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Introduction and SUl1Ullary of Results.

In this paper we will define and study an analytic discriminant on the moduli
space of polarized algebraic 1(3 surfaces. The tools that we employ to define our
analytic discriminant in the case of [(3 surfaces include: the Piatetski-Shaprio and
Shafarevich proof [PSS 71] of aglobai Torelli theorem for marked, polarized, alge­
braic [(3 surfaces; I(ulikov's proof [I{u 77] of the surjectivity of the period mapping
and study of degenerating polarized, algebraic [(3 surfaces of a fixed degree; Yau's
theorem [Ya 78] on the existence of a I(ähler-Einstein metric lying in any Kähler
class; the analytic part of the arithmetic Riemann-Roch theorem, in various forms
as in [Fa 92], [FS 90] 01' [GS 92], for the universal faluily of marked, polarized, al­
gebraic [(3 surfaces of a fixed degree; our construction of a particular holomorphic
family of holomorphic 2-forn1s on the moduli space of marked, polarized, algebraic
1(3, which is analogous to the family of fornls {dz} for elliptic curves; and our
construction of a 1(3 luodular parameter, which is analogous to the q parameter
on the hyperbolic upper half plane.

We begin by showing that one can express the discriminant of an elliptic curve
through the Quillen luetric on the detenuinant line associated to the trivial sheaf
when metrized with a Rat lnetric. These caiculations lead us to our definition of an
analytic discriminant for a polarized, algebraic 1(3 surfaces, which we then show
has many properties analogous to those for the elliptic curve discriminant. Let UB

now summarize the results in this paper.

In §1 we recall the discriluinant for elliptic curves in a manner suitable for our
purposes. Let E denote an elliptic curve. By the uniforrnization theorem, there is
a Rat metric on E, which is unique up to a lllultiplicative constant. Choose such
ametrie {l, and let .a..Jl(E) be the associated Laplacian which acts on the space of
smooth functions on E. Let det· .a..Jl(E) be the non-zero part of the determinant of
the Laplacian .a.. Jl (E) obtained through the usual zeta function regularization. It
is elementary to show that the quotient

det· .a..Jl (E) /volJ, (E)

is independent of the scale of the Rat metric j.l, hence is an invariant of the elliptic
curve E. We define the (logarithmic) unmarked discriminant ounm(E) to be

Further, we show that the unmarked discriminant is a potential for the canonical
V/eil-Petersson metric 011 the llloduli space of elliptic curves. Specifically, if j.lWP
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denotes the VJ'eil-Petersson metric Oll the hyperbolic upper half plane h, then

Now, let us mark the elliptic curve E by choosing a canonical basis of the first
homology group BI (E, Z). With this, E can be viewed aB the complex plane C
modulo the Z lattice generated by 1 and T where TEe with Im(T) > 0, meaning
T is an element of h. We shall denote the marked elliptic curve by Er. Let z be the
usual holomorphic paranIetel' on C, so one can take dz to be a hololnorphic I-form
on Er, and we have

Im(T) = Il dz llI2 = ~Jdz !I dE.

Er

The function on h defined by

is, in fact, the (inverse square of the) Quillen norm of a section of the detenni­
nant line det B ((9) over Er. By applying the aritlunetic Riemann-Roch theorem,
and using the fact that the canonical sheaf on an elliptic curve is trivial, we have
that the above defined function on h is the absolute value of a non-vanishing holo­
morphic function. R,ecall that IIn{T) is lllodular of weight -2 with respect to the
action by the discrete subgroup PSL(2, Z), and also recall that the quotient space
PSL(2, Z)\h, has precisely two elliptic points of order 2 and 3. Using these facts,
we conclude that there exists a non-vanishing holomorphic function f on h which
is a modular form of weight 2 with respect to the action by PSL(2, Z) such that

It is known that the space of llon-vanishing modular farms af weight 12 with respect
to the action of PSL ('2, Z) on his 1 dimensional over C, and this is generated by the
Dedekind delta function.6.(T), which is the 24-th power of the Dedekind eta function
7] ( T ) . By direct COlllputation, Olle call show that f = 7]2, but, for the purposes of
this paper, it suffices to note that, at this point, we have shown / = C7]2, for some
constant c. Recall that if one views the elliptic curve Er as the zero set of a cubic
equation in p2, then the function /12 is a multiple of the discriminant of the cubic.
In this way, we have used Quillen llletrics to obtain a realization of the classical
discriminant of an elliptic curve.

We can now take thc sanle approach to define anel then study an analytic discrim­
inant associated to any polarizecl, algebraic ](3 sUlface. We use the term "analytic
discriminant" because in this article we only consider analytic properties of this
discriminant.

In §2 we present thc background material needed to define our analytic discriIn­
inant in the case of a polarizeel, algebraic ](3 surface. Recall that a ](3 surface is
a compact, complex, non-singular surface X, not necessarily algebraic, with trivial
canonical sheaf K, anel with B 1 (X, 0) = O. For this paper, a11 /(3 sUlfaces under
consideration are algebraic. A polarization of the (algebraic) !{3 surface is the
choice of an ample divisor class on X. There is an associated Kähler form {lFS

which is a rationallnultiple of the pu11back of the Fubilli-Study (1,1 )-forrn on pN
via a projective embedding of X induced by apower of the given ample divisor. By

... - . -.....
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Yau's theorem, there exists a Kähler-Einstein (1,1)-form, unique up to multipliea­
tive constant, which is cohomologolls to PFS. Choose aseale of this form, say p.
Using the associated I<ähler-Einstein metric, one can compute the analytic torsion
torJl(X) of the deternlinant Ene associated to the trivial sheaf O. We then prove
that the difference

torjL(X) -logvoljL(X)

is independent of the scale of the I<ähler-Einstein form j.l. We define the (loga­
rithlnic) unlnarked discrhllinant on (X, L) to be

Then ounm is a function 011 the 1110cluE space of pölarized [(3 surfaces of a fixed
degree d, denotecl by M~. As in the case of elliptic curves, our unularked discrimi-
nant is a potential for (a scaling of) the vVeil-Petersson lnetric on Mg. Specifically,
if j.lwp is the Kähler form of this lnetric, then

which is analogous to the situation for elliptic eurves. We prove this result by using
the arithmetic Rieulann-Roeh theorelll and results due to Tian [Ti 88] and Todorov
[To 89] whieh state that the period lnap of a lnarked, polarized 1(3 surface also
gives a potential for the Weil-Petersson metrie.

By a marking <p of a 1(3 surface one means a ehoice of a eanonieal basis of the
second integral homology group H2 (X, Z). It is known that when endowed with
the inner product conüng froul cup product, the second integral homology group
H2 (X, Z) is an even, llnilnodlliar lattice of rank 22 and signature (3,19). All such
laUices are isomorphie, and a luarking anlounts to a ehoiee of an isomorphism of
H2 (X, Z) wi th a fixed lat tice A satisfying these properties. The tripIe (X, L, 4» is
called a rnarked, polarized ](3 surface. üue defines the degree to be the integer
d such that (L . L) = 2d - 2. It was shown by Piatetski-Shapiro and Shafarevich
that there exists a universal falnily of such tripies, namely marked, polarized /(3
surfaces of a fixed degree d, which we shall denote by

where M~p is ealled the nl0duli space. Additional work due to KuEkov shows that
the modllii spaee M~np ean be represented by a Zariski open subset of the hermitian
symmetrie space

hK3 = 50(2, 19)/(50(2) X 50(19)).

By results due to I<:ulikov, there is a diserete subgroup r d of 50(2,19) such that
M~ is a quotient

with natural projeetion
7runm : M~p -t M~,

whieh is the luap that discards the luarking. Hence, our unnlarked discriminant
ounm is a real-valued fUl1ction on a Zaxiski open subset Mg of the r d \hK3 .

In order to define a marked discriminant on M~p, we need to choose a non­
vanishing holomorphically varying family of holomorphic 2-forms on M~p, whieh

I
J:

',,-L



4

is the analogue of chosing the falnily of forols {dz} on the lnoduli space of marked
elliptic curves. We choose such a farnily of fonns {7J} as follows.

Since M~p is a Zariski open subset of a bounded hermitian symmetrie domain,
the sheaf 7f*Je X / Md is trivia!. I(ulikov shows that the boundary of r d \ h K 3 relative

mp

to the Baily-Borel compactification consists of points which can be represented by
two types of singular surfaces: p2 noded along two distinct imbeddings of pI with a
node; and p2 noded along distinct two imbeddings of a non-singular elliptic curve.
We show that from any point in p E M~p, we can embed a disc V p into M~

that V p cont ains 7T" unm (p) and the point in .Alt ~ corresponding to P 2 noded along
two ilnbeddings of unilnoded pl, and such that V p contains no other boundary
point of Mg. There exists a unique, up to sign, holomorphieally varying farnily of
holomorphic 2-fonns {1]} = {17(X,L,fP}} such that, wheil restricted to the 1 parameter
family of forms on the fanüly of 1(3 surfaces over V p , with a family of Inarkings
constructed fronl thc Cielnens Inap as in Griffiths's paper [GI' 70], 1](X,L,fjJ) limits to
a non-zero form on p2 whose Poincare residue along the node pI is a merolnorphie
form on pi with residue ±l at the nodes of pI. A construetion of this family of
forms is given in §5.

\Vith the 2-form 17(x,L,f/J)' we define, for each (){, L, 4>),the L2 norm

11 77(x,L"p)lli2 = - J7/(X,L,<f» !I 7/(X,L,<f»'

X

If (X, L, cf;) is a Inarked, polarized 1(3 surface, we define the (logarithmic) marked
discriminallt to be

Using the arithmetic Riemann-Roeh theoreln, we show that there exists a nOll­
vanishing holomorphic fUllction 1 on M~p such that

Omar = log 111 2
.

I(ondö proved that the commutator group [rd, r d] is a finite group of order 16.
Therefore, we have that /32 is a non-vanishing, holomorphic modular form on M~p
of weight 32 with respect to the action by the discrete group r d. These results are
presented in §2.

In §3 we consider the special case of I(ununer surfaces. Recall that a I(ummer
surface is a particular example of a 1(3 surface obtained froln an abelian surfaee
A by taking the quotient of A by the involution z --t -z, then blowing up the 16
singular points. Any I(ummer surface can be given a marking from the lattice of a
marked abelian surface, and, in addition, a polarization of degree 2 coming from the
theta divisor on the abelian surface. In the special case when the I(umlner surface
comes from a product of elliptic curves, we show -that the marked discrminant of
the !(ummer surface is, up to a constant depending solelyon the degree of the
polarization, the product of thc discriminants of the elliptic curves.

In §4 we eonsider the behavior of our marked and unmarked discriminants for
degenerating families of K3 surfaces. As stated above, Kulikov determined the
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types of degenerating families of polarized, algebraic /(3 surfaces that exist. For
any point in M~, we define a /(3 Inodular parameter q which is analogous to the
elliptic modular parameter qr = exp(21Tir) on the upper half plane h. Using the
/(3 modular parameter, we detennine the asymptotic behavior of our Inarked and
unmarked ](3 discrinlinants for adegenerating one parameter faInily of algebraic
K 3 surfaces {(X t , L t, <;6d} with t --+ O. For exanlpIe, if the limit !(3 surface is P 2

noded along two embeddings of a (ularked) elliptic curve Er, then the constant term
in the asYlnptotic expansion of the /(3 discrilninant is essentially the discrilninant
of the elliptic curve Er. More preeisely, there exist universal constants Cl and C2

such that

6 log omar((Xt , Lt , 1>t}, 1]t) = log Iq([X t , Ltl)l + 610g omar(Er ) + Cl + 0(1),

and

610g oUllm (X" Lt} = log lq([X t , L t ]) I+ 6 log log jq([X t , L t ]) I
+ 610gounm (Er ) + C2 + 0(1).

These formulas are analogons to known asymptotic expansions for the marked and
unmarked discriminants for elliptic curves.

As stated above, this paper concentrates on the analytic aspeets of our 1(3
discriminants. In forthcoming papers, we will extend the analytic aspects of our
discriminants to define anel study cliscrilninants on Calabi-Yau luanifolds and on
hyper-I<ählerian manifolcls. In the ease of the /(3 discriminant, we will establish a
type of I(ronecker's lilnit formula which will relate our discriminant to the constant
term in an expansion of an Eisenstein series on M~p. This result will use work of
Indik on non-holomorphic Eisenstein series on certain orthogonal groups. As stated
above, in the case of KU111mer surfaces associated to products of elliptic curves, our
discriminant is essential1y a product of thc discrilninants of the elliptic curves. So,
for this case, our analytic eliscriminant is essentially algebraic. In a future article
we will give an algebraic definition for our analytic discriminant.

While working on the results of this paper, the authors benefited from helpful
conversations with F. Bogomolov, J. Cogdell, S. Friedberg, D. I<azhdan, and S.
Lang. We thank these individuals for the assistance. We gratefully acknowledge
Lang's assistance with the preparation of this manuscript. Finally, we wish to
extend thaI1ks to R. Schulze-Pillot for pointing to an error in a previous version of
this maI1uscipt.
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§1. The Discriminant for an Elliptic Curve.

We begin our study of discrilninants by reviewing the existing theory of analytic
discriminants for non-singular elliptic curves. Thc basic results of this section are
well established, but, as far as we know, have not been fonnulated in a manner that
readily extends to the setting of polarized 1(3 surfaces, which will be given in thc
next section.

Throughout this section, we let E denote a connected, non-singular elliptic curve
that is defined over C. By a marking on E we mean a choice of a canonical
basis L of the first hOlnology group H 1 (E, Z), which has an intersection pairing of
signature (1,1). By the unifonnization theoreln, the Inarked elliptic curve (E, L)
can be realized as the cOlllplex plane C ul0dulo the Z lattice that is generated by
the complex uumbers 1 and T where T = a + ib with b > 0, so T is a point in the
upper half plane h. We shall denote the lnarked elliptic curve by Er. The lnarking
L then corresponds to the choice of cycles in H1 (Er, Z) given by the boundary of
the usual period parallelograln of Er in C spanned by 1 and T. Throughout this
section we shall denote an elliptic curvc by E and a Inarked elliptic curve by Er.

Let M mar denote the moduli space of isoluorphism classes of marked elliptic
curves with the requireluent that an isomorphism preserves the complex structure
and the marking. The space M mar can bc realized as either the upper half plane
h 01' the open uni t disc D in C under the analytic isomorphism

h-t'D

given by
T -z

T l---+ --"
T+Z

The space
M unm = PSL(2, Z)\h (1.1 )

parameterizes the isomorphism classes of unularked elliptic curves. The moduli
space M mar possesses a natural invariant metric, called the Weil-Petersson nlet­
rlC, which in the upper half plane Inodel of M mar can be expressed through the
positive (1, l)-form

j1'wp = -ddc 10g(Im(T)). (1.2)

The fonu (1.2) is invariant under the action by P 5L(2, Z), hence descends to a
metric on M unm . The Weil-Petersson 111etric is characterized by the fact that M mar

has constant Griffiths function (i.e., negative Gauss curvature) and the ll10duli space
(1.1) has volume 1/12.

Let Je denote the canonical sheaf on E. Any positive (1, l)-form j1 on Einduces
ametrie p on the canonical sheaf Je and, by duality, induces a (trivial) metric on
0, meaning the metric p is equal to the transition functions of CJ (see page 94 of
[La 87a]). If w denotes any non-zero holomorphic I-form on E, then we have the
associated metric on Je defined through the posi tive (1, 1)-form

and volume

Z
I-l = -w /\ W

2

vol~ (E) = J1-'.

E

(1.3)

(1.4)
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The metric (1.3) is called a flat 111etric on E since such a metric has Griffiths
function that is identically zero (see page 100 of [La 87a]). Any two flat metries are
real, non-zero, scalar multiples of each other, which corresponds to the fact that
any two non-zero holomorphic one-fonns scalar multiples of each other.

From the rnetric (1.3), we have an L 2-nonn of w, which is

(1.5)

(see page 5 of [La 88]). There is a canonical choice of holon10rphic I-form w on any
marked, elliptie eurve Er, namely

w = dz, (1.6)

where z is the standard local coordinate on the con1plex plane C. For this choiee
of I-form) we have

IIdzlli, = ~ j dz 11 dz = Im(T).
ET

(1.7)

The discussion given in [Fy 73], beginning on page 51, yields the following intrinsic
eharacterization of the form (1.6). Consider the degenerating fanlily of unmarked
elliptic curves Er obtained by letting r -r ioo in (1.1) and IRe(r)1 ::; 1/2. The limit
algebraic curve is holomorphically equivalent to a uninoded pI, which we denote
by P~od' We can view P~od as pI with two distinct points p and q identified. The
fonn (1.6) on Er varies holomorphically over the rnoduli space M unm and limits to
a section of the canonical sheaf on P~od (see chapter 3 of [Fy 73]), which lifts to
a seetion of the Hne sheaf JC( -p - q) on pI. The family of forms (1.6) is uniquely
characterized (up to sign) by the fact that the family varies holomorphically over
the moduli spaee (1.1) and limits to the meromorphic I-fonn on pI with residue 1
at p and -1 at q.

Alternatively, the family (1.6) of holomorphieally varying I-forms ean be de­
seribed as follows. Let Er be the degenerating falnily of marked elliptie eurves
described above. Let {wr } be any holomorphieally varying family of I-forms, so W r
has two periods on Er. If we divide W r by the period of the vanishing cycle A in
H I (Er, Z), we obtain the farnily (1.6).

Since HO(E, K) = 1 for aIlY elliptic curve E, two families of holomorphically
varying I-forms that vary over M mar differ by a llluitiplicative factor which is a
non-vanishing holomorphic function on Mmar. Hence if W is a family of holorllorphic
I-forms that vary holomorphically over M mar , the quantity

is well-defined. Combining this observation with (1.2) and (1.7) allows us to reeord
the following result.

Proposition 1.1. Let {w} be a fmnily of h0101110rphic I-forms that vary 11010­
morphically over Mmar. Then \ve have

-ddC log llwlli~ = f-lWP.
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In otber words, -log IIwlli2 is a potential for the Weil-Petersson metric on Mmar.

Let us now recall briefly the defini tion of analytic torsion and Quillen norms
associated to the trivial sheaf on E. This will lead natually to our defini tion of
discriminants associated to Er

Fix a positive (1, l)-fonn J1 on E and associated hermitian metric p on O. With
this data, there is a Laplacian .6. Jt that acts on the space of continuously twice­
differenti able sections of O. The Laplacian is posi tive and self-adjoint, and has· a
purely discrete spectrum. We clenote the non-zero eigenvalues of .6. 11 by

By Weyl's Law, we can define the spectral zeta function (I1(S) for Re(s) suffi­
ciently large by

(1.8)

The exponential surn in (1.8) is the trace of the heat kernel associated to the
Laplacian .6.Jl minus the integer hO(E,O) = 1, which is equal to the dimension
of the zero eigenspace of .dJl' By the slnall time asymptotics of the heat kernel
(see [MP 49] or [See 67], for example), (Jl(S) has a meromorphic continuation to C
which is holomorphic at s = O. The exponential of analytic torsion, also called
the determinant of the Laplacian, is defined by

det *.d Jt = exp(-(~ (0)).

The asterisk reflects the fact that the zero eigenvalues have been omitted in (1.8).

Theorem 1.2. Let fl denote any Rat metric on the elliptic curve E. Then tbe
quotient

is independent of tbe scale of the Rat Inetric fl on E, hellce is an invariant of tbe
unmarked elliptic curve E.

Proof. Let J.l be any flat lnetric on E and cER+. Trivially we have

By the definition of the Laplacian, the sequence of eigenvalues associated to .d CJl is
related to the sequence of eigenvalues of .d 'l through multiplication by the scalar
c- 1 . Therefore, we have

from which we obtain the relation
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Sinee jJ is a Rat metric, the small tinle asYluptoties of the heat kernel are of the
form

~ e- Aj (ll)t = volll(E) _ 1 + O(e- cjt ) as t -+ 0,
Li 47rt
j=l

for some positive constant c (see page 149 of [eh 84] 01' page 84 of [BGV 92]).
Combining this expansion with the proof of the meroIllorphie eontinuation of the
spectral zeta function (see, for example, seetion 1 of [JoLa 93]) yields

(1l(0) = -1,

from whieh the theorem follows. 0

Definition 1.3. Let E be an ulllnarked elliptic curve defined over C, and let
J.l denote any Bat lnetric on E. Tlle uluuarked (logarithluic) discritninant
ounm(E) oE E is defined to be

ounm(E) = log[det*~/l/volll(E)] = -(~(O) -logvolll(E).

Tbe unmarked (logarithmic) discrüninaJlt is a Eunction

ounm : M Ulllll -+ R.

To eontinue, let us relate the unmarked diseritninant to the Weil-Petersson met­
ric via Quillen norms, which we now describe. The deternlinant line detH( 0)
assoeiated to 0 is defined to be the l-eolnplex dimensional vector space

The above isomorphism is via Serre duality, which is an isometry of metrized Ene
sheaves (see page 97 of [De 88]). Let 77 denote a non-zero element of HO(E, 0),
which we ean view as a eonstant function on E, anel w denote a non-zero element
of HO(E, Je), whieh we ean view as a non-zero holomorphic I-form on E. Ametrie
01' norm on the Ene det H (0) is equivalent to the assignment of a length to the
element

Y E =Y=11!\W

in detH (0). The square of the L2-nornl on detH( 0) is defined by

llilli:~ = (77, 1])(w, w) = 11l1 2vo11l(E) . Ilwlli2' (1.9)
and the square of the Quillen norlU on detH (0) is defined by

Ilill~ = IIil112 . (det *~1l)-1.

If we consider the lnarked elliptic curve Er and let w = dz, as in (1.6), and 77 = 1,
then

log II'rEr II~ = -Ounm(Er ) + log II dz lli2 = -ounm(Er ) + 10g(Im(r)). (1.10)

The element Y Er in (1.9) is defined für a fixed Inarked elliptic curve Er. We
then view (1.10) as the function

M mar -+ R>o
given by

The following result shows that the unmarked discriminant ean be used to obtain
a second potential for the Weil-Petersson metric on Mmar.
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Theorem 1.4. Let {WE.,.} be a family of holomorphica1ly varying 1-forms on
the moduli space M mar . Let Y E.,. = 11\wE.,. 1vl1ere 1 corresponds to the COllstant
function 1 on Er. Then

Equivalently, we have

In other words, -Junm is a potential for the Weil-Petersson metric on M unm .

Proof. The first assertion follows froll1 the Quillen-Grothendieck-Rjemann-Roch
theoreln, using the fact that the canonical sheaf of an elliptic curve is trivial. The
second assertion follows froln the first assertion, Proposition 1.1 and (1. 7). There
are a number of references with general theorems that contain the statement of
Theorem 1.4, for example [BK 86] (see relnark 12 on page 228), [BGS 87], [Fa 92],
[FS 90], and [Qn 86]. The reader is referred to Theorem 3.10 of [Fy 92]. D

Corollary 1.5. There exists a holonl0rphic function f on h such that if Er is
a ll1arked elliptic and J1 i8 any Bat Inetric on Er, then

Further, tbe function f12 is a non-vaJlishing weight 12 modular form on the
moduli space PSL(2, Z)\h.

Proof. The equation

follows directly from Theorem 1.4 and (1.9). Hence, locally on h the function

is the real part of a holomorphic function, which we shall write as logf(r)2 (see
page 82 of [Kr 82]). Since h is simply connected, log f( r)2 is globally defined,
thus establishing the first assertion. It is immediate that f2 is non-vanishing on
h. Finally, the invariance assertion follows from the observations that ounm is
PSL(2, Z) invariant and that the map

is of weight -2 with respect to action by the group PSL(2, Z). D

In Corollary 1.5, it is natural to consider the function f12 since the moduli space
M unm has precisely two elliptic points, with orders 2 and 3 (see page 6 of [La 76]
01' page 86 of [SeI' 73]). This point will be discussed further in §3.
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Definition 1.6. Let Er be a marked elliptic curve defined over C, and let
Il denote any Hat metric on Er. The l11arked (logarithlllic) discriminant
Omar (Er) is defined to be

Omar(Er ) = log [det* A Il /[vol ll (Er )Im(T)]]

=logIJ(T)1 2
•

We also define
.6. rn ar = /12.

Let us now examine the aSYluptotic behavior of Ounrn (Er) for adegenerating
family of elliptic curves obtained by letting T -+ ioo and IRe(T) I :::; 1/2. By con­
sidering a contour integral for a funclanlental dOluain for (1.1) in h, one shows, in
the notation of Corollary 1.5, that the fune tion f (T ) 12 vanishes to first order as
T -+ ioo (see page 6 of [La 76] or page 85 of [Ser 73]). The asymptotic behavior
of the period Ildzll'i2 is given on page 53 of [Fy 73]. Combining these results with
Definition 1.6, we obtain the following theorem.

Theorem 1.7. Let {Er} denote the degenerating family of marked elliptic
curves obtained by letting T -+ ioo with IRe(T)1 :::; 1/2. Let qr = exp(21riT).
Then there exist constants Cl and C2 such tllat

and

It is important to note that the asyrnptotics of ounm are independent of the
rnarking of Er.

By cOlubining (1.6), Corollary 1.5 and Definition 1.6, we obtain the following
realization of the analytic discriIninant Ou nm (Er)'

Theorem 1.8. There is a unique falnily ofholomorphic I-forms {WAr,Er }, vary­
ing holomorphica1ly over M mar , such that

Proof. Set C = eC2
• Then, with notation as above, one sets

WAr,Er(Z) = C l
/

12
. J(T)dz,

which is valid since f is non-vanishing' on the sirnply connected space h. We then
have

log IlwAc,ET lIi, = ~JWAr,E T !I WAr,E T = C 1
/

6 If(rWlm(r).

E

The rest follows frorn Corollary 1.5 and Definition 1.6. D

We shall call the form WAr,Er the Arakelav farnlon Er, and the corresponding
scale of the flat metric the Arakelov l11etric on the marked elliptic curve E.
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By Theorem 1.2 and CoroIlary 1.5, notice that if we scale the flat metric on the
marked elliptic curve Er so that

then the determinant of the Laplacian is necessarily equal to 1. Such a scale of the
Rat metric will be called the Ray-Singer l11etric (see page 174 of [RS 73]).

To conclude this section, let us express nlany of the above functions through
special functions. For any T E h, consider the funetion

co

6(T) = (21r)12 e2trir TI (1 - e2trinr)24.
n=l

(1.11)

The function 6(T) is, up to multiplicative constant, the unique cusp fornl of weight
12 with respect to the action on the synuuetric space

h = 3L(2, R)/50(2)

by the arithmetic subgroup
r = PSL(2, Z)

of the fuIl group of isometries PSL(2, R) of h. We have chosen the scale in (1.11)
for algebraic significance. We use the notation

11611 (T) = (Im(T ) )616(T ) J .

The function 6(T) can be realized as a special vallle of the Rieluann theta function

co

8(z) = 8(z, T) = L exp(1rin2
T + 21rinz)

n=-co

through the expression

The Dedekind eta function 7](T) is a particular 24th root of 6(T).

By carefully studying the asymptotic behavior of analytic torsion, one can show
that in Theorem 1.7 and Theorem 1.8 we have

C2 = -1210g(21r)

(see [Jo 90] 01' [Wen 91]). The connection between the analytic function ~(T) and
the discriminant of the marked elliptic curve Er is as follows. The Arakelov I-form
is given by

w (z) = 6(T)1/12 dzAr,Er ,

so
(1.12)
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(see [Fa 84], [Jo 90] or [Wen 91]). This yields the formula

60unm (Er) + 12log(21r) = log 116.11 (r)

and
60mar(Er ) + 12log(27f) = log l6.mar (Er )1 + 12log(27f) = log 16.(r)1

(see [Fy 92], [Jo 91], or [RS 73]). From this, one can directly verify Theorenl 1.4
and Corollary 1.5, specifically we have

ddC log 116.11 = -6/-lwP.

Finally, let us note an important number theoretic realization of the unmarked
discrinlinant. If we view Er as the zero set of a cubic equation in p2, given in
\Veierstrass fonn, then 6.(r) is equal to the discriminant of the cubic (see page 214
of [Ru 87], pages 43-45 of [La 87b], 01' pages 343-349 of [Si! 86]). In particular, if
our marked elliptic curve is defined over a nUlnber field ](, then, up to a factor of
complex modulus one, the invariant IlwAr,E

T
11 6 is algebraic, and, in particular, is

expressible in terms of the primes of bad reduction of E over ](.
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§2. The Discriminant for a Polarized 1(3 Surface.

Having established various analytic properties for marked and unmarked dis­
criminants associated to elliptic curves, we now proceed to develop an analogous
theory for polarized algebraic ](3 surfaces. In this section we will define the marked
and unmarked discriIninants associated to polarized ](3 surfaces, following Defini­
tion 1.3 and Definition 1.6. Let us begin by recalling the properties of ](3 surfaces
which will be necessary in Dur work. We refer to [Ast 85] for a TI10re complete ancl
detailed discussion. For additional background material, we refer to the following
sourees: [BPV 84], [Bea 83], [Be 87], [GH 78], [LP 80], 01' [Sh 67]. We will attempt
to address carefully, although quite briefly, all of the main points that we need.

A K3 surface X is a cOlupact, connected cOlnplex analytic surface that IS
regular, meaning h1 (X, 0) = 0, and its canonical sheaf Je is tr.ivial. Let

be the Hodge decolnposition. On any 1(3 surface X there is a unique (up to
multiplicative constant) holoIllorphic anel non-vanishing 2-form; choose such a form
w. The cohomology dass

of w spans the subspace H2 ,O(X, C) anel satisfies thc Rielnann bilinear relations

[w] . [w] = 0 and [w]· [w] > O.

Equivalently, one can express (2.1) by

(2.1)

JW !I W = 0 allel

X

Set

Jwl\w > O.

X

01' equivalently

H1,1(X,R) = H1,1(.IY,C) n H2 (X,R);

We shall assume throughout that X is algebraic.

A polarization of X is the choice of an ample line sheaf (01' bundle) up to
isomorphism, 01' equivalently a divisor dass for linear equivalence (see page 548 of
(PSS 71] 01' page 146 of [LP 80]). A pair (X, L) consisting of a ](3 surface and a
polarization is called a polarized ](3 surface. There is an integer d 2:: 2 such that

(L·L)=2d-2,

and this integer is called the degree of the polarization.

Associated to a polarization, one has a Kähler form which is a rational multiple
of the pullback of the Fubini-Study fonn on pN via a projective elnbedding induced
by apower of the ample divisor dass. Let [L] be the cohomology cIass in H 1 ,1 (X, R)
given by the imaginary part of this fonn. Yau ([Ya 78]) proves that if an element [L]
of HI,l (X, R) can be represented by a Käher fonn, then it can be represented by a
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unique (up to multiplieative constant) I(ähler fonn with zero Ricci curvature, ealled
conlpatible with the polarization. Such forms are called Kähler-Einstein
farms. Hence, one has a unique (up to multiplieative constant) J(ähler-Einstein
fonn for every polarized !{3 surface (X, L), whieh yields a picture which is analogous
to the existenee of a Rat metrie on every elliptie eurve. Throughout this section, the
only metrics that we consider are the J<ähler-Einstein luetrics, and these metries
will be represented by a I(ähler-Einstein (1, 1) fonn J-L.

A relation between a J(ähler-Einstein fonn J.l and the holomorphic 2-form w on
X comes from Boehner's prineiple, whieh ilnplies that any holomorphie tensor on
a Kähler manifold X with a I(ähler-Einstein form is parallel with respeet to the
Levi-Civita eonneetion of the Kähler-Einstein form, lueaning

(see Theorem 6.1 on page 119 of [KM 71] 01' page 194 of [GHL 90]). As a result,
the volume element volp assoeiated to the I(ähler-Einstein form J-l ean be realized
as

volp = -w A w, (2.2)

for some w E HO(X, Je), where Je is the canonieal sheaf. The volume of X is given
by

vol~(X) = - JW !I w= Ilwll1,2'
X

By (2.2), the ehoiee of aseale of the Kähler-Einstein form J-L on X compatible with
a given polarization L determines the seale of a hololuorphie 2-form W E HO(X, K).

From Noether's fonnula (see page 9 of [Bea 83] 01' page 438 of [GH 78]), it ean be
shown that the second integral homology group H 2 (X, Z) has dinlension h2 (X, Z) =
22. The group H2 (X, Z) is torsion-free (see page 212 of [Sh 67]) and, when endowed
with the symmetrie bilinear form given by cup product, is an even unimodular
lattice of signature (3,19). Frolu the strueture theorenl of even unimodular lattiees
(see page 54 of [SeI' 73]), there exists a basis

of H2 (X, Z) such that the intersection matrix Q = (/i • / j) is block diagonal of the
form

(2.3)

where H is the 2 x 2 hyperbolic ll1atrix and Es is the 8 x 8 Inatrix corresponding
to the root system of type Es (see page 52 of [Se 73]). Any basis 4> of H2 (X, Z)
satisfying (2.3) will be called a canonical basis. "'"e shall eall the pair (X, cP) a
marked K3 surface if X is a !(3 surface and cP is a canonical basis of H 2 (X, Z).
Two canonieal bases of H2 (X, Z) differ by the action of an element of 500 (3,19; Z).
If X is polarization in addition, we call the triple (X, L, 4» a marked, polarized,
!{3 surface.

Associated to every marked ](3 surface and w E HO(X, !C), one has aperiod
mapping

"( f-t Jw for "( E H2 (X, Z).
..,

(2.4)
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If, is an algebraic homology cycle, then the integral in (2.4) is zero. If X is marked
with a canonical basis of homology cjJ, then the point

1j;(X; 4» = (1w, ... ,1w)" E p21

:)'1 1:22

(2.5)

is the period associated to the rnarkecI.I(3 surfaee (X, 4». By the Rlemann bilinear
relations (2.1), the period (2.5) ean be viewed as a point in the spaee

n = {z E P (A 09 C) I(z, z) = 0, (z, z) > O} . (2.6)

In fact, the Riemann bilinear relations (2.3) ean be reformulated as follows. Let

be the symmetrie matrix clefinecI by the intersection of the cycles Tj whieh form
a eanonieal basis of H2 (X, Z). Then the bilinear relations are equivalent to the
statements

1j;(X; 4» . Q. l1j;(X; 4» = 0, and 1j;(X; 4» . Q. l;jJ(X; 4» > 0. (2.7)

From (2.7) one ean show that (2.6) ean be realized as

S1 =:: 500 (3,19)/50(2) x 50(1,19).

At this point, one is led to eonsider the inlage of the period mapping into the space
S1, when eonsidering marked K3 surfaees and when considering marked, polarized
1(3 surfaees.

Let y -r 'D be a falnily of non-singular ](3 surfaees over a polycylinder V. As
a Coo manifold, Y is diffeoruorphic to V x Y, where Y is a fixed 1(3 surface (see
page 257 of [BPV 84]). It follows that if we ehoose a rnarking of one fibre then
we have marked all Y t in the faJuily Y -r 'D, where t E V. It is a theorem, due
to Tiurina, I<odaira, Andreotti, anel A. vVeil, that if we ehoose w = Wt to vary
holomorphieally for t E V, then the period rllap per : V -r n is holomorphie on
D. The loeal ToreIli theorem for ](3 surfaees asserts that the periods give local
moduli for small deformations of a given 1(3 surfaee (see, for example, [1<0 64] and
[PSS 71] as weH as [Lo 80] and page 254 of [BP\T]).

A global ToreiE theorem for rl1arked, polarized 1(3 surfaees was first given by
Piatetski-Shapiro and Shafarevieh (see [PSS 71] or [Lo 80], [LP 80], and [Sh 67]). In
[PSS 71] it is proved that a moduli spaee M~p of rl1arked, polarized algebraie 1(3
surfaees of degree d exists anel is a 19-dimensional eomplex manifold. Moreover, as
diseussed by Piatetski-Shapiro anel Shafarevieh, there is a universal family

. ·v Md
7r • .-1. ----t mp

of rnarked, polarized, algebraie ](3 surfaces of degree d, from whieh one ean define
the period map

per : j\lt~lP -t S1,
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as follows. Frorn the definition of the polarized 1(3 surface (X, L), [L] is a dass of
type (1,1) with respect to the cornplex structure, so

[w] . [L] = 0 for w E HO(X, K).

Let A be the lattice H 2 (X, Z) in H 2 (X, R), and let H be the hyperplane

H = {z E P(A C3) C)l(z, [L]) = O}.

Define

Then
n~p = H n n ~ 50(2,19)/(50(2) x 50(19)).

The global ToreIli theorenl for nlarkecl, polarized, algebraic 1(3 surfaces of degree
d asserts that the image of the period lllap lies"in n~p, and that the period nlap
is a holomorphic embedding. In particular, a marked, polarized, algebraic 1(3
surface of degree d is uniquely detennined by its periods, and the image of M mp

in n is a countable union of analytic submanifolds, indexed by the degree d of the
polarization.

The global Torelli theorem, tagether with results due to I(ulikov [I(u 77], show
that there is a discrete subgroup r d of 50(2, 19) such that r d\n~p contains r d\M~p

as a Zariski open subset, and this subset, which we denote by Mg is a coarse moduli
space for polarized 1(3 surfaces of degree d without regard to luarking. Thus

M~ = rd\M~lP'

For further discussion, see also [Lo 80], [LP 80], [PeP 81], [Siu 83], and [To 80].

Renlark 1. By using results due to I(obayashi-Todorov [I{T 89], one can analyze
the points in n~p which are not in M~lP' These points correspond to lnorphisrns
'ljJ : X --+ X# where )(# is a singular surface with only isolated double points
which come from blowing down (-2)-curves on the K3 surface. A further analysis
of this topic, and its connection with the results in this paper, will be considered
elsewhere.

As in the case of elliptic curves, there exists a canonical metric called the Weil­
Petersson metric on the moduli space M~p' We give the definition in a manner
similar to that of §1.

Since HO(X, K.) = 1 for any marked, polarized, algebraic 1(3 surface X of degree
d, two families of hololnorphically varying 2-fonns on 1(3 surfaces that vary over
M~p differ by a multiplicative factor which is a non-vanishing holomorphic function

on M~p' Hence if w is a family of holomorphic 2-forms that vary holomorphically

over M~Pl the quantity

ddC log JlWIJ1.2

is a well-defined dosed (1, 1) form. VVe define the Weil-Petersson Inetric on
M~p to be the Kähler metric corresponding to the I{ähler fonn
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which we cal1 the Weil-Petersson forln. Thus, by definition, -log IIwlli2 is a
potential for the Vleil-Petersson metric on M~p' In an appendix to this section
we 8hall recall the definition of the Weil-Petersson metric given more classieally in
terms of harmonie fonns and deformation theory. However, we enlphasize here that
only the definition we have given will be used in the present paper.

Next we reeall the definition of analytic torsion associated to the trivial sheaf 0
on X, from which we will obtain our definition of the unmarked discriminant.

Let (X, L) be a polarized, algebraic /(3 surface of degree d, with compatible
I(ähler-Einstein form p. Let 8 denote the Cauchy-Riemann operator associated to
the Dolbeault complex

where, as above, nO,q is thc sheaf af srnoath fanns of type (0, q) with coefficients in
the trivial sheaf 0, so

nO,q = ;cq.
Relative to the inner yroduct of sections on ;cq, which is induced by the chosen
form p, the operator a admits a formal adjoint, which we shall denote by Er. The
Laplacians we study are the operators of the form

.6.q = 8q- 18;_1 +a; Bq.
It is classical that .6. q has a discrete speetrurn with associated eigensections that
form an orthonormal basis of L2 sections of iC q . Let HS denote the non-zero eigen­
values of 6. q by the sequence

o< ..\~q\J1) ::; ..\~q\J1) ::; ....

Define the spectral zeta function associated to 6. q to be
00

(~q)(s) = L..\~q)(J1)-~,

k=]

and the full spectral zeta function assoeiated to 0 to be
2

(jJ(S) = L(-1)qq(~q)(s)

q=O

2 00

= L( -l)qqJ[TrKI' (X, ,eq)(t) - hq(X, 0)] t<t, (2.9)
q=O 0

where Tr/(jJ denote the trace of the appropriate heat kernel. By Weyl's law, (2.8)
converges for Re(s) sufficiently large, and by Seeley's theorem [See 67], the series
(2.9) has a. meromorphic continuation to all s which is holomorphic in a neighbar­
hood of s = O. Following Ray and Singer [RS 73], the analytic torsion associated
to 0 is defined by

2

tor (X) = -(' (0) = - ,,( -1)q q' ~((q)(s)1 .jJ jJ L..J as jJ 8=0
q=O

The analogue of Theorem 1.2 cau now be stated.
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Theorem 2.1. Let (X, L) be a polarized, algebraic 1(3 surface of degree d, and
let J1. be any compatible Kähler-Einstein form. Then for any c E R+, we have

In other words, the quan ti ty tor It (X) - log volll (X) is 81] invarian t of tl1e polar­
ized, algebraic 1(3 surface (X, L).

Proof. The proof is almost iclentical to that of Theorem 1.2, hut will he repeated
here for clarity. Let J1. he any I(ähler-Einstein form on (X, L) compatible with the
polarization, and c E R+. Trivially we have

By definition of the Laplacian, the sequence of eigenvalues associated to .6.c 'Jl are
related to the sequence of eigenvalues of ~Il through Inultiplication by the scalar
c- 1 • Therefore, we have

(C'lt(S) = C
8 (Il(S),

fronl which we obtain the relation

-(~'Il(0) = -(Il (0) log c - (~(O).

Since the fonn J1. is Ricci flat, Seeley's theorem ([Se 67]) states

for any N > 0 (see also page 150 of [eh 84] 01' page 84 of [BGV 92]). From the
proof of the meromorphic continuation of the zeta function (see [.JoLa 93]), this
ilnplies that

2

(Jl(O) = - L(-I)qqhq(X,O) = -2,
q=O

from which the theorem follows. D

Definition 2.2. Let ()(, L) be a polarized, algebraic 1(3 sUlface of degree d,
and let IL denote any I(ähler-Einstein fonn compatible with the polarization.
The unlnarked (logarithluic) discriluinant ounm((X, L)) of(X, L) is denned
to be

As in the case of elliptic curves, the unmarked (logarithmic) cliscriminant is an
invariant associated to any polarized, algebraic K3 surface, hence is a function on
Mg and should be written as

To continue, we shall describe another potential for the Vveil-Petersson metric
via Quillen norms, analogous to Theorenl 1.4, which will lead to our definition of
the marked (logarithmic) discriminant.
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.
For any marked, polarized, algebraic 1(3 surface (X, L, <p) of degree d, the de-

terminant line detH( 0) associated to the trivial sheaf 0 is defined to be the
1-complex dimensional vector space

detH( 0) = detHo(X, 0) (9 detH1(X, 0)-1 (9 detH2 (X, 0).

Since X is a 1(3 surfaee, the eohomology group H 1 (X, 0) is trivial, henee the vector
spaee detH 1 (X, 0) is eanonieally isomorphie to C, whieh yields the isomorphism

detH( 0) ~ detHO (X, 0) (9 detH2 (X, 0)

~ detHO(X, 0) (9 [detHO(X, Je)]-l; (2.10)

where the isomorphism in (2.10) comes from Serre duality. Let 1] denote a nOll­
zero element of HO(X, 0), which we can view as a constant function on X, and
let w denote a non-zero element of HO (X, Je), whieh we can view as a non-zero
holomorphic 2-form on X. A llletric or norn1 on the line detH(0) is equivalent to
the assignment of a length to the element

(2.11 )

in detH(O). The square of the L2 -norm on detH(O) is defined by

and the square of the Quillen norm on detH (0) is defined by

If Tl = 1, we have
log llillb = -ounm(X,L) -log Il w lli2' (2.12)

The element i in (2.11) is defined for a fixed marked, polarized, algebraie K3
surface (X, L, 4» of degree d. When necessary, we shall write this element as

We then view (2.12) as the function

given by

The following result, which is analogous to Theorem 1.4, shows that the Ull­

marked discriminant ean be used to abtain a potential for the Weil-Petersson metric
on M~p'
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Theorenl 2.3. Let {W(./y,L,,,b)} be a family of holomorphically varying 2-forms

on the moduli space M~p, and let l(.x,L,,,b) = 1 /\ w~~,LI"b)' where 1 corresponds
to the constant function 1. Then

Equivalently, we have
-ddCJunm = /-lWp·

In other words, -ounm is a potential for thc Weil-Petersson metric on M~p'

Proof. As in Theoreln 1.4, this result follows from the Quillen-Grothendieck­
lliemann-Roch theorem, using the fact that the canonical sheaf of a 1(3 surface is
trivial, the second Chern dass Ch(2) (IX) of thc tangent sheaf /.,\ integrates to 24
(see page 46 of (Ast 85] or page 590 of [GH 78]), and that the degree two component
of the Todd dass of Tx is

(see page 20 of [FL 85]). The second assertion follows from the first assertion,
definition of the Weil-Petersson fornl, and (2.12). Für further details, see page 330
üf [To 88] ür pages 164-165 of [FS 90], which references [BGS 87] (see also the
general arithmetic Riemann-Roch theorenl for the full Chern character, as stated
in [Fa 92]). 0

Corollary 2.4. Let {WX,L,,,b} be a holomorphic fmnily of holomorphic 2-forms
over M~p' Then there exists a non-vanishing holomorpllic function /w = f on

M~p such that if(X, L, 4» is a mm'ked, polarized, algebraic ]{3 surface of degree
d and J1. is any compatible Kähler-Einstein fonn, then

Tbe function llwl varies like a modular form of weight 2 on M~p with respect
to the discrete arithmetic subgroup r d.

Proof. The proof is immediate from the definition of the Weil-Petersson form and
Theorem 2.3, following the pattern of the proof of Corollary 1.5. The eomputation
of the weight of I comes from the invarianee of

on M~p with respeet to the marking of (X, L). 0

Remark 2. In [1(0 91] it is shown that the group r d/[rd, r d] is a finite ,group
of order 16. Therefore, the function 132 is a nün-vanishing holomorphie modular
form on M ~ p of weight 32 wi th respect to r d •

Renlark 3. In a subsequent paper, we will show that I extends to a holomorphie
function on the symmetrie spaee n~p which vanishes on the complement of M~p'
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This will allow us to give an algebraie realization of our diseriminant in terms of
automorphic forms on 50(2, 19).

From the definition of the Weil-Peterson form we see that the function 1 in
Corollary 2.4 does not depend on the seale of the Kähler-Einstein forms J1., hence
is a funetion of the 1narked, polarized, algebraie ](3 surfaee (X, L, eP) and the holo­
morphic family of holomorphic 2-forms w. For any marked elliptie eurve, there is a
eanonical choiee of holomorphie I-form, namely dz.

Definition 2.5. Let (X, L, eP) be any marked, polarized, algebraic ](3 surface of
degree d. Let J1. denote any compatible }{ähler-Einstein form, and let WX,L,rP be
a holomorphic 2-form on (X, L, 4». The nlarked (Iogarithnlic) discrinlinant
Jmar((~X",L, 4>}, w) of (X, L, 4» associated to the choice ofWX,L,rP is denned to be

Omar([X, L, 4>},w) = torJt(~X") -log(volJt(~X")llwx,L,rPlli2)

= log I/w(X, L, eP)1 2
.

We also denn e
~mar = 112

•

In the next section we will study our discriminant for marked Kum1ner surfaces
of degree 2 as weil as for certain KUffilller surfaces of arbitrary degree assoeiated
to abelian surfaces that are produets of elliptie eurves.

Appendix: To conclude this section, let us give the definition of the vVeil­
Petersson metrie via loeal deformation theory.

Let
Jr: (X,L,cI» --+ M~p

be the universal family of rnarked, polarized, algebraic ](3 surfaces of degree d. For
any t E M~p, let {J1.t} be a Coo fa1nily of I(ähler-Einstein fonns such that for every
t E M~p, Pt is a I<ähler-Einstein form on the polarized ]{3 surface (X t , Ld, where
(Xl, Lt} = Jr-

1 (t) and [Im(J1.dl = L t . Let Tt be the sheaf of holomorphie veetor
fields on Xt. We define a hernlitiall metrie on Coo(Xt , Tt (9 n~,l) for aU t E M~lP

as follows. For each t E j\lt~p, Pt defines an isomorphis1n of sheaves

so we have a map

Let 4>1,4>2 E COO (X t , r (9 !la,l) and define the hennitian inner produet

«/lJ ,<Pz)wp = J<PI . 0", (<P2) . vol~, .

Xt

For each t E M~p let
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be the harmonie subspaee, and identify

We now have defined a hermitian metric on the tangent space of M~p. Any positive
sealar multiple of this nletrie will be ealled a Weil-Petersson metric.

The following result is frol11 [To 89] and [Ti 88].

Theorem 2.6. There is a. sca,la,r lnultiple of tbe above lnetric such that tbe
associated (1,1)-fonn is equa.l to j1Wp.

For readers who are interested, the proof of Theorelll 2.6 comes directly from
the results on page 641 of [Ti 88] ancl Theorelll 2.6 of [To 89] (see also [Na 86] and
[Seh 85]).
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§3. The Discriminant far a Polarized KUlTIlller Surface.

Let us now examine the discriminant defined in §2 considered as a function on
certain spaces of polarized I(umlner surfaces of clegree d. Recall that a Kummer
surface X is constructed as follows. Let A be a projective abelian surface, and let A
be the non-singular surface obtained by b10wing up the 2-torsion points on A, so A
has 16 exceptional curves. The 111ap z t---+ -z of A to itse1f extends to an involution
of A (see, for examp1e, page 99 of [Bea 83] or pages 171 and 246 of [BPV 84]), and
the quotient of A by this involution is the J(U111111Cr surface X associated to the
abelian surface A. It is a reasonably straightforward exercise to show that X is a
1(3 surface (see page 99 of [Bea 83]).

The principal Siegel upper half space of dilllension two, which we shall denote by
C2 , consists of all 2 x 2 sYlllmetric matrices fl such that Im(fl) is positive definite
and all elementary divisors are 1. Let 12 be thc 2 x 2 identity matrix. For any
Sl E C2 , let L(Sl) denote the Z lattice generated by the co1umns of 12 and Sl. Given
any n E C2 , we have an associatecl projective abclian surface A(Sl) given by

A(n) = C 2
/ L(n). (3.1)

The abelian surface (3.1) has a natural principal polarization corresponding to the
hermitian form H whose associated matrix is (Im(fl))-l. Throughout we shall
assume A(Sl) is given this polarization, which induces a polarization L of degree 2
on the associated J(umnler surface X.

The abelian surface (3.1) has a canonical basis of the 4 dilnensional vector space
H1 (A(Sl), Z) given by the bounelary of the period parallelognun in C2 spanned
by the columns of 12 and fl. In an appendix to §5 of [PSS 71] by D. B. Fuchs,
it is shown that one can construct a canonical basis of H2 (X, Z) consisting of
the 16 exceptional curves obtained by blowing up the two torsion points of the
associated abelian surface, together with a particular basis of the 6 dimensional
space 1\Z H1 (A(n), Z). In order to obtain a lnarking of the I(unlmer surface, one
must take the 16 exceptional curves with exponent 1/2. Hence, the abelian surface
A(n) induces a marking ejJ of the I(unlmer surface X.

Let
7f: Ä(fl) --+ (X,ejJ)

be the projection map from the surface A(fl) to the marked I(uffilner surface (X, ejJ).
PrOfi the realization (3.1) of the abelian surface A(n), we can express a generator
of the one complex dimensional vector space HO(A(n), Je) via the standard ho1o­
morphic coordinates Zl anel Z2 on C Z

• With these coordinates, we take our choice
of holomorphic 2-form on A(Sl) to be

WA(O) = dZ l A dz2 . (3.2)

In the case Sl is diagonal, so A(Sl) is a product of elliptic curves Er! and ET"J'
the form (3.2) can be characterized as follows. Let Al, BI be a canonical basis of
H1 (ErI' Z), and let Az, Bz be a canonical basis of Hl (ET2 , Z). Then the form (3.2)
is determined by the condition that its period relative to the cycle Al x A2 is l.

From (3.2) we obtain a generator of HO(A(n), Je), which we write as W Ä(O)' Let
wx,rP be the holomorphic 2-form on (X, ejJ) such that

•WÄ(rl) = 1r WX,rP"
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Lemma 3.1. Let A(n) be a abelian surEace with associated m81·ked ]{ummer
surface (X, 4». Then

Ilwx,I/J1112 = 2det(Im(n)).

Proof. It is easy to show

- JWA(l1) /\ WA(l1) = 4det(Im(Q».

A(f!)

Fronl the fornlula,

-llwx.<plll, = Jwx.<P /\ wx.<P = ~ JWA(l1) /\ WA(l1)

X . A(O)

the lemlna follows. 0

Let us now study our discriminants for polarizecl, algebraic 1(3 surfaces when
restricted to the certain spaces of polarized !{ummer surfaces. With the above
discussion and Definition 2.6, let us set the notation

(3.3)

and
(3.4)

where WXII/J is the holomorphic 2-form froln Lemma 3.1. We shall view (3.3) and
(3.4) as functions on C2 • FrOln Definition 2.6 and LClnma 3.1, we have

exp (6ounm (n)) = l~mar(fl)I'llwx,I/Jllt;

= l~mar(fl)l' (2det(Irn(n)))6. (3.5)

A special KUlnmer surface is a I{ulnlner surface corresponding to an abelian
surface which is a product of elliptic curves. The following theorern evaluates the
discriminant for special !{uffilner surfaces with arbitrary polarizations.

Theorem 3.2. For any positive integcrs d1 and d2 , there is a constant c such
that the Eollowing holds. Let A(fl) be a projective abelian surface which is a
product oE elliptic curves, so

Let D = Ddl ,d~ be the divisor

on A(fl). Let X = K(fl) be polarized hy the image oE D minus tbe union oE the
(-2)-curves Oll X which lie on the image oE D, wllich indeed is a polarization
L = Ldl,d~ oE degree d = 2(d1 + d2 ). Let X be given the marking induced
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from the abelian surface A(n). Then tbe marked discrimillant associated to the
marked, polarized !(ummer surface (X, L, </J) oE degree d is given by

Proof. Restriet the function .6.mar of (3.4) to the space of principally polarized
abelian surfaces that are products of marked elliptic curves. Then the function f is
viewed as a non-vanishing hololllorphic function on h x h which is whose absolute
value changes like a nl0dular form of weight 2 with respect to action by the group
PSL(2, Z) x PSL(2, Z). Oue cau show that any character X of the fundamental
group of the space

M unm = PSL(2, Z)\h

is such that X6 is trivial (see page 4 of [La 76] 01' page 78 of [SeI' 73]). Hence, 16

is a modular fornl af weight 12. Thc space af such farms is ane dilnensional and is
generated by the Dedekind delta functian .6. (see page 11 af [La 76] 01' page 89 of
[SeI' 73]). 0

Reluark 1. Consider the case when a general I(ummer surface ]((n) is given the
polarization which is the image of the principal theta polarization of the associated
abelian surface A(n), minus the exceptional curves which lie on the theta divisor.
If n is not equivalent to a diagonal matrix nnder the action of Sp4(Z), then we
indeed have a polarization, and in the other cases one does not. One cau show that
the marked ](3 discriminant extellds to zero across this subset of C2 • Further, by
arguing as in the proof of Theorem 3.2, using results due to Mumford [Mu 67] and
Powell [Po 78], we cau relate the ](3 discriminant to the weight 10 cusp fonn XI0,

defined in [Ig 62].

Immediately from Corollary 2.5 we have the following analogue of Theorem 1.8,
which is valid for a11 marked, polarized, algebraic ](3 surfaces of degree d. We
state the result here rather than in §2 because we needed Theorem 3.2 in order to
determine the constant C of interest.

Theorem 3.3. There is a unique family of bololll0rpl1ic 2-fonns {WAr,(X,L,rP)}'

varying hololnorphically over M ~pa' sudl that, iE c = c( 1, d - 1) is the cons tan t
defined in Theorem 3.2, we have

We shall call wAr,(X,L,rp) the Arakelov 2-fornlon the marked, polarized, alge­
braic /(3 surface (X, L, cP) of degree 2. By choosil1g a particular hololnorphic 2-fonn,
we have determined ascale of the I(ähler-Einstein (I, 1)-form compatible with the
given polarization. We shall call this (1, 1)-fonll the Arakelov-Kähler-Einstein
form on (X, L, </J).
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§4. Asymptotic Behavior of the /(3 Discriminant Under Degeneration.

In this section we will study the asyruptotic behavior of the marked and un­
marked discriminants for a one dimensional faIuily of luarked, polarized /(3 surfaces
of degree d. Analytica11y, any faluily of /(3 surfaces is a flat proper ruap

7r : X --+ V (4.1)

froln a threefold X to the unit disc V in C such that for a11 t =fi 0 the fibres
X t = 7r-1 (t) are non-singular algebraic /(3 surfaccs. The family is said to be a
polarized falnily if there is a flat proper lllap

ir:S--+'D

frorn a stu·face S to the unit disc V such that for a11 t =fi 0 the fibres Ct = ir-I (t) are
non-singular algebraic curves that can be imbedded into the 1(3 surface X t , and
such that the imbedded curve, also denoted by Ci, is an ample divisor on Xt.

The family is said to be a Inarked falnily if we can choose representatives of a
canonical basis 4>t of H 2 (Xt, Z) that vary continuously for a11 t =fi O. This naturally
brings up the question of monodrolny, which will be discussed later. Also, it is
convenient to assume that the faruily (4.1) is SCllli-stable, meaning the special fibre
X o is reduced and has only normal crossing singularities. Locally, such singularities
are of the form Zj Zz = t, in the case of a developing double point, 01' ZlZZZ3 = t, in
the case of a developing tripie point. By Mumford's semi-stable reduction theorem
(see [Mu 73]), any faIllily of 1(3 surfaces can be reduced to a semi-stable family. So,
throughout this paper, we sha11 assurne a11 families of 1{3 surfaces are semi-stable.

The main result of this section is an analogue of Theoreru 1.7 which determines
the asymptotic behavior of the marke9. and unmarked discriminants for a family
of 1(3 surfaces. In fact, the asymptotic results obtained in this section are derived
from Theorem 1.7 by appealing to the fact that special I(ummer surfaces are dense
in the moduli space of all marked, polarized 1(3 surfaces of degree d (see page 256
of [BPV 84]) and the explicit evaluations the marked and unmarked discriminants
obtained in Lemma 3.1 and Theorern 3.2.

An outline of the discussion of this section is as follows. After discussing back­
ground infonnation concerning the topology of degenerating polarized /(3 surfaces,
we shall detennine a particular faIllily of hololnorphically varying holomorphic 2­
forrr;s, and we will ;hoose a par~icular lnarking of an~ given fanlily of ~<ulikov faIllily
of Ii.. 3 surfaces. WIth these cholces, we then determlne the asYluptotrcs of the asso­
ciated marked discriminant as well as asymptotics of the associated L 2 norm of the
chosen family of 2-forms. By corubining these asymptotic forruulas, we then obtain
the asymptotics of the unmarked discriminants. In the end, one should note that
the asymptotics of the unlnarked discriminant is independent of the given choices,
hence is determined solely by the I<ulikov family being considered.

When considering a family of algebraic curves that degenerate to the boul1dary
of the Deligne-Mulnford (stable) conlpactification of the Inoduli space of algebraic
curves of a fixed genus, one has a complete description of the asymptotic behavior of
a canonical basis of the first honlology group as weH as a dual basis of holomorphic
I-forms (see chapter 3 of [Fa 73]). One could present a similar theory for families
of 1(3 surfaces (see, for eXaIllple, various results that appear in the artic1es [Cl 77],
[GI' 70], [Pe 77], [St 77] and [To 76]). We will leave the complete presentation of
this picture for a future article.

We begin with the following theorem which is due to I<ulikov [Ku 77] and
Persson-Pinkham [PeP 81]. We quote direct1y from [PeP 81].
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Theorem 4.1. Let 1r : X -t V be a semi-stable degeneration of surfaces such
that:

a) The gelleric fiber X t for t =I=- 0 has trivial canonical sheaf;
b) All components of tbe special fiber X o are algebraic.

Tllen there exists a semi-stable Inodificatioll 1r' : X' -t V of 1r : X --+ V sudl
that the canonical sheaf of the total space .J'Y' is trivial.

Further details anel backgrouncl infonnation concerning Theorem 4.1 are given in
[PeP 81] and [I<u 77]. A faluily of algebraic 1(3 surfaces that fulfills the above
theorem will be called a Kulikov falnily of 1(3 surfaces. Throughout this section
we will asstime that our faInily of 1(3 surfaccs is semi-stablc and is such that the
canonical sheaf of the total space is trivial.

Since 1rdV*) ~ Z, it is not necessarily possible to attach a consistent set of
Inarkings to the polarized surfaces in a I<ulikov family. Attached to each I<ulikov
family, there is a InonodronlY operator T which can be described explicitly by
selecting t E V* and viewing

as the Picard-Lefschetz transformation obtained by transporting cycles around the
origin t = 0 in V while preserving the polarization class L t • The operator T is
quasi-unipotent, meaning (Tn - 1)3 = 0 for sonle positive integer n. If we assurne
that the family of surfaces is semi-stable, then (T - 1)3 = 0, which is equivalent to
saying that its logarithm

1 2
N = logT = (T - 1) - -(T - 1)

2
(4.2)

is a nilpotent endoIllorphism of H2 (X, Z) satisfying N 3 = 0 (see [To 76]).

There are three types of I<ulikov families of 1(3 surfaces which are distinguisheel
by the structure of the logarithm of the nlonodroIuy operator (4.2) of the family.
It was proved in [To 76] that in the case of a seIui-stable family of K3 surfaces,
we have the fo11owing possiblities for the Jordan decomposition of the monodromy
operator (see also of Theorem II on page 957 of [I<u 77]).

1. T=1,orN=Oj
11. T has two Jordan ce11s of diluension 2, 01' N 2 = 0 and N =f:. 0 ;

III. T has oue Jordan ce11 of dimension 3, 01' N 3 = 0 and N 2 =I=- O.

In [I<u 77] I<ulikov proves a classification theorem for I<ulikov families of !{3 sur­
faces. Let 1r : X -t V be a selui-stable family of polarized /(3 surfaces such that
the canonical sheaf of the total space X is trivial. Then we have the following
topological classification of I<ulilov families.

1. X o is S1l10oth;
II. X o is achain of elliptic ruled surfaces with rational surfaces on either end,

X o contains only double curves, and all double eurves are (isomorphie)
e11iptic curves, say Ej

III. X o has components that are a11 are rational surfaces whose double curves on
each component form a cycle of rational curves, X o contains tripie points,
and the dual graph of X o is a triangulation of PI.
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For type 11 and type 111 families, the special fibre Xo is a singular algebraic variety,
and the family is said to be adegeneration. The non-triviality of the monodromy
operator for degenerating Kulikov falnilies is analogous to the similar phenomenon
in the case of elliptic curves, and of degenerating algebraic curves whose limits
are irreducible uninoded stable curves. In these situations, one can not choose a
consistent basis of hOlnology for all t E 'D; rather, in order to consider degenerating
marked varieties, Olle lllust restrict t to a sector Da: of the form

Va: = {t E D: 0< arg(t) < Q < 21r}

(see page 51 of [Fa 73]).

From the I(ulikov classification theoren1 and the cliscussion in the beginning of §3,
any limit point of a selni-stable family of ]{3 surfaces can be obtained by degener­
ating special Klunmer surfaces. Let HS aSBlnne that the family of I(ummer stufaces
are marked wi th an adlnissible basis of hOlnology, lneaning a basis of homology
induced froln the associated abelian surfacc

The types of degenerating I(ulikov families occur in the following situations:

11. T2 is fixed and Tl -+ ioo, with IRe( rdl ::; 1/2;
111 Tl anel T2 approach ioo, with IRe(rdl ::; 1/2 and jRe(T2)1 ::; 1/2.

In the case of type 11 degeneration, there is a marking induced on any elliptic curve
that lies along the node of the limit, singular ](3 surface.

The following result, due to Borel [Bo 72], Griffiths [Gr 70], Piatetski-Shapiro
and Shafarevich [PSS 71], relates degeneration and compactification. .

Theorem 4.2. Let M~ be the Baily-Borel compactification oE r d\hK3, and
assurne 1r : X -+ V is a ](ulikov family of polarized, algebraic ](3 surfaces oE
degree d. Then the jnduced period map

per: V* t-+ M~

extends to a holomorphic map of V into M~. If tlle family is of type 11 or III,
meaning 1r : X -+ V is adegeneration, then

- d d
per(O) E M p \ M p•

As in the case of elliptic curves, one 111USt choose a family of holomorphically
varying forms for a11 M~p in order to study the asymptotics of the marked discrin1­
inant. In the case of !(ummer surfaces, such a family {w(..\",q,)} was determined in
Lelnma 3.1. The following result states that this family of forms has an extension
to a holamorphie family of holomorphic 2-forms over the entire moduli space M~p'

Theorelu 4.3. There exists a jlolomorphically varying falnily of holomorphic
2-forms {1]} on M~p such that jf (X, L, 4>] E M~p is the marked, polarized
!(ummer surface corresponding to tbe abelian surface A(O) with arbitrary po­
larization, then
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Outline 01 Proof. Let 11" : X --t M~np be the universal falnily of lnarkecl, polarized
](3 surfaees of degree d. By the existenee of the universal family, the sheaf

is trivial. Therefore, there exists a globally defined non-zero seetion, whieh eor­
responds to the existenee of a globally defined holomorphieally varying family of
holomorphie 2-forms, say {1)}. The problem ren1ains to seale this family appropri­
ately, whieh ean be done as follows. Consider adegenerating I<ulikov family of type
111, and let l be the vanishing eycle of hOlnology (see [To 76] and pages 280-287 of
[GI' 70]) . For any polaxized ](3 surfaee X t in this family, let cjJ(t) be the period of
iJ with respeet to the vanishing eyclej that is,

. <j;(t) = Jiit-
-y

From the vanishing eycle l in this paitieular I<ulikov family, one ean use the de­
formation theory of ](3 surfaees to dcfine a cycle for any lllarked, polarized K3
surface of degree d, hence 4> extends to a well-defined holomorphie funetion on aH
of M~p' With this, we define the new family of holornorphie 2-forn1s by 1] = iJ/4J.
This new family of hololnorphie 2-forms is well-defined provided 4> is never zero,
whieh ean be established by showing that any point in M~np lies on adegenerating
Kulikov family of type 111. Details will be given in the next section. 0

As a corollary of the proof of Theorenl 4.3, we have the following result.

Corollary 4.4. Let {1]} be tbe holomorphically varying Eamily oE llo10morphic
2-forms defined in Theorem 4.3.

a) Let 7r : X --t 'D be adegenerating I(ulikov Eamily oE type II. Then 1] limits to
a non-zero meromorpbic 2-fonn TJo on Xo lvith siI1gularities at any elliptic
curves E that lie along the nodes. Furtller, the Poincare residue of 1]0 is a
I1on-vanishing holonl0rphic l-form on E.

b) Let 7r : X --t D be adegenerating I(ulikov faJnily of type 11I. Then TJ limi ts to
a non-zero meromorphic 2-form 7]0 on Xo with singularities at tbe uninoded
rational curves P~od that lie a,long thc nodes. Furtber, tbe Poincare residue
ofTJO is a merolnorphic I-form on P~Q(I tllat has residues equal to 1 and -1.

In this way, we see that the falnily of forms given by Theoreln 4.3 is quite
analogous to the falnily of farms {dz} we considered in the setting of elliptic curves.

Given adegenerating I<ulikov family of polarized 1(3 surfaces defined over a
sector 'Deo one needs to give a marking to this fanlily. As discussed in the above
proof of Theorem 4.3, this point is diseussed in detail in [To 76] and in [GI' 70],
pages 280-284. We refer the reader to these references for futher details. Roughly,
one can argue as follows. First, note that in the special case of families of special
Kummer surfaees, a lnaxking is induced froln the associated abelian surfaee (see
discussion in the beginning of §3). By deforming this fanlily, we ean extend this
marking to any degenerating I<ulikov family, defined over Va. Similarly, one can
argue that the limit of any lnarked degenerating I(ulikov family of type 11 defined
over 'Da induees a rnarking on any elliptic curve lying at the node.
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Before we can prove the analogue of Theoreln 1.7, we need to define a parameter
measuring the degeneration for any degenerating I(ulikov family. In the case of
elliptic curves, one has the elliptic modular parameter

qT = exp(27riT).

The following definition establishes a q-paralneter for any type III degenerating
Kulikov family of polarized, algebraic ](3 surfaces of degree d.

As discussed above, if 7r : X -t D is adegenerating I<ulikov family of polarized
](3 surfaces of type III, then the monodromy operator T has a single Jordan cell
of dimension 3. Hence, there is a free, three-dimensional submodule W(X t , L t ) C
H 2 (Xt , Z) for which the action of the lllonodrolny operator is unipotent. That is,
with respect to a continously varying basis {At, B t , Cd of lV(Xt, Ld, the action of
the lnonodromy is by the lnatrix

1
1
o

Thus, there is a unique invariant I-diluensional SUblllodule, generated by ±At for
tED. Let 7]t be as in Theorem 4.3. In §5 we will prove

J7)t = ±1.
At

The vanishing cycle is the cycle At such that the above integral is equal to 1. An
elenlent B t in W(Xt , Ld for which T(Bd = Bi + At will be called a transverse
cycle. Two transverse cycles differ by an additive factor of the fanu nAt where n
is an integer.

Definition 4.5. Let 7r : X -t D be adegellerating ](ulikov family of polarized
](3 surfaces of degree d. Let At be the vaJüshing cyc1e of homology, and let B t
be a transverse cyc1e. The 1(3 lnodular paralneter associated to this family
is defined by

Equivalently, if ij is any non-zero holomorphic 2-forrn on X t , then

We call q1r : D -t C the ](3 modular paranleter associated to the I<ulikov
faIllily 7r : X -t D. The reason why we caU qrr a parameter is that it is indeed a
holomorphic parameter at 0 in 'D, that is

qrr(O) = 0 and q~(O) -I- O.

This follows directly from the asymptotics of the periods as given in [Gr 70]. Also,
notice that qrr is independent of the choice of transverse cycle.

Various properties of the ](3 lllodular paralueter will be presented in aseparate
article. For this paper, we only need the following result, whose proof is based on
results that will be obtained in §5.
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Theorem 4.6. Let 7r1 : XI -t 7)1 aJld 7r2 : X 2 -t 7)2 be two degenerating
Kulikov Eamilies oE type JJI. Assume there exists t 1 E 7)1 aJId t 2 E 7)2 such tbat
7r11

( t1) and 7r;1 ( t2) are isomorphie polarized [(3 surfaces, whieh we shall ca1l
(X, L). Then

Proof. In Lemma 5.7 we will show that the families of algebraic, polarized 1<3
surfaces

* X* -T'\* d * X* -T'\*7r1 : 1 -r VI an 7r2 : 2 -t v2

are diffeomorphic. From the construction of the vanishing and transverse cycles via
the Clenlens map (see §5 01' [GI' 70]), any such diffeolnorphism necessarily 11laps the
vanishing cycle to vanishing cycle. Hence, the choice of an A cycle is determined.
After the vanishing cycle has been cleternüned, the ehoiee of a transverse eycle is
then determined up to additive factors of thc form nA. Finally, since Ho(X t , JC)
is 1-eli1nensional over C, it follows that the nloelular paral11eter is independent of
the choiee of the holol11orphic 2-fo1'111 froln whieh one COlllputes A and B periods.
Therefore, the q-parameter is well-clefined anel is independent of 7r. 0

By Theorem 4.6, we ean write

where 7r -1 (t) is isomorphie to the polarized 1(3 surface (Xt , Ld. It is shown in
§5 that any point in M~ can viewed as a point in some degenerating I<ulikov
family of type III. Sinee the A anel B periods are loeally holomorphic, q is also
holomorphic. As stated above, we sha11 investigate further properties of the 1(3
modular parameter q in a fortheolning article.

In order to consider the aSYI11ptotic behavior of the marked diseriminant on a
degenerating Kulikov family, we need to marked the family over each sector 7)a. A
construction of such a l11arking is given on pages 280-284 of [GI' 70). We will assume
this construetion, and refer the reader to (GI' 70] for further details. However,
there is one important point which we need to emphasize. When considering a
degenerating I(ulikov family of type II, the marking of the degenerating family
over any sector is such that any elliptic curve E which lies along anode of the
limit 1<3 surface has a natural induced Inarking. Hence, for type II degenerations,
the nodes of the limit sU1face cau be viewed as Inarked e11iptie curves, which, by
Kulikov's classification theareln and Griffiths construetion of the falnily of markings,
are isomorphie markeel elliptic curves, which we denote by E,. We refer to page
282 of [GI' 70) for a more detailed discussion.

With all this, we have the following theorelll whieh determines the asymptotic
behavior of the marked discrilninant for I(ulikov families of [(3 sllrfaces.

Theorem 4.7. There exist constants Cl and C2 wl1ich depelld olllyon the degree
d such that tbe Eollowing asYlnptotic Eormulas hold:

1. JE 7r : X -t 7) is a type 1 Kulikov Eamily oE nlarked, polarized K3 surfaces
oE degree d, then

log omar( (Xt , LI, <Pd, 77d = log omar( (Xo,Lo,<Po), 7]0) + 0(1);

II. 1E 7r : X -t 7)0 is a type 11 Kulikov Eamily oE lllarked, polarized 1{3 surfaces
oE degree d, then

6 log oma.r((Xt , LI, <Pd, 7]t) = log Iq([Xt , Lt ]) I+ 6 log omar(E,) + Cl + o( 1);
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III. If 1r : X --+ Va: is a type 111 J<ulikov family ofmarked, polarized K3 surfaces
of degree d, then

Proof. Part I follows directly frorn the holornorphicity, hence continuity, of the
rnarked discriminant on M~p As for part II and part III, it suffices to consider
I<ulikov families of special Kumlner surfaces. This follows since the marked dis­
criminant is holornorphic, and M~IP is a Zariski open subset of a domain of holo­
morphy, hence the asyrnptotic behavior of the unnlarked discrirninant out to o( 1)
depends solelyon the limit point of thc degenerating family. Also, the marking of
adegenerating I<ulikov family as given in [GI' 70] coincides with the lllarking of
the I<urnmer surfaces as described by Fuchs in [PSS 71], which is what we used to
calculate the marked discriminants in §3. Finally, as noted above, any lirnit point
can be obtained by considering degenerating falnilies of special KUlnmer surfaces.
By the evaluation of the markcd discriminant for such families, as given in Theorem
3.2, the result follows from Theoreln 1.7. 0

By the Riemann bilinear relations, Theorern 4.7 and Definition 2.5, it suffices
to understand the asymptotics of the periods of the hololll0rphic family of 2-forms
{17} for Kulikov faruilies with admissible bases of homology in order to detennine
the asymptotics of the unmarked 1(3 discrinlinant, which, in the end, will not
depend on the choice of homology. For the asymptotics of the periods of {7]}, one
can cite the results from page 286 of [GI' 70]. Alternatively, as in Theorem 4.7,
one can reduce the problem in hand to understanding asymptotics of the periods
for special I(ummer surfaces, since the period map is hololnorphic. However, the
family of forms w( X.4» on families of I(ununer surfaces is such that the periods are
associated to the 16 exceptional curves are all equal to zero since these cycles are
algebraic. Therefore, from our definition of an adlnissible basis of homology, the
problem actually reduces to understanding thc aSYlnptotics of the periods of the
abelian surface, which are reasonably well-known (see page 53 of [Fa 73]).

With aU this, we obtain the following result.

Theorem 4.8. There exist constants C3 and C4 Wl1ich depend only on tbe degree
d such tbat tbe following asymptotic formulas hold:

1. If 1r : X --+ D is a type 1 J<ulikov fanlily of lnarked, polarized [(3 surfaces
of degree d, thell

log 1117dli:~ = log II1]olli:~ +0(1);

II. If 7f : X --+ Da: is a type 11 I<ulikov faInily of lnarked, polarized K3 surfaces
of degree d, then

log lI17t IIi2 = log log Iq({Xt , L t ]) I+ log Im(T) + C3 + o( 1);

III. If 1r : X --+ Da: is a type 111 I<ulikov family ofmarked, polarized [(3 surfaces
of degree d, then
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Proof. One uses the asymptotic fonnula for periods of clegenerating algebraic
surfaces as given on page 287 of [Gr 70}. D

Finally, by combining Theorem 4.7 and Theorem 4.8, one has the following result
for the asymptotic behaviof of the llnmarked discriminant for I<ulikov families of
polarized, algebraic ]{3 surfaces of degree d.

Theorelll 4.9. There exist constallts Cs alld C6 which depend only on the degree
d such that the following aSYlnptotic foru]'ulas hold:

I. If 1r : X -r V is a type I Kulikov family of polarized ](3 surfaces of degree
d, then

10gounm(){t,Ld = 10gounm(.X"o,Lo) + 0(1);

II. If1r:){ -r Va is a type 11 I\ulikov family ofpolarized ](3 surfaces of degree
d, then

610g ounm (X t , L t ) = log Iq([Xt , L t ]) I+ 6 lag log Iq([Xt , L t ]) I
+ 610gounm (E r ) + Cs +0(1);

III. If 1r : X -r 'Der is a type 111 Kulikov family of polarized ](3 surfaces of
degree d, then

Even though we used Theoreln 4.7 and Theorem 4.8 to prove Theorem 4.9, it is
important to note that the result in Theorenl 4.9 is independent of the family of
markings on the I(ulikov family of ](3 surfaces.

Remark 1. Theorenl 3.3 clefines an Arakelov-I<ähler-Einstein fonn on any
marked, polarized, algebraic ]{3 surface. One can use Theorelll 4.9 to show that, in
an appropriate sense, the lilniting behavior of the Arakelov-I<ähler-Einstein form
for adegenerating I(ulikov family of type II has a residue that is the Arakelov form
on elliptic curve that lies along thc ,node.
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§5. Proof of TheorelTI 4.3

In this section, we will give details of the proof of Theorem 4.3. The proof is
given in three steps.

Step 1. The eonstruction of a I<ulikov family of type III consisting of special Kum­
mer surfaces.

Step 2. Let, be the vanishing invariant cycle of the I{ulikov family eonstrueted in
Step 1, which, by adefonnation argu1nent, extends to give a well-defined
choiee of cycle for any nlarked, polarized ]{3 surface of degree d. Let X -+
M~p be the universal family of marked, polarized ]{3 surfaces of degree d,
and choose a non-zero section ij of the trivial sheaf rr .. KXjMd . Then the

mp

function

is a holomorphic and non-vanishing on j\lt~p.

Step 3. From Step 2, let 1] = i]/4>. Then if (X, L, 4» is a I{ummer surfaee with
arbitrary polarization, we have, in the notation of §3, 1](X,~) = w(.x.. ,~).

To begin, we need to review the Clemens map assoeiated to a family of algebraie
manifolds. For now, let 1T : Y -+ V be a fa1nily of algebraic 1nanifolds of complex
dimension n defined over the unit dise V such that:

a) 1T IS proper;
b) The singular fiber Ya = 11"-1 (0) is a divisor with normal crossing;
c) Ya is locally given by Zil .•• Zik = 0, where Zik are local coordinates on the

components Dj of Ya

Let yt = 7r -1 ( t ) . In [Cl 77], Cle1nens cons tructed a map h t : yt -+ Ya for each
t E V" with the following properties.

a) For Z E Ya with z E Via n ... n Dik' we have hi l (z) =::: (51 )k;
b) h t : Yt \ht 1 (Sing(Ya)) '" Ya\Sing(Ya); in other words, h t is a diffcomorphism

away from the singular set of Ya.

With this, we ean apply the main theorem [To 76] to obtain a description of the
topology of adegenerating I<ulikov fa1uily of type IH.

Theorem 5.1. Let rr : Y -+ V degenerating J(ulikov family of type 111 and
. 'v' v(l) v(n)wnte IO = I a U' .. U I O •

a) Let G be tbe Gysin map

defined by

G(J-l) = L J-l . [Yo(i) n Yo
U)],

i#j

where J.l . [Yo(i) n Yo
U)] llleans intersection of the cyc1es on Ya. Let
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be such that , E Irn(G). Tllen h;-l (,) ~ (SI)2 and h;-1 C'y) E H2(Yt, Z) is
bomologica1ly non-zero. In addition, let r E H2 (Yt , Z) such that

r . h;-1 (,) = l.

Thell T(ht1Cy)) = h;IC,) and T(T) = T + h;I(')').
b) Let r(yo) be the graph associated witll Yo, and suppose H 2 (r(Yo), Q) =I- O.

Then for each tripie point p = Yo(io)nyo(idnyo(b), the 2-cyc1e h;-1 (p) = (SI)2
is non-zero in H 2 (Yt , Z). Further, there exis t cyc1es 11 ,')'2 E H 2 (yt , Z) such
that

T(h;-l (p)) = h;-l (p),

T(')'d = 11 + h;l(p),

and

The cycle h; 1(p) is called thc vanishing cycle, and the cycle ')'1 is called the
associated transverse cycle of the degenerating I<ulikov falnily of type IH.

Relllark 1. Recall that the graph r(yo) associated to the singular ](3 surface
Yo is constructed as follows. To each tripie point Yo(i) n yo(j) n yo(k) we associate

a vertex. If two tripie points coincide in yo(i) n yo(j), we will join the vertices by

a segment. If three tripie points lie on the salne component yo(i) of Yo, then we
connect these three points with a two di Inension silnplex (triangle).

We shall now construct a special family of ](3 surfaces of type IH. Let us start
with the Legrendre family of elliptic curves {E,\}, defined by

E>. = {y2 == x(x - l)(x -.-\) : 0 < 1.-\1< I}.

We let A,\ = E,\ x E,\, and we let ](,\ be the associated I(ummer surface.

Proposition 5.2. The fBlnily of !(uInmer surfaces {I(>.} is adegenerating !(u­
likov family oE ]{3 surfaces oE type 111.

Proof. For the Legrendre family of elliptic curves, there exists a Inarking of
the homology group H1 (E,\, Z) given by the canonical basis ')'1, 12 such that the
monodromy operator T of this faInily of elliptic curves acts by

T(')'I) = ')'1 and T(,2) = 12 + 11

(see chapter 3 of [Fa 73]). Let us now compute the monodromy operator T of the
associated family of I(ulnmer surfaces {](>.}, with respect to the basis of homology
given by the (powers of the) 16 exceptional curves and the cycles ')'i x ')'j, with
i, j = 1,2, where ')'1, 12 is a canonical basis of homology of the first factor E>. of
A>., and 1~' I~ is a canonical basis of homology of the second factor E,\ of A,\. By
direct calculation, one ean show that the lllonodrolny operator T of this family of
I<Ulnmer surfaces acts by
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and

T(,2 X,J) = ,2 X l~ + ('2 X,; +,1 X ,~) +,1 X,;.

Hence, T satisfies (T - 1)3 = 0 and (T - 1? f. 0, which shows that the family of
I(ummer surfaces {](>J is a I<ulikov fa1nily of type IH. D

Let X -t M~p be the universal faJnily of marked, polarized ](3 surfaces of
degree d. As stated above, the existence of a universal family implies that the
sheaf 7f.KxIM d is a trivial. Hence, there exists a non-vanishing global section

mp

ij E HO(M~p, 7f.KXrA4~p)' This observation now cOlllpletes Step 1 stated above,
namely the existence of a nOll-zero hololnorphically varying falllily of holomorphic
2-forms.

In order to prove Theoreln 4.3, we need to properly scale the section 1] obtained
in Step 1. We do so by studying the asYlnptotics of the period of ij on the vanishing
cycle of a Kulikov family of type IH. For this, we need to define what is meant by
the canonical sheaf on a singular 1(3 surface which is the limit of adegenerating
I<ulikov family of type III.

Definition 5.3. Let X -t V be a semi-stable, degenerating J(ulikov family of
type 11 01' type 111. We denne the canonical sheaf of X o over D by

By definition, this Ineans:

a) 1f z E Xo is a triple point, tllen K XIV is locally generated by any one of the
(orms

for i f. j alld i,j = 1,2,3;

b) 1f z E X0 is a dou ble point, then lC X IV is locally generated by any one of
the forms

for i f. j ancl i, j = 1, 2, 3,.

Theorem 5.4. Let 7f : X -t V be a degeneratillg family of J(ulikov surfaces of
type 111 with vanishing cyc1e,. Then tbe function

</>(t) = Jfit

i

is non-zero for all t E D* .

The proof will be established through severallemmas.



38

Lemma 5.5. Let rr : X --+ D be adegenerating I{ulikov family of K3 surfaces.
Then the vector space HO(X,1C x /'D) is a free r(D, O'D) module of rank 1.

Proof. Consider the exact sequence
to-+ Ox y. Ox -+ OXo -+ 0,

where the inclusion map is given by multiplication by the loeal parameter tED.
We then obtain the sequence

o-+ 1Cx /'D ..!.., JC x /v -+ JCx/'D I . --+ 0,
..''':0

from which we have the corresponding long exact sequence

o-+ HO(X, JC x /v ) ~ HO (){, Kx/'D) -+ HO (){, Kx/'D I ' ) --+ H I (X, Kx/'D) ..!.., ....
..\:0

We shall first prove
HI(X,!c X / v ) = 0

by considering the Leray spectral sequence

HP(D, Rqrr*Kx/v ) ==} Hp+q(X, JC x /v ).

From the Grauert direct image theorem, we have that the 8heaf Rqrr*Kx /v 18
coherent over V. Since V is aStein manifold, we have

HP(V, Rqrr*JCx /v ) = 0 for p ~ 2,

so it remains to show that we have

HO (V, R Irr*K x / 'D) = 0

Steenbrink [St 76] proved that the sheaf RPrr*0. x /v is a locally free sheaf, so,
in particular R1rr*Kx/'D is locally free. Since H1(Xt,n'i

t
) = 0, it follows that

R1rr*JCxlv = O.

Hence, from the long exact sequence, we obtain that the restriction map

HO(X,iex /v ) ~ HO(Xo,iex/vlx)

is surjective. Also, from SeITe duality we have the isoillorphism

HO(Xo,iex/v!x) ~ H2 (Xo,Oxo)'

We can now put everything together to prove the lemma. Prom the exact se­
quence

to --+ Ox y Ox --+ OXo --+ 0,
we have the induced exact sequence

H 1(Xo, OXo) --+ H 2 (X, Ox) ..!.., H2 (X, Ox) -+ H2 (XO, OXo) -+ O.

The vector space H 2 (X, 0 x) is a free 11lOdulo over r(D, Gv) of rank 1. In [To 76]
it is shown that H 1 (Xo, OXo) = O. By applying Serre duality, as above, we have
that the vector space

HO(X, JC x /v )

is locally free over r(V, Ov) and necessarily of rank 1, which was to be shown. 0
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Lelnma 5.6. Let X -r V be adegenerating J<ulikov family of polarized 1(3
surfaces of type J11. Let ,t E H 2 (Xt , Z) be the vanishing cyc1e. From Lemma
5,5, let

W E HO (.J{, K x /v );

so, over V*, {Wt} is a faJnily of holomorphically varying 11010morphic 2-forms.
Then for all t E V*, we have

"Yt

Proof. From the Clemens map, we have

Let p E Vii n Vi"}. n Via be the tripie point, and let ,1 be a small circle around p
in Via nVi!. Let N(Vio n ViI) be a tubular neighborhood of Vio nVi! in Vio with
radius E. Let 10 = 87f-1(/1) where

and a is the boundary operator. It is inuuediate that ,0 = 5; x 51 in Vio' It is
proved in [To 76] that the cycle hit (p) is homologically equivalent to hit (/0) in
H2 (Xt , Z). Hence,

Since Wt E HO(X, KXlv), then near the tripie point p we have

- - f( )dZ t /\ dZ2 - f( )-Wt - t - t Wo
Zt Z2

where f(t) i= 0 for t =1= 0, and Wo is as in Definition 5.3. From this we have

JWt = J Wt = J Wt = j(t)(21fi)2Resp (wo) = ±j(t)(21fi? =J 0,

which completes the proof of the lelulua. 0

Remark 2. From Lemma 5.5, any two elelllents of HO(X, !ex/v) differ by a nOll­
zero multiplicative holomorphic function on V, which will appeal' as a multiplicative
factor in the calculatioll of the period over ,. So, since the period over / is llOll­
zero and holomorphic in t, one can divide by this period. Further, the result after
dividing is also an element of HO (X, Je X IV) which and is independent of the initial
choice of section.

With the above lemluas, we can cOlllplete the proof of Theoreln 4.3 as follows.
Let
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be the projection obtained by ignoring the l11arking. For any point r E M~p, we
will construct a disc 1) C Mg that contains 7runm (r) and the point per(Xo), where
p : X -t V is the degenerating Kulikov fanlily of type III in Proposition 5.2, and
X o = p-l (0). Next, we prove that over 1) we havc a Kulikov faInily of type III,
say 7r : Y --+ V which, by Theorenl 5.1(b), ean be marked so that there exists a
vanishing eycle f that is neeessarily invariant with respect to the action by the
monodromyoperator. Let Wt E HO(y, Ky/'D) be a non-zero element. By Lemlna
5.6, the period of Wt relative to the vanishing cycle is non-zero for all t f:. O.

Now in V we cau choose a sector of fornl

'Da = {t E D : 0 < arg( t) < a < 2rr}

with 7runm (r) EVa, and let ~ be the eOl11poncnt of 7r~l\n(Da) that eontains r.
Note that, by definition, ~ C M~p. If we restrict

to ~, we will get a fal11ily of non-zero holonl0rphic 2-forms with ryt = g(t)Wt whieh,
by Lemma 5.6, is such that g( t) f:. 0 for t f:. O. We cau then seale ry by the period
with respect to the vanishing cycle, whieh is given by (2rri?g(t) times the period
of Wt, which is non-zero and holonl0rphic in t. In this way, we have appropriately
scaled ry by dividing by the non-zero hololuorphic function given by the period of
the vanishing eycle, thus obtaining a new element

By direet calculation, we will prove that the new faIuily of holol11orphically varying
holomorphic 2-forms {1]} satisfies Theorem 4.3, thus eompleting our proof.

We shall now construct the faInily Y --+ V described above. Let Mg be the

Baily-Borel corllpactification of M~, and let per: D -t M~ be the period map
of the the degenerating faIllily of Kunlnler surfaces constructed in Proposition 5.2.
Let Mg be the resolution of the singularities of Mg, so

is a divisor with normal erossing. Let

'" d - d
7rres : M p -t M p

be the map of the resolution of the singularities, which is guaranteed by Hironaka's
work. Consider an embedding

MdypN
p ,

and let p2 be a plane in pN with the following properties:

a) p2 intersects M~ transversely;
b) 1runm (r) E p2;
c) P 2 intersects h-1 (per(X°)) transversely.
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It is immediate that p2 n M~ = C is a non-singular eurve, and we eau find a
domain 'D C C with the following properties:

a) 7runm (T) E V;
b) V contains only one of the points in 7f~~ (per(Xo)) n p2 = 0, say qj

c) V is holomorphically equivalent to {t : 1tl < I}, so 1)\ {q} is holomorphically
equivalent to the punctured unit disco

Now let Y* -t V* be the family of polarized 1(3 surfaces of degree d over the
punctured disc V* c M~. By Theorem 4.2, we cau cOlupactify this family to a
family Y -t 'D which is degenerating I<ulikov falnily.

Lemlua 5.7. Tbe family 7r : r~ -t V is of type 111, and 1/~* -t V* is diffeomor­
phic to tbe farnily {](>.} -t D* [roID Proposition 5.3.

Proof. Let U be a polycylincler in j\:.t~ intersecting 7f~~ (per(Xo)), and let Xv -7

U be the corresponding faluily of polarized 1(3 surfaces. In fact, one can construct
the family X V -t U in the following 111anner.

Let
Z -7 Hilb~{/pno

be the family of ](3 surfaces over the semi-stable points of the Hilbert seheme
Hilbx/pno, which is the Hilbert scheme of ](3 sUlfaces imbedded by the linear
systelu 13LI, where L is the polarization dass. FrOIU the global Torelli theorem and
geometrie invariant theory [MF 82] we have that the space

Hilb~{/pno/ S Lno+1 (C)

is a projeetive variety and we have the universal family

X -7 Hilb~y/pno/SLno+l(C),

By applying the global Torelli theorem, we obtain an embedding

M~ y Hilb~~/pno/SLno+l(C) = M~.

We cau resolve the singularities of M~ along Deo = M~ \ M~ obtaining new space

Z, and there exists a holomorphic lnap

such that Z \ Mg is a divisor with normal crossillg. With all this, it is immedate

that ITunm(X) --+ Z is a family of 1(3 surfaces over Z. From Borel's theorem, oue
has the existence of a holomorphic luap

j5: Z -t M~

where j'Vt~ is the Baily-Borel c01l1pactification. Hence, we may assume Z = M~,
whieh is the resolution of singularities of the Baily-Borel compactification. There-
fore, we mayassume U c M~' from which we have the existence of the family
Xv -t U.
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From the eonstruction of the degenerating falnily of I{ummer su~aees given in

Proposition 5.2, it follows that we have n· c M~, henee D C Mg. Further,
by the eonstruetion of the family Y --t 'D, we may assume that the base discs
D and 1) only intersect at the point q = per(Xo). Sinee both dises are subsets
of the polyeylinder U \ (u n fJ00), it follows that we ean defornl the fanlily of
Kummer surfaees diffeomorphieally to the fanlily Y· -t V·, whieh inlplies that the
monodromy operator T of Y· -+ V· has the saIlle properties as that of the family
of Kummer surfaees. This eompletes the proof of the leluma. 0

The deformation of the family 1r : }'~ -t D to the degenerating ICulikov family of
Kummer surfaees of type 111 neeessarily Inaps the vanishing eycle of one family to
the vanishing eycle of the other family. Henee, we ean" extend the period mapping
</>(iJ) of iJ with respeet to the vanishing eycle of the fanlily of Kunlnler surfaces froln
Proposition 5.2 to all M~np' This funetion is then holamorphie and, by Lemnla 5.6,
is also non-zero. Therefore, we ean consider the faJnily of holonlorphically varying
holomorphic 2-forms given by 1] = 1]/1>(1]).

Relnark 3. As emphasized above, the construetion of the family of forms 1]
involves scaling a choice of family of forms it by the periods alöng the vanishing
cycle. It should be noted that sinee

where the dimension is over HO(Mg,O), the farnily of forms 1] is independent of
the initital choice of family of forms. "

All that remains is to show that the falnily of forms {1]} coincides with the family
of 2-forms given in §3 in the ease that the underlying ](3 surface is a Kumoler
surfaces. Since the above proof is construetive, we shall follow the above set-up to
prove this last point.

In the notation of §3, let ]((fl) be the KUIumer surface associated to the marked
abelian surface A(fl). We can fornl adegenerating I<ulikov family of type 111 by
first deforming the matrix fl in the Siegel upper half space of dimension 2 to a
diagonal matrix of the form

Hence, ]((T) is the special I<ummer surface associated to Er X Er. In the notation
of Proposition 5.2, the vanishing invariant cycle l is given by

,= 2(A X A'),

where A and B denotes a canonical basis of H1 (Er, Z). Recall that any two holo­
1110rphie 2-fonns on ]((T) differ by a non-zero multiplieative scalar, and the period
of the form dZ I 1\ dZ2 on A(fl) along A x A' is 1. Hence, two fonns on ](r eoineide
if their periods along the cycle associatecl to A x A' eoineide. Since the period of 1]

along A x A' is one, we conclude that the pullback of 1] is indeed dZI 1\ dz2 •

With all this, the proof of Theoreln 4.3 is cOlllplete.
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