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Abstract

We discuss the general properties of discrete transformation which
leavs integrable systems invariant. A group-theoretical interpretion for
this transformation is proposed. It allows to describe and understand
all essential properties of integrable systems as a direct corollary of a
representation theory of discrete groups of integrable mappings.

1 Introduction

Liouville has introduced the term ”integrability” with respect to dynamical
systems. He proved that if a dynamical system possesses a sufficiently large
number of integrals of motion in involution then such a system is integrable.
But neither general methods for constructing solution in an explicit form nor
any mention of the symmetry of the system under consideration are contained
in the Liouville’s criterion.

In the case of Lie symmetries the theorem of E.Noether fills this gap and
teaches us that the number of conservation laws coincides with the dimension
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of the Lie group and gives the possibility (in the case of a Lagrange theory)
of obtaining explicit expressions for integrals of motion.

Roughly speaking the modern theory of integrable systems up to now has
maintained the Liouville definition (an integrable system have to possess an
infinite number of integrals of motion in involution) and many people have
found various consequences which follow from this fact.

The goal of this paper is to show in a deductive way that the theory of
integrable systems may be understood as a theory of linear representations
of discrete groups of integrable mappings [1, 2].

This does not mean that at the moment we can propose a complete math-
ematical theory of this connection. Our aim is to show that all known results
of the theory of integrable systems do not contradict to this hypothesis.

2 Discrete transformation of integrable sys-
tems
and its general properties

Let us consider a local invertible transformation described by the substitution
= d(u, o, u”,. .., u") = ¢u), (2.1)

where u is an s-dimensional vector function and «/, ", ... are its derivatives of
the corresponding order with respect to "space” coordinates (the dimension
of the space may be arbitrary).

At first, we want to enumerate the most important general properties
of substitutions (2.1) which result from observation of the sufficiently large
number of integrable systems [3].

1. All equations of a given hierarchy are invariant with respect to the same
discrete transformation.

2. The substitution (2.1) is invertible: this means that equations (2.1)
may be resolved with respect to the "old” variables w which may be
expressed as functions of the "new” variables @ and their derivatives.

3. The substitution (2.1) is canonical (4, 5]. This fact can be expressed
in two equivalent forms. There exists a single generating function from



which by the rules of the theory of canonical transformations it is pos-
sible to obtain the explicit form of substitution (2.1). In other words
this means that the substitution (2.1) may be reclated to some Pois-
son structure [7] (and not single) which is invariant with respect to
transformations described by substitution (2.1).

4. The conserved quantities of the theory are shifted by the divergence
(with respect to space coordinates) under the transformation (2.1) [7].

5. The substitution (2.1) may be rewritten in the form of infinite chain of
equations

Upyr = Glun, ul,ul, .., (2.2)

where u, denotes the result of n-time application of transformation
(2.1) to some initial function uy (a possible solution of some integrable
system). The general property of chains (2.2) consists in their integra-
bility. This means that it is possible to obtain exact general solution
of these chains under appropriate way of interrupting of the chain (by
using some ”good” boundary conditions) on its both ends. For all inte-
grable systems with a rational spectral parameter (in old inverse scat-
tering method terminology) the chains (2.2) coincide with equations
of Toda lattice (the Darboux transformation) or of its generalizations.
About situation in the case of elliptic spectral parameter see [9, 10].

6. Substitution (2.1) may be generalized for the case of non-commutative
variables. For instance, the function » may be considered as matrix-
valued or as operator-valued function in the corresponding representa-
tion space [8].

3 The problems which may be solved with
the help of discrete transformations.

Now we enumerate the most important results which may be obtained with
the help of discrete transformation (2.1).

1. It is possible to obtain the wide class of explicit solutions of integrable
systems in a determinant (Hirota) form. These solutions depend on
some number of arbitrary functions [3].
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2. By an appropriate choice of these functions it is possible to extract -
those solutions which either are invariant with respect to some inner
automorphism of dynamical system under consideration (in particular,
multi-soliton solutions) or satisfy some other boundary conditions {8, 9].

3. The condition of invariance of Poisson structures with respect to trans-
formation (2.1)

¢ (u)Ju(u)g " (u) = Ju(g(w))

(¢'(u) is the Frechet derivative) allows to obtain the explicit form of
nonlocal Hamiltonian operators of an arbitrary order and to construct
the whole hierarchy of integrable systems with given discrete substitu-
tion [4]-{6].

4. Tt is possible to obtain the equations of (1-+2) integrable hierarchies cor-
responding to a given integrable substitution (2.1) in two-dimensional
space [7].

4 Equation determining the discrete substi-
tution and its group-theoretical interpreta-
tion

As discussed above, knowledge of a discrete substitution allows to give a solu-
tion for many problems of the theory of integrable systems. The only ”small”
problem is how to choose an appropriate substitution from the infinite set of
possible ones?

Below we give the equation solution of which is exactly the mapping (2.1)
satisfying all conditions necessary to exploit it as a discrete symmetry of some
integrable system [1, 2]. This equation is obtained under the assumption of
locality of a substitution.

Let ¢'(u) be a Frechet derivative corresponding to substitution (2.1)

; d¢ , 9¢ 9¢ 2
d)(u)— a—u'i'@D‘F%D + -

Next, we denote by F'(u) the vector column function components of which

are some (may be nonlocal) functions of dynamical variables u and of its



derivatives, namely
: F(u) = Flu,o/, ", ..., u™).

Then every solution of the functional differential equation with shifted argu-
ments

F(¢(u)) = ¢'(u) F(u) (4.1)

may be related to an evolution-type equation
wy = Fu)

which is invariant with respect to the discrete transformation @ = ¢(u).

Equation (4.1) is a generalization of the well known condition of inte-
grability in the theory of differential equations. Indeed let us differentiate
substitution (2.1) with respect to some parameter on which ”initial” function
u depends and denote ¢(u) = F(p(u)), 2 = F(u) then (with all necessary
words) we come to (4.1).

So if a mapping (substitution) is integrable (in the above sense), then it
is possible to consider it as a discrete symmetry of some integrable system.

Let us now compare the equation (4.1) with a definition of a linear rep-
resentation T'(g) of some group (for instance, Lie group)

b(gz) = T(9)®(x), (4.2)

where g is a group element, T'(g) is the group operator of representation,
®(z) is an element of a basis of the corresponding representation space.
Comparing (4.2) with (4.1) we arrive at the obvious correspondence

®(z) = Fa(u), T(g) = ¢'(w).

Let us give a group-theoretical interpretation of equation (4.1) using this
correspondence. We have some discrete group of transformation the group
element of which is acting exactly as substitution v — ¢(u). ¢'(u) (a Frechet
derivative) is a linear representation of a group element. At last, F(u)
(the equations of hierarchy) form a basis in a representation space. If this
representation is irreducible (this fact should be checked by independent
methods), then all possible bases of this representation (solutions of equation
(4.1) with different n) must be connected by some operator W, v

Fn(u) = Wn,n' n' (43)



Certainly the same situation takes place in the theory of (1+1) integrable
systems. All equations of the same hierarchy are connected by the ”raising”
operators constructed from the skew symmetrical (nonlocal) Hamiltonian
operators Jy, = —JT

Wn.,n" = JntL?l (44)

Two equations (which are typical for a group representation theory) will

be important for further considerations

F W) (w)™ =W(gw), ¢WJw¢'(w)" =J(g),  45)

where ¢'(u)T = ¢T — D¢I, + D*¢T, — ---, and W(u), J(u) are unknown
s X s matrix operators the matrix elements of which are polynomials of some
finite order with respect to positive and negative degrees of the operator of
differentiation D.

From (4.5) and (4.1) it follows immediately that if F;,(u} is some solution
of main equation (4.1), then W?{u)F, (u) (p is an arbitrary natural number)
will be some other solution of the same equation.

A solution of the second equation (4.5) under additional condition of its
skew symmetry may be connected to a Poisson structure which is invari-
ant with respect to a discrete symmetry transformation. Skew symmetric
operators J(u) are known as Hamiltonian ones. Two different solutions of
the second equation from (4.5), say J;(u) and Jo(u), in combination J;J;™
satisfy the first equation from (4.5). The operator J;J5'J;(u) is again the
solution of the second equation from (4.5) and so on. This is the way how
Hamiltonian operators arise in the theory of integrable systems. It is nec-
essary to find two different Poisson structures by independent methods and
after this fulfill the above described procedure. In this respect the equations
(4.5) were used in {5].

5 Some additional consequences of the main
equation
Let us differentiate the main equation (4.1) with respect to some parameter

p considering it as one of arguments of the function u. The following formula
for differentiation of an arbitrary s-th component vector functional ®(u) takes



place W
0®(u o\ Ou
- T Wy

where @'(u) is s x s integro-differential operator (the operator of variational
derivative). In the case of a local functional it coincides with a Frechet
derivative operator corresponding to ®(u). Differentiating of the main equa-
tion with respect to some parameter p and applying the last formula we
obtain

(Fr (6(u))'¢ (w)up = (¢ (w)) up oy (u) + ¢/ (w) Fy, (w)uy.

The above equality is the identity with respect to the function u,. Let
us substitute the equality into it u, = Fp,(u), where the last function is
some solution of our main equation different from F, (u). It is not difficult
to understand that the first term in the right hand side of the last equation
is symmetric with respect to interchanging n; to n,. Composing the same
equation with interchanged indexes and subtracting the last expression from
the previous one we obtain

(Fay (3(w))) Foa($(1) — (Fup(¢(w))) Fry (B(w) =

G(u)[(Fy (u)) Frp (w) = (Fry (w)) Foy ()]

Thus the combination [(Fy, (u)) Fo,(u) = (Fu, (1)) Fy, (u)] satisfies our main
equation. For all integrable systems known to us this combination is equal to
zero. So we can suppose that this is some additional condition (apart from
invariance with respect to a discrete transformation group) which chooses
integrable systems from the set of all partial differential equations.

Let us consider the conclusions which follow from this condition.

An equation of integrable hierarchy has the form

wy = F(u)
the corresponding symmetry equation is the following one
Uﬁ = F:ll(u)U

and we see that each functions F,(u) satisfying the main equation is a solution
of the symmetry equation if the above additional condition is satisfied.
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The additional condition allows to introduce a self-consistent multi-time
formalism in the sense that system of equation

uy, = F(u)

is consistent. Using this language we can say that the additional condition
guarantee the equality of the second partial derivatives.

6 The general hypothesis

As a conclusion of the previous considerations it is possible to formulate
the following general hypothesis about the structure of a future theory of
integrable systems:

e the problem of classification and solution of integrable systems is equiv-
alent to the theory of representations of the discrete group of integrable
mappings.

Indeed, if from independent considerations it turns out to be possible to
obtain a solution of our main equation (4.1), then we automatically produce
an integrable evolution-type equation (4.2) and each space of irreducible
representation of (4.3) will give us the exact solution of it. We are well aware
of the fact that our main equation (4.1) in its present form is not very suitable
for obtaining direct conclusions from it. In this connection, we can notice
by analogy with the ‘distance’ between the original definition of semi-simple
algebras (in the sense of an absence of nontrivial ideals) and the Cartan
classification into A, B,C, D, E, F,G and E that there may be comparable
‘distance’ between the problem of classification of the solutions of our main
equation as it is formulated here and its possible solution.

We hope that something alike the Cartan’s classification will be achieved
in the case of representation theory of discrete groups of integrable mappings.

7 Conclusion

The author doesn’t insist on the mathematical regorouse of the present paper.
The number of arising questions is much more then regorous mathematical
output.



The main equation (4.1) will provide the answers to two most impor-
tant questions of the theory of integrable systems. The first question is a
‘quantization’ of substitution, i.e., the choosing from the infinite number of
invertible substitutions the ones which will be integrable in the above sense.
Except for the obvious remark that this will depend essentially upon the
dimensions of the spaces involved, the author knows almost nothing about
how to solve this problem and thinks that it not going to be resolved quickly.

The second more tractable problem is solution of the main equation (4.1)
for a given (ad hoc) integrable substitution ¢(u) [7]. The author is convinced
of that the solution to this problem is closely connected with the theory
of representations of discrete groups of integrable mappings. From known
examples of integrable systems it follows that discrete groups of integrable
mapping possess rich storage of different irreducible representations. With
each of these representations it may be connected a definite class of exact
solutions of corresponding integrable system. In some sense the soliton-like
solutions correspond to finite-dimensional representations of such groups.
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