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Abstract

In this paper we prove that there exist no codie~on two immersiona of oriented Grassmann
manifolds into Euclidean spaces, except for G2(R4), G2(R5), G3(R6) and spheres.

1. Introduction

For 1 ~ k < n, let Gk(Rn) denote~ oriented Grassmann manifold of oriented A:­
dimensional vector subspaces of Rn. Gk(Rn) is a smooth manifold of dimension k( n - k) .
Note that GI (Rn) ;; 8 n- 1

1 the (n - 1) -sphere, and that Gk(Rn) ;; Gn_k(Rn) under the
diffeomorphism that sends an oriented k- plane V to \/.L together with that orientation
on V.L which induces the standard orientation on V EB V.L = R1I

• The question of stable
parallelizability for the oriented Grassmann manifolds was solved in [7] and [8]. Since
Gk (Rn) is orientable, the stable par~lizability for Gk (Rn) is equivalent to the existence of
a codimension one immersion of Gk(Rn) into Euclidean space. In this paper, we investigate

the existences of codimension two immersions of GI.,(Rn) into Euclidean spaces. Since

Gk(Rn) ;; Gn_k(RU) , we assurne, without loss of generality, that 2k ~ n . Dur main

result is

Theorem 1.1 Let 2 ~ k ~ n/2 . Then Gk(Rn) immerses into Rk(n-k}+2 if and only if
(n, k) = (4, 2) 1 (5, 2) or (6, 3) .

Let , = 'n,l.- denote the canonical k -plane bundle over G R(Rn) , and let ß = ßn,k be its
orthogonal complement, whose fiber over aVE Gk(Rll) is the vector space V.L C Rn .
We have bundle equivalence

(1.2) "'Vn k EB ßn k ;; TI.,c ,I , ,

where c denotes a trivial line bundle.

It is weil known that the tangent bundle TGk (Rn) of Gk (RU) has the following description
([6]):

(1.3) TGk(Rn) ;; 'n,k @ ßn,k

For a topological space X, let r : 1«(~Y) -jo KO()() denote the homomorphism of Abelian
groups gotten by resbietion of scalars to R 1 and let c : KO(~Y) -jo !«()() denote the
complexification, c[~] = [~@R C] , which is a ring homomorphism.

We have the following identities:

(1.4)

(1.5)

rc(x) = 2x Vx E KO(..-Y)

cr(y) ==: y +Y Vy E I{()() ,

where Ti stands for complex conjugation of y.



a = 1] - 1 E K(C PU) 1 ~ =

2. K .. theory of complex projective spaces

Let 1] denote the Hopf complex line bündle over epu
1'7], y = 1'a = ~ - 2 E ](O(CPU).

Proposition 2.1 ([1], [3])

(i) the ring !((epn) is a truncated polynomial ring over the integers generated by a ,

1.e.,

(ii) the ring !(o(cpn) is a truncated polynomial ring over the integers generated by y,

with the following relations:

yt+l = 0 if n = 2t(t ~ 0)
2y2s+1 = 0, y2s+2 = 0 if n = 48 + 1(8 ~ 0)

y25+2 = 0 if n = 48 + 3(8 ~ 0);

(ili) the complexification c K 0 (cpn ) -t K (epn ) is a monomorphism if n t
1 1110d 4.

Proposition 2.2 For arbitrary real 2-plane bundle ( over Cp2, there exists 8 E Z, such

that (- 2 = 82(~-2) E KO(Cp2).

Proof: Since Cp2 is one-connected, aU real bundles over Cp2 are orientable. Observe that

( may arise from the realification of a complex line bündle over Cp2, ( 50(2) ;;; U( 1)) 1

but the complex line bundles over Cp2 are in bijection with H2 (CP2; Z) ;; Z ., Therefore

we get

( = 7'172 = 1'( 7] 0 1] 0 01]), 01'

( = r1js = 1'(1] 01j ® ® 1j) for SOlne 8 E z+ = {n ~ 0, n E Z}

Let us consider first the case ( = 1'1]s • Now, by proposition 2.1,

(2.3)

( = rr,. = r((J +1)" = r(1+ S (J + (;) (J2)

=2+s(~-2)+ (;)r(J2

and we have to compute ra2 E KO(Cp2). Note that 1]1j = 1, so (1 + a)(l +a) = 1, it
follows that a = -(j + (j2 . By (1.5), we have

On the other hand, c(~ - 2) = cra = (J + (j = a + (-(j + (J2) = (J2. So c(2(~ - 2)) =
2a2 = CT(j2. By proposition 2.1 (ili), we finally obtain ra2 = 2(~ - 2). Now, (2.3) implies

that (- 2 = s(~ - 2) + 2G) (~ -2) = s2(~ - 2). For the other case ( = r'ii' , the proof

is similar.
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Thus

3. Proof of theorem

Proposition 3.1 For 2 ~ k < 11., n:/= 2k, n ~ 6, Gk(Rn) has not codimension two

immersion into Euclidean space.

Proof: Without loss of generality we assurne that 2k ~ .,-1,. It follows that n - k ~ 4 =
dirn CP2. Thus eveIL..!eal orientable k -plane bundle Q' over Cp2 can be classified by a

map f : Cp2 -+ Gk(Rn) so that f*(,) ~ a. Taking a = ~ EB (k - 2)e, where ~ is the

underlying real 2-plane bundle of the canonical complex line bundle over Cp2, we obtain

the following equalities in KO(Cp2) :

j* (,) ~ ~ EB (k - 2)e ,

1*(ß) ~ j*(ne - ,)

;;; (n - k + 2)e - (

f*(rGk(R n
));;; f*(,rvß) ~ j*(,) ®f*(ß)

~ (~ EB (k - 2)e) ® ((n - k + 2)e - ~)

~ (11. - 2k + 4)~ + (k - 2)(11. - k + 2)e - ~ ® ~

Using the relation ~ rv ~ ;;; 4~ - 4 in KO(Cp2) (proposition 3.1), we obtain

(3.2) f* (rGk (RlI
)) ~ (n - 2k)~ + ((k: - 2)(n - k + 2) + 4)e

Suppose Gh.(Rn) immerses into RK (n-k)+2, then there exists an orientable 2-plane bundle

(' over C;:~(Rn), such that

It follows that

Using (3.2), we obtain

j*((') EB (n - 2k)~ EB ((k - 2)(n - k + 2) + 4)e ~ (k(n - k) + 2)e.

By proposition 3.2, (taking ( = f*(' ), we obtain

with (n - 2k + s2) > 0, a contradiction to proposition 3.1.

Proposition 3.3 For k ~ 4, Gk (R2k ) has not codimension two immersion ioto Rh;2+2 .

Proof: V. Bartik and J. Korba~ [2] have computed 'Wi(GR(Rn )) for 1 ~ i ::; 9. From their

results WB (G4 (RB)) = wi + wi + w5 E HB(G4 (RB); Z2)' It follows that WB (G4 (RB)) =

('W2( ,B,4))2 E HB (~(RB); Z2) . We use the Gysin sequence associated to the double

covering G4 (RB) -? G4 (RB) together with cohomology of G4 (RB) to establish that

(W2('B,4))4 :/= 0 in H B( G4 (RB); 12). It is easy to see that wi ( G4(RB)) = °for 1 ::; i ~ 7.
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These imply that wi (~(R8)) = (W2( '8,4))4 # 0.· So G4 (RB) has no codimension two

immersion into R1B .

In case n = 2k, k > 4, consider the inclusion RB ~ RJ.~-4 EB RB ffi Rk-4 . This induces

an inclusion j : G4(RB) ~ GR(R2k) where j(A) = ./Y + A, }( = Rk - 4 EB ° EB 0, and

Ä = 0 EI;) A EI;) o. It is readily seen taht j*r2k,k = 18,4 EB (k - 4)c. Hence

j* (rGk (R2k
)) ~ j* (/2k,k ~ ßZk,k)

~ j* (')'2k,k) ~ j* (ß2k,k)

;; (,B,4 EB (k - 4)c:) ~ (ßB,4 EI) (k - 4)c)

;;; ')'B,4 ~ ßB,4 EB (k - 4)e @ (ßB,4 EB 1'B,4) EB (k - 4)2e

~ r ( G4 (RB) ) EI} (k2
- 16) c: .

Suppose Gk (R2k ) immerses into Rk2+2, then there exists an orientable 2-plane bundle (

over Gk{R2k ) , such that rGk(R2k) EI;) ( ~ (k2+ 2)c, thus

r(~(RB)) EB (k2 -16)e EI}j*(() ~ (k2+ 2)e.

By Hirsch theory ([4]), we obtain that G4(RB) immerses into R18, a contradiction to the
conclusion above. This concludes the proof of the proposition.

Proposition 3.4 G2 (R5) immerses into RB .

Proof: An investigation similar to lemma 3.2 in [5] yields: the quotient space
C; (R:l!C2 (rrt) is homeomorphic to the Thom space T(3c:) of a 3-plane trivial bundle

over GI (R4) ~ 83 (since 53 is parallelizable. Obstruction theory establishes:

KO(G;(R5
)/C2(R4)) ~ }(O(T(3c:));; KO(S3/\ (83 U (0)) ~ O.

This yields that the injectivity of i* in the exact [(0 sequence of the cofibration: 52 x 8 2 ;;;

Gz("4) ~ G; (R5) -+ Gz(R5
) / C2(R4)

i* : ](0 ( G2(R5)) ~ ](0(52 X 8 2) ;; Z2 ffi Z2 ffi Z.

It is easy to see that 2i*(1 - 2) = 0 in ](0 (52 X 8 2), sinee i *(I) is the eanonical 2-plane
bundle over 8 2 x {xQ} C 52 X 52. So we have

(3.5) 2(1' - 2) = 0 in ](0 ( G2(R5
)) .

On the other hand, using ,.\2 -construction (second exterior power) we obtain

(3.6) G) f ;; ,\2(, $ ß) :: ,\2(,) $ ,\2(ß) $,0 ß ;; , 0 ß $ ß $ f.

Combining (3.5) and (3.6), (1.2), we may obtain

TG2 (R5
) ffi l' ;;; Sc:.

Together with Hirsch theory ([4]), we know at onee that G2 (R5) immerses into R8 .

Proof of theorem. The "on!): if' part of the theorem comes from proposition 3.1, 3.3. Then

it suffices to show that G; \R!t) immerses into R6 and G3 (R6) immerses in RU. But it

is weIl known that G2 (R4) :: 8 2 x 52, and G3 (R6) is parallelizable [8].

4



Acknowledgements

This work was done while the author was visiting the Max-Planck-Institut für Mathematik in

Bonn. I wish to thank Professor F. Hirzebruch and Professor M. Kreck for their hospitality.

References

1. J.F. Adams, Vector fields on spheres. Ann. of Math. 15 (1962), 603-632.

2. V. Bartik, and J. Korba~, Stiefel-Whitney characteristic classes and parallelizability of

Grassmann manifolds. Proceedings of the 12th Winter School on Abstract Analysis,

Supplement ai Rendiconti deI Circolo Mathematico di Palermo II 6 (1984).

3. M. Fujü, KO -groups of projective spaces. Osake 1. Math. 4 (1967), 141-149.

4. M. Hirsch, Immersions of Manifolds. Trans. Amer. Math. Soc. 93 (1959),242-276.

5. S.G. Hoggar, On }(O -theory of Grassmannians. Quart. J. Math.z 20 (1969),

447-463.

6. K.Y. Lam, A formula for the tangent bundle of ftag manifolds aud reiated manifolds.

Trans. Amer. Math. Soc. 213 (1975), 305-314.

7. D. Miatello, and R.J. Miatello, On stable parallelizability of Gk,n and reiated mani­
folds. Math. Ann. 259 (1982), 343-350.

8. P. Sankaran, and P. Zvengrowski, Stable parallelizability of partially oriented flag

manifolds. Pacific J. of Math. 128 (1987), 349-359.


