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DRINFELD-STUHLER MODULES

MIHRAN PAPIKIAN

Abstract. We study D-elliptic sheaves in terms of their associated modules, which we call
Drinfeld-Stuhler modules. We prove some basic results about Drinfeld-Stuhler modules and
their endomorphism rings, and then examine the existence and properties of Drinfeld-Stuhler
modules with large endomorphism algebras, which are analogous to CM and supersingular
Drinfeld modules. Finally, we examine the fields of moduli of Drinfeld-Stuhler modules.

1. Introduction

The idea of D-elliptic sheaves was proposed by Ulrich Stuhler, as a natural generalization
of Drinfeld’s elliptic sheaves [9], [4]. The moduli varieties of D-elliptic sheaves were studied
by Laumon, Rapoport and Stuhler in [17], with the aim of proving the local Langlands
correspondence for GLd in positive characteristic. In this paper, we study some of the basic
arithmetic properties of D-elliptic sheaves, and in particular their endomorphism rings.

Let C be a smooth, projective, geometrically connected curve over the finite field Fq. Let
F be the function field of C. Let ∞ ∈ C be a fixed closed point, and A ⊂ F be the ring of
functions regular outside ∞. Denote by F∞ the completion of F at ∞. Let D be a central
division algebra over F of dimension d2, which is split at∞, i.e., D⊗F F∞ is isomorphic to the
matrix algebra Md(F∞). Fix a maximal A-order OD in D. An A-field is a field L equipped
with an A-algebra structure, i.e., with a homomorphism γ : A → L. A D-elliptic sheaf over
an A-field L is essentially a vector bundle of rank d2 on C ×Spec(Fq) Spec(L) equipped with an
action of OD and with a meromorphic OD-linear Frobenius satisfying certain conditions (see
Section 3). One can think of these objects as being analogous to abelian varieties equipped
with an action of an order in a central division algebra over Q.

In this paper, we study D-elliptic sheaves in terms of their associated modules, which we call
Drinfeld-Stuhler modules. The relationship between D-elliptic sheaves and Drinfeld-Stuhler
modules is very similar to the relationship between elliptic sheaves and Drinfeld modules; cf.
[9], [4]. Let L be an A-field. Let τ be the Frobenius endomorphism relative to Fq, i.e., the
map x 7→ xq. The ring of Fq-linear endomorphisms EndFq(Ga,L) of the additive algebraic
group scheme Ga,L over L is canonically isomorphic to the skew polynomial ring L[τ ] with the
commutation relation τb = bqτ , b ∈ L. A Drinfeld-Stuhler OD-module over L is an embedding

φ : OD →Md(L[τ ])

satisfying certain conditions (see Definition 2.2). This concept implicitly appears in [17, §3],
although it does not play an important role in that paper since its “shtuka” incarnation
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(the D-elliptic sheaf) seems better suited for the study of moduli spaces. The advantage of
the concept of Drinfeld-Stuhler module is that it is relatively elementary, and one can easily
write down explicit examples of these objects (see Section 2). We expect that the reader
familiar with the theory of Drinfeld modules, but not necessarily with [17], will find it easier
to understand the results of this paper in terms of Drinfeld-Stuhler modules, rather than
D-elliptic sheaves.

Some of the properties of Drinfeld-Stuhler modules are very similar to, and in fact can be
deduced from, the properties of Drinfeld modules, e.g., uniformizability and CM theory. There
are also some notable differences. The most significant is probably the fact that the modular
varieties of Drinfeld-Stuhler modules are projective [17], unlike the Drinfeld modular varieties,
which are affine [8]. Another difference is that Drinfeld-Stuhler modules can be defined only
over fields which split D (see Lemma 2.3), so there are no Drinfeld-Stuhler modules over F
itself, even in the simplest case when A = Fq[T ].

The main results of this paper concern the endomorphism ring EndL(φ) of a Drinfeld-
Stuhler OD-module φ over L, and its field of moduli. By definition, EndL(φ) is the centralizer
of φ(OD) in Md(L[τ ]). In Section 4, we prove that EndL(φ) is a projective A-module of
rank ≤ d2 such that EndL(φ) ⊗A F∞ is isomorphic to a subalgebra of the central division
algebra over F∞ with invariant −1/d. Moreover, if γ : A → L is injective, then EndL(φ) is
an A-order in an imaginary field extension K of F which embeds into D, so, in particular,
EndL(φ) is commutative and its rank over A divides d. (“Imaginary” in this context means
that there is a unique place ∞′ of K over ∞.) Next, we study the Drinfeld-Stuhler modules
with large endomorphism rings, namely the appropriate analogues of complex multiplication
and supersingularity. The results here are similar to those for Drinfeld modules; cf. [10],
[11], [13]. We prove that if K is an imaginary field extension of F of degree d which embeds
into D, then, up to isomorphism, the number of Drinfeld-Stuhler OD-modules over F with
EndF (φ) = OK is finite and non-zero, and any such module can be defined over the Hilbert
class field of K(=the maximal unramified abelian extension of K in which ∞′ totally splits);
see Theorem 4.9. In Section 5, we give several equivalent conditions for a Drinfeld-Stuhler OD-
module to be “supersingular”. For a non-zero prime ideal p�A, the endomorphism ring of a
supersingular Drinfeld-Stuhler module over the algebraic closure of A/p is a maximal A-order
in the central division algebra over F with invariants equal to the negatives of invariants of D,
except at p and∞, where the invariants are 1/d and −1/d, respectively. In Section 6, we prove
a Hilbert’s 90-th type theorem for Md(L

sep[τ ]), and use this theorem and our classification of
automorphism groups of Drinfeld-Stuhler modules to show that if d and qd − 1 are coprime,
then a field of moduli for a Drinfeld-Stuhler module is a field of definition. This implies that
the coarse moduli scheme of Drinfeld-Stuhler OD-modules has no L-rational points for field
extensions L/F which do not split D, assuming d and qd − 1 are coprime.

2. Basic properties and examples

Notation and Terminology 2.1. Let F be the field of rational functions on a smooth and
geometrically irreducible projective curve C defined over the finite field Fq of q elements,
where q is a power of a prime number. Fix a place ∞ of F (equiv. a closed point of C),
and let A be the subring of F consisting of functions which are regular away from ∞. A is a
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Dedekind domain. An imaginary field extension of F is an extension K/F in which ∞ does
not split. For a field L we denote by Lalg (resp. Lsep) its algebraic (resp. separable) closure.

For a place v of F , we denote by Fv, Ov, Fv the completion of F at v, the ring of integers
in Fv, and the residue field at v, respectively. If v 6= ∞, so corresponds to a non-zero prime
ideal p of A, we sometimes write Ap or Av instead of Ov, and Fp instead of Fv.

Given a unitary ring R, we denote by R× the group of multiplicative units in R. Let Md(R)
be the ring of d × d matrices with entries in R; the group of units in Md(R) is denoted by
GLd(R). Given r1, . . . , rd ∈ R, we denote by diag(r1, · · · , rd) ∈ Md(R) the matrix which has
ri as the (i, i)-th entry, 1 ≤ i ≤ d, and zeros everywhere else.

Let D be a central division algebra over F . Let Ram(D) be the set of places of F which
ramify in D, i.e., v ∈ Ram(D) if and only if Dv := D ⊗F Fv is not isomorphic to Md(Fv).
From now on we assume that ∞ 6∈ Ram(D), so that the places in Ram(D) correspond to
prime ideals of A. We denote

r(D) =
∏

p∈Ram(D)

p.

Fix a maximal A-order OD in D. Note that A is the center of OD.
Let L be an A-field, i.e., a field equipped with an A-algebra structure γ : A → L. The

A-characteristic of L is the prime ideal charA(L) := ker(γ) � A; we say that L has generic
A-characteristic if ker(γ) = 0. We assume throughout that charA(L) does not divide r(D).

We have a canonical isomorphism (cf. [26, Prop. 1.1])

EndFq(Gd
a,L) ∼= Md(L[τ ]).

We can write the elements of Md(L[τ ]) as finite sums
∑

i≥0Biτ
i, where Bi ∈ Md(L) and

τ : Ld → Ld is the map given by τ : (x1, . . . , xd)
t 7→ (xq1, . . . , x

q
d)
t. An element S =

∑
i≥0Biτ

i ∈
Md(L[τ ]) acts on the tangent space Lie(Gd

a,L) ∼= Ld via ∂(S) := B0. It is clear that

∂ : Md(L[τ ])→Md(L), S 7→ ∂(S)

is a surjective homomorphism.

Definition 2.2. A Drinfeld-Stuhler OD-module defined over L is an embedding

φ : OD →Md(L[τ ])

b 7→ φb

satisfying the following conditions:

(i) For any non-zero b ∈ OD the kernel φ[b] := kerφb of the endomorphism φb of Gd
a,L is

a finite group scheme over L of order #(OD/OD · b).
(ii) The composition

A→ OD
φ−→Md(L[τ ])

∂−→Md(L)

maps a ∈ A to diag(γ(a), . . . , γ(a)).

The action of φ(OD) on the tangent space Lie(Gd
a,L) gives a homomorphism

∂φ : OD →Md(L),

which extends linearly to a homomorphism

∂φ,L : OD ⊗A L→Md(L).
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Lemma 2.3. ∂φ,L is an isomorphism.

Proof. Both sides are rings with 1, so ∂φ,L is non-zero, as it maps 1 to 1. If L has generic
A-characteristic, then L is an extension of F , hence OD ⊗A L is a central simple algebra over
L. Therefore, ∂φ,L is injective, and comparing the dimensions we see that it is in fact an
isomorphism. Now assume that charA(L) = p 6= 0. Then OD⊗AL is obtained by extension of
scalars from OD ⊗A Ap → OD ⊗A Fp. On the other hand, OD ⊗A Ap

∼= Md(Ap) since p - r(D).
Now it is clear that OD ⊗A Fp

∼= Md(Fp), hence OD ⊗A L ∼= Md(Fp) ⊗Fp L
∼= Md(L). Since

Md(L) is a central simple algebra over L, the previous argument again implies that ∂φ,L is an
isomorphism. �

Remarks 2.4. (1) If d = 1, so that D = F , then Definition 2.2 becomes the definition of a
Drinfeld A-module of rank 1. We will implicitly assume from now on that d ≥ 2.

(2) Let b ∈ OD. If we consider D as a vector space over F , then the left multiplication by b
induces a linear transformation. Let det(b) denote the determinant of this linear transforma-
tion. Note that OD is an A-lattice in D in the sense of [22, Ch. III, §1]. By Proposition 3 in [22,
Ch. III, §1], we have #(OD/ODb) = #(A/ det(b)A). Finally, recall that (−1)d det(b) =: Nr(b)
is the non-reduced norm of b; cf. [21, §9a]. Hence condition (i) is equivalent to saying that
φ[b] is a finite group scheme of order #(A/Nr(b)A).

(3) The characteristic polynomial of ∂φ,L(b)is the polynomial that one obtains by applying
γ to the coefficients of the reduced characteristic polynomial of b; cf. [21, p. 113].

(4) We recall some necessary and sufficient conditions for a finite field extension L of F
to split D, i.e., D ⊗F L ∼= Md(L), since, by Lemma 2.3, if there is a Drinfeld-Stuhler OD-
module defined over L, then L necessarily splits D. (In particular, a Drinfeld-Stuhler module
cannot be defined over F itself.) Let p � A. The Wedderburn structure theorem says that
D⊗F Fp

∼= Mκp(D
′
p), where D′p is a central division algebra of dimension d2p = (d/κp)

2. By [21,
(32.15)], L splits D if and only if for each prime p�A and for all primes P of L lying above
p, dp divides [LP : Kp]. Moreover, if [L : F ] = d, then L splits D if and only if L embeds into
D. Finally, by [21, (7.15)], every maximal subfield L of D contains F and [L : F ] = d.

Definition 2.5. Let φ, ψ be Drinfeld-Stuhler OD-modules over L. A morphism u : φ → ψ
over L is u ∈Md(L[τ ]) is such that uφb = ψbu for all b ∈ OD. We say that u is an isomorphism
if u is invertible in the ring Md(L[τ ]). We say that u is an isogeny if ker(u) is a finite group
scheme over L. We say that a Drinfeld-Stuhler OD-module φ over L can be defined over a
subfield K of L (equiv. K is a field of definition for φ) if there is a Drinfeld-Stuhler OD-
module ψ over K which is isomorphic to φ over L. The set of morphisms φ → ψ over L is
an A-module HomL(φ, ψ), where A acts by a ◦ u := uφa. (Using the fact that a ∈ A is in the
center of OD, it is easy to check that uφa ∈ HomL(φ, ψ).) We denote EndL(φ) = HomL(φ, φ);
this is a subring of Md(L[τ ]). For an arbitrary field extension L of L we can consider φ, ψ
as Drinfeld-Stuhler OD-modules over L, so we have the corresponding module HomL(φ, ψ) of
morphisms over L. We will denote Hom(φ, ψ) = HomLalg(φ, ψ) and End(φ) = EndLalg(φ).

Lemma 2.6. If u ∈ HomL(φ, ψ) is non-zero, then u is an isogeny.

Proof. The ring OD ⊗A L ∼= Md(L) acts on the tangent space Lie(Gd
a,L) via ∂φ,L and ∂ψ,L.

Suppose u ∈ HomL(φ, ψ) is non-zero and has infinite kernel. Since ker(u) ⊂ Gd
a,L is an alge-

braic subgroup with infinitely many geometric points, the connected component ker(u)0 of the
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identity has positive dimension. Then u acts on the tangent space by a linear transformation
∂u which has non-trivial kernel 0 ( ker(∂u) ( Ld. Since ∂φ,L∂u = ∂u∂ψ,L, the space ker(∂u) is
invariant under Md(L) acting via ∂ψ,L, which leads to a contradiction. �

Lemma 2.7. Let φ and ψ be Drinfeld-Stuhler OD-modules over L. Assume L has generic
A-characteristic. Then:

(1) The map ∂ : HomL(φ, ψ)→Md(L) is injective.
(2) EndL(φ) is a commutative ring.

Proof. Suppose u ∈ HomL(φ, ψ) is non-zero but ∂(u) = 0. Then u = Bmτ
m+Bm+1τ

m+1+ · · · ,
where m ≥ 1 is the smallest index such that Bm 6= 0. For a ∈ A, the equality uφa = ψau
leads to Bmγ(a)q

m
= γ(a)Bm. Since Bm ∈ Md(L) has at least one non-zero entry, we must

have γ(a)q
m

= γ(a). Since a was arbitrary, this implies γ(A) ⊆ Fqm . On the other hand, since
L has generic A-characteristic, γ(A) is infinite, which leads to a contradiction.

By the first claim, ∂ maps EndL(φ) isomorphically to its image in Md(L). On the other
hand, ∂(EndL(φ)) is in the centralizer of ∂φ(OD). By Lemma 2.3, ∂φ(OD) contains a basis of
Md(L), so ∂(EndL(φ)) is in the centrer of Md(L), which consists of diagonal matrices. Hence
∂ identifies EndL(φ) with an A-subalgebra of L. �

Lemma 2.8. Let φ and ψ be Drinfeld-Stuhler OD-modules over L. Let L be a field extension
of L in which L is separably closed. Then any morphism u : φ→ ψ over L is already defined
over L. In particular, HomLsep(φ, ψ) = Hom(φ, ψ).

Proof. This statement is the analogue of a well-known theorem of Chow for abelian varieties.
Let R = L ⊗L L. Since L is separably closed in L, Spec(R) is irreducible. We can consider
φ and ψ as Drinfeld-Stuhler OD-modules over R, i.e., as embeddings OD → EndFq(Gd

a,R),
which we will denote as φ/R, ψ/R. By a theorem of Grothendieck on descent of morphisms
[7, Thm. 3.1], it is enough to show that the two pullbacks p∗j(u) : Gd

a,R → Gd
a,R of u along

the projections p1, p2 : Spec(R) ⇒ Spec(L) are equal. Let 0 6= a ∈ A be an element coprime
to charA(L). Following the scheme-theoretic proof of Chow’s theorem [7, Thm. 3.19], we
conclude that p∗1(u) and p∗2(u) coincide on each φ/R[an] for all n ≥ 1. Hence the kernel of the
morphism p∗1(u)− p∗2(u) : φ/R → ψ/R is not a finite group scheme over R. On the other hand,
the proof of Lemma 2.6 can be extended to HomR(φ, ψ), which leads to a contradiction. �

Lemma 2.9. Let φ be a Drinfeld-Stuhler OD-module over L and b ∈ OD. The kernel of φb is
étale over L if and only if Nr(b) is coprime to charA(L).

Proof. This follows from [17, Prop. 3.10]. �

If u ∈ HomL(φ, ψ), then it is clear that the group scheme ker(u) ⊂ Gd
a,L is invariant under

φ(OD). Conversely, we have the following:

Lemma 2.10. Assume L is algebraically closed. Let H ⊂ Gd
a,L be a finite étale subgroup

scheme which is invariant under φ(OD). There is a Drinfeld-Stuhler OD-module ψ and an
isogeny u : φ→ ψ whose kernel is H.

Proof. From the discussion on page 155 in [12] it follows that there is u ∈ EndFq(Gd
a,L) with

ker(u) = H. Let b ∈ OD. Consider the endomorphism uφb of Gd
a,L. Since H is invariant under

φ(OD), we have H ⊆ ker(uφb). Then we can factor uφb as ψbu for some ψb ∈ EndFq(Gd
a,L). It is
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easy to see that b 7→ ψb gives an embedding OD →Md(L[τ ]) and #ψ[b] = #φ[b]. Since ∂(u) ∈
Md(L) is an invertible matrix, and ∂φ(a) (a ∈ A) is the scalar matrix diag(γ(a), . . . , γ(a)), we
also get that ∂ψ(a) = diag(γ(a), . . . , γ(a)). �

Lemma 2.11. Assume L is algebraically closed and has generic A-characteristic. Let u :
φ → ψ be an isogeny. There is an isogeny w : ψ → φ such that wu = φa and uw = ψa for
some a ∈ A. This implies that EndL(φ)⊗AF is a field extension of F (see also Theorem 4.1).

Proof. Let H = ker(u). Then H is invariant under φ(OD), and in particular, under φ(A).
We can consider H as a finite A-module, and as such, there is a ∈ A which annihilates H.
Therefore, H ⊆ φ[a]. Let H ′ be the image of φ[a] under u. We claim that H ′ is invariant under
ψ(OD). To see this let b ∈ OD and h ∈ H ′. We need to show that ψb(h) ∈ H ′. Now h = u(x)
for some x ∈ φ[a], so ψb(h) = ψbu(x) = uφb(x). On the other hand, using the fact that a is in
the center of OD, we have φaφb(x) = φab(x) = φba(x) = φbφa(x) = 0. Thus, φb(x) ∈ φ[a] and
ψb(h) ∈ H ′. Using Lemma 2.10, we get an isogeny w : ψ → ϕ of Drinfeld-Stuhler OD-modules
with kernel H ′. The composition wu : φ→ ϕ has kernel φ[a], hence φ ∼= ϕ. Finally, note that
uwu = uφa = ψau, which implies uw = ψa, as u is an isogeny. The existence of w implies
that EndL(φ)⊗A F is a division algebra over F . Since EndL(φ)⊗A F is also commutative by
Lemma 2.7, it is a field. �

As a consequence of the Grunwald-Wang theorem, every central simple F -algebra is cyclic;
see [21, (32.10)]. This means that there is a Galois extension K/F with Gal(K/F ) ∼= Z/dZ,
a generator σ of Gal(K/F ), and f ∈ F× such that

(2.1) D ∼= (K/F, σ, f) =
d−1⊕
i=0

Kzi, z · y = σ(y)z, zd = f, y ∈ K,

where we identify z0 with the identity element of D. Moreover, one can choose f to be in A;
cf. [21, (30.4)].

Assume K/F is imaginary and let OK be the integral closure of A in K. Consider the
A-order

(2.2) OD =
d−1⊕
i=0

OKz
i

in D. This order is not necessarily maximal. It is not hard to compute that its discriminant
is equal to fd(d−1)disc(K/F )d; see [5, Cor. 7]. For an A-order in D to be maximal, it is
necessary and sufficient for its discriminant to be equal to the discriminant of a maximal
order. The discriminant of a maximal order in D can be computed from the invariants of D;
see [21, Thm. 32.1] and [5, Prop. 25]. For p ∈ Ram(D), let the reduced fraction sp/rp ∈ Q/Z
be the invariant of D at p. Set r = lcm(rp | p ∈ Ram(D)). Then a maximal order in D

has discriminant
(∏

p∈Ram(D) p
r− r

rp

)r
. For example, if d is prime, then the discriminant of a

maximal order is equal to r(D)d(d−1). Comparing the discriminant of OD with the discriminant
of a maximal order gives an explicit criterion for the order OD to be maximal; see [5, Cor.
26].
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Example 2.12. Assume the order OD in (2.2) is maximal. Let ϕ : OK → L[τ ] be a Drinfeld
OK-module of rank 1 defined over some field L. Observe that the restriction of ϕ to A defines
a Drinfeld A-module of rank d over L. Let

φ : OD →Md(L[τ ])

be defined as follows:

φα = diag(ϕα, ϕσα, . . . , ϕσd−1α), α ∈ OK ,

φz =


0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
ϕf 0 0 · · · 0

 .

Using the fact that ϕαϕf = ϕfϕα, it is easy to check that φzφα = φσαφz and φdz = φf . Thus,
φ is an embedding. Moreover, for a ∈ A, we have φa = diag(ϕa, . . . , ϕa), which maps under ∂
to diag(γ(a), . . . , γ(a)) by the definition of Drinfeld modules. Finally,

#φ[z] = # kerϕf = #(A/fA)d = #(A/fdA) = #(A/Nr(z)A),

and

#φ[α] = #(OK/OKα)d = #(A/Nr(α)A).

Thus, φ is a Drinfeld-Stuhler OD-module.

Example 2.13. As a more explicit version of Example 2.12, let A = Fq[T ] and F = Fq(T ).
Let Fqd denote the degree d extension of Fq. Let K = Fqd(T ), which is a cyclic imaginary
extension as ∞ is inert in K. In this case, OK = Fqd [T ] and the Galois group Gal(K/F ) ∼=
Gal(Fqd/Fq) has a canonical generator σ given by the Frobenius automorphism (i.e., σ induces
the qth power morphism on Fqd). Let r ∈ A be a monic square-free polynomial with prime
decomposition r = p1 · · · pm. Assume the degree of each prime pi is coprime to d. Let D be
the cyclic algebra D = (K/F, σ, r). Then, by [12, Thm. 4.12.4], for any prime p� A one has

(2.3) invp(D) =
ordp(r) deg(p)

d
∈ Q/Z.

Since the sum of the invariants of D over all places of F is 0, if we assume that
∑m

i=1 deg(pi)
is divisible by d, then D will be split at∞ and will ramify only at the primes of A dividing r.

The order OD =
⊕d−1

i=0 OKz
i is maximal in D, since its discriminant is equal to rd(d−1). Let L

be an OK-field and γ : A→ OK → L be the composition homomorphism. Let ϕ : OK → L[τ ]
be defined by ϕT = γ(T ) + τ d; this is a rank-1 Drinfeld OK-module and a rank-d Drinfeld
A-module. Then

φ : OD →Md(L[τ ])
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given by

φT = diag(ϕT , . . . , ϕT ),

φh = diag(h, hq, . . . , hq
d−1

), h ∈ Fqd ,

φz =


0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1
ϕr 0 0 · · · 0

 ,

is a Drinfeld-Stuhler module.

Remark 2.14. It is easy to see from the previous example that for general b ∈ OD the kernel
φ[b] is not necessarily OD-invariant, hence condition (i) in the definition of Drinfeld-Stuhler
modules cannot be stated in the stronger form of isomorphism of left OD-modules: φ[b] ∼=
OD/OD · b. Indeed, take d = 2 and b = h + z with h ∈ Fq2 \ Fq. A non-zero element(
α
β

)
∈ G2

a,K(K) is in φ[b] only if hα + β = 0. On the other hand, φh

(
α
β

)
=

(
hα
hqβ

)
, so

φh

(
α
β

)
∈ φ[b] only if h2α + hqβ = 0. This implies h2α = hq+1α. Since hq−1 6= 1, we must

have α = 0, but then β = 0.

3. OD-motives, D-elliptic sheaves and OD-lattices

We keep the notation and assumptions of Section 2. In particular, L is an A-field such that
charA(L) - r(D). Let Oopp

D denote the opposite ring of OD (see [21, p. 91]). There are three
categories closely related with the category of Drinfeld-Stuhler modules. These alternative
points of view on Drinfeld-Stuhler modules will be important for the proofs of the main results
of this paper. The first category is a variant of Anderson’s motives.

Definition 3.1. An OD-motive is a left Oopp
D ⊗FqL[τ ]-module M with the following properties

(cf. [25, p. 68], [17, p. 228]):

(i) M is a locally free Oopp
D ⊗Fq L-module of rank 1.

(ii) M is a free L[τ ]-module of rank d.
(iii) For all a ∈ A,

(a⊗ 1− 1⊗ γ(a))M ⊂ τM,

where M := M ⊗L Lalg is considered as a left A⊗Fq L
alg[τ ]-module.

The morphisms between OD-motives are the homomorphisms of Oopp
D ⊗Fq L[τ ]-modules. We

denote the corresponding category by DMot. (An OD-motive is a pure Anderson A-motive,
in the sense of [26] or [6], of rank d2, dimension d, and weight 1/d; see [25, §9.2].)

Given a Drinfeld-Stuhler OD-module φ over L, let M(φ) be the group

HomFq(Gd
a,L,Ga,L) ∼= L[τ ]d

equipped with the unique Oopp
D ⊗Fq L[τ ]-module structure such that

(`m)(e) = `(m(e)), (τm)(e) = m(e)q, (bm)(e) = m(φ(b)e),
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for all e ∈ Gd
a,L, ` ∈ L, b ∈ OD, and morphisms m : Gd

a,L → Ga,L. It is easy to see that M(φ)
is an OD-motive.

Theorem 3.2. The functor φ 7→ M(φ) gives an anti-equivalence of categories between the
category of Drinfeld-Stuhler OD-modules and DMot.

Proof. This can be proven by a slight modification of Anderson’s method; see [26, Thm.
2.3]. �

The second category arises from D-elliptic sheaves mentioned in the introduction.

Definition 3.3. Fix a maximal OC-order D in D such that H0(C − ∞,D) = OD. A D-
elliptic sheaf over L is a sequence E = (Ei, ji, ti)i∈Z, where Ei is a locally-free OC⊗FqL

-module

of rank d2 equipped with a right action of D which extends the OC-action, and

ji : Ei ↪→ Ei+1

ti : τEi := (IdC ⊗ Frobq)
∗Ei ↪→ Ei+1

are injective D-linear homomorphisms. Moreover, for each i ∈ Z the following conditions
hold:

(i) The diagram

Ei
ji // Ei+1

τEi−1
τji−1 //

ti−1

OO

τEi

ti

OO

commutes;
(ii) Ei+d·deg(∞) = Ei ⊗OC OC(∞), and the inclusion

Ei
ji−→ Ei+1

ji+1−−→ · · · → Ei+d·deg(∞) = Ei ⊗OC OC(∞)

is induced by OC ↪→ OC(∞);
(iii) dimLH

0(C ⊗ L, cokerji) = d;
(iv) Ei/ti−1(τEi−1) = z∗Vi, where Vi is a d-dimensional L-vector space, and z is the mor-

phism induced by γ:

z : Spec(L)→ Spec(A)→ C.

A morphism between two D-elliptic sheaves over L

ψ = (ψi)i∈Z : E = (Ei, ji, ti)i∈Z → E′ = (E ′i , j′i, t′i)i∈Z
is a sequence of sheaf morphisms ψi : Ei → E ′i+n for some fixed n ∈ Z which are compatible
with the action of D and commute with the morphisms ji and ti:

ψi+1 ◦ ji = j′i+n ◦ ψi and ψi ◦ ti−1 = t′i+n−1 ◦ τψi−1.

Note that the group Z acts freely on the objects of the category of D-elliptic sheaves by
“shifting the indices”:

n · (Ei, ji, ti)i∈Z = (E ′i , j′i, t′i)i∈Z
with E ′i = Ei+n, j′i = ji+n, t′i = ti+n. Let DES/Z be the quotient of the category of D-elliptic
sheaves by this action of Z.
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Let E = (Ei, ji, ti)i∈Z be a D-elliptic sheaf over L. Consider

M(E) := H0((C − {∞})⊗ L, Ei).

This is independent of i since supp(Ei/Ei−1) ⊂ {∞} × Spec(L). It is an L[τ ]-module, where
the operation of τ is induced from ti : τEi → Ei+1. In fact, M(E) is an OD-motive; see [17,
(3.17)].

Theorem 3.4. The functor E 7→M(E) gives an equivalence of DES/Z with DMot.

Proof. This is implicitly proven in [17, (3.17)] and explicitly in [25, 10.3.5]. We outline the
main steps of the proof since part of this argument will be used later in the paper.

First note that since M(E) does not depend on the choice of Ei, the map is indeed a functor
from DES/Z to DMot. Next, let W∞ := H0(Spec(O∞⊗̂L), E0). From the definition of D-
elliptic sheaf one deduces that W∞ has a natural structure of a free L[[τ−1]]-module of rank d;
see [17, p. 231]. In addition, W∞ is a right D∞-module so that we get an injective Fq-algebra
homomorphism

ϕ∞ : Dopp
∞ → EndL[[τ−1]](W∞),

and if we denote by π∞ a uniformizer of O∞ and τ∞ = τdeg(∞), then W∞ has the property
that τ−d∞ W∞ = π∞W∞.

The pair (M(E),W∞) is a vector bundle of rank d over the non-commutative projective
line over L in the sense of [17, (3.13)]. Hence, by [17, (3.16)],

(M(E),W∞) ∼= O(n1)⊕ · · · ⊕ O(nd),

where O(n) = (L[τ ], τnL[[τ−1]]). Since (M(E),W∞) is equipped with a coherent right D-
action (cf. [17, (3.14)]), we have n1 = · · · = nd. Hence (M(E),W∞) ∼= O(n)⊕d for some
n ∈ Z. If we define W ′

∞ = H0(Spec(O∞⊗̂L), Ei), then (M(E),W ′
∞) is again a vector bundle

of rank d over the non-commutative projective line. Moreover (M(E),W ′
∞) = (M(E), τ iW∞);

see [17, p. 235]. Hence, up to the action of Z, M(E) uniquely determines the vector bundle
(M(E),W∞). On the other hand, by [17, (3.17)], the vector bundle (M(E),W∞) with its
coherent D-action uniquely determines E and any OD-motive is isomorphic to M(E) for some
E. This proves that the functor in question is fully faithful and essentially surjective. �

The third category arises in the theory of analytic uniformization of Drinfeld-Stuhler mod-
ules. Let C∞ be the completion of an algebraic closure of F∞. Let φ be a Drinfeld-Stuhler
OD-module over C∞. By fixing an isomorphism Lie(Gd

a,C∞) ∼= Cd
∞, we get an action of OD on

Cd
∞ via ∂φ.

Theorem 3.5. There is a discrete OD-submodule Λφ of Cd
∞, which is locally free of rank 1,

and an entire Fq-linear function expφ : Cd
∞ → Cd

∞, which is surjective with kernel Λφ, such
that for any b ∈ OD the following diagram is commutative:

0 // Λφ
//

∂φ(b)

��

Cd
∞

expφ //

∂φ(b)

��

Cd
∞

//

φb
��

0

0 // Λφ
// Cd
∞

expφ // Cd
∞

// 0.
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Proof. The exponential function expφ is the function constructed by Anderson in [1, §2]. The
existence of Λφ (which is equivalent to the surjectivity of expφ by [1, Thm. 4]) was proved by
Taelman [25, §§9-10] in the terminology of OD-motives. A starting point in Taelman’s proof
is a clever use of Tsen’s theorem, which via the Morita equivalence reduces the proof to the
analytic uniformization of Drinfeld modules (already known by the work of Drinfeld [8]). �

Corollary 3.6. The ring End(φ) is canonically isomorphic to the ring

End(Λφ) := {c ∈ C∞ | cΛφ ⊆ Λφ}.

Proof. The functorial properties of expφ (cf. [1, p. 473]) imply that ∂ maps End(φ) isomor-
phically to the ring

{P ∈Md(C∞) | PΛ ⊆ Λ, P∂φ(b) = ∂φ(b)P for all b ∈ OD}.

Since any matrix which commutes with ∂φ(OD) must be a scalar, we get the desired isomor-
phism. �

Now suppose Cd
∞ is equipped with an action of OD via some embedding ι : OD →Md(C∞).

Suppose there is a discrete ι(OD)-submodule Λ ⊂ Cd
∞ which is locally free of rank one. Then

there is a unique Drinfeld-Stuhler OD-module such that ι = ∂φ and Λ = Λφ; this follows from
[25, §10.1.3], which itself crucially relies on [1, Thm. 6]. Hence the category of Drinfeld-
Shuhler modules over C∞ is equivalent to the category of OD-lattices as above. One can use
this equivalence to give an analytic description of the set of isomorphism classes of Drinfeld-
Shuhler modules over C∞ as follows: Let

Ωd = Pd−1(C∞)−
⋃
H

H(C∞)

be the Drinfeld symmetric space, where H runs through the set of F∞-rational hyperplanes
in Pd−1(C∞). Similar to the ring of finite adèles

Af = {(av) ∈
∏
v 6=∞

Fv | av ∈ Av for almost all v},

define

D(Af ) = {(av) ∈
∏
v 6=∞

Dv | av ∈ OD ⊗A Av for almost all v}.

Let Â :=
∏

v 6=∞Av and ÔD :=
∏

v 6=∞OD ⊗A Av. We embed D in D(Af ) diagonally. Fixing

an isomorphism D∞ ∼= Md(F∞), identifies D× with a subgroup of GLd(F∞) and therefore
induces an action of D× on Ω.

Proposition 3.7. There is a one-to-one correspondence between the set of isomorphism
classes of Drinfeld-Shuhler OD-modules over C∞ and the double coset space

D× \ Ωd ×D(Af )
×/Ô×D,

where D× acts on both Ωd and D(Af )
× on the left, and Ô×D acts on D(Af )

× on the right:

γ · (z, α) · k = (γz, γαk), γ ∈ D×, z ∈ Ωd, α ∈ D(Af )
×, k ∈ Ô×D.
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Proof. This can be proved by a standard argument [25, p. 74] (see also [4, Thm. 4.4.11]). We
recall this argument, since we will use it later on. Let Λ ⊂ Cd

∞ be an OD-lattice, where D
acts on Cd

∞ via the fixed isomorphism D∞ ∼= Md(F∞). The F -span FΛ is a free module over
D of rank 1. A choice of generator of this module defines a point in Pd−1(C∞). One checks
that this point lies in Ωd if and only if Λ is discrete. The embedding Λ ⊂ FΛ = D can be
tensored to an embedding ÂΛ ⊂ D(Af ) and the former can be recovered from the latter as

Λ = ÂΛ ∩ D. Now ÂΛ is a locally free module over ÔD. Since all such modules are free,
we conclude that the locally free OD-submodules Λ ⊂ D of rank one are in bijection with

the free rank one ÔD-submodules of D(Af ) and the latter are in bijection with D(Af )
×/Ô×D.

Finally, moding out by the choice of the generator of FΛ, that is, by D×, we get the desired
one-to-one correspondence. �

4. Complex multiplication

Theorem 4.1. Let φ is a Drinfeld-Stuhler OD-module over an A-field L. Then:

(1) EndL(φ) is a projective A-module of rank ≤ d2.
(2) EndL(φ)⊗A F∞ is isomorphic to a subalgebra of the central division algebra over F∞

with invariant −1/d.
(3) If L has generic A-characteristic, then EndL(φ) is an A-order in an imaginary field

extension of F which embeds into D. In particular, EndL(φ) is commutative and its
rank over A divides d.

(4) The automorphism group AutL(φ) := EndL(φ)× is isomorphic to F×qr for some r di-
viding d.

Proof. It is enough to prove (1), (2) and (3) after extending L to its algebraic closure, so we
will assume that L is algebraically closed.

Since the OD-motive M(φ) associated to φ is an Anderson A-motive of dimension d and
rank d2, the argument in [1, §1.7] implies that EndA⊗L[τ ](M(φ)) is a projective A-module of
rank ≤ d4 (see also [6, Thm. 9.5]). Hence, thanks to Theorem 3.2, End(φ) is a projective
A-module of rank ≤ d4.

Let W∞ be the D∞ ⊗ L[[τ−1]]-module attached to φ in the proof of Theorem 3.4. As we
discussed, W∞ is well-defined up to the shifts W∞ 7→ τW∞. Since D∞ ∼= Md(O∞), using the
Morita equivalence [17, p. 262], one concludes that W∞ is equivalent to an O∞ ⊗ L[[τ−1]]-
module W ′

∞ which is free of rank 1 over O∞, free of rank 1 over L[[τ−1]], and τ−d∞ W ′
∞ = π∞W

′
∞.

From W ′
∞ we get an Fq-algebra homomorphism

φ∞ : O∞ → EndL[[τ−1]]

(
L[[τ−1]]

)
= L[[τ−1]], φ∞(π∞) = τ−d∞ .

Thus,

EndO∞⊗L[[τ−1]](W
′
∞)opp = End(φ∞) = {f ∈ L[[τ−1]] | fφ∞(b) = φ∞(b)f for all b ∈ O∞}.

Since O∞ = Fqdeg(∞) [[π∞]], the image of O∞ under φ∞ is the subring Fqdeg(∞) [[τ−d∞ ]] of L[[τ−1]].
Now it is easy to see that

End(φ∞) ∼= Fqd deg(∞) [[τ−1∞ ]],

which is the maximal order in the central division algebra over F∞ with invariant −1/d; cf.
[17, Appendix B]. Definition 3.14 and Theorem 3.17 in [17] imply that End(φ) acts faithfully
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on W ′
∞, and this action gives an embedding End(φ)⊗A F∞ ↪→ End(φ∞)⊗O∞ F∞ (see also [6,

Thm. 8.6]). Since rankO∞End(φ∞) = d2, we get rankAEnd(φ) ≤ d2. This proves (1) and (2).
To prove (3), note that φ is defined over some finitely generated subfield of L which can be

embedded into C∞. So, without loss of generality, we assume L = C∞. Combining (1) and (2)
with Lemma 2.11 already implies that End(φ) is an A-order in an imaginary field extension
of F . We need to show that End(φ) embeds into D. Let Λφ be the OD-lattice associated to φ
by Theorem 3.5. By Corollary 3.6, α ∈ End(φ) corresponds to c ∈ C∞ such that cΛφ ⊆ Λφ.
On the other hand, the F -span FΛφ is a free module over D of rank 1, so c corresponds to a
unique element of D. Mapping α to that element, gives an embedding End(φ) ↪→ D. Finally,
the rank of End(φ) over A is equal to the degree of End(φ)⊗F F over F , and it is well-known
that a subfield of D has degree over F dividing d; cf. [21, (7.15)].

To prove (4), suppose we have proved this claim over Lalg. Then AutL(φ) is a subgroup of
the finite cyclic group Aut(φ), so has a generator α of finite order. This element α is algebraic
over Fq. Since Fq ⊂ EndL(φ), we get Fq(α) ⊂ EndL(φ). On the other hand, Fq(α) is a finite
field extension of Fq. Hence AutL(φ) = Fq(α)× ∼= F×qr for some r dividing d. It remains to
prove the claim assuming L is algebraically closed. Let H be the central division algebra over
F∞ with invariant −1/d. It is known that the valuation ord∞ on F∞ extends to a discrete
valuation w on H; see [21, (12.6)]. Moreover,

H = {α ∈ H | w(α) ≥ 0} = {α ∈ H | NrH/F∞(α) ∈ O∞}

is the unique maximal order of H,M = {α ∈ H | w(α) > 0} is the unique maximal two-sided
ideal of H, and H/M∼= Fqd ; see (12.8), (13.2), (14.3) in [21]. We know that End(φ) ⊂ H(F∞)
is discrete. Since any element of Aut(φ) has norm 1, we get that Aut(φ) = (H ∩ End(φ))×.
But H is compact in ∞-adic topology, so H ∩ End(φ) is a finite subfield of H, which under
the reduction map H → H/M embeds into Fqd . �

Example 4.2. Let φ be the Drinfeld-Stuhler OD-module over an algebraically closed field
L of generic A-characteristic. From Theorem 4.1 we know that End(φ) is an A-order in an
imaginary field extension of F of degree dividing d. We show that this bound is the best
possible. Consider φ from Example 2.12. Let ϕ be the rank-1 Drinfeld OK-module over L
from the same example. Let

E := {diag(ϕα, . . . , ϕα) | α ∈ OK} ⊂Md(L[τ ]).

It is clear that E ∼= OK . One easily checks that the elements of E commute with φα, α ∈ OK ,
and φz. Therefore E ⊆ End(φ). Since OK is a maximal A-order in K, Theorem 4.1 implies
that End(φ) ∼= OK .

Definition 4.3. Let K be an imaginary field extension of F of degree d, and E an A-order in
K. We say that a Drinfeld-Stuhler OD-module φ over a field of generic A-characteristic has
complex multiplication by E (or has CM, for short) if E = End(φ). Note that in that case K
necessarily embeds into D. A CM subfield of D is a commutative subfield of D which is an
imaginary extension of F of degree d.

Lemma 4.4. Let φ be a Drinfeld-Stuhler OD-module over an algebraically closed field L
having CM by E. Let OK be the maximal A-order in the fraction field K of E. Then there is
a Drinfeld-Stuhler OD-module ψ which is isogenous to φ and has CM by OK.
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Proof. Let c be the conductor of E, i.e., the largest ideal of OK which is also an ideal of E.
Let H := ∩c∈c ker(c), where the intersection is taken in Gd

a,L. Since the action of OD on Gd
a,L

commutes with E, the finite étale subgroup scheme H of Gd
a,L is invariant under φ(OD). Thus,

by Lemma 2.10, there is a Drinfeld-Stuhler OD-module ψ over L and an isogeny u : φ → ψ
whose kernel is H. Now one can apply the argument in the proof of [12, Prop. 4.7.19] to
deduce that End(ψ) ∼= OK . �

We further investigate the properties of Drinfeld-Stuhler modules with CM using analytic
uniformization. We fix an embedding D× → GLd(F∞) through which D× acts on Ω. For
(z, α) ∈ Ωd × D(Af )

×, let Λ(z,α) be the OD-lattice corresponding to (z, α); see Proposition
3.7. Let K×z := {γ ∈ D× | γz = z}.

Lemma 4.5. Kz := K×z ∪ {0} is a subfield of D and End(Λ(z,α)) = Kz ∩ αÔDα
−1.

Proof. Let z̃ ∈ Cd
∞ be an element mapping to z; such z̃ is well-defined up to a scalar multiple.

Denote O = D ∩ αÔDα
−1. The lattice Λ = Oz̃ is in the isomorphism class of Λ(z,α). We have

c ∈ End(Λ)⇔ cΛ ⊂ Λ⇔ cOz̃ ⊂ Oz̃ ⇔ Ocz̃ ⊂ Oz̃,

where c acts on z̃ as a scalar matrix. The inclusion Ocz̃ ⊂ Oz̃ is equivalent to the existence

of γ ∈ O such that γz̃ = cz̃. This γ obviously fixes z, and since γ ∈ αÔDα
−1, we get

γ ∈ Kz ∩ αÔDα
−1 =: E(z,α). Conversely, suppose γ ∈ E(z,α), so γ ∈ O and γz̃ = cz̃ for some

non-zero c ∈ C∞. Reversing the previous argument we see that c ∈ End(Λ).
Observe that E(z,α) is a subring of D since for γ, γ′ ∈ E(z,α) with γz̃ = cz̃, γ′z̃ = c′z̃, we

have (γ + γ′)z̃ = (c+ c′)z̃. Hence K := E(z,α)⊗A F is a commutative subalgebra of D, i.e., K
is a subfield of D. Since the map E(z,α) → End(Λ), γ 7→ c, is a homomorphism which extends
to K → C∞, it must be injective. But we have seen that E(z,α) → End(Λ) is also surjective,
thus it is an isomorphism. �

Remark 4.6. For any α ∈ D(Af )
× and a CM field K ⊂ D, the intersection K ∩αÔDα

−1 is an

A-order in K. To prove this, first observe that D ∩ αÔDα
−1 is a maximal order in D. Hence

it is enough to prove that for any maximal orderM in D the intersection E := K ∩M is an
A-order. It is clear that A ⊂ E. By Exercise 4, p. 131, [21], there is a maximal order M′ in
D such that K ∩M′ = OK . It is easy to see thatM′′ :=M∩M′ is an A-order in D (in fact,
it is a hereditary order; cf. [21, §40]). Hence M′′ has finite index in M′. On the other hand,
since E = OK ∩M′′, under the natural homomorphismM′ →M′/M′′ the module OK maps
onto OK/E. Thus, E has finite index in OK , i.e., is an order.

Lemma 4.7. Let K be a CM subfield of D. The number of fixed points of K× in Ωd is
non-zero and is at most d.

Proof. Since F has transcendence degree 1 over Fq, we can find a primitive element γ ∈ K
such that K = F (γ); cf. [2]. It is enough to prove that γ has at least one and at most d fixed
points in Ωd. The characteristic polynomial of γ, as an element of GLd(F∞), is irreducible.
Since the minimal polynomial of γ divides its characteristic polynomial, it must be equal
to the characteristic polynomial. The claim then follows from the fact that a matrix in
GLd(C∞), whose characteristic and minimal polynomials are equal, has at least one and at
most d eigenvectors, up to scaling. �
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Let K be a CM subfield of D, and E be an A-order in K. Let

TE := {α ∈ D(Af )
× | K ∩ αÔDα

−1 = E}.

It is easy to check that K× acts on TE from the left by multiplication and Ô×D acts from the

right. It is known that TE is non-empty and the double coset space K× \ TE/Ô×D has finite
cardinality divisible by the class number of E; cf. [27, pp. 92-93].

Remark 4.8. The elements of TE correspond to optimal embeddings of K into the maximal
orders of D with respect to E. For example, if d = 2, E = OK , and K is a separable quadratic
extension of F if the characteristic of F is 2, then

#(K× \ TOK/Ô×D) = #Pic(OK)
∏
p|r

(
1−

(
K

p

))
,

where
(
K
p

)
= −1 (resp. = 0) if p remains inert (resp. ramifies) in K; see [27, p. 94].

Theorem 4.9. Let SK be the set of fixed points of K× in Ωd. We have:

(1) Up to isomorphism, the number of Drinfeld-Stuhler OD-modules over C∞ having CM

by E is equal to #(K× \ SK × TE/Ô×D). In particular, that number is finite and
non-zero.

(2) A Drinfeld-Stuhler OD-module having CM by OK can be defined over the Hilbert class
field of K.

Proof. (1) In our set-up, we have fixed an embedding of K into D. For each (z, α) ∈ SK ×TE
we have End(Λ(z,α)) = Kz ∩ αÔDα

−1 = K ∩ αÔDα
−1 = E. Note that for any γ ∈ D×, we

have Kγz = γKzγ
−1, and so

Kγz ∩ γαÔDα
−1γ−1 = γ(K ∩ αÔDα

−1)γ−1 = γEγ−1 ∼= E,

which implies End(Λγ(z,α)) ∼= End(Λ(z,α)). Now suppose (z, α) ∈ Ωd × D(Af )
× is such that

End(Λ(z,α)) ∼= E. Then Kz must be isomorphic to K, so Kz is another embedding of K
into D. By the Skolem-Noether theorem [21, (7.21)], two embeddings K ⇒ D differ by an
inner automorphism of D. Thus, there is γ ∈ D× such that Kz = γKγ−1. This implies that

we can find z′ ∈ SK such that γz′ = z. We also have γKγ−1 ∩ αÔDα
−1 = γEγ−1, which

implies γ−1α ∈ TE. Hence we can find α′ ∈ TE such that α = γα′. Overall, we conclude that
(z, α) = γ(z′, α′) for some (z′, α′) ∈ SK × TE. The stabilizer in D× of any z ∈ SK is K×.

Hence the set of images in D× \Ωd ×D(Af )
×/Ô×D of (z, α) ∈ Ωd ×D(Af )

× with CM by E is

the double coset space K× \ SK × TE/Ô×D.
(2) Let φ be a Drinfeld-Stuhler OD-module with End(φ) ∼= OK . Let M(φ) be the OD-

motive associated to φ. By definition, the action of OK on Gd
a,C∞ commutes with φ(OD),

hence M(φ) is an Oopp
D ⊗A OK-module. On the other hand, Oopp

D ⊗A OK is an A-order in
Dopp ⊗F K ∼= Md(K); cf. Exercise 6 on page 131 of [21]. Computing the discriminants, one
checks that Oopp

D ⊗A OK is a maximal order in Md(K). By the Morita equivalence (cf. [17,
p. 262] and [25, p. 68]), M(φ) is equivalent to an OK-motive M ′ of rank 1 and dimension 1
(as defined in [26]). Through a generalization of Anderson’s result (cf. [26, Thm. 2.9]), M ′

corresponds to a Drinfeld OK-module ϕ of rank 1. Since ϕ can be defined over H (see [13,
§8]), φ also can be defined over H. �
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5. Supersingularity

In this section we fix a prime ideal p�A such that p 6∈ Ram(D). Let L be a field extension
of Fp := A/p of degree m, so L is a finite field of order qn, where n = m · deg(p). Let π = τn

be the associated Frobenius morphism. With abuse of notation, denote by π also the diagonal
matrix diag(π, . . . , π) ∈ Md(L[τ ]). Note that π is in the center of Md(L[τ ]) since τn` = `τn

for all ` ∈ L.

Theorem 5.1. Let φ be a Drinfeld-Stuhler OD-module defined over L. Since π commutes

with φ(OD), we have π ∈ EndL(φ). Let F̃ := F (π) be the subfield of D′ := EndL(φ) ⊗A F
generated over F by π. Then:

(1) [F̃ : F ] divides d, and ∞ does not split in F̃ /F .

(2) Let ∞̃ be the unique place of F̃ over ∞. There is a unique prime p̃ 6= ∞̃ of F̃ that
divides π. Moreover, p̃ lies above p.

(3) D′ is a central division algebra over F̃ of dimension (d/[F̃ : F ])2 and with invariants

invṽ(D
′) =


−[F̃ : F ]/d if ṽ = ∞̃,

[F̃ : F ]/d if ṽ = p̃,

−[F̃ṽ : Fv] · invv(D) otherwise,

for each place v of F and each place ṽ of F̃ dividing v.

Proof. Observe that D′ ∼= End(M(φ) ⊗A F )opp. The theorem then follows from [17, (9.10)]
and the equivalences of Section 3. (We should mention that in Section 9 of [17] the D-elliptic
sheaves are considered over the algebraic closure of Fp. On the other hand, the arguments in

that section apply also over L with our choice of (F̃ , π) in place of a “ϕ-pair” in [17], since

Theorem A.6 in [17] can be proved for (F̃ , π) as in [16, §2.2].) �

Example 5.2. Let L be the degree d extension of A/TA ∼= Fq. Let φ be the Drinfeld-Stuhler
OD-module from Example 2.13. Assume (T ) does not divide r. Fix a generator h of Fqd over
Fq. Our Drinfeld-Stuhler module φ is generated over Fq by φT = diag(τ d, . . . , τ d) = π, φh,
and φz, which satisfy the relations

φTφh = φhφT , φTφz = φzφT , φzφh = φhqφz, φdz = φr = diag(ϕr, . . . , ϕr).

With abuse of notation, for i ≥ 1 let

τ i := diag(τ i, . . . , τ i) and h := diag(h, . . . , h).

Define

κi = φizτ
d−i, 1 ≤ i ≤ d− 1.

Note that, since the image of ϕ is in Fq[τ ], we have φizτ
d−i = τ d−iφiz. In particular, h and

κi commute with φz. It is clear that these elements also commute with φT = τ d. Finally, h
obviously commutes with φh, and so does κi:

κiφh = φizτ
d−iφh = φizφhqd−iτ

d−i = φ
hqd
φizτ

d−i = φhκi.

We conclude that E := Fq[φT , h, κ1, . . . , κd−1] ⊆ EndL(φ).
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Note that h and κi do not commute,

(5.1) κih = hq
d−i
κi = σ−i(h)κi,

where σ is the Frobenius automorphism in Gal(Fqd/Fq). Let Ei := Fq[φT , h, κi] ⊂ E. Since
Fq[φT , h] ∼= Fqd [T ], we have Ei = OK [κi], where K = Fqd(T ). Denote Di = Ei ⊗A F .
Combining the relation (5.1) with κdi = φriT d−i , we see that for i coprime to d we have

Di
∼= (K/F, σ−i, riT d−i)

(see (2.1) for the notation). By [21, (30.4)], for i coprime to d, we have

(K/F, σ−i, riT d−i) ∼= (K/F, σ, r−1T ).

Hence for 1 ≤ i, i′ ≤ d− 1 coprime to d we have Di
∼= Di′ , and we denote this cyclic algebra

by D. The invariants of D are easy to compute using (2.3) or [21, (31.7)]:

invv(D) =


1/d if v = (T ),

−1/d if v =∞,
−invv(D) otherwise.

Let D′ := EndL(φ) ⊗A F . By Theorem 4.1, we have dimF (D′) ≤ d2. Since dimF D = d2,
we conclude that D′ ∼= D. Note that the invariants of D agree with the invariants of D′ given
by Theorem 5.1, since in this case π ∈ F .

Next, we claim that EndL(φ) is a maximal A-order in D′. One can argue as follows: The
discriminant of E1 ⊂ EndL(φ) is (rT d−1)d(d−1) (cf. Example 2.12), so EndL(φ) ⊗A Ap is a
maximal Ap-order in Dp for all p 6= (T ). On the other hand, the discriminant of Ed−1 is
(rd−1T )d(d−1), so EndL(φ) ⊗A AT is a maximal AT -order in DT . Since an A-order in D is
maximal if and only if it is locally maximal at all primes p�A (see [21, (11.6)]), we conclude
that EndL(φ) is a maximal order.

Finally, note that F×
qd
∼= AutL(φ). Indeed, F×

qd
∼= Fq(h)× ⊆ AutL(φ), so the equality holds

by part (4) of Theorem 4.1.
This example shows that the bounds on the rank of EndL(φ) and the order of AutL(φ)

given by Theorem 4.1 cannot be improved.

Proposition 5.3. Let φ be a Drinfeld-Stuhler OD-module over L. The following are equiva-
lent:

(1) dimF (End(φ)⊗A F ) = d2;
(2) some power of π lies in A;

(3) there is a unique prime p̃ in F̃ lying over p;
(4) φ[p] is connected.

Proof. Let L′ be a finite extension of L of degree c. The Frobenius of L′ is πc. Applying
Theorem 5.1, we see that dimF (EndL′(φ) ⊗A F ) = d2 is equivalent to F (πc) = F , and since
π is integral over A, this last condition is equivalent to πc ∈ A. This shows that (1) and (2)
are equivalent.

Assume (2), i.e., πc ∈ A for some c ≥ 1. By Theorem 5.1, ordp(π
c) 6= 0. This implies

ordP(πc) 6= 0 for any prime P in F̃ lying over p, and hence also ordP(π) 6= 0. Applying
Theorem 5.1 again, we conclude that P = p̃ is unique, which is (3). To prove (3)⇒(2), let
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f = NrF̃ /F (π). We have ordp(f) > 0 and ordp′(f) = 0 for any prime p′ � A not equal to p.

Let ordp̃(π) = u and ordp̃(f) = w. The element πw/fu ∈ F̃ has no zeros or poles away from
∞̃, since p̃ is the unique prime over p by assumption. This implies that πw/fu lies in the

algebraic closure F of Fq in F̃ . Therefore, πwκ = fuκ ∈ A, where κ = #F− 1.
Assume (2). Then πc generates ph for some c, h ≥ 1. This implies that φ[p] is connected,

since φ[p] ⊆ φ[ph] = ker(πc), and ker(πc) is obviously connected. Thus, (2)⇒(4). Conversely,
assume φ[p] is connected. Then φ[ph] is connected for all h ≥ 1. Choose h such that ph =
(a) is principal. The assumption that φ[a] is connected is equivalent to the action of τ on
M(φ)/aM(φ) being nilpotent, i.e., τ rM(φ) ⊂ aM(φ) ⊂ pM(φ) for all large enough integers
r. This last condition implies that dimF (End(φ)⊗AF ) = d2; see [19, §6]. Hence (4)⇒(1). �

Definition 5.4. A Drinfeld-Stuhler OD-module φ over Fp satisfying the equivalent conditions
of Proposition 5.3 is called supersingular. (In particular, the Drinfeld-Stuhler module φ in
Example 5.2 is supersingular.)

Theorem 5.5. Let φ be a supersingular Drinfeld-Stuhler OD-module over Fp. We have:

(1) End(φ) is a maximal A-order in End(φ)⊗ F ;
(2) φ can be defined over the extension of Fp of degree d ·#Pic(A);
(3) the number of isomorphism classes of supersingular Drinfeld-Stuhler OD-modules over

Fp is equal to the class number of End(φ);
(4) all supersingular Drinfeld-Stuhler OD-modules are isogenous over Fp .

Proof. (1) and (3) are proved in [19, Thm. 6.2], (2) follows from [18, §5], (4) follows from [17,
(9.13)]. �

6. Fields of moduli

Let L be an arbitrary A-field. We will need a Hilbert’s 90-th type theorem for GLd(L
sep[τ ]).

This is probably known to specialists, but in absence of a convenient reference we will prove
this fact following the argument of the corresponding statement for simple algebras; cf. [3,
§III.8.7].

Lemma 6.1. We have:

(1) Every left ideal of L[τ ] is principal.
(2) Every finitely generated torsion-free left L[τ ]-module is free.

Proof. (1) follows from the existence of the right division algorithm for L[τ ] (see [12, Cor.
1.6.3]), and (2) essentially follows from the same fact (see [12, Cor. 5.4.9]). �

Let K be a finite Galois extension of L of degree n. Let σ1, σ2, . . . , σn be the elements of
G := Gal(K/L). The Galois group G acts on K[τ ] via the obvious action on the coefficients
of polynomials, and it acts on the ring Md(K[τ ]) by acting on the entries of matrices. Let
M := K[τ ]d be the free left K[τ ]-module of rank d. Then GLd(K[τ ]) can be identified with
the group AutK[τ ](M) of automorphism of M , where g ∈ GLd(K[τ ]) acts on M from the right
as on row vectors. (Of course, GLd(K[τ ]) also acts on M from the left as on column vectors,
but that action is not K[τ ]-linear.) From this identification it is easy to see the validity of
the following:
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Lemma 6.2. If v1, . . . , vd ∈ M form a left K[τ ]-basis of M , then the matrix S whose rows
are v1, . . . , vd is in GLd(K[τ ]). Conversely, the rows of S ∈ GLd(K[τ ]) form a left K[τ ]-basis
of M .

Remark 6.3. There are matrices in Md(K[τ ]) whose rows are left linearly independent but

whose columns are left linearly dependent over K[τ ], e.g.,

(
1 τ

α + τ τ(α + τ)

)
where α ∈ K

is such that αq 6= α.

Lemma 6.4. The inclusion L[τ ] ⊂ K[τ ] makes K[τ ] into a left L[τ ]-module. As such, K[τ ]
is a free left L[τ ]-module of rank n.

Proof. It is obvious that K[τ ] has no torsion elements for the action of L[τ ]. Let α1, . . . , αn ∈
K be an L-basis of K. It is enough to show that K[τ ] =

∑n
i=1 L[τ ]αi. By the Dedekind’s

theorem on the independence of characters, {α1, . . . , αn} form an L-basis of K if and only if

det(σiαj) 6= 0. On the other hand, det(σiαj) 6= 0 if and only if det(σiαj)
qr = det(σiα

qr

j ) 6= 0 for

any r ≥ 0. Hence {αq
r

1 , . . . , α
qr

n } is also an L-basis of K. Let f = a0 +a1τ + · · ·+akτ
k ∈ K[τ ].

For each ai we can find bi,1, . . . , bi,n ∈ L such that
∑n

j=1 bi,jα
qi

j = ai. Thus, f =
∑n

j=1 gjαj,

where gj :=
∑k

i=1 bi,jτ
i ∈ L[τ ]. �

We say that G acts on M by semi-linear automorphisms (cf. [3, p. 110]), G ×M → M ,
(σ,m) 7→ σ ∗m, if for all m,m′ ∈M , σ ∈ G, and λ ∈ K[τ ] we have

(i) σ ∗ (m+m′) = σ ∗m+ σ ∗m′,
(ii) σ ∗ (λm) = σλ · σ ∗m,

where σλ denotes the usual action of G on K[τ ], and the dot denotes the action of K[τ ] on
M . Let

MG := {m ∈M | σ ∗m = m for all σ ∈ G}.
It is easy to see that MG is a left L[τ ]-module.

Lemma 6.5. The left L[τ ]-module MG is free of rank d, i.e., MG ∼= L[τ ]d. Moreover, the
map K ⊗LMG →M , α⊗m 7→ αm, is an isomorphism.

Proof. Since every left ideal of L[τ ] is principal (Lemma 6.1), every submodule of a free left
L[τ ]-module of finite rank is also free of finite rank (cf. [21, Thm. 2.44]). On the other hand,
by Lemma 6.4, the left L[τ ]-module M is free of finite rank. Hence the L[τ ]-submodule MG

of M is also free of finite rank. To show that the rank of MG over L[τ ] is d, it is enough to
show that the map K⊗LMG →M , α⊗m 7→ αm, is an isomorphism. This last isomorphism
follows from the Galois descent for vector spaces; see [3, Lem. III.8.21]. �

Proposition 6.6. Let c : G → GLd(K[τ ]), σ 7→ cσ, be a map which satisfies cσδ = σ(cδ)cσ
for all σ, δ ∈ G. Then there is a matrix S ∈ GLd(K[τ ]) such that cσ = (σS)−1S for all σ ∈ G.

Proof. Define a (twisted) action of G on M :

σ ∗m = (σm)cσ for all m ∈M,σ ∈ G.
One easily checks that (σδ) ∗m = σ ∗ (δ ∗m) for all σ, δ ∈ G and m ∈ M , so this is indeed
an action. Moreover, this action is semi-linear. Using Lemma 6.5, we can choose a basis
v1, . . . , vd of the left L[τ ]-module MG ∼= L[τ ]d such that

∑d
i=1K[τ ]vi = M . Since M is a free
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left K[τ ]-module of rank d, the elements v1, . . . , vd form a left K[τ ]-basis of M . Let S be the
matrix whose rows are v1, . . . , vd. By Lemma 6.2, S ∈ GLd(K[τ ]). The relations

vi = σ ∗ vi = (σvi)cσ for all i = 1, . . . , d,

are equivalent to the matrix equality S = (σS)cσ for all σ ∈ G, and this implies the claim of
the lemma. �

Lemma 6.7. Let φ be a Drinfeld-Stuhler OD-module over K with AutK(φ) ∼= F×qr (cf. Theo-
rem 4.1). Then

∂ : AutK(φ)→ GLd(K)

gives an isomorphism from the group AutK(φ) to the group A := {diag(α, . . . , α) | α ∈ F×qr}.

Proof. By Lemma 2.3, ∂(AutK(φ)) lies in the center of GLd(K). Since the center of GLd(K)
consists of diagonal matrices, and the (qr − 1)-th roots of 1 in K are the elements of F×qr , the
restriction of ∂ to AutK(φ) is indeed a homomorphism into A. Since AutK(φ) ∼= A, to prove
that ∂ is an isomorphism it is enough to prove that it is injective. Let h := qr − 1. Assume
α ∈ AutK(φ) is such that ∂(α) = 1. Then we can write α = 1 +

∑n
i=1Biτ

n for some n ≥ 1.
Suppose not all Bi are zero, and let m be the smallest index such that Bm 6= 0. Then

1 = αh = 1 + hBmτ
m + · · · ,

which implies hBm = 0. Since h is coprime to the characteristic of K, we must have Bm = 0,
which is a contradiction. �

Remark 6.8. It is not generally true that the elements of AutK(φ) are diagonal matrices in
GLd(K[τ ]). For example, suppose d = 2, diag(α, α) ∈ AutK(φ), and α 6∈ Fq. Let S =(

1 τ
0 1

)
∈ GL2(K[τ ]). Then

(
α (αq − α)τ
0 α

)
∈ AutK(ψ), where ψ is the Drinfeld-Stuhler

module SφS−1.

Definition 6.9. Let φ be a Drinfeld-Stuhler OD-module over Lsep. For σ ∈ Gal(Lsep/L), let
φσ be the composition

φσ : OD
φ−→Md(L

sep[τ ])
σ−→Md(L

sep[τ ]).

It is easy to check that φσ is again a Drinfeld-Stuhler OD-module. We say that L is a field of
moduli for φ if for all σ ∈ Gal(Lsep/L) the Drinfeld-Stuhler module φσ is isomorphic to φ.

If L is a field of definition for φ, then L is obviously a field of moduli.

Theorem 6.10. Let φ be a Drinfeld-Stuhler OD-module over Lsep with Aut(φ) ∼= F×qr . Assume
L is a field of moduli for φ. If d and qr − 1 are coprime, then L is a field of definition for φ.

Proof. We can find a finite Galois extension K of L such that φ is defined over K and all
isomorphisms of φ to φσ for every σ ∈ Gal(K/L) are defined over K. (Take, for example,
K such that φ and φ[a] are defined over K, where a ∈ A is coprime with charA(L) and
r(D).) In particular, AutK(φ) = Aut(φ). Denote G = Gal(K/L). For each σ ∈ G, choose an
isomorphism λσ : φ→ φσ. Then

(6.1) λσδφλ
−1
σδ = φσδ = (φδ)σ = (λδφλ

−1
δ )σ = σ(λδ)φ

σσ(λδ)
−1 = σ(λδ)λσφλ

−1
σ (σλδ)

−1.
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Hence

λσδ = σ(λδ)λσασ,δ

with ασ,δ ∈ Aut(φ).
Let det : GLd(K[τ ])→ K× be the composition

det : GLd(K[τ ])
∂−→ GLd(K)

det−→ K×.

The assumption that d and qr − 1 are coprime, combined with Lemma 6.7, implies that
det : Aut(φ)

∼−→ F×qr is an isomorphism. Denote µσ = det(λσ) and h = qr − 1. Then

µσδ = σ(µδ)µσdet(ασ,δ), and µhσδ = σ(µhδ )µ
h
σ. Hence G → K×, σ 7→ µhσ, is a 1-cocycle. By

Hilbert’s Theorem 90 for K×, there is b ∈ K× such that µhσ = b/σ(b) for all σ ∈ G. Let a
be an element of Lsep such that ah = b. The extension K ′ := K(a) is Galois over L. Put
G∗ = Gal(K ′/L), and let π : G∗ → G be the natural homomorphism. For every σ ∈ G∗, we
see that µπ(σ)σ(a)/a is an h-th root of unity, hence there is a unique ασ ∈ Aut(φ) such that
µπ(σ)det(ασ) = a/σ(a).

Put cσ = λπ(σ)ασ. Then cσ : φ → φσ is an isomorphism and det(cσ) = a/σ(a). Repeating
the calculation (6.1) for cσ, we arrive at the relations cσδ = σ(cδ)cσβσ,δ for some βσ,δ ∈ Aut(φ).
But now, taking det of both sides, we have

a

σδ(a)
=

σ(a)

σ(δ(a))

a

σ(a)
det(βσ,δ).

Thus det(βσ,δ) = 1. Since det : Aut(φ)→ K× is injective, we must have βσ,δ = 1. Therefore,
cσδ = σ(cδ)cσ for all σ, δ ∈ G∗. By Proposition 6.6, there is S ∈ GLd(K

′[τ ]) such that
cσ = (σS)−1S for all σ ∈ G∗. Put ψ = SφS−1; this is a Drinfeld-Stuhler module isomorphic
to φ over K ′. For any σ ∈ G∗ we have

ψσ = (SφS−1)σ = (σS)(φσ)(σS−1) = (σS)(cσφc
−1
σ )(σS)−1 = SφS−1 = ψ,

so ψ is defined over L. �

Remarks 6.11. (1) Recall from Theorem 4.1 that Aut(φ) ∼= F×qr for some r dividing d. There-
fore, the assumption in Theorem 6.10 can be replaced by a universal but stronger assumption
that d and qd − 1 are coprime. Note that if d = pe is a power of the characteristic of F , then
the assumption of Theorem 6.10 is always satisfied. On the other hand, if d = ` is a prime
different from p, then the assumption is satisfied if and only if ` does not divide q − 1.

(2) The proof of Theorem 6.10 specialized to d = 1 implies that the fields of moduli
for Drinfeld A-modules of arbitrary rank are fields of definition. This can be considered as
the analogue of the well-known fact that the fields of moduli for elliptic curves are fields of
definition; cf. [24, Prop. I.4.5]. The proof for elliptic curves uses the j-invariant, an invariant
which is not available for Drinfeld modules if A is not the polynomial ring or the rank is
greater than 2.

In [17], D-elliptic sheaves are defined over any Fq-scheme S. The functor which associates to
S the set of isomorphism classes of D-elliptic sheaves over S modulo the action of Z possesses
a coarse moduli scheme XD which is a smooth proper scheme over C ′ := C−Ram(D)−{∞}
of relative dimension (d − 1); this follows from Theorems 4.1 and 6.1 in [17], combined with
the Keel-Mori theorem. Thanks to Theorems 3.2 and 3.4, the fibre of this moduli scheme
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over a point x of C ′ is the coarse moduli space of isomorphism classes of Drinfeld-Stuhler
OD-modules over fields L such that z(Spec(L)) = x.

Corollary 6.12. Let XD
F := XD ⊗C′ Spec(F ). Assume d and qd − 1 are coprime. If L is a

field extension of F which does not split D, then XD
F (L) = ∅.

Proof. Given a non-zero a ∈ A coprime with r(D), one can consider the problem of classifying
Drinfeld-Stuhler modules with level-a structures, i.e., classifying pairs (φ, ι), where φ is a
Drinfeld-Stuhler OD-module and ι is an isomorphism ι : φ[a] ∼= OD/aOD.This moduli problem
is representable; see [17, (5.1)]. Denote the corresponding moduli scheme byXD

a . The forgetful
map (φ, ι) 7→ φ gives a Galois covering XD

a,F → XD
F . Suppose there is an L-rational point

P on XD
F . Then a preimage P ′ of P in XD

a,F is defined over a Galois extension L′ of L.

Since XD
a,F is a fine moduli scheme, there is a Drinfeld-Stuhler OD-module φ defined over L′

which corresponds to P ′. For any σ ∈ Gal(L′/L), the Drinfeld-Stuhler modules φ and φσ

are isomorphic over L′, since φ arises from an L-rational point on XD
F . Hence L is a field of

moduli of φ. By Theorem 6.10 and Remark 6.11 (1), φ can be defined over L. Now Lemma
2.3 implies that L splits D. �

Remark 6.13. Theorem 6.10 is the analogue for Drinfeld-Stuhler modules of a theorem of
Shimura for abelian varieties [23, Thm. 9.5]. It is known that in general the fields of moduli
for abelian varieties are not necessarily fields of definition. For example, let B be an indefinite
quaternion division algebra over Q, and let XB be the associated Shimura curve over Q,
which is the coarse moduli scheme of abelian surfaces equipped with an action of B. The
main result in [15] provides examples of nonarchimedean local fields L failing to split B with
XB(L) 6= ∅ (see also [14, §1]); a necessary condition for this phenomenon is that 2 ramifies
in B. If we let A = Fq[T ], F = Fq(T ), and d = 2, then XD

F is the function field analogue of
XB; cf. [17], [20]. However, examples similar to those constructed by Jordan and Livné do
not exist in this setting since for any finite extension L of Fv, v ∈ Ram(D), which does not
split D we have XD(L) = ∅ by Theorem 4.1 in [20]. This leaves open the interesting question
whether in general the fields of moduli of Drinfeld-Stuhler modules are fields of definition.

Acknowledgements. This work was carried out during my visit to the Max Planck Institute
for Mathematics in Bonn in 2016. I thank the institute for its hospitality, excellent working
conditions, and financial support. I thank Gebhard Böckle, Urs Hartl, Rudolph Perkins,
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5. G. Böckle and D. Gvirtz, Division algebras and maximal orders for given invariants, to appear in the

proceedings of ANTS XII.
6. M. Bornhofen and U. Hartl, Pure Anderson motives and abelian τ -sheaves, Math. Z. 268 (2011), no. 1-2,

67–100.



DRINFELD-STUHLER MODULES 23

7. B. Conrad, Chow’s K/k-image and K/k-trace, and the Lang-Néron theorem, Enseign. Math. (2) 52 (2006),
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