THE ENERGY CF HARMONIC MAPS

OBTAINED BY THE TWISTOR CONSTRUCTION

M. A. GUEST

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-Str. 26

D - 5300 Bonn 3

Federal Republic of Germany

MPI 86-50



THE ENERGY OF HARMONIC MAPS OBTAINED BY THE TWISTOR CONSTRUCTION

M. A. GUEST

Harmonic maps may be viewed as the critical points of the energy
functional., It is natural to ask, then, whether these critical points
have some geometrical description, what critical values are possible,
and whether there exist Morse-~theoretic results concerning the cohomology
of the critical sets. We present some preliminary calculations which

answer these questions in a simple case: the maps will be the imclusions
n
G.X ——(CP

of the orbits of points X 1in complex projective space, under the linear
action of some compact Lie group G .

In chapter I we describe the harmonic maps in terms of the weights
of the representation o¢f G involved, using the fact that the energy
functional here is essentially the "norm squared of the moment map'. The
Morse-theoretic results obtained by F. Kirwan (see [Ki]) thus carry over
to the energy functional. In chapter II we discuss the harmonicity
condition in terms of results in the literature (i.e. [BS,BW,ES,EW])
which give a "twistor construction' of harmonic maps from a Riemann
surface to compact symmetric spaces. We give an example (following [EW])
where the energy of a harmonic map (i.e.- the critical value) has

topological significance. This is extended to the case of an
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arbitrary harmonic map of the type under consideration in chapter III.
It will be apparent to the reader that these results generalize
to linear actions on other homogeneous spaces. In fact it is also
possible to say something about maps which are not the inclusions of
orbits of such an action; the "homogeneous case' discussed here can be
regarded as a formalism in which the devivatives 3/3z , 3/3z have

been replaced by the actions of elements e, * ©_g of the Lie algebra.



CHAPTER 1

HARMONIC ORBITS OF A PROJECTIVE REPRESENTATION

Let G be a compact simple Lie group, and let 8 : G—SU be

n+1
. + . . .
a homomorphism. Thus, G acts on ¢" l , unitarily with respect to the

standard Hermitian form << , >> , via the representation 6 . In this

chapter we study properties of the orbits of the induced action of G

on CP" . If [v] € CP" is the line through v e Gn+] , the orbit G.Dﬂ

is the image of the map

fv:c—>u:1>“_ , E(8) = [e(g)v] .

With respect to a standard Kdhler metriec h on ¢P" and the metric

7

<, > on G given by minus the Killing form, the energy E(fv) of fv

is easily calculated. Recall that

| 2
E(f) = (1/2){G [dfvl

where |dfv| is calculated using the given metrics. We have |dfv|2

tr f:h ; this is a constant function on G . If L FERRRL is an

orthonormal basis of the Lie algebra L(G) = TeG , then |de]2 =

m +1 . .
;§1<<p:6(ei)v,p;6(ei)v>> , where p: " -f>[v]L‘1s orthogonal project-
ion, Here 6 denotes the Lie algebra homomorphism 8 : L(G)——+L(SUn+1)

T and L(Sun+l)

is identified with the subspace of traceless skew-Hermitian elements of

associated to the Lie group homomorphism 6 : G — SU

End(¢n+]) as usual . This choice of metric on ¢P" 1is a multiple of

the metric < , > given by minus the Killing form (of SU_ ., ) . Thus



m n 5
E(f) = K ¢ ¢ |<<ge.)v,v.>>]|"
v . . i B!
1=1 3=1
where Visee sV is an orthonormal basis of [v]A , and K ( = vol(G)/2)
is a positive constant.

The critical points of the real valued function
E : ¢p" — R y E([vJ) = E(fv)

may be found in the following elementary manner. We use the fact that the

unitary group U may be identified with the set of all ordered ortho-

n+1
normal bases Ugseeesl of €n+1 and that there is then a submersion
n -—
T o Un+1 ——> €P y n(uo,...,un) = [UO]
The critical points [v] of E , with |v |= 1, are given by those v

for which every ordered orthonormal basis of the farm AAREERREA A (of
Gn+1 ) is eritical for w+E . Now, the critical points of n+«E may be
found by the method of Lagrange multipliers: we want the extrema of

m“+1x...x¢“+1-__>a , (UO,...,Un)y——9 ) |<<B(ei)u

subject to the constraints
<<u,,u,>> = 6§,

i 1]
The condition turns out to be that the transformation

m
- 1 L
i:1 e(ei)pve(ei)pv + B(ei)pve(ei)pV

is Hermitian, where P, > p¢ are respectively the orthogonal projections
to [v] s [v]¢. Since e(ei)* = -B(ei) and P, » pt are Hermitian,
m

1 n 4
iEl pve(ei)pve(ei)pv * on(ei)pve(ei)pv



is Hermitian. Hence, on subtracting these two transformations, we find the
condition for an extremum is that

El

[ e =

L £ A
pve(ei)pve(ei)pv " pve(ei)pve(ei)pv

i=1

be Hermitian. This is so if and only if

(*)

[ =

pie(ei)(pi - pv)e(ei)pV = 0.

i=1

This is precisely the condition for fv to be'a harmonic map (i.e}.
a local extremum for the energy, when variations through arbitrary
smooth maps are allowed). To explain this, we recall (lemma 2.1 of [Cu1])
that i1f 8 : G—G' 'is a homomorphism of compact Lie groups, and if

8(H) € H' for certain subgroups H& G, H'€ G' , then the second

fundamental form of the "homogeneous" map
£, ! G/H —>G'/H'
(with respect to the metrics < , > ) is given by:

v(dfg) (x,y) = (Ee(X)L(H)’B(y)L(GVHUJ - [e(X)L(GVHD’e(y)L(Hﬁ])/Z

If @ e is an orthonormal basis for L{(G/H) = L(H)*f\L(G) , the

condition for harmonicity of fg (namely tr V(dfe) = 0 ) Dbecomes:
m
B D sl - 0
When H = {e} and G'/H' = SU_ . /S(U, xU) = ¢P" , this reduces

to the condition (*) above (see theorem 3.4 of [Gul]). The discussion

so far may be summarized as follows.



THEOREM 1.1. For the map f : G—>CP" we have:

m

P - BN
(1) E(£) K <<(iile(ei)pve(ei))v,v>>
(2) £_ 1is harmonic

v
iff [v] 1is a critical point of E : ¢p" —R

m
iff v 1is an eigenvector of the transformation [ B(ei)(p¢ - pv)B(ei) . D
: i=1

While orbits of a linear action are evidently rather special, the
next observation shows that, even in this case, the harmonicity condition

is interesting.

'PROPOSITION.1.2. If y : €P"—L(G)* is the moment map for the action

cf G on ce” via @ , then
2 2 m 2
Q/RECE )+ 4 fu([vD]™ = -<<Cz 8(e) v,v>>
i=1

Proof. By the moment map we mean the composition p = 8*%«(i/2m)p , where

(i/2mp : €0 —> L 0%, [v] s (200

ig the inclusion of ¢Pn in L(Un+l)* as a coadjoint orbit, and

8% L(Un+1)*—->L(G)* is the dual of © . Strictly speaking, (i/2w)p
)

. n . ‘e .
is a map from (P to L(U ) , obecause of our identification of L(Un

n+1
. .. . +
with the skew-Hermitian transformations of @ L . However, we shall

identify L(Un

+1

+1) and L(Un+1)* in the usual way, via the invariant

metric (X,Y)—> - tr XY on L(Un+l)

Observe first that u([v])(x) = - tr (i/Zn)pve(x) =
-(i/27)<<8(x)v,v>> for any x € L(G) . Hence |u([v])|2 = ,wi‘u([y])(ej)2
J:

]

2, 2 o 2, 7 2
= =(1/4n7) I <<e(ej)v,v>> (1/4n )JE |pve(ej)v] . But we have
J" LA

~

2
seen earlier that E(f§) = F |p¢8(ej)v| . Hence the result.O
x



COROLLARY 1.3. If © 1is irreducible, EV is harmonic if and only if
il - — ‘
I

Eﬂ 1s a critical point of | 1

e 2 - .
Proof. The transformation l;\e(ei) is the Casimir operator for 6 (with
respect to < , > ) . If € 1is irreducible, it is well known that this
is a scalar operator (see [Hu], 6.2). Hence Iulz and E have the same

critical points. &

The critical point theory of tu|2 is discussed in detail in [Ki], in the
more general context of sympleétic group actions on manifolds. It is shown
that |u|2 is an "equivariantly perfect Morse-Bott function" in the sense
that the Morse-Bott inequalities hold (relating the indices of the critical
points to the Betti numbers of the manifold), providing G-equivariant
cohomology is used. Hence the same 1s true of E , when 8 1is irreducible
(by the proof of 1.3).

In order to make this more explicit, we shall give the description of

the critical sets in our case (i.e. for an ), following [Ki]. From the

formula

2 2, T 2
[w(lv]) =  ~(1/4n7) L <<8(ei)v,v>> ,
i=1
a Lagrange multiplier argument shows that [v] is critical for |p|2 if
and only if v 1is an eigenvector of the transformation 1§|9(ei)pv8(ei) .
T ¢p"'—> L(T)* for the

action of a maximal torus T (of G ) on ¢p" (via 8 ) . If e

It is useful to consider also the moment map u

. ye

TR h

are chosen to form an orthonormal basis for L{T) , then one has

|uT(Dd)|2 —(1/4n2) E <<e(ei)v,v>>2 ,

i=1

and [v] is critical for IUT|2 if and only if v 1is an eigenvector of
H

the transformation & G(ei)pve(ei) . The formula for |uT[2 may easily
[ |

. . . n .
be written in terms of homogeneous coordinates 2gyeer2z oD gp ¢ if
. n . . n+1
we write v = .L zjvj where VgreeeaV, 1S an orthonormal basis of €
J=0

consisting of weight vectors of 6, with corresponding real weights



. n L
AO,...,AH € L(T); , then <<8(ek)v,v>> = 2n1<<j§°Aj(ek)zjvj,jfozjvj>> =
271 Eakj(ek)lzjl . Hence

h
51 up([v]) (e e

u (VD)

1(l )
h

-(1/2%) I <<8(e
k=1

k)v,v>>ei’é
h n 2

L L |z.[ A.(e Jexn
k=1 j=0 3 J KK

LEMMA 1.4. For B e L(T* , let 2, = ([v] : 2, =0 if <x,;-B,8> #0 ) .
. s 2 ., . -1
Then [v] is critical for |uT| if and only if [v] e ZgAup (B)  for

some B . The set 2

Br\u;1(8) is non-empty if and only if 8 is the

closest point to 0 of the convex hull of some non-empty subset of the

weights AO""’An

2 .
Proof, We have seen that [v] is critical for |UT|“ if and enly if
_E e(ei)pve(ei)v = Cv for some constant C , Taking the inner product
s R
of both sides with v gives C = L <<6(ei)pv6(ei)v,v>> . Since P,X
= <<x,v>>v , the condition is )
h h 2 :
£ <<B(e.)v,v>>8(e,)v- = ~I |<<8(e.)v,v>>|"v
. i i . i
i=1 1=1
i.e, for each r =20,...,n
h n 2 h n )
z L (Ar(ei) 5 A.(ei)|z.[ ) = 2z I ( ¢ A.(ei)lz.l )
i=1 j=0 : i=t  j=0 .
This ‘reduces to
n n n
z <A, I Az |2 > = z.< I Aolz 12 , I A.|z.|2 >
j=0 ] 1] i=0 J ] i=0 .

i.e. for each r = 0,...,n , either z_ =20 or Ar - uT(Dﬂ) 4 uT(Eﬂ)
Hence if [v] 1is critical for ]uT| , we see that uT([v]) is

necessarily the closest point to 0 of the convex hull of those weights Ar



for which A_ - uT([v]) L uT(Dﬂ) . So [v] e ZBr\u;I(B) for B =
uT([vJ) . Conversely, for any B € L(T)* ,; assume that there exists
[v] e Ziju;I(B) . Then [v] 1is a critical point of |uT|2 and B is
of the required type.O

THEOREM 1.5. The critical points of |u|2 are L}G.(Zsf\u-I(B)) )

where B varies over closest points to O of convex hulls of subsets

of the weights of ©

Proof. An essential property of w: GPn—ﬁ>L(G)* is that it is
G-equivariant, with respect to the given action on ¢P” and the co-adjoint
action on L(G)* . This may be verified directly from the definition of W

given earlier, or from the formula

: m ' m
w(vD =t ow(vD(eper = -(i/2m) T <<t(e Iv,videf .
k=1 k=1
From now on we shall identify L(G) and L(G)* by means of < , > , so
L]
that w([v]) = =(1/2m) z <<B(ek)v,v>>ek ¢ L{(G)

If Dﬂ is critical for |u|2 , SO is g.[v] = [B(g)vl for any
g € G, by G-equivariance of |u|2 . Since u(g.[v]) = ad(@u([v]) we
may choose g such that Ad(g)u([v]) € L(T) . From the criteria of the
paragraph preceeding lemma 1.4, if w([w]) € L(I) (i.e. uT(Dﬂ) =
u(EQ]», then Dﬂ is eritical for |u,r|2 if and only if it is critical
for - |u|2 . Putting [w] = g.[v] and applying lemma 1.4 gives
Gﬂ € G.(ZBf\u-1(B)) for some B8 . This argument in reverse shows that
every point of G.(ZBp\u“1(B)) is critical for ]u|2 . 0

Examples.
1. If 8 1is a non-zero weight of € , then ZB is the (projectiv-
ized) weight space of B . From the formula for u above one sees that

281; u—1(8) . Hence the corresponding set of critical points for [u|2

is just G.ZB , 1i.e. the union of the projective weight orbits with

weight B .

If 8 =0, then 2, 6 = ¢P" . Hence the corresponding set of critical

B



points for |uf2 is u_I(O) , 1l.e. the set of minima. 7The quotient
space u-l(O)/G is the symplectic quotient or Marsden-Weinstein
reduction {of ep” ) ; see [Ki].

2. Let G = SU2 , and let 8 = s"c be the representation of
_ SU2 on the space P ( = ¢n+1 ) of homogeneous polynomials in two

variables of degree n . This is irreducible, and the weights (via an

identification L(T)* =R ) are n- 21, 1=20,...,n; each weight
space has dimension ! . The non-zero weights give rise to non-minimal
critical submanifolds for |u|2 (or E ) , namely the projective orbits

of the corresponding weight vectors. For such a weight vector v , the
projective orbit is isomorphic to CP] , being the image of the harmonic
map fv : SUZ-%>CPn . One also has the critical set u_1(0) . If O

is a weight, its weight vector gives a distinguished point of u_l(O) s
whose orbit is isomorphic to RPZ . The remaining orbits in uul(O)

are 3 dimensional,

3. If H 1is any subgroup of G which leaves [vj e ¢cp" fixed,
the map fv : G—>CP" factors through G/H . 1If in theorem 1.1 we
replace fv : G —¢pP" by the induced map fV : G/H —>cP" , the proof
goes through in exactly the same way, providing CTRERRNL is now
taken to be an orthonormal basis of L(G/H) = L(H)*A L(G) . (Note that
if xe L{H) , pte(x)v = (0 .) The metric on G/H 1is that bbtained
from <, > on G, and K = vol(G/H)/2

For the remainder of this article we shall concentrate on the
situation in example 3, with H a maximal torus T . Thus v is a

weight vector of 8 (with respect to T ) and we have
n
fv : G/T —>(CP

The fact that G/T admits complex structures makes this case of special
interest. For background information we refer to [BH,GU]]; in particular
we recall that a homogeneous complex structure on G/T corresponds to

a choice A% of positive roots of G (with respect to T ). Given At

the decomposition (TG/T)e€ = (Tc/'r)1 0 @ (TG/T)O

b

, may be written
4



L(G/T)eC = L,C, © I  te_
ae aed

in terms of which an orthonormal basis of L{(G/T) & L(G/T)®T. consists of
v - Y24 N d
the vectors (1/v2)(e, e_a) o (1/V2) (e + e_a) , ae , an

<ea,e_a> = -1 for all o . Thus, if J e End(L{(G/T)) 1is the correspond-

. . +
ing operator, Je = ie and Je = -le for all ae &
a o -a -a

PROPOSITION 1.6. Consider fV : G/T-—;(EPn , where v ii‘i weight vector
of © of unit length.

+
(1) With respect to the complex structure on G/T given by 4  and the

complex structure on ¢P" defined via the identification (T[VJCPH)

1,0

Hom([v]*,[}]) , fV is holomorphic if and only if e(ea)v = 0 for all

+
ae A

(2) fv is harmonic if and only if v is an eigenvector of L e(eu)e(e“a).
aed

(3) E(f) = E'(f ) + E"(f ) where
v v v —

E'(fv) = K I <<e(ea)e(e_a)v,v>>
aed

E"(f ) K £ , <<8(e_)8(e )v,v>>
v + -a a

aed

(4) If w 1is the Kihler form of ¢ and « is the 2-form on G/T

defined by k({x,y) = <x,Jy> , then

E'(E ) - E"(£) = <ffry,r> = 4 n2K<A, T o >
v v’ v +
where X is the weight of v

Proof. (1) follows from the definitions of the complex structures. For

(2) and (3), use the identity

1]

8(e dp Ble,) - I 8e)p 8le_)
1 agd

[T e B



where @ eyl "1s the basis of L(G/T) described above. Since v

is a weight vector, pve(eu)v =0 for all o€ & . (4) is proved by
calculating the first two quantities. First, we recall that for a e A" ,
[ea;e_a = ha ¢ L(T) ® ¢ , where (with our conventions) Y(ha) =
~2ni<y,a> for all vy e L(T)* . Thus

E'(£) - E"(f) K L, <<9([ea,e ]yv,v>>

-a
e D

K L <<2mid(h Jv,v>>
+ a
aed

ol
4K I L Sha>
acd

Next we must calculate w and « . If a,b e L(cP™) ¢ L(SuU ),
n+i

w(a,b) = Im <<p av,p bv>>
= —(i/2)<<[a,b]v,v>>

Thus, if. x,y € L{G/T) < L(G)

r

Bra(x,y) = =(i/2)<<8([x,yD)v,v>>
and so f*w(e ,e ) = —2in2<A,u> . By definition of x , k(e ,e ) =
v ol - a’ -a
<e ,Je > = -i<e ,e > = 1, Since f*w and «x respect the
a’” T-a a’ - v

decomposition
LG/T) @C = L, (Ce ®Ce_)
acd

we can take their inner product on each subspace and add the results.

Hence

<f3w,K> = vol(G/T) L N -2in2<k,a>i
aegd
= 4n2K L <A,u>
+

aed

as required.O



CHAPTER I1I

TWISTOR CONSTRUCTIONS OF HARMONIC MAPS

By a "twistor construction' of a map f : X->Y of complex manifolds
we mean a factorization £ = we.g through an (almost) complex manifold 2 ,
where g : X—Z is holomorphic and 7 : Z2—Y 1is a fibre bundle. Such a
construction was used in [Ew] to produce all harmonic maps EP1-—>€Pn . A
general treatment first appeared in [ES], where @ ! Z—Y was a twistor
fibration over Y , and this explains our terminology. We shall consider

compositions of the form

G/T > F > ¢p"
£ T
8 b

where F = SUn+1/S(UI X...x U1) is the full flag manifold of ®n+1 (i.e.
G/T for G = SUn+1 ) and Ee is the map induced by a representation
g : ¢G—>Su ., » and where s is the i-th natural projection which assoc-
. _ _ o+l . L
iates to a flag {0} = Ege i€ -v- € En+! € t2i1llne Ei-lf\Ei .
Let us now fix a flag {0} = EO < EI < ... & En+I =C (denoted g e F )

. 4 _ n . _
and write Ei_lnEi = [vi] ¢ CP with [vi] =1 . Then

i.e. we are considering maps of the type discussed in chapter I. Our

aim 1s to give results (based on [ES,EW]) which relate harmonicity of fV
(a second order condition) to holomorphicity of fe (a first order t

- . . 2 . .
condition); this reflects the relation between E and |yl described 1in
chapter I, since it is known from [Ki] that arbitrary critical points of

2 . . .. ..
[ul for a symplectic action are related to minima of |p|2 for subsidiary



symplectic actions. For simplicity we deal only with maps fv which are

induced by homomorphisms, but (as we shall point out later on)' a feature
of the approach is that the results extend to more general (''non-
homogeneous') maps.

On G/T we fix a complex structure given by a choice of positive

+ n :
roots 4 , and on CP we take the standard complex structure compatible

with the identification

n L
(T[vi] CP, o = Hom([v.]5{v. D)
as in chapter I. We have at our disposal various (homogeneous) almost
complex structures J on F , which may be described via the identificat-
ion
(TUF) ®Cc = L Hom( [vi] , [vj])

0si#jsn

LA NN

Following_[BS] we define a relation " by writing 1 + j il and only

if (TUF)1’0 contains Hom([vi],[vj]) . Homogeneous almost complex
structures J correspond to cheices of -+ , It is known that J 1is
integrable if and only if -+ 1is transitive, hence homogeneous complex
structures correspond to (total) orderings of the integers 0,...,n . On
G/T we take the Riemannian metric < , > , and on cP" a muléiple of
< , > as in chapter 1. Thﬁs cp” (unlike G/T !) has a Kidhler structure.
For further details of almost complex structures and metrics on '
homogeneous spaces see [BH,Gul]. A combinatorial discussion of the relation
+~ is given in [BS].

With respect to an almost complex structure J , the map fe is
holomorphic (i;e. dfe(TG/T)T,O < (TF)l,O ) if and only if pie(ea)pj = 0
for all ae & , and all 1i,j with 1 - j , where Py ¢t ——>[vi] is

orthogonal projection. To simplify notation we shall write

= a +
PT. = . .
i ple(ea)pJ for ae &
and
[} +
Qij = pie(e-a)pj for ae a



Observe that (P?j)* = QQ. . In order to understand the role played by

Jji
F , we restate theorem 1.1 using this terminoclogy.

THEOREM 2.1. For the map f : G/T—>CP" we have:
THEOREM For the map v, we have

a
(1) E'(f. ) = K I ro|p..]2 E'(f ) = K & ro]Qt. |2
Vi aed’ AL It Vi xed” IETUE

(2) fV is harmonic

i
ifE £z (P QT -PT.Q.) = 0 forall s# i .0
e . st 't 51 11
Ged t#i
. COROLLARY 2.2. Assume fe : G/T -F is holomorphic, with respect to J
on G/T and the almost complex structure on F given by -+ . The map
f = 7,0 f is harmonic if and only if
vi i 8 — —_— —
£, I PLQ;; = O forall s with i=+s
aeh Lol s
and
£ Q" pPY. = 0 for all s with s - i
+ . st ti —_
aed 17t

Proof. Let

P = r ¢ (%% -q%.p%) ,q = » g Q% p¥, - p* Q%
S a&a+ t41 s5Ct1 S1 11 5 aeA+ E#i st t1 S
so that fV is harmonic if and only if Ps + QS =0 for s#1 . HNow,
‘ i
P - = -
S Qs ps( afa+ (G(eu)e(e_a) e(e-a)e(ea)) )Pi

= ps( a:ﬂ+ 8([ea,e_a]) )pi

and this is zero for s # i , since [ed’e—é] e L(T)®C and vy is a

weight vector. Therefore, a necessary and sufficient condition for harmon-—

icity of fv is that for each s ( # 1 ) , either Ps =0 or QS = 0
Since f s holomorphic, P* =0 (i.e. Qc1

5 st (s = 0 ) for each a ¢ A

ii

)



and for all s , t with s +~ t . Combining these conditions proves the

corollary.
From this, the following sufficient condition for harmonicity is immediate.

COROLLARY 2.3. Let fe : G/T—>F be holomorphic, with respect to J on

G/T and the almost complex structure on F given by -+ . Assume in

addition that Pzt = 0 and ta =0 for all ae A" and all s , ©

with s+ 1+ tort—-1-+3s . Then f\.r = M f8 is harmonic.Q
1 :

With respect to the map fv and the almost complex structure given by

. . i
-+ we define associated maps

- n+t
fi ! G/T —> Gra(m )

£} : /T —> G @

b
where a + b =n , by taking the orbits of the subspaces A = @ [vj] ,
B = ® [v.] (dimA = a, dimB = b ) . In other words, 7
f;(gT)i+j= .Cz [e(g)vj] , and similarly for EZ . The Grassmannian
Grk(¢n+1) has?” " a standard homogeneous metric (analogous to the one on
cP"  used in chapter I) which is defined on TXGrk(¢n+]) = Hom(X,X™)
by (§,T) —> tr S*T . Using this metric on Gra(¢n+1) , Grb(mn+l) we
have:

PROPOSITION 2.4. Assume that Pzt =0 and ta =0 for all ae A and

all s , t with s> 1>t or t~1-+s . Then
-— +
E(E ) = E(f.) + E(f.}
v, i i
1
Moreover, if fe : G/T —>F 1is holomorphic with respect to J and -+ (i.e.

. . . + .
we are in the situation of 2.3), then 'fi and fi are respectively

holomorphic and anti-holomorphic with respect to the homogeneous complex

n+ | _
))1’0 =

structures specified on the Grassmannians by (TAGra(C

Hom(a*,A) , (T,Gr (u:““))1 = Hom(B™,B)

b 0



Proof. Using the definition of the metric on the Grassmannians, cne
obtains the formula

0‘.|2

E(£) = K I I ijk

aed

where the second sum is over (j,k) with j ~+i , k+#1 or j +1i,
k + 1 (c.f. (1) of theorem 2.1). These values of (j,k) are represented

by the shaded area of the matrix below:

N

i DN\
N
N
Similarly
+ a 2
E(f)) = K I I |ijj

ael

where the second sum is over (j,k) with i+ 3, 1+#k or 1+,

ik :

NN

ONANNT

|
\§

Since by hypothesis all terms outside the i-th row and i-th column are

zero, we obtain

]

s}
K & (]p

E(E,) + E(f;)
* aeh  jFL

(using 2.1).
+
The map f; is holomorphic if and only if Pzt =0 for all o e A



and all s , t with 1 +#s, 1>t . Now, 1+ s 1if and only if i = 8
or s~>1 . If s .1, ch = 0 by the first hypothesis. If i = s ,
P?t = 0 since fe is holomorphic. Similarly, E; is anti-holomorphic.
The condition in corollary 2.3 is essentially the horizontality
condition of §3 of [EW]: the induced map G/T—>F(i-1,i,n+1) into the
space of flags of the form {0} = EgS B, SE SE ., = ¢™'  is horizon-
tal with respect to the projection F(i-1,i,n+1) —cp" . (Proposition
2.4 corresponds then to (ii) of proposition 7.1 of [Ew].) It is a strong
condition if rank G > 1 , implying in particular that, for each a ¢ At R

the map

CP' —> C/T + cp”
a Vi

is harmonic, where o : ¢P1——»G/T is induced by the inclusion

L(suy) = fe_,e_ b ]—>1(0) . .
If w, is the Kdhler form of Grk(dln y , and fX : G/T-ﬂ>Grk(C )

is defined by fx(gT) = 8(g)X , then a calculation similar to that in (4)

of proposition 1.6 gives
1 - " = b
E (fX) E (fX) <fxmk,m>
In the situation of 2.4, E”(f;) = 0 and E'(f;) = 0 , hence
E(E ) = (E'(E}) - B"(£2)) - (E'(£;) - E"(£.))
A 1 1 i i
+ —
= <{(f.)*» ,k> =~ <(f.)%w ,x>
1 a 1 b
We may write this in terms of the maps fv o a as follows. Using a suffix

i
to denote the relevant group, we have

2
< 0 = (1/8n <a,a>G)< » Tgy

L(SUZ) 2

and so



2
E(Ev.) = (8n KG/KSU ) o, <u,a>E(fV.- a)
1 2 aed 1

By proposition 2.4, applied to each Ev o a ,
i

_ - *
U~ su <(Ejead*uy kg, >gy

E(f » o) = <(ET- a)*w L,k
i 1 a 2 772 272

v

Now, although Kg is not a closed form if rank G > 1 , it is when G =

. So <(f;-a)*wb,x represent the

Su > , <(f,ea)*w ,k_. >
2 sU,"sU, i a’"su," su,

. + - .
topological degrees of Ei-a R fi-a (i.e., up to a constant, the

integers given by the induced maps on second cohomology groups); this
fact was noticed in a more general context by A. Lichnerowicz - see §9
of [EL]. In chapter III we shall show that E(fv.) méy be expressed in
terms of degrees of holomorphic and anti-holomorpﬁié maps whenever fv
is harmonic, i.e. without assuming the full hypotheses of corollary
2.3.

A stronger result than 2.3 (apparently without a simple interpretat-

ion of E(fv ) , however), is the following version of proposition 1.6
of [Bw]. t

PROPOSITION 2.5. Let fB : G/T—F be holomorphic, with respect to an

almost complex structure J which corresponds to the relation -+ . Assume

in addition that J satisfies the condition

a->1, 1-~+b 2 b =+a for all 1i,a,b

Then f = 7,0 f is harmonic.

Proof. Let o e d . If a-=>i->b, then b +>a . Since fe is

holomorphic, P a 0 . By corollary 2.2, f is harmonic. O
- v



The hypothesis on J 1in 2.5 is in an obvious sense the opposite of the
integrability condition for an almost complex structure. When LN is
neither holomorphic nor anti-holomorphic, such an almost complex structure
J 1is the result of taking a complex structure on F and reversing it on
the subbundle which is vertical with respect to T

Finally, we note that the hypotheses of corollary 2.3 and proposition
2.5 have the following property, whichr provides further justification for
introducing the '"twistor space" F . If fe satisfies either of these
hypotheses, then so does P.f for any (n+1) % (n+1) complex matrix P
Since one can in fact feplace fe by any smooth map in 2.3 and 2.5 (c.f.
the remarks in the introduction), one deduces that all maps of the form
moe P.f8 are harmonic. (To be more precise, only those P are allowed.
for which Moo P.fG is defined.) For example, all harmonic maps .€P1—€>6Pn

arise in this fashion (see [Gul]).



CHAPTER II1I

THE ENERGY OF A PROJECTIVE WEIGHT ORBIT

Let v be a weight vector of unit length with weight A for the

representation 6 of G . From chapter I we have

E(f ) K <<( & 0(e )0(e ))v,v>> |
v a -Q

aed

and f  is harmonic if and only if v is an eigenvector of I 8(e )6(e_ )
v xEND a -a
is

Let € reraep be an orthonormal basis of L(G) such that € renes€y

a basis of L(T) and IR is a basis of L(G/T) . The Casimir

operator of 6 with respect to < , > , 1i.e.

h 2

I 8(e.) - L 8(e )B(e ) ,
.1 s} -

=1 aed

6(e.)?
1 .
1 1

it 3

i
is a scalar operator on each irreducible submodule. If the submodule has

maximal weight X , this constant is —4n2<A,A+26>, where " § 1s half the

sum of the positive roots (see Ekﬂ).

PROPOSITION 3.1. The map £ : G/T—>CP" is harmonic if and only if

- - -~ -~

<A,A+26> @ <p,u+26> - for all wmaximal weights A, pw of irreducible
submodules in which v has a non-zero component. When this is the case,
one has:

E(fv) = énzK(<A,A+26> - <), A>)

Proof. The first assertion follows from the discussion above. To prove the



second assertion, use the formula above for E(fv) together with

h 7 4
b <<9(ei)2v,v>> = —in® 7 A(ei)z = —4nfaa,a> . O

1ad [

For example, let G = SU and let 8 = Sno' (as in example 2 of chapter 1).

2
An orthonormal basis for L{T) consists of one element e, - This may be
extended to an orthonormal basis e ,e,,e, of L(G) , with e, =
(1//2)(eOt - e_a) » €y = (i//Z)(ea + e_a) where o 1s the single positive

root. The action of these elements on an orthonormal basis Vgt eoVy

of weight vectors is easy to write down explicitly (see, for example, [Gu2]).

1f v, has weight n - 21 , so that vy has maximal weight n , one has
' - _ . .
E (fvi) K<<8(ea)8(e~a)vi,vi>> (K/4) (i+1) (n-1)
E”(fvi) = K<<8(E—a)e(ea)vi’vi>> = (K/4)i(n-i+1)

All the maps

fv : GP] ——%hEPn

i

are harmonic, since 8 is irreducible, and

(K/4) (n=-21)

E'(E ) - E"(f )
V. v, -
i i

E'CE ) + E"(f ) (K/4) (n+21i(n-1))
v .V

i i
in agreement with 1.6 and 3.1.
In the situation of proposition 3.1 it is possible to interpret the
energy as a combination of degrees of holomorphic and anti-holomorphic maps,
thus generalizing (the remarks following) proposition 2.4. To do this we

shall use a basic result from representation theory.

THEOREM 3.2 (Freudenthal's Recursion Formula). Let 8 be an irreducible

unitary representation of G with maximal weight A . Let the multiplicity

of a weight X of 8 be m(A) . Then

(<A+8,A+8> = <A+8,A+6>)m()) = . T m(i+ka) <d+ka,o>
aeh k2!



Proof. See [Ja], chapter VIII. O

If ¢ 1is an irreducible representation of G , the composition of ¢

“+
with the homomorphism a : SU,->G defined by o € & is a representat-

2

ion of SU2 . Since any irreducible representation of SU2 is of the
form S"o for some n , we may write

a

. o

i o,

¢ea = @ S T o
i=1

Let A be a weight of ¢ . If the corresponding weight of ¢.a occurs
x

. n . . . o

in the summand § “C, then it may be written in the form n? - 2ki for
o . o a . . . .

some ki with 0 s ki s n, . The corresponding weight vector gives rise

to a harmonic map

s
1 R
¢’ —> P ,

whose energy, E(ng,kz) say, we have calculated above:
E(n,k) = (K/6) (n+2k (n-k))

THEOREM 3.3. Let & be a unitary representation of G . Let v be a

weight vector of unit length with weight "A . Assume that the map

£, ¢ G/T—>CP" is harmonic.’ Then

B(E) = (8n2KG/m(A)K ) I, (e 1 EEED)

SU2 oed i

. a o . .
where the integers no o, ki are those obtained as explained above from any

irreducible submodule in which v has a non-zero component.

Proof. Freudenthal's recursion formula 1s equivalent to

(<A,A+26> = <x,x>)m(}) = by Z m(i+ka) <A+ka,a>
aed k20

(formula (19) of [Ji], chapter VIII), hence one has\(using 3.1)



E(f ) = (hﬂZKG/m(A))( L T m{i+ka) <i+ka,a> - L . L m(A-ka) <A-ka,o>)
v aed k2! aed k21

where the multiplicities refer to any irreducible submodule in which v

has a non-zero component. Let

E = L m(A+ka)<i+ka,a> - I wm(Ai-ka)<i-ka,a>
¢ k21 k2!
for each «a € A+ . The weights of the irreducible submodule of the form

A-ka occur in a "string" of the form A-pa,...,A,...,A+qa and one has

(see [Ja], chapter VIII)

<Ad,a> = ((p=q)/2)<a,a>
Hence
q P
(2/<a,a>)E = I wm(A+ka) (p=q+2k) - I m(Ai-ka)(p-q-2k)
* k=1 k=1
g-1 p-1
= I m(A+qou-ia) (p+q-21i) - I m(A-pa+ia)(-p-q+21i)
i=0 i=0
Since
E(n,k) = (K, /4)(n+2k{(n~k))
SU2 )
k-1t n—-k-1
= (KSU /6 T (n-21) -~ b (-n+2k) )
2 i=0 i1=0

the result follows.R
This should be compared with the formula (from chapter II)
E(f ) = (8ﬂ2K /Koy ) L <a,a>E(E o @)
v G'suU + ! v

i 2 aed : 1

which holds under the more restrictive hypotheses of corollarﬁ 2.3,
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