degree d, then

log ||7¢]|%2 = 2log log |q([ Xy, L¢])| + cs + o(1).
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Proof. One uses the asymptotic formula for periods of degenerating algebraic
surfaces as given on page 287 of [Gr 70]. O

Finally, by combining Theorem 4.7 and Theorem 4.8, one has the following result
for the asymptotic behavior of the unmarked discriminant for Kulikov families of
polarized, algebraic K3 surfaces of degree d.

Theorem 4.9. There exist constants cs and ¢g which depend only on the degree
d such that the following asymptotic formulas hold:

I Ifn: X = D is a type I Kulikov family of polarized K3 surfaces of degree
d, then

10g 6unm(-Xt1 Lt) = 10g Junm (—X-OaLO) + 0(1);

II. If m: X — D, is a type 11 Kulikov family of polarized K3 surfaces of degree
d, then

6log dunm (X¢, L) =log |q([ X, L+t])| + 61loglog |g([ X+, Le])|
+ 6log dunm(Er) + cs + o(1);

III. If # : X — D, is a type III Kulikov family of polarized K3 surfaces of
degree d, then

6log dunm (X¢, Le) = 2loglq([X:, Le])| + 121oglog lq([X¢, Le])| + ¢ + o(1).

Even though we used Theorem 4.7 and Theorem 4.8 to prove Theorem 4.9, it is
important to note that the result in Theorem 4.9 is independent of the family of
markings on the Kulikov family of K3 surfaces.

Remark 1. Theorem 3.3 defines an Arakelov-Kahler-Einstein form on any
marked, polarized, algebraic '3 surface. One can use Theorem 4.9 to show that, in
an appropriate sense, the limiting behavior of the Arakelov-K&hler-Einstein form
for a degenerating Kulikov family of type II has a residue that is the Arakelov form
on elliptic curve that lies along the node.
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§5. Proof of Theorem 4.3

In this section, we will give details of the proof of Theorem 4.3. The proof is
given in three steps.

Step 1. The construction of a Kulikov family of type III consisting of special Kum-
mer surfaces.

Step 2. Let v be the vanishing invariant cycle of the Kulikov family constructed in
Step 1, which, by a deformation argument, extends to give a well-defined
choice of cycle for any marked, polarized K3 surface of degree d. Let X —

Mgp be the universal family of marked, polarized K3 surfaces of degree d,
and choose a non-zero section 7 of the trivial sheaf m.K y /e o Then the

function
o= [
5

is a holomorphic and non-vanishing on M fnp.

Step 3. From Step 2, let n = 7)/¢. Then if (X, L,¢) is a Kummer surface with
arbitrary polarization, we have, in the notation of §3, n(x ¢) = w(x,¢)-

To begin, we need to review the Clemens map associated to a family of algebraic
manifolds. For now, let 7 : ¥ — D be a family of algebraic manifolds of complex
dimension n defined over the unit disc D such that:

a) w is proper;
b) The singular fiber Yy = #~1(0) is a divisor with normal crossing;

¢) Yy is locally given by z;, - -- z;, = 0, where z;, are local coordinates on the
components D; of ¥p

Let YV; = 7r‘1(t). In [Cl 77], Clemens constructed a map hs : ¥; — Yp for each
t € D* with the following properties.

a) For z € Yy with z € D;, N--- N D;,, we have k! (z) 2 (S1)*;
b) k¢ : Yi\h;'(Sing(Yp)) & Yu\Sing(Yp); in other words, A is a diffcomorphism

away from the singular set of Yj.

With this, we can apply the main theorem [To 76] to obtain a description of the
topology of a degenerating Kulikov family of type II1I.

Theorem 5.1. Let m : Y — D degenerating Kulikov family of type III and -
write Yy = }’I)(l) U---u YO(").
a) Let G be the Gysin map
. (1) . () ()

defined by

Glu) =Y u- ) nyg?),
7]

where p - [Yb(i) N Yb(j)] means intersection of the cycles on Yy. Let

,), € ®‘<1H1()/0(') N YO(J)v Z)
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be such that v € Im(G). Then h;'(y) = (S1)? and h7!(y) € Hy(Y1, Z) is
homologically non-zero. In addition, let 1 € Ha(Y},Z) such that

T-hl () =1

Then T(hi*(v)) = A" (7) and T(r) = 7+ h7' (7).

b) Let I'(Yo) be the graph associated with Yo, and suppose H2(I'(Y0), Q) # 0.
Then for each triple point p = YD('O)OYO(”)OYO("), the 2-cycle h; ' (p) = (§1)?
is non-zero in Ho(Y,,Z). Further, there exist cycles v1,v2 € H2(Y3,Z) such

that
T(h7'(p)) = hy' (p),
T(m) =+ k7 (p),

and .
T(v)=v+m+ Eht_l(p)'

The cycle h;!(p) is called the vanishing cycle, and the cycle v, is called the
associated transverse cycle of the degenerating Kulikov family of type III.

Remark 1. Recall that the graph I'(Yp) associated to the singular K3 surface
Yo is constructed as follows. To each triple point YD(') N YD(") N Yo(k) we associate
a vertex. If two triple points coincide in YO(‘) N YO(J), we will join the vertices by
a segment. If three triple points lie on the same component YO(') of Yy, then we
connect these three points with a two dimension simplex (triangle).

We shall now construct a special family of K3 surfaces of type III. Let us start
with the Legrendre family of elliptic curves {E)}, defined by

Ex={y*=z(z—-1)(z-X):0< |A<1}.

We let Ay = Ey x E), and we let Iy be the associated Kummer surface.

Proposition 5.2. The family of Kummer surfaces {,} is a degenerating Ku-
likov family of K3 surfaces of type 11

Proof. For the Legrendre family of elliptic curves, there exists a marking of
the homology group Hy(E\,Z) given by the canonical basis 7,42 such that the
monodromy operator T of this family of elliptic curves acts by

Tivi)=v and T(y)=v+mn

(see chapter 3 of [Fa 73]). Let us now compute the monodromy operator T of the
associated family of Kummer surfaces {')}, with respect to the basis of homology
given by the (powers of the) 16 exceptional curves and the cycles v; X ;s with
t,7 = 1,2, where 7,72 1s a canonical basis of homology of the first factor E) of
Ay, and 1,74 is a canonical basis of homology of the second factor Ey of Ay. By
direct calculation, one can show that the monodromy operator T' of this family of
Kummer surfaces acts by

T(2(n x 7)) =2(m x 71
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Ty x v +72 X 71) = (1 X795 + 72 X 71) +2(m1 x 71),

and
T(yz X M) =7 XY+ (v2 X ¥ +71 X 93) +71 X7}

Hence, T satisfies (T — I)® = 0 and (T — I}? # 0, which shows that the family of
Kummer surfaces {I)} is a Kulikov family of type III. O

Let & — anp be the universal family of marked, polarized K3 surfaces of

degree d. As stated above, the existence of a universal family implies that the
sheaf 7. K x/ma . is a trivial. Hence, there exists a non-vanishing global section
i € HO My,
namely the existence of a non-zero holomorphically varying family of holomorphic
2-forms.

T K x/ma p). This observation now completes Step 1 stated above,

In order to prove Theorem 4.3, we need to properly scale the section 77 obtained
in Step 1. We do so by studying the asymptotics of the period of 7 on the vanishing
cycle of a Kulikov family of type III. For this, we need to define what is meant by
the canonical sheaf on a singular K3 surface which is the limit of a degenerating
Kulikov family of type III.

Definition 5.3. Let X — D be a semi-stable, degenerating Kulikov family of
type II or type III. We define the canonical sheaf of Xy over D by

K:,\’/‘D = K:Xt/‘po (lOg Xo)

By definition, this means:

a) If z € Xy is a triple point, then K x,p is locally generated by any one of the
forins
dz; A de

22

fori# jandi,j =1,2,3;

b) If z € Xo is a double point, then Kxp is locally generated by any one of
the forms
dz; A dZJ‘

<i

fori# 7andt,5=1,2,3;

Theorem 5.4. Let 7 : X — D be a degenerating family of Kulikov surfaces of
type III with vanishing cycle 7. Then the function

8= [

¥

is non-zero for all t € D*.

The proof will be established through several lemmas.
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Lemma 5.5. Let 7 : X — D be a degenerating Kulikov family of K3 surfaces.
Then the vector space H°(X, Kxp) is a free I'(D, Op) module of rank 1.

Proof. Consider the exact sequence

t
02 0x—>0x —>0x, 0,

where the inclusion map is given by multiplication by the local parameter ¢ € D.
We then obtain the sequence

= 0,

No

0~ Kx/p = Kx/p = Kx/p

from which we have the corresponding long exact sequence

0— H°(X,Kx/p) 4 HY(X,Kx/p) = HY (X, Kx/p| . )= H' (X, Kxp) LA

Xo
We shall first prove
H'(X,Kx/p)=0
by considering the Leray spectral sequence
H?(D,Rin.Kx/p) = HPYI(X, Kxip)-
From the Grauert direct image theorem, we have that the sheaf RIm.Kx;p is
coherent over D. Since D is a Stein manifold, we have
HP(D, RQTTJCX/'D) =0 for P 2 2,
so it remains to show that we have
H(D, Rl*.rr.}CX/p) =0

Steenbrink [St 76] proved that the sheaf RPm,Qx,p is a locally free sheaf, so,
in particular R'm,Kx/p is locally free. Since H'(X(, Q% ) = 0, it follows that
RIW*K)(l‘D = 0-

Hence, from the long exact sequence, we obtain that the restriction map

HO(X,K:X/'D) - HD(X(),KX/'D X )

0
is surjective. Also, from Serre duality we have the isomorphism

HO(Xo,}C,\'/'D X ) = Hz(xro,o‘\’o)-

Q

We can now put everything together to prove the lemma. From the exact se-
quence
t
0 Ox = Ox = Ox, =0,
we have the induced exact sequence

HY(Xo,0x,) = H¥(X,0x) 5 HY(X,0x) > H*(Xo,0x,) = 0.

The vector space H?(X,Ox) is a free modulo over ['(D, Op) of rank 1. In [To 76]

it is shown that H'(Xp,Ox,) = 0. By applying Serre duality, as above, we have
that the vector space

HO(X: KX/T) )
is locally free over I'(D, Op) and necessarily of rank 1, which was to be shown. O
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Lemma 5.6. Let X — D be a degenerating Kulikov family of polarized K3
surfaces of type III. Let vy € Ho(X,,Z) be the vanishing cycle. From Lemma
5,5, let

© € HY(X,Kx/p);

so, over D*, {@&} is a family of holomorphically varying holomorphic 2-forms.
Then for all t € D*, we have

&y # 0.

Tt
Proof. From the Clemens map, we have
v = ht—l(Dil ND;, ND;,).

Let p € D;, N D;, N D;, be the triple point, and let v; be a small circle around p
in Dy, ND;,. Let N(D;, 1 D;,) be a tubular neighborhood of D;, N D;, in D;, with
radius €. Let y9 = 77! (y1) where

™ N('D,‘O ﬂDil) — D;, ND;,

and @ is the boundary operator. It is immediate that v = S} x S! in D;,. It is
proved in [To 76) that the cycle A7 !(p) is homologically equivalent to hy (o) in

H>(X(,Z). Hence,
, /JJ; - f f:)t.
v ke (o)

Since @, € H°(X, K x|p), then near the triple point p we have

dzy Ad
Gy = f) D22 )
2129

where f(t) # 0 for t # 0, and @y is as in Definition 5.3. From this we have

/ o= [ = f ¢ = £(£)(2mi)*Res, (@) = +£(£)(2i)% # 0,

v R (p) h7 1 (v0)

which completes the proof of the lemma. O

Remark 2. From Lemma 5.5, any two elements of H°(X, X x,p) differ by a non-
zero multiplicative holomorphic function on D, which will appear as a multiplicative
factor in the calculation of the period over . So, since the period over v is non-
zero and holomorphic in £, one can divide by this perlod Further, the result after
dividing is also an element of H°(X, K x;p) which and is independent of the initial
choice of section.

With the above lemmas, we can complete the proof of Theorem 4.3 as follows.
Let
MTuom - M;inp — Mﬁ = Fd\anp
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be the projection obtained by ignoring the marking. For any point 7 € anp, we

will construct a disc D C Mg that contains mynm(7) and the point per(Xp), where
p: X — D is the degenerating Kulikov family of type III in Proposition 5.2, and
Xo = p~1(0). Next, we prove that over D we have a Kulikov family of type III,
say 7 : Y — D which, by Theorem 5.1(b), can be marked so that there exists a
vanishing cycle v that is necessarily invariant with respect to the action by the
monodromy operator. Let & € H°(Y,Ky/p) be a non-zero element. By Lemma
5.6, the period of @; relative to the vanishing cycle is non-zero for all ¢ # 0.

Now in D we can choose a sector of form
Do={t€D:0<arg(t) < a <2r}

with Tyam(7) € Dqg, and let DY be the component of 7} (D,) that contains 7.
Note that, by definition, D% C Mﬁip. If we restrict

it € HO (M, mhumKx/ms,,)

to DY, we will get a family of non-zero holomorphic 2-forms with 7, = g(¢)&; which,
by Lemma 5.6, is such that g(t) # 0 for ¢t # 0. We can then scale 77 by the period
with respect to the vanishing cycle, which is given by (2mi)?g(¢) times the period
of &, which is non-zero and holomorphic in ¢. In this way, we have appropriately

scaled 7} by dividing by the non-zero holomorphic function given by the period of
the vanishing cycle, thus obtaining a new element

ne HO(Mﬁl[n W:nm)CX/M‘,’np)'

By direct calculation, we will prove that the new family of holomorphically varying
holomorphic 2-forms {n} satisfies Theorem 4.3, thus completing our proof.

4

We shall now construct the family ¥ — D described above, Let Mg be the

Baily-Borel compactification of Mg, and let per : D — ./‘;tg be the period map
of the the degenerating family of Kummer surfaces constructed in Proposition 5.2.
Let Mg be the resolution of the singularities of M3, so

~d d _
is a divisor with normal crossing. Let
Tres : ME = MY
be the map of the resolution of the singularities, which is guaranteed by Hironaka’s
work. Consider an embedding 3
M7 o PV,

and let P? be a plane in PV with the following properties:

a) P? intersects .A;ig transversely;

b) Tuam(7) € PZ;
c) P? intersects h~!(per(Xg)) transversely.
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It is immediate that P? N A:ig = C is a non-singular curve, and we can find a
domain D C C with the following properties:

a) Tunm(7) € D;

b) D contains only one of the points in 7, (per(Xp)) N P? = 0, say g;

¢) D is holomorphically equivalent to {¢ : [¢| < 1}, so D\ {q} is holomorphically
equivalent to the punctured unit disc.

Now let Y* — D* be the family of polarized I3 surfaces of degree d over the
punctured disc D* C Mg. By Theorem 4.2, we can compactify this family to a
family ¥ — D which is degenerating Kulikov family.

Lemma 5.7. The family 7 : Y — D is of type III, and Y* — D* is diffeomor-
phic to the family {IN,} — D* from Proposition 5.3.

Proof. Let U be a polycylinder in J\;fg intersecting 7.1 (per(Xo)), and let Xy —

U be the corresponding family of polarized A3 surfaces. In fact, one can construct
the family Xy — U in the following manner.

Let

be the family of '3 surfaces over the semi-stable points of the Hilbert scheme
Hilbx/pno, which is the Hilbert scheme of K3 surfaces imbedded by the linear

system |3L|, where L is the polarization class. From the global Torelli theorem and
geometric invariant theory [MF 82] we have that the space

Hilb% pno/SLng+1(C)
is a projective variety and we have the universal family
X = Hilb% /pno/SLngt1(C).
By applying the global Torelli theorem, we obtain an embedding

MG < Hilb% pno/SLne+1(C) = Mg,

We can resolve the singularities of ./\;tg along Do, = .A;!g \ Mg obtaining new space
Z, and there exists a holomorphic map

Funm : Z — M2

such that Z \ Mg is a divisor with normal crossing. With all this, it is immedate

that -Frunm(zf') ~Zisa family of K3 surfaces over Z. From Borel’s theorem, one
has the existence of a holomorphic map

}3:2—}./\;[3

where J\;‘Ig is the Baily-Borel compactification. Hence, we may assume Z = J\:ig,
which is the resolution of singularities of the Baily-Borel compactification. There-

fore, we may assume U C Mg, from which we have the existence of the family
XU = U.
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From the construction of the degenerating family of Kummer surfaces given in
Proposition 5.2, it follows that we have D* ¢ M4, hence D C Mg‘ Further,

P
by the construction of the family ¥ — D, we may assume that the base discs

D and D only intersect at the point ¢ = per(Xy). Since both discs are subsets

of the polycylinder U \ (U N D), it follows that we can deform the family of
Kummer surfaces diffeomorphically to the family Y* — D*, which implies that the
monodromy operator T of Y* — D* has the same properties as that of the family
of Kummer surfaces. This completes the proof of the lemma. O

The deformation of the family 7 : Y — D to the degenerating Kulikov family of
Kummer surfaces of type III necessarily maps the vanishing cycle of one family to
the vanishing cycle of the other family. Hence, we can'extend the period mapping
&(77) of 7 with respect to the vanishing cycle of the family of Kummer surfaces from

Proposition 5.2 to all M fflp. This function is then holomorphic and, by Lemma 5.6,
is also non-zero. Therefore, we can consider the family of holomorphically varying

holomorphic 2-forms given by n = 7/¢(7).

Remark 3. As emphasized above, the construction of the family of forms 7
involves scaling a choice of family of forms 7 by the periods along the vanishing
cycle. It should be noted that since

dim HO(Mg, mKxjma) = 1,

where the dimension is over HO(Mg, O), the family of forms 7 is independent of
the initital choice of family of forms.

All that remains is to show that the family of forms {1} coincides with the family
of 2-forms given in §3 in the case that the underlying K3 surface is a Kummer
surfaces. Since the above proof is constructive, we shall follow the above set-up to
prove this last point.

In the notation of §3, let [{(§2) be the Kummer surface associated to the marked
abelian surface A(Q2). We can form a degenerating Kulikov family of type III by
first deforming the matrix € in the Siegel upper half space of dimension 2 to a
diagonal matrix of the form

T 0
o= (7 9).

Hence, K (1) is the special Kummer surface associated to E, x E,. In the notation
of Proposition 5.2, the vanishing invariant cycle « is given by

= 2(A X A’)a

where A and B denotes a canonical basis of Hy(E,,Z). Recall that any two holo-
morphic 2-forms on K (r) differ by a non-zero multiplicative scalar, and the period
of the form dz; A dzg on A(Q?) along A x A’ is 1. Hence, two forms on I, coincide
if their periods along the cycle associated to A x A’ coincide. Since the period of 5
along A x A’ is one, we conclude that the pullback of 7 is indeed dz; A dz,.

With all this, the proof of Theorem 4.3 is complete.
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