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Abstract

In this paper we prove that there exist no codiemnsion two immersiona of oriented Grassmann
manifolds into Euclidean spaces, except for Gg(R‘*) GZ(R5) G3(R5) and spheres.

1. Introduction

For 1 < k < n, let Gﬁ") denote the oriented Grassmann manifold of oriented k-
dimensional vector subspaces of R". G1(R") is a smooth manifold of dimension k(n — k) .
Note that Gi(R*) = S"~! | the (n —1)-sphere, and that G1(R") = G, _i(R™) under the
diffeomorphism that sends an oriented k— plane V to V' together with that orientation
on V1 which induces the standard orientation on V @ V1 = R" .The question of stable
parallehzablhty for the oriented Grassmann mamfolds was solved in [7] and [8]. Since
Gi(R") is orientable, the stable parallelizability for C“;,(R“) is equivalent to the existence of
a codimension one immersion of Gk(R") into Euclidean space. In this paper, we investigate
the existences of codimension two immersions of Gr(R") into Euclidean spaces. Since
Gk(R”) Z Gn._x(R") , we assume, without loss of generality, that 2k < n . Our main
result is

Theorem 1.1 Let 2 < k < n/2 . Then Gr(R") immerses into R*®=%¥2 if and only if
(n,k) = (4,2),(5,2) or (6,3) .

Let v = ¥n denote the canonical % -plane bundle over & 1;(11?!“) , and let 8 = 3, beits
orthogonal complement, whose fiber over a V € G(R") is the vector space V* C R™ .
We have bundle equivalence

(1.2) Tnk 57 ﬂn,k = ne )

where ¢ denotes a trivial line bundle.

It is well known that the tangent bundle TG;:_(E") of G;:fﬁ") has the following description
([61):

(1.3) TG(R™) = Yok @ i
For a topological space X, let r : K(X) — KO(X) denote the homomorphism of Abelian

groups gotten by restriction of scalars to R, and let ¢ : KO(X) — K(X) denote the
complexification, c[{] = [ ®g C], which is a ring homomorphism.

We have the following identities:

(1.4) re{z) =2z  Vze KO(X)

(1.5) cer(y)=y+7 VYye K(X),

where Yy stands for complex conjugation of y



2. K -theory of complex projective spaces

Let 1 denote the Hopf complex line bundle over CP" , o =n—-1€ K (CP"), € =
ry, y=ro=§&—2¢€ KO(CP").

Proposition 2.1 ([1], [3])

(i) the ring K(CP™) is a truncated polynomial ring over the integers generated by o |
Le.,

K(CP") = Z[o]/(c"*) ;

(ii) the ring KO(CP™) is a truncated polynomial ring over the integers generated by y,
with the following relations:

ytl =0 if n=2(t>0)
2y2tl =0, 42 +2 =0 if n=4ds+1(s>0)
y*t2 =0 if n=4s+3(s>0);
(iii) the complexification ¢ : KO(CP") — K(CP™) is a monomorphism if n #
1 mod 4.

Proposition 2.2 For arbitraly___{eal 2-plane bundle ¢ over CP?, there exists s € Z, such
that ( — 2 = s%(¢-2) € KO(CPQ).

Proof: Since CP? is one-connected, all real bundles over CP? are orientable. Observe that
¢ may arise from the realification of a complex line bundle over CP? (50(2) =U (1)),

but the complex line bundles over CP? are in bijection with H?(CP? Z) = Z .. Therefore
we get

(=P =r(n®n®---®7n), or
(= =r(f®N® ---Q7) forsome scZt={n>0,n¢el}

Let us consider first the case ¢ = r° . Now, by proposition 2.1,

(=rm’ =T(0+1)s=1‘(1+30+ (;)02)

(2.3)

=24s(6—2)+ (;)m?

and we have to compute ro? ¢ KO(CPz). Note that 77 =1, so (1 +0){(14+7) =1, it
follows that @ = —o + o2 . By (1.5), we have

C’”Uz=02+F=02+Fz=02+(—0+02)2=202

On the other hand, c(§ —2) = cro = 0 +T = 0 + (—o +0%) = 0% So ¢(2(£-2)) =
202 = cro?. By proposition 2.1 (iii), we finally obtain o2 = 2(¢ — 2). Now, (2.3) implies
that ( —2=35(6 —2)+2 Z (€ —2) = s%(¢£ — 2). For the other case ¢ = r7° , the proof

is similar.



3. Proof of theorem

Proposition 3.1 For 2 < k <n, n # 2k, n >6, G1(R*) has not codimension two
immersion into Euclidean space.

Proof: Without loss of generality we assume that 2k < n. It follows that n — &k > 4 =
dim CP2. Thus every real orientable k-plane bundle a over CP? can be classified by a
map f: CP? — Gi(R") so that f*(y) = «. Taking o = £ @ (k — 2)e, where ¢ is the
underlying real 2-plane bundle of the canonical complex line bundle over CP?, we obtain
the following equalities in KO (CP?) :

fron=€e k-2,
X (8) = fr(ne =)
Sn-k+2)e—¢

Thus ~ ~ ~
77 (rGrR™) Z F(r© 8) = £() & £*(6)
(Ed(k—2))@((n—k+2)—¢)
(n—2k+4)+(k-2)(n—k+2)c—E®E

Using the relation £ @ £ = 4£ — 4 in KO(CP?) (proposition 3.1), we obtain

~
~

(3.2) f (TEE;(R")) = (n—2k)E+ ((k = 2)(n — k +2) + 4)e

Suppose Gi(R") immerses into RE("=F)+2_ then there exists an orientable 2-plane bundle
¢’ over Gi{R"), such that

rGLR™) & ' = (k(n — k) + 2)e.

It follows that _

f* (T@’Z(R“)) @ f*(¢) = (k(n — k) + 2)e.
Using (3.2), we obtain

)@ n—20)@ ((k—2)(n—k+2)+4)e = (k{n — k) + 2)e.

By proposition 3.2, (taking { = f*¢’ ), we obtain

(n—2k+s%)(6~2)=0 in KO(CP?
with (n — 2k + s?) > 0, a contradiction to proposition 3.1.

Proposition 3.3 For & > 4, @;(R”") has not codimension two immersion into R¥ 2 .

Proof: V. Bartik and J. Korba§ [2] have computed w;(Gr(R")) for 1 <: < 9. From their
results wa(Ga(R®)) = wf +w + wf € H(G4(R®);Zz). It follows that ws(Ga(R¥)) =
(wa(vs4))® € HB (@(RS);ZZ) . We use the Gysin sequence associated to the double
covering G4(R8) — Gu(R®) together with cohomology of G4(R®) to establish that
(wa(vs4))* #0 in HS (Ei; (RS);Zg). It is easy to see that w,-(Ei;(RS)) =0for1<i<T.




These imply that w; (E:'A‘(Rs)) = (wa(y84))* # 0. So @(RS) has no codimension two
immersion into R!® .

In case n = 2k, k > 4, consider the inclusion R® — R*~* ® R® @ R*~* . This induces
an inclusion j : G4(R®) — Gg(R?*) where j(4) = X +4, X =R*"*@o®o, and
A=o@® Ado. ltis readily seen taht j*yorr = 34 ® (k — 4)c. Hence
7" (Ta’: (Rzk)) = 5* (Yokp @ Bar k)

7*(vor k) ® 7% (B2k )

= (184 @ (b —4)e) @ (Fg s ® (k — 4)e)

Z 34 ® Psa ® (k —4)e ® (Bs.4 ®54) ® (k — )’

2 r(Ga(R®)) © (K - 16)e.
Suppose Gy (R2*) immerses into R*'*2, then there exists an orientable 2-plane bundle ¢
over G(R*) | such that G (R*) @ ¢ = (k? + 2)¢, thus

r(Gi(R®)) @ (K - 16)e @ 7(() = (¥ +2)e.

By Hirsch theory ([4]), we obtain that C’T:;(RS) immerses into R!® a contradiction to the
conclusion above. This concludes the proof of the proposition.

1

Proposition 3.4 G,(R°) immerses into RS .

Proof: An investigation similar to lemma 3.2 in [5] yields: the quotient space
G2(R®) /G2(R*) is homeomorphic to the Thom space T'(3¢) of a 3-plane trivial bundle
over G1(R*) = 5% (since S° is parallelizable. Obstruction theory establishes:

I%(@(R5)/&(R4)) = KO(T(3¢)) = KO(S3 A (S3U o)) 2 0.

This yields that the injectivity of i* in the exact K'O sequence of the cofibration: S2% x $2 =

CoRYY L 0L (RS o (RS

G2(R*) = G;(R®) — G2(R )/c":;(m)
i* 1 KO(G:(R%)) - KO(5?x $%) 20 Lh0 L.

It is easy to see that 2i*(y —2) =0 in KO(S? x S?), since i*(7) is the canonical 2-plane

bundle over 5? x {zo} C S% x S%. So we have

(3.5) A7-2)=0 in KO(G:(R)) .

On the other hand, using A2 -construction (second exterior power) we obtain

(3.6) (;)53)\2(7@5)§A2(7)®/\2(5)®7®ﬁ;’7®ﬁ€BﬁEBe.
Combining (3.5) and (3.6), (1.2), we may obtain

rGa (R%) @ 7 2 Se.
Together with Hirsch theory ([4]), we know at once that CTg(R5) immerses into R® .

Proof of theorem. The “only if” part of the theorem comes from proposition 3.1, 3.3. Then
it suffices to show that G; Ri‘#) immerses into R® and G3(R®) immerses in R!'. But it

is well known that G3(R*) = 52 x 52, and G3(RE) is parallelizable [8].
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