Neron-Severi group for torus quasi bundles over curves

Vasile Brînzănescu * Kenji Ueno **

```
Institute of Mathematics of the Romanian
Academy
P.O.Box 1-764
RO-70700 Bucharest
Romania
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606-01
Japan
```

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany

```
Romania
**
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606-01
Japan
```


Neron-Severi group for torus quasi bundles over curves

Vasile Brînzănescu and Kenji Ueno

0 . Introduction

By the Neron-Severi group of a compact complex manifold X we mean the kernel of the natural homomorphism $H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X, \mathcal{O}_{X}\right)$. It is a subgroup of $H^{2}(X, \mathbb{Z})$ generated by the first Chern classes of line bundles on X. In this paper we shall study the Neron-Severi group for torus quasi bundles over curves. Firstly, we study the case of torus principal bundles $X \xrightarrow{\pi} B$ over a (complex, compact, connected, smooth) curve B, whose structure group is a compact complex torus $T=V / \Lambda$. A T-principal bundle $X \xrightarrow{\pi} B$ is defined by a cohomology class $\xi \in H^{1}\left(\mathcal{O}_{B}(T)\right)$, where $\mathcal{O}_{B}(T)$ is the sheaf of germs of locally holomorphic maps from B to T. The cohomology class ξ determines a characteristic class $c(\xi) \in H^{2}(B, \Lambda)$. By a Theorem of Blanchard ([1]), the total space X of such a T-principal bundle is a non-Kähler manifold if and only if $c(\xi) \neq 0$. In the first two parts of the paper we present some basic facts on torus principal bundles (see [7]) and we compute Leray spectral sequences for the sheaves \mathbb{Z}_{X} and \mathcal{O}_{X}. In the third part we define for any line bundle $L \in \operatorname{Pic}(T)$ an associated T^{\vee}-principal bundle, described by an element $\tilde{\varphi}_{L}(\xi) \in H^{1}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right)$, where T^{\vee} is the dual torus, and we compute the Neron-Severi group for torus principal bundles. We state the main result (Theorem 5):
"For a T-principal bundle $X \xrightarrow{\pi} B$, defined by a cohomology class

$$
\xi \in H^{1}\left(\mathcal{O}_{B}(T)\right)
$$

we have an exact sequence of free groups

$$
0 \rightarrow \operatorname{Hom}\left(J_{B}, T^{\vee}\right) \rightarrow N S(X) / F_{2} \rightarrow \tilde{N}(X) \rightarrow 0
$$

where $F_{2}=\pi^{*} N S(B)$ and $\tilde{N}(X)$ is the subgroup of the Neron-Scveri group of the torus T defined by

$$
\tilde{N}(X)=\left\{c_{1}(L) \in N S^{\prime}(T) \mid \bar{\varphi}_{L}(\xi) \text { is the trivial torus bundle }\right\}
$$

J_{B} is the Jacobian variety of the curve B and T^{\vee} is the dual torus. If X is Kähler F_{2} is isomorphic to $N S(B) \simeq \mathbb{Z}$ and if X is non-Kähler, F_{2} is the torsion subgroup of $N S(X)$ "

In the fourth part we reinterpret the obtained results geometrically (see Theorem 6).
Then, in the fifth part, we study the case of torus quasi bundles. By a quasi T-bundle $\pi: X \rightarrow B$ over a curve B we mean that π is a T-principal bundle over $B \backslash\left\{b_{1}, b_{2}, \ldots, b_{\ell}\right\}$ and that the fibre $\pi^{-1}\left(b_{i}\right)$ over the point b_{i} is of the form $m_{i} T_{i}$ where $m_{i} \geq 2$ and T_{i} is a torus (the fibre $m_{i} T_{i}$ is called a multiple fibre of the multiplicity m_{i}). In the Appendix we show that all torus quasi bundles are obtained from $B \times T$ by means of generalized logarithmic transformations. We associate, canonically, a $T_{0^{-}}$principal bundle $\pi_{0}: Y \rightarrow B$ to a quasi T-bundle $\pi: X \rightarrow B$ and a holomorphic mapping $f: X \rightarrow Y$, with $T_{0}=T / H$, where H is a finite subgroup of the torus T. Then we extend the computation of the Neron-Severi group for torus quasi bundles (see Theorem 17).
For the case of elliptic surfaces see [3], [4].
Acknowledgements. The first named author would like to thank the Alexander von Humboldt-Stiftung for support and both authors would like to express their thanks to Professor F. Hirzebruch and Max-Planck-Institut für Mathematik in Bonn for hospitality. This paper was prepared at the time we visited this institution.

1. Basic facts on torus principal bundles

Let $T=V / \Lambda$ be an n-dimensional compact complex torus, defined by a lattice $A \subset V$ in the n-dimensional complex vector space V. Canonical notation concerning the torus T will be used:

$$
\begin{aligned}
T_{0}(T) & =H^{0}\left(T, \Theta_{T}\right)=V, H^{i}\left(T, \Theta_{T}\right)=H^{i}\left(T, \mathcal{O}_{T}\right) \otimes V \\
H^{0}\left(T, \Omega_{T}^{1}\right) & =H^{0}\left(T, \Theta_{T}\right)^{\vee}=V^{\vee}, \Lambda=H_{1}(T, \mathbb{Z}), H^{1}(T, \mathbb{Z})=\Lambda^{\vee}
\end{aligned}
$$

If B is a compact complex manifold of dimension m, then $X \xrightarrow{\pi} B$ denotes a T-principal bundle over B. Let $\mathcal{O}_{B}(T)$ denote the sheaf of germs of locally holomorphic maps from B to T. The T-principal bundles are described by cohomology classes ε of $H^{1}\left(B, \mathcal{O}_{B}(T)\right)$ (see [6]). For a Cech 1-cocycle $\left(\xi_{i j}\right)$ the function

$$
\xi_{i j}: U_{i} \cap U_{j} \rightarrow T
$$

identifies $(z, t) \in U_{i} \times T$ with $\left(z, t^{\prime}\right)=\left(z, \xi_{i j}(z)+t\right) \in U_{j} \times T$ for all $z \in U_{i} \cap U_{j}$.
Taking local sections of the constant sheaves

$$
0 \rightarrow \Lambda \rightarrow V \rightarrow T \rightarrow 0
$$

one gets an exact sequence of sheaves on the manifold B

$$
\begin{equation*}
0 \rightarrow \Lambda \rightarrow \mathcal{O}_{B} \otimes V \rightarrow \mathcal{O}_{B}(T) \rightarrow 0 \tag{1}
\end{equation*}
$$

with the induced exact cohomology sequence

$$
\begin{align*}
& \ldots \rightarrow H^{0}\left(\mathcal{O}_{B}(T)\right) \rightarrow H^{1}(B, \Lambda) \rightarrow H^{1}\left(B, \mathcal{O}_{B}\right) \otimes V \rightarrow \tag{2}\\
& \rightarrow H^{1}\left(\mathcal{O}_{B}(T)\right) \xrightarrow{c} H^{2}(B, \Lambda) \rightarrow H^{2}\left(B, \mathcal{O}_{B}\right) \otimes V \rightarrow \ldots
\end{align*}
$$

The cohomology class ξ of the bundle in $H^{1}\left(\mathcal{O}_{B}(T)\right)$ determines a characteristic class $c(\xi) \in H^{2}(B, \Lambda)=H^{2}(B, \mathbb{Z}) \otimes \Lambda$.

Because transition functions of the T-principal bundle $X \xrightarrow{\pi} B$ act trivially on the cohomology of fibre, we get natural identifications:

$$
\begin{equation*}
R^{q} \pi . \mathbb{Z}_{X}=\mathbb{Z}_{B} \otimes_{\mathbf{Z}} H^{q}(T, \mathbb{Z}) ; R^{q} \pi_{*} \mathcal{O}_{X}=\mathcal{O}_{B} \otimes \mathbb{C} H^{q}\left(T, \mathcal{O}_{T}\right) \tag{3}
\end{equation*}
$$

The transgression of the fibre bundle in integral cohomology is a map

$$
\delta: H^{1}(T, \mathbb{Z}) \rightarrow H^{2}(B, \mathbb{Z})
$$

Under the identification

$$
H^{\mathrm{1}}(T, \mathbb{Z})=\operatorname{Hom}(\Lambda, \mathbb{Z})=\Lambda^{\vee}
$$

the characteristic class $c(\xi) \in H^{2}(B, \mathbb{Z}) \otimes \Lambda$ and the mapping $\delta: H^{1}(T, \mathbb{Z}) \rightarrow$ $H^{2}(B, \mathbb{Z})$ coincide (see [7], 6.1). The first possibly nontrivial d_{2}-homomorphism

$$
H^{0}\left(B, R^{1} \pi_{*} \mathcal{O}_{X}\right) \rightarrow H^{2}\left(B, \pi_{*} \mathcal{O}_{X}\right)
$$

in the Leray spectral sequence of \mathcal{O}_{X} is denoted by

$$
\varepsilon: H^{1}\left(T, \mathcal{O}_{T}\right) \rightarrow H^{2}\left(B, \mathcal{O}_{B}\right)
$$

Recall for convenience the following result of Höfer (see [7], 7.1 and 7.2):
Proposition There is an injective map

$$
\Phi: \operatorname{Pic}(B) \otimes_{\mathbf{Z}} \Lambda=H^{1}\left(\mathcal{O}_{B}^{*}\right) \otimes_{\mathbf{z}} \Lambda \rightarrow H^{1}\left(\mathcal{O}_{B}(T)\right)
$$

compatible with taking characteristic classes, i.e. if $\Sigma \mathcal{L}_{k} \otimes \lambda_{k}$ is a combination of line bundles in $\operatorname{Pic}(B) \otimes_{\mathbf{Z}} \Lambda$, then the characteristic class $c(\xi)$ of $\Phi\left(\Sigma \mathcal{L}_{k} \otimes \lambda_{k}\right)$ equals $\Sigma c_{1}\left(\mathcal{L}_{k}\right) Q \lambda_{k} \in H^{2}(B, \Lambda)$.

Moreover, if $H^{2}(B, \mathbb{C})$ has a Hodge decomposition, then the image of Φ, i.e. the set of isomorphism classes of principal bundles constructed above, equals

$$
\text { im } \Phi=\{\text { Isom. classes of } T-\text { principal bundles with } \varepsilon=0\}
$$

Remark. If B is a curve, then ε vanishes for dimension reasons. Thus, every T principal bundle over B comes (in an unique way) from the above construction. The construction itself is a generalized logarithmic transformation applied to the trivial T-principal bundle $B \times T$ (see [9]). Indeed, we can write $\mathcal{L}_{k}=$ $\mathcal{O}_{B}\left(D_{k}\right)$, with D_{k} a divisor on B; by choosing a sufficiently fine open covering (U_{i}) of B the transition functions of each \mathcal{L}_{k} are expressed by a cocycle $\left(f_{i j}^{(k)}\right)$. Now, identify $\left(z, t_{i}\right) \in U_{i} \times T$ with $\left(z, t_{j}\right) \in U_{j} \times T$ if and only if

$$
t_{i}=t_{j}+\left[\Sigma \frac{\lambda_{k}}{2 \pi \sqrt{-1}} \log \left(f_{i j}^{(k)}\right)\right]
$$

for all $z \in U_{i} \cap U_{j}$ (this is exactly Höfer's morphism Φ).
Also we can construct a T-principal bundle over B by using logarithmic transformations similar to the case of elliptic surfaces. Express the divisor D_{k} as

$$
D_{k}=\sum_{j=1}^{n_{k}} m_{j}^{(k)} b_{j}^{(k)}
$$

Let $U_{j}^{(k)}$ be a coordinate neighbourhood of $b_{j}^{(k)}$ with local coordinate $t_{j}^{(k)}$. We may assume

$$
U_{j}^{(k)}=\left\{t_{j}^{(k)} \in \mathbb{C}| | t_{j}^{(k)} \mid<\varepsilon\right\},
$$

for a sufficiently small positive number ε. Let us consider a holomorphic mapping

$$
\begin{gathered}
l_{j}^{(k)}: U_{j}^{(k) *} \times T \longrightarrow U_{j}^{(k) *} \times T \\
\left(t_{j}^{(k)},[\zeta]\right) \rightarrow\left(t_{j}^{(k)},\left[\zeta-\frac{m_{j}^{(k)} \lambda_{k}}{2 \pi \sqrt{-1}} \log t_{j}^{(k)}\right]\right)
\end{gathered}
$$

Note that the mapping is an isomorphism. Hence, we can patch $U_{j}^{(k)} \times T$'s and ($\left.B \backslash\left\{b_{1}^{(1)}, \ldots, b_{j}^{(k)}, \ldots\right\}\right) \times T$ by the isomorphisms $l_{j}^{(k)}$ and obtain a T - principal bundle over B. We denote the T-principal bundle obtained in this way by

$$
L_{b_{1}^{(1)}}\left(m_{1}^{(1)} \lambda_{1}, 1\right) \ldots L_{b_{n_{l}}^{(1)}}\left(m_{n_{l}}^{(l)} \lambda_{l}, 1\right)(B \times T)
$$

or by

$$
L_{D_{1}}\left(\lambda_{1}, 1\right) \ldots L_{D_{1}}\left(\lambda_{l}, 1\right)(B \times T)
$$

Remark. By the above proposition and Blanchard's theorem ([1]) we can easily show that a T-principal bundle

$$
L_{b_{1}}\left(a_{1}, 1\right) \ldots L_{b_{l}}\left(a_{l}, 1\right)(B \times T)
$$

is Kähler if and only if $\sum_{i=1}^{l} a_{i}=0$.

2. Leray spectral sequences

Let $X \xrightarrow{\pi} B$ be a T-principal bundle over the manifold B. We consider the Leray spectral sequences:

$$
\begin{gather*}
E_{2}^{p q}=H^{p}\left(B, R^{q} \pi \mathbb{Z}_{X}\right) \Longrightarrow H^{p+q}(X, \mathbb{Z}) \tag{4}\\
\dot{E}_{2}^{p q}=H^{p}\left(B, R^{q} \pi . \mathcal{O}_{X}\right) \Longrightarrow H^{p+q}\left(X, \mathcal{O}_{X}\right)
\end{gather*}
$$

By the results of Höfer (see [7]) the first spectral sequence (4) degenerates at E_{3}-level (i.e. $d_{r}=0$ for $r>2$) and the d_{2}-differential is determined by the $\operatorname{map} \delta: H^{1}(T, \mathbb{Z}) \rightarrow H^{2}(B, \mathbb{Z})$ (i.e. by $\left.c(\xi)\right)$.

Now, we suppose that B is a curve. By (3) we have:

$$
\begin{gathered}
E_{\infty}^{02}=E_{3}^{02}=\operatorname{ker}\left(E_{2}^{02} \xrightarrow{d_{2}} E_{2}^{21}\right)= \\
=\operatorname{ker}\left(H^{0}(B, \mathbb{Z}) \otimes H^{2}(T, \mathbb{Z}) \xrightarrow{d_{2}} H^{2}(B, \mathbb{Z}) \otimes H^{1}(T, \mathbb{Z})\right) .
\end{gathered}
$$

With the natural identifications

$$
H^{0}(B, \mathbb{Z})=\mathbb{Z}, H^{2}(B, \mathbb{Z})=\mathbb{Z}, H^{2}(T, \mathbb{Z})=\bigwedge^{2} H^{1}(T, \mathbb{Z})
$$

we obtain

$$
E_{\infty}^{012}=\operatorname{ker}\left(H^{2}(T, \mathbb{Z}) \xrightarrow{d_{2}} H^{1}(T, \mathbb{Z})\right),
$$

where

$$
d_{2}\left(\varphi_{1} \wedge \varphi_{2}\right)=\delta\left(\varphi_{1}\right) \varphi_{2}-\delta\left(\varphi_{2}\right) \varphi_{1}, \forall \varphi_{1}, \varphi_{2} \in H^{1}(T, \mathbb{Z})
$$

Obviously, we have

$$
E_{\infty}^{11}=E_{2}^{11}=H^{1}(B, \mathbb{Z}) \otimes H^{1}(T, \mathbb{Z})=H^{1}(B, \mathbb{Z}) \otimes \Lambda^{\vee}
$$

Finally, we get

$$
\begin{aligned}
E_{\infty}^{20}=E_{3}^{20}= & \operatorname{coker}\left(H^{0}(B, \mathbb{Z}) \otimes H^{1}(T, \mathbb{Z}) \xrightarrow{d_{2}} H^{2}(B, \mathbb{Z})\right)= \\
& =\operatorname{coker}\left(H^{1}(T, \mathbb{Z}) \xrightarrow{\boldsymbol{\delta}} H^{2}(B, \mathbb{Z})\right) .
\end{aligned}
$$

The cohomology class $\xi \in H^{1}\left(\mathcal{O}_{B}(T)\right)$ of the T - principal bundle $X \xrightarrow{\pi} B$ has the form $\Phi\left(\Sigma \mathcal{L}_{k}^{0} \otimes \lambda_{k}^{0}\right)$ and its characteristic class has the form

$$
\begin{equation*}
c(\xi)=\Sigma c_{1}\left(\mathcal{L}_{k}^{0}\right) \otimes \lambda_{k}^{0}=m \lambda^{0} \in \Lambda=H^{2}(B, \Lambda), \tag{6}
\end{equation*}
$$

where $\mathcal{L}_{k}^{0} \in \operatorname{Pic}(B), \lambda_{k}^{0} \in \Lambda$ is a primitive element (i.e. there exists no positive integer $l \geq 2$ with $\left.\lambda_{k}^{0}=l \tilde{\lambda}_{k}^{0}, \tilde{\lambda}_{k}^{0} \in \Lambda\right), m \in \mathbb{N}, m=g . c . d .\left(c_{1}\left(\mathcal{L}_{k}^{0}\right)\right)$ and $\lambda^{0} \in \Lambda$. It follows that for any $\varphi \in H^{1}(T, \mathbb{Z})$ we have the equality $\delta(\varphi)=m \varphi\left(\lambda^{\prime \prime}\right)$, under the identification $H^{1}(T, \mathbb{Z})=\Lambda^{\vee}=\operatorname{Hom}(\Lambda, \mathbb{Z})$. We get

$$
E_{\infty}^{20}= \begin{cases}\mathbb{Z}_{m} & \text { for } c(\xi) \neq 0 \\ \mathbb{Z} & \text { for } c(\xi)=0\end{cases}
$$

The second spectral sequence (5) degenerates at E_{2}-level for torus principal bundles with $\varepsilon=0$, since the d_{2} - differential is determined by ε (see [7], 4. and [2]). With natural identifications, by (3) we get:

$$
\begin{gathered}
\dot{E}_{\infty}^{20}=\tilde{E}_{2}^{20}=H^{0}\left(B, \mathcal{O}_{B}\right) \otimes H^{2}\left(T, \mathcal{O}_{T}\right)=H^{2}\left(T, \mathcal{O}_{T}\right) \\
\tilde{E}_{\infty}^{11}=\tilde{E}_{2}^{11}=H^{1}\left(B, \mathcal{O}_{B}\right) \otimes H^{1}\left(T, \mathcal{O}_{T}\right) \\
\dot{E}_{\infty}^{20}=\dot{E}_{2}^{20}=0 .
\end{gathered}
$$

3. Neron-Severi group for torus principal bundles

Let $X \xrightarrow{\pi} B$ be a T-principal bundle over the curve B, defined by $\xi \in$ $H^{1}\left(\mathcal{O}_{B}(T)\right)$ with $c(\xi) \neq 0$ (i.e. X is non-Kähler). Let

$$
0 \subset F_{2} \subset F_{1} \subset F_{0}=H^{2}(X, \mathbb{Z})
$$

be the filtration induced by the first spectral sequence (4). Then $F_{2}=E_{\infty}^{20} \cong$ \mathbb{Z}_{m} is a torsion subgroup of $H^{2}(X, \mathbb{Z})$. Since both $F_{1} / F_{2}=E_{\infty}^{11}$ and $F_{0} / F_{1}=$ E_{∞}^{02} are free, it follows Tors $H^{2}(X, \mathbb{Z})=F_{2} \cong \mathbb{Z}_{m}$. We get the exact sequence:

$$
\begin{equation*}
0 \rightarrow H^{1}(B, \mathbb{Z}) \oslash H^{1}(T, \mathbb{Z}) \rightarrow H^{2}(X, \mathbb{Z}) / \text { Tors } H^{2}(X, \mathbb{Z}) \rightarrow \tag{7}
\end{equation*}
$$

$$
\rightarrow \operatorname{ker}\left(H^{2}(T, \mathbb{Z}) \xrightarrow{d_{3}} H^{1}(T, \mathbb{Z})\right) \rightarrow 0
$$

Let

$$
0 \subset \tilde{F}_{2} \subset \tilde{F}_{1} \subset \tilde{F}_{0}=H^{2}\left(X, \mathcal{O}_{X}\right)
$$

be the filtration induced by the second spectral sequence (5). Then, we get the exact sequence:

$$
\begin{equation*}
0 \rightarrow H^{1}\left(B, \mathcal{O}_{B}\right) \otimes H^{1}\left(T, \mathcal{O}_{T}\right) \rightarrow H^{2}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{2}\left(T, \mathcal{O}_{T}\right) \rightarrow 0 \tag{8}
\end{equation*}
$$

The Neron-Severi group, denoted by $N S(X)$, is the kernel of the map in cohomology $H^{2}(X, \mathbb{Z}) \xrightarrow{i} H^{2}\left(X, \mathcal{O}_{X}\right)$, induced by the natural map $\mathbb{Z}_{X} \xrightarrow{i} \mathcal{O}_{X}$. Since $F_{2} \xrightarrow{i} \tilde{F}_{2}=0$, we have $F_{2} \subset N S(X)$ and

$$
\begin{equation*}
\operatorname{TorsNS}(X)=F_{2}=\operatorname{Tors} H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}_{m} \tag{9}
\end{equation*}
$$

Using the exact sequence of small terms of the first spectral sequence (4) we get

$$
\operatorname{TorsNS}(X)=\operatorname{im}\left(H^{2}(B, \mathbb{Z}) \xrightarrow{\pi^{*}} H^{2}(X, \mathbb{Z})\right) .
$$

By functoriality of the spectral sequences we get the following commutative diagram

where the first line is the exact sequence (7) and the second line is the exact sequence (8). Since $N S(X) / \operatorname{Tors} N S\left(X^{\prime}\right) \cong \operatorname{ker}(i)$, we obtain the exact sequence:

$$
\begin{equation*}
0 \rightarrow \operatorname{ker}\left(i^{\prime}\right) \rightarrow N S(X) / \operatorname{TorsNS}(X) \rightarrow \operatorname{ker}\left(i^{\prime \prime}\right) \xrightarrow{\beta} \operatorname{coker}\left(i^{\prime}\right) . \tag{10}
\end{equation*}
$$

Lemma 1 We have $\operatorname{ker}\left(i^{\prime}\right) \cong \operatorname{Hom}\left(J_{B}, T^{\vee}\right)$, where J_{B} is the Jacobian variety of the curve B, T^{\vee} is the dual torus of the torus T and $H o m\left(J_{B}, T^{\vee}\right)$ is the group of homomorphisms of group varieties.

Proof: By [8], Chap.I, 2, we have the exact sequence

$$
0 \rightarrow \Lambda^{\vee} \rightarrow \bar{V}^{\vee} \rightarrow T^{\vee} \rightarrow 0
$$

where

$$
\Lambda^{\vee}=H^{1}(T, \mathbb{Z}), \bar{V}^{\vee}=H^{1}\left(T, \mathcal{O}_{T}\right), T^{\vee}=\operatorname{Pic}^{0}(T)
$$

Taking local sections of these constant sheaves one gets an exact sequence of sheaves on B

$$
\begin{equation*}
0 \rightarrow \Lambda^{\vee} \rightarrow \mathcal{O}_{B} \otimes \bar{V}^{\vee} \rightarrow \mathcal{O}_{B}\left(T^{\vee}\right) \rightarrow 0 \tag{11}
\end{equation*}
$$

with the induced exact cohomology sequence:

$$
\begin{aligned}
&(12) 0 \rightarrow H^{0}\left(B, \Lambda^{\vee}\right) \rightarrow H^{0}\left(B, \mathcal{O}_{B}\right) \otimes \bar{V}^{\vee} \rightarrow H^{0}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right) \rightarrow H^{1}\left(B, \Lambda^{\vee}\right) \xrightarrow{j} \\
& \stackrel{j}{\rightarrow} H^{1}\left(B, \mathcal{O}_{B}\right) \otimes \bar{V}^{\vee} \rightarrow H^{1}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right) \xrightarrow{c^{\vee}} H^{2}\left(B, \Lambda^{\vee}\right) \rightarrow 0 .
\end{aligned}
$$

But

$$
\begin{gathered}
H^{1}\left(B, \Lambda^{\vee}\right)=H^{1}(B, \mathbb{Z}) \otimes H^{1}(T, \mathbb{Z}) \\
H^{1}\left(B, \mathcal{O}_{B}\right) \otimes \bar{V}^{\vee}=H^{1}\left(B, \mathcal{O}_{B}\right) \otimes H^{1}\left(T, \mathcal{O}_{T}\right)
\end{gathered}
$$

and $j=i^{\prime}$ by naturality. It follows

$$
\begin{aligned}
& \operatorname{ker}\left(i^{\prime}\right)=\operatorname{ker}\left(H^{1}\left(B, \Lambda^{\vee}\right) \xrightarrow{j} H^{1}\left(B, \mathcal{O}_{B}\right) \otimes \bar{V}^{\vee}\right) \cong \\
& \cong \operatorname{im}\left(H^{0}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right) \rightarrow H^{1}\left(B, \Lambda^{\vee}\right)\right) \cong \\
& \cong \operatorname{coker}\left(H^{0}\left(B, \mathcal{O}_{B}\right) \otimes \bar{V}^{\vee} \rightarrow H^{0}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right)\right)
\end{aligned}
$$

But $H^{0}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right)$ is the group of global holomorphic maps $B \rightarrow T^{\vee}$ and

$$
\operatorname{im}\left(H^{0}\left(B, \mathcal{O}_{B}\right) \otimes \bar{V}^{\vee} \rightarrow H^{0}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right)\right) \cong \bar{V}^{\vee} / \Lambda^{\vee}=T^{\vee}
$$

is the subgroup of constant maps $B \rightarrow T^{\vee}$, which can be identified with the points of T^{\vee} (or, with the translations of T^{\vee}). Let $B \rightarrow J_{B}$ be the canonical holomorphic map (determined up to a translation of J_{B}). Given any holomorphic map $B \rightarrow T^{\vee}$ then, if we choose the proper origin on T^{v}, the holomorphic map $B \rightarrow T^{\vee}$ is the composition of the canonical map $B \rightarrow J_{B}$ and an homomorphism from J_{B} to T^{\vee} (the universal property of the Jacobian). It follows the isomorphism

$$
\operatorname{ker}\left(i^{\prime}\right) \cong \operatorname{Hom}\left(\cdot J_{B}, T^{\vee}\right)
$$

Lemma 2 We have

$$
\operatorname{ker}\left(i^{\prime \prime}\right)=\left\{c_{1}(L) \in N S(T) \mid c_{1}(L)\left(\lambda^{0}\right)=0\right\}
$$

where $c(\xi)=m \lambda^{0} \in \Lambda$.

Proof: From the previous diagram we get

$$
\operatorname{ker}\left(i^{\prime \prime}\right)=\left\{c_{1}(L) \in N S(T) \mid d_{2}\left(c_{1}(L)\right)=0\right\}
$$

Let $\left\{e_{1}, \ldots, e_{2 n}\right\}$ be a basis of the lattice Λ and let $\left\{e^{1}, \ldots, e^{2 n}\right\}$ be the dual basis in the lattice Λ^{\vee}. Any element $E=c_{1}(L) \in N S(T)$ can be written in the form

$$
E=\Sigma_{1 \leq i<j \leq 2 n} a_{i j} e^{i} \wedge e^{j}, a_{i j} \in \mathbb{Z}
$$

(see [8], Chap. I, 2). By direct computation we obtain

$$
\begin{gathered}
d_{2}\left(c_{1}(L)\right)=\Sigma_{i<j} a_{i j} d_{2}\left(e^{i} \wedge e^{j}\right)=\Sigma_{i<j} a_{i j}\left(\delta\left(e^{i}\right) e^{j}-\delta\left(e^{j}\right) e^{i}\right)= \\
=m \Sigma_{i<j} a_{i j}\left(e^{i}\left(\lambda^{0}\right) e^{j}-e^{j}\left(\lambda^{0}\right) e^{i}\right)=m c_{1}(L)\left(\lambda^{0}\right),
\end{gathered}
$$

where we made the natural identifications

$$
\operatorname{Bil}(\Lambda \times \Lambda, \mathbb{Z})=\operatorname{Hom}_{\mathbf{Z}}(\Lambda \otimes \Lambda, \mathbb{Z})=\operatorname{Hom}_{\mathbf{Z}}\left(\Lambda, \Lambda^{\vee}\right)
$$

The assertion follows. ©

For any line bundle $L \in \operatorname{Pic}(T)$ we have the homomorphism

$$
\begin{equation*}
\varphi_{L}: T \rightarrow \operatorname{Pic}^{0}(T)=T^{\vee}, \varphi_{L}(x)=\text { isom.class of } T_{x}^{*} L \otimes L^{-1} \tag{13}
\end{equation*}
$$

where $T_{x}: T \rightarrow T$ is the translation with $x \in T$ (see [8]). The T-principal bundle $X \xrightarrow{\pi} B$ being fixed, we can associate to any line bundle $L \in \operatorname{Pic}(T)$ an element in $H^{1}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right)$ in the following way: For the Cech 1-cocycle ($\xi_{i j}$) defining our T-principal bundle, $\xi_{i j}: U_{i} \cap U_{j} \rightarrow T$, we put

$$
\eta_{i j}^{L}:=\varphi_{L} \circ \xi_{i j}: U_{i} \cap U_{j} \rightarrow T^{\vee}
$$

Then $\left(\eta_{i j}^{L}\right)$ is a Cech l-cocycle (φ_{L} is a homomorphism) and defines a cohomology class in $H^{1}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right)$, denoted by $\tilde{\varphi}_{L}(\xi)$.

Definition Let $\xi \in H^{1}\left(\mathcal{O}_{B}(T)\right)$ be fixed. For any $L \in \operatorname{Pic}(T)$ the T^{\vee}-principal bundle described by $\tilde{\varphi}_{L}(\xi)$ will be called the associated T^{\vee}-bundle to L.

Lemma 3 Let $L \in \operatorname{Pic}(T)$ be a line bundle. Then, the obstruction to extend L to a line bundle on the total space of the fixed T-principal bundle $X \xrightarrow{\pi} B$ is the associated T^{\vee}-bundle to $L, \tilde{\varphi}_{L}(\xi)$.

Proof: Let \mathcal{L}_{i} be a line bundle on $U_{i} \times T$ such that for each point $x \in U_{i}$, we have

$$
\begin{equation*}
c_{1}\left(\left.\mathcal{L}_{i}\right|_{x \times T}\right)=c_{1}(L) . \tag{14}
\end{equation*}
$$

Then, for each point $x \in U_{i}$,

$$
\mathcal{M}_{x}=\left(\left.\mathcal{L}_{i}\right|_{x \times T}\right) \otimes L^{-1}
$$

is a line bundle of degree zero on T, hence determines a point of $\operatorname{Pic}^{0}(T)=T^{\vee}$. In this way, the line bundle \mathcal{L}_{i} defines a holomorphic mapping

$$
\varphi_{i}: U_{i} \rightarrow T^{\vee}
$$

such that the line bundle

$$
\begin{equation*}
p_{i}^{*}(L) \otimes\left(\varphi_{i} \times i d_{T}\right)^{*}(\mathcal{P}) \tag{15}
\end{equation*}
$$

is isomorphic to \mathcal{L}_{i}, where $p_{i}: U_{i} \times T \rightarrow T$ is the natural projection to the second factor and \mathcal{P} is the Poincaré bundle of T^{\vee} (which is a line bundle on $T^{\vee} \times T$). Conversely, if a holomorphic mapping $\varphi_{i}: U_{i} \rightarrow T^{\vee}$ is given, then (15) defines a line bundle \mathcal{L}_{i} on $U_{i} \times T$ with the property (14). Patching together \mathcal{L}_{i} 's to obtain a line bundle on X, we need to have isomorphisms

$$
\begin{equation*}
T_{\xi_{i j}}^{*} \mathcal{L}_{j}\left|U_{i j \times T} \cong \mathcal{L}_{i}\right| U_{i j \times T} \tag{16}
\end{equation*}
$$

for all $U_{i j}=U_{i} \cap U_{j} \neq \emptyset$, where $T_{\xi_{i j}}$ is an automorphism of $U_{i j} \times T$ induced by the translation of T by $\xi_{i j}(x)$ for each $x \in U_{i j}$.
Since we may assume that \mathcal{L}_{i} has the form (15), the isomorphism (16) can be rewritten as

$$
\begin{equation*}
\left.\left.T_{\epsilon_{i},}^{*}\left(p_{j}^{*} L\right) \otimes\left(\varphi_{j} \times i d_{T}\right)^{*}(\mathcal{P})\right|_{U_{i j} \times T} \cong\left(p_{i}^{*} L\right) \otimes\left(\varphi_{i} \times i d_{T}\right)^{*}(\mathcal{P})\right|_{U_{i j} \times T} \tag{17}
\end{equation*}
$$

Note that for any line bundle M of degree zero on T, we have an isomorphism $T_{a}^{*} M \cong M$ for any translation T_{a} of the torus T.
On the other hand, for each $x \in U_{i j}$, the line bundle

$$
T_{\varepsilon_{i j}(x)}^{*}(L) \otimes L^{-1}
$$

defines an element of T^{\vee} and we have a holomorphic mapping of $U_{i j}$ to T^{\vee}. This holomorphic mapping is nothing but

$$
\eta_{i j}^{L}=\varphi_{L} \circ \xi_{i j}: U_{i j} \rightarrow T^{\vee}
$$

Then, the existence of an isomorphism (17) is equivalent to the equality

$$
\begin{equation*}
\eta_{i j}^{L}+\varphi_{j}=\varphi_{i} \tag{18}
\end{equation*}
$$

as the equality in $H^{\mathrm{v}}\left(U_{\mathrm{i} j}, \mathcal{O}_{U_{i}}\left(T^{\vee}\right)\right)$.
If there exists a line bundle \mathcal{L} on X such that for a point $y \in B,\left.\mathcal{L}\right|_{\pi^{-1}(y)}$ is isomorphic to L, then

$$
\mathcal{L}_{i}:=\left.\mathcal{L}\right|_{U_{i} \times T} \quad i \in I,
$$

satisfy (14) and (16). Therefore, the equality holds for (i, j) with $U_{i j} \neq \emptyset$. Hence, the cocycle $\tilde{\varphi}_{L}(\xi)$ is zero in $H^{1}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right)$. Conversely, if $\tilde{\varphi}_{L}(\xi)$ is zero in $H^{1}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right)$, by chossing a suitable open covering $\left\{U_{i}\right\}$ of B, we may assume that the equality (18) holds. Define a line bundle \mathcal{L}_{i} on $U_{i} \times T$ by

$$
\mathcal{L}_{i}=p_{i}^{*} L \otimes\left(\varphi_{i} \times i d_{T}\right)^{*}(\mathcal{P})
$$

By (18) we have an isomorphism

$$
g_{i j}:\left.\left.\mathcal{L}_{j}\right|_{U_{i j} \times T} \rightarrow \mathcal{L}_{i}\right|_{U_{i j} \times T}
$$

Note that $g_{i j}$ is uniquely determined up to the multiplication of an element of $H^{0}\left(U_{i j}, \mathcal{O}_{U_{i j}}^{*}\right)$. For $i<j$ choose an isomorphism $g_{i j}$ and fix it. Put

$$
\begin{aligned}
g_{j i} & =g_{i j}^{-1}, \quad i<j \\
g_{i i} & =i d .
\end{aligned}
$$

For $U_{i j k}=U_{i} \cap U_{j} \cap U_{k} \neq \emptyset$, put

$$
g_{i j k}=g_{k i} \circ g_{i j} \circ g_{j k} .
$$

Since there is a canonical isomorphism of $\operatorname{Aut}\left(\left.\mathcal{L}\right|_{\pi^{-1}(U)}\right)$ to $H^{0}\left(\pi^{-1}(U), \mathcal{O}_{\pi^{-1}(U)}^{*}\right)$ $=H^{0}\left(U, \mathcal{O}_{U}^{*}\right)$, the automorphism $g_{i j k}$ of $\left.\mathcal{L}_{k}\right|_{U_{i j k} \times T}$ determines and element $\sigma\left(g_{i j k}\right) \in H^{0}\left(U_{i j k}, \mathcal{O}_{U_{i j k}}^{*}\right)$. Note that we have equalities:

$$
\begin{aligned}
\sigma\left(g_{\ell k} \circ g_{i j k} \circ g_{k \ell}\right) & =\sigma\left(g_{i j k}\right) \text { on } U_{i j k \ell} \\
\sigma\left(g_{i j k} \circ g_{\ell m k}\right) & =\sigma\left(g_{i j k}\right) \sigma\left(g_{\ell m k}\right) \text { on } U_{i j k \ell m} .
\end{aligned}
$$

By using these equalities, it is easy to show that $\left\{\sigma\left(g_{i j k}\right)\right\}$ is a two-cocycle with values in \mathcal{O}_{B}^{*}. Since we have $H^{2}\left(B, \mathcal{O}_{B}^{*}\right)=0$, if necessarily, by choosing a finer open covering of B and changing the isomorphism $g_{i j}$ by the multiplication of a nowhere vanishing function, we may assume that

$$
\sigma\left(g_{i j k}\right)=1 .
$$

This means that $g_{i j k}=i d$ and we can patch together the line bundles \mathcal{L}_{i} by the isomorphism $g_{i j}$ to obtain a line bundle \mathcal{L} on X. We may also assume that for a point $x \in U_{i}$ we have $\varphi_{i}(x)=0$. Then, we have an isomorphism $\left.\mathcal{L}\right|_{\pi^{-1}(x)} \cong L$. This proves the lemma. \circ

Lemma 4 The homomorphism $\beta: \operatorname{ker}\left(i^{\prime \prime}\right) \rightarrow \operatorname{coker}\left(i^{\prime}\right)$ is given by the corvespondence. $c_{1}(L) \longmapsto \tilde{\varphi}_{L}(\xi)$.

Proof: Let $L \in \operatorname{Pic}(T)$ be a line bundle. By Appel-Humbert Theorem (see [8]. Chap.I, 2) one has $L=L(H, \alpha)$, where H is a hermitian form on V with $E(\Lambda \times \Lambda) \subset \mathbb{Z}(E=I m H)$ and $\alpha: \Lambda \rightarrow U(1)$ is a map with

$$
\alpha\left(\lambda_{1}+\lambda_{2}\right)=e^{i \pi E\left(\lambda_{1}, \lambda_{2}\right)} \alpha\left(\lambda_{1}\right) \alpha\left(\lambda_{2}\right), \lambda_{i} \in \Lambda
$$

Let us denote by p the canonical projection $V \rightarrow T$. By [8], Chap.II, 9, if $a \in V$ with $p(a)=x \in T$, we have

$$
\varphi_{L(H, \alpha)}(x)=\text { isom.class of } L\left(0, \gamma_{a}\right)
$$

where $\gamma_{a}: \Lambda \rightarrow U(1)$ is the map

$$
\begin{equation*}
\gamma_{a}(\lambda)=e^{2 \pi i E(a, \lambda)}, \lambda \in \Lambda \tag{19}
\end{equation*}
$$

From the exact sequence (12) we get

$$
\operatorname{coker}\left(i^{\prime}\right) \cong \operatorname{ker}\left(H^{1}\left(\mathcal{O}_{B}\left(T^{\vee}\right)\right) \xrightarrow{c^{\vee}} H^{2}\left(B, \Lambda^{\vee}\right)\right)
$$

By the previous lemmas it remains to show that the condition $c_{1}(L)\left(\lambda^{0}\right)=0$ implies the condition $c^{\vee}(\eta)=0$, where $\eta=\tilde{\varphi}_{L}(\xi)$. For any $z \in U_{i} \cap U_{j}$ we choose $a_{i j}(z) \in V$ such that $p\left(a_{i j}(z)\right)=\xi_{i j}(z) \in T$. Then

$$
\eta_{i j}^{L}(z)=\varphi\left(\xi_{i j}(z)\right)=L\left(0, \gamma_{a_{i j}(z)}\right)
$$

where $\gamma_{a_{i j}(z)}$ is given by the formula (19) for $c_{1}(L)=E$.
Since $\left(\xi_{i j}\right)$ is a cocycle we have $a_{j k}(z)-a_{i k}(z)+a_{i j}(z) \in \Lambda$. More precisely, we have

$$
c l s\left(a_{j k}(z)-a_{i k}(z)+a_{i j}(z)\right)=m \lambda^{0}=c(\xi) \in \Lambda=H^{2}(B, \Lambda)
$$

Let us denote by p^{\vee} the canonical projection $\bar{V}^{\vee} \rightarrow T^{\vee}$ and recall that

$$
\bar{V}^{\vee}=\operatorname{Hom}_{\mathbb{C}-a n t i l i n .}(V, \mathbb{C})
$$

If $l \in \bar{V}^{\vee}$ then $p^{\vee}(l)=L\left(0, \alpha_{t}\right)$, where $\alpha_{l}: \Lambda \rightarrow U(1)$ is the map

$$
\alpha_{l}(\lambda)=e^{2 \pi i I m l(\lambda)}, \lambda \in \Lambda
$$

(see [8], Chap.II, 9). In order to define $c^{\vee}(\eta)$ in Čech cohomology we can choose $l_{i j ; z} \in \bar{V}^{V}$ such that

$$
I m l_{i j ; z}=E\left(a_{i j}(z), \cdot\right)
$$

Then, the characteristic class $c^{\vee}(\eta)$ is given by the 2 -cocycle $\left(\rho_{i j ; ; z}\right)$, where

$$
\rho_{i j k ; z}=l_{j k ; z}-l_{i k ; z}+l_{i j ; z} \in \Lambda^{\vee}=H^{2}\left(B, \Lambda^{\vee}\right)
$$

But, for all $\lambda \in \Lambda$, we have

$$
\operatorname{Im} \rho_{i j k ; z}(\lambda)=E\left(a_{j k}(z)-a_{i k}(z)+a_{i j}(z), \lambda\right)=E\left(m \lambda^{0}, \lambda\right)=0 .
$$

Since a linear form $l \in \bar{V}^{\vee}$ is uniquely determined by its imaginary part, we get $c^{\vee}(\eta)=0$ in $H^{2}\left(B, \Lambda^{\vee}\right) . \circ$

We have proved the following result:
Theorem 5 Let $X \xrightarrow{\pi} B$ be a T-principal bundle over the curve B, defined by a cohomology class $\xi \in H^{1}\left(\mathcal{O}_{B}(T)\right)$ with $c(\xi) \neq 0$ (i.e. X is non-Kähler). Then we have an exact sequence of free abelian groups

$$
0 \rightarrow \operatorname{Hom}\left(J_{B}, T^{\vee}\right) \rightarrow N S(X) / \text { TorsN } N(X) \rightarrow \tilde{N}(X) \rightarrow 0
$$

where $\tilde{N}(X)$ is the subyroup of the Neron-Severi group of the torus T defined by

$$
\tilde{N}(X)=\left\{c_{1}(L) \in N S(T) \mid \tilde{\varphi}_{L}(\xi) \text { is the trivial torus bundle }\right\} . \circ
$$

Remark. In the case T is an elliptic curve we have $\tilde{N}(X)=0$ (see [3]).
Remark. Clearly, a similar result holds in the case of a Kähler torus principal bundle for the group $N S(X) / \pi^{*} N S(B)$ (see also the last section).

Example. Let T be a two-dimensional complex torus with period matrix Ω, where

$$
\Omega^{t}=\left(\begin{array}{cccc}
1 & 0 & \tau_{1} & \alpha \\
0 & 1 & 0 & \tau_{2}
\end{array}\right)
$$

with $\operatorname{Im} \tau_{j}>0, j=1,2$. If the complex numbers $\tau_{1}, \tau_{2}, \alpha$ are algebraically independent over the rational numbers \mathbb{Q} then, it is well-known that T is not algebraic, that is, T is not an abelian variety. Let E_{j} be an elliptic curve with period matrix $\left(1, \tau_{j}\right), j=1,2$. Then, there exists a holomorphic mapping

$$
\pi: T \rightarrow E_{2}
$$

such that π is an E_{1}-principal bundle over E_{2}.
The lattice Λ of T is generated by vectors $(1,0),(0,1),\left(\tau_{1}, 0\right),\left(\alpha, \tau_{2}\right)$. Put $\lambda^{0}=$ $\left(\tau_{1}, 0\right)$. Choose a point b of a curve B and make a logarithmic transformation to obtain a T-principal bundle

$$
X=L_{b}\left(m \lambda^{0}, 1\right)(B \times T),
$$

where m is an arbitrary positive integer. Then; we have $c(X)=m \lambda^{0}$ and X is non-Kähler.
Since the second coordinate of λ^{0} is zero, there exists a holomorphic mapping

$$
\mu: X \rightarrow B \times E_{2} .
$$

Then, any line bundle L on T, which is the pull-back of a line bundle L_{2} on E_{2} by π, can be extended holomorphically to the one on X, since L_{2} can be extended to a line bundle on $B \times E_{2}$. Hence, for our T-principal bundle X, we have $\tilde{N}(X) \neq 0$.
Similarly, we can also construct a T-principal bundle over B with $\tilde{N}(X) \neq 0$ from a period matrix Ω

$$
\Omega^{t}=\left(\begin{array}{cccc}
I_{m} & 0 & \tau_{m} & \alpha \\
0 & I_{n} & 0 & \tau_{n}
\end{array}\right),
$$

where $\left(I_{m}, \tau_{m}\right)^{t}$ and $\left(I_{n}, \tau_{n}\right)^{t}$ are period matrix of tori and α is an $m \times n$ matrix.

4. A filtration on $\operatorname{Pic}(X)$

In this section we reinterpret the results in the previous section geometrically. We use freely the notation in the previous section. Let $\pi: X \rightarrow B$ be a T-principal bundle as in the previous section. Choose a general point $b \in B$ and fix it. In the following we identify the torus T with the fiber $\pi^{-1}(b)$. Restricting a line bundle \mathcal{L} on X to the fiber $\pi^{-1}(b)$, we have a natural group homomorphism

$$
\begin{equation*}
\operatorname{Pic}(X) \xrightarrow{r} \operatorname{Pic}\left(\pi^{-1}(b)\right)=\operatorname{Pic}(T) \tag{20}
\end{equation*}
$$

Then ker r consists of isomorphism classes of line bundles whose restriction to the fibre $\pi^{-1}(b)$ is trivial, hence the restriction to each fiber of π is a line bundle of degree 0 on the torus under identification of the torus with each fiber.

Let $\left\{U_{j}\right\}$ be an open covering of B with trivialization

$$
\begin{equation*}
\pi^{-1}\left(U_{j}\right) \simeq U_{j} \times T \tag{21}
\end{equation*}
$$

For each line bundle \mathcal{L} belonging to ker r there exists a holomorphic mapping

$$
\varphi_{j}: U_{j} \rightarrow \operatorname{Pic}^{0}(T)=T^{\vee}
$$

with

$$
\left.\mathcal{L}\right|_{\pi^{-1}\left(U_{j}\right)} \simeq\left(\varphi_{j} \times i d_{T}\right)^{-}(\mathcal{P}),
$$

where \mathcal{P} is the Poincare bundle on $\operatorname{Pic}^{0}(T) \times T$. Since any line bundle of degree 0 on the torus is invariant by the translations, on $U_{j} \cap U_{k} \neq \emptyset$ we have

$$
\varphi_{j}=\varphi_{k} .
$$

Hence, the line bundle \mathcal{L} defines a holomorphic mapping

$$
\begin{equation*}
\varphi: B \rightarrow T^{\vee} . \tag{22}
\end{equation*}
$$

Since the restriction $\left.\mathcal{L}\right|_{\pi^{-1}(b)}$ is trivial, the holomorphic mapping (22) satisfies

$$
\begin{equation*}
\varphi(b)=[0] . \tag{23}
\end{equation*}
$$

The line bundle \mathcal{L} and the holomorphic mapping φ are related by

$$
\mathcal{L} \simeq \pi^{*}(M) \otimes \varphi^{*}(\mathcal{P})
$$

where M is a line bundle on the curve B and $\varphi^{*}(\mathcal{P})$ is the line bundle on X whose restriction to $\pi^{-1}\left(U_{j}\right)$ is $\left(\varphi_{j} \times i d_{T}\right)^{*}(\mathcal{P})$. Note that by the argument of the proof of Lemma 3 we can patch together $\left(\varphi_{j} \times i d_{T}\right)^{*}(\mathcal{P})$'s to get $\varphi^{*}(\mathcal{P})$, since the line bundle of degree 0 on a torus is invariant under the translations. Also note that there is a one to one correspondence between the set of holomorphic mappings (22) with property (23) and $\operatorname{Hom}\left(J_{B}, T^{\vee}\right)$.

Let us consider a group homomorphism

$$
\begin{equation*}
R: \operatorname{Pic}(X) \xrightarrow{r} \operatorname{Pic}(T) \xrightarrow{c} H^{2}(T, \mathbb{Z}) . \tag{24}
\end{equation*}
$$

The homomorphism R is essentially equivalent to a natural homomorphism

$$
\operatorname{Pic}(X) \rightarrow \operatorname{Pic}(T) / \operatorname{Pic}^{0}(T)
$$

induced by the homomorphism r. A line bundle \mathcal{L} belonging to ker R is the one whose restriction to each fiber of π is of degree 0 . Note that by the proof of Lemma 3 each line bundle $L \in \operatorname{Pic}^{\circ}(T)$ can be extended to a line bundle \mathcal{L} on X in such a way that its restriction to each fiber is isomorphic to L. Hence, there is an isomorphism

$$
\begin{equation*}
\text { ker } R / \text { ker } r \simeq P i c^{0}(T) \tag{25}
\end{equation*}
$$

Define subgroups P_{j} of $\operatorname{Pic}(X)$ by

$$
\begin{equation*}
P_{2}=\pi^{*} \operatorname{Pic}(B), \quad P_{1}=\operatorname{ker} r, \quad P_{0}=\operatorname{Pic}(X) . \tag{26}
\end{equation*}
$$

Then, $\left\{P_{\mathbf{0}}\right\}$ defines an decreasing filtration of $\operatorname{Pic}(X)$. By the above consideration and the arguments of the previous section we have the following theorem.

Theorem 6 We have the following isomorphisms.

$$
\begin{align*}
& P_{1} / P_{2} \simeq \operatorname{Hom}\left(J_{B}, \operatorname{Pic}^{0}(T)\right) \tag{27}\\
& P_{0} / P_{1} \simeq\left\{L \in \operatorname{Pic}(T) \mid \tilde{\varphi}_{L}(\xi)=0\right\} \tag{28}
\end{align*}
$$

where $\xi \in H^{1}\left(B, \mathcal{O}_{B}(T)\right)$ is the cohomology class corresponding to the T. principal bundle $\pi: X \rightarrow B$ and $\tilde{\varphi}_{L}(\xi)=0$ is defined in $\xi 3 . \diamond$

Remark. Taking the Chern classes, we have

$$
\begin{equation*}
c_{1}\left(P_{2}\right)=F_{2}, \quad c_{1}\left(P_{1}\right)=F_{1} \tag{29}
\end{equation*}
$$

5. Neron-Severi group for torus quasi bundles

Let $T=V / \Lambda$ be an n-dimensional torus. By a quasi T-bundle $\pi: X \rightarrow B$ over . a curve B we mean that π is a T-principal bundle over $B \backslash\left\{b_{1}, b_{2}, \ldots, b_{\ell}\right\}$ and that the fiber $\pi^{-1}\left(b_{j}\right)$ over the point b_{j} is of the form $m_{j} T_{j}$ where $m_{j} \geq 2$ and T_{j} is a torus. The fiber $m_{j} T_{j}$ is called a multiple fiber of the multiplicity m_{j}. To construct such a quasi T-bundle we first generalize the notion of logarithmic transformation.

Choose points $b_{1}, b_{2} \ldots, b_{k}$ on B and put $B^{\prime}=B-\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$. For each point b_{i} fix a positive integer m_{i}. We let a_{i} be an element of $\frac{1}{m_{i}} \Lambda$ such that the order of the point $\left[a_{i}\right]$ of the torus T corresponding to a_{i} is precisely m_{i}. Let

$$
D_{i}=\left\{t_{i} \in \mathbb{C}| | t_{i} \mid<\epsilon\right\}
$$

be a coordinate neighbourhood of the point b_{i} and put

$$
\widehat{D}_{i}=\left\{s_{i} \in \mathbb{C}| | s_{i} \mid<\epsilon^{1 / m_{i}}\right\} .
$$

By the mapping

$$
\begin{align*}
\lambda_{i}: & \widehat{D}_{i} \rightarrow D_{i} \tag{30}\\
& s_{i} \mapsto s_{i}^{m_{i}},
\end{align*}
$$

\widehat{D}_{i} is an m_{i}-sheeted ramified covering of D_{i}. A holomorphic mapping g_{i} : $\widehat{D}_{i} \times T \rightarrow \widehat{D}_{i} \times T$ defined by

$$
\begin{equation*}
g_{i}:\left(s_{i},[\zeta]\right) \mapsto\left(e_{m_{i}} s_{i},\left[\zeta+a_{i}\right]\right) \tag{31}
\end{equation*}
$$

is an analytic automorphism of order m_{i} and generates the cyclic group $G_{i}=$ (g_{i}) of order m_{i} where

$$
e_{m_{i}}=\exp \left(2 \pi \sqrt{-1} / m_{i}\right)
$$

Since the automorphism g_{i} has no fixed points, the quotient $\widehat{D}_{i} \times T / G_{i}^{\prime}$ is a complex manifold. Let

$$
\begin{equation*}
\mu_{i}: \widehat{D}_{i} \times T \rightarrow \widehat{D}_{i} \times T / G_{i} \tag{32}
\end{equation*}
$$

be the canonical quotient mapping. By $\left[s_{i},[\zeta]\right]$ we denote the point of the quotient manifold $\widehat{D}_{i} \times T / G_{i}$ corresponding to a point $\left(s_{i},[\zeta]\right)$ of $\widehat{D_{i}} \times T$. We have a holomorphic mapping

$$
\begin{aligned}
\pi_{i}: & \widehat{D}_{i} \times T / G_{i} \rightarrow D_{i} \\
& {\left[s_{i},[\zeta]\right] \mapsto s_{i}^{m_{i} .} . }
\end{aligned}
$$

Over the punctured disk D_{i}^{*} the holomorphic mapping π_{i} gives a T-principal bundle, and over the origin 0 the equation

$$
\pi_{i}=0
$$

defines a divisor of a form $m_{\mathrm{i}} T_{\mathrm{i}}$ where $T_{i}=T /\left\langle\left[a_{\mathrm{i}}\right]\right\rangle$ is a torus obtained as the quotient by a finite subgroup generated by the point $\left[a_{i}\right]$.

The mapping

$$
\begin{align*}
\ell_{a_{i}}: & \widehat{D}_{i}^{*} \times T / G \rightarrow D_{i}^{*} \times T \\
& {\left[s_{i},[\zeta]\right] \mapsto\left(s_{i}^{m},\left[\zeta-\frac{m_{i} a_{i}}{2 \pi \sqrt{-1}} \log s_{i}\right]\right) } \tag{33}
\end{align*}
$$

is a well-defined holomorphic mapping and isomorphic. Therefore, we can patch together $\widehat{D}_{i} \times T / G_{i}, i=1,2, \ldots, k$ and $B^{\prime} \times T$ by the isomorphisms $\ell_{a_{i}}$ to obtain a compact complex manifold X which is denoted by

$$
\begin{equation*}
L_{b_{1}}\left(a_{1}, m_{1}\right) L_{b_{2}}\left(a_{2}, m_{2}\right) \cdots L_{b_{k}}\left(a_{k}, m_{k}\right)(B \times T) \tag{34}
\end{equation*}
$$

and is called the manifold obtained from $B \times T$ by means of logarithmic transformations. There is a natural holomorphic mapping $\pi: X \rightarrow B$ given by π_{i} on $\widehat{D}_{i} \times T / G_{i}$ and the projection to the first factor on $B^{\prime} \times T$. The fiber space $\pi: X \rightarrow B$ is a T-principal bundle over B^{\prime} and has multiple fibres with multiplicity m_{i}, if $m_{i} \geq 2$. In the Appendix we shall show that all quasi T-bundle are obtained in this manner.

In the following let us consider a quasi T-bundle $\pi: X \rightarrow B$ of the form (34) and we assume that

$$
m_{i} \geq 2, \quad i=1,2, \ldots, \ell, \quad m_{\ell+1}=\cdots=m_{k}=1
$$

Let us consider geometrically line bundles on X. Choose a general point b and consider a natural restriction homomorphism

$$
\begin{equation*}
r: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}\left(\pi^{-1}(b)\right)=\operatorname{Pic}(T) \tag{35}
\end{equation*}
$$

Let us first consider the structure of ker r. Note that for the multiple fiber $m_{i} T_{i}$ the line bundle [T_{i}] associated with the divisor T_{i} of X is an element of ker r and $\left[T_{i}\right]^{\curvearrowright m_{i}}=\left[m_{i} T_{i}\right]$ is the pull-back of the line bundle $\left[b_{i}\right]$ on the curve B.

Let P_{2} be a subgroup of $\operatorname{Pic}\left(X^{\prime}\right)$ generated by $\pi^{*} \operatorname{Pic}(B)$ and $\left[T_{i}\right], i=$ $1,2, \ldots, \ell$. A line bundle \mathcal{L} belonging to P_{2} is characterized by the fact that the restriction of \mathcal{L} to each fiber $\pi^{-1}(c), c \in B^{\prime}$ is the trivial line bundle.

To a line bundle $\mathcal{L} \in$ ker r, by the same argument as in $\S 4$, we can associate a holomorphic mapping

$$
\varphi^{\prime}: B^{\prime} \rightarrow \operatorname{Pic}^{0}(T)=T^{\vee} .
$$

The pull-back $\mu_{i}^{*}\left(\left.\mathcal{L}\right|_{\pi^{-1}\left(D_{i}\right)}\right)$ defines also a holomorphic mapping

$$
\widehat{\varphi}_{i}: \widehat{D}_{i} \rightarrow \operatorname{Pic}^{0}(T)
$$

where $\mu_{i}: \widehat{D} \times T \rightarrow \pi^{-1}\left(D_{i}\right)=\widehat{D}_{i} \times T / G_{i}$ is a natural quotient mapping(32). Then, on \widehat{D}_{i}^{*} we have

$$
\widehat{\varphi}_{i}=\varphi^{\prime} \circ \lambda_{i}
$$

where $\lambda_{i}: \widehat{D}_{i} \rightarrow D_{i}$ is defined in (30). This implies that the holomorphic mapping φ^{\prime} can be extended to a holomorphic mapping

$$
\begin{equation*}
\varphi: B \rightarrow \operatorname{Pic}^{0}(T)=T^{\vee} \tag{36}
\end{equation*}
$$

As $\left.\mathcal{L}\right|_{\pi^{-1}(b)}$ is a trivial bundle, we have

$$
\begin{equation*}
\varphi(b)=[0] . \tag{37}
\end{equation*}
$$

Note that the set of holomorphic mappings (36) with property (37) are canonically isomorphic to $\operatorname{Hom}\left(J_{B}, \operatorname{Pic} c^{0}(X)\right)$. If \mathcal{L} and \mathcal{M} in ker r give the same holomorphic mapping (36), then the restriction of the line bundle $\mathcal{L} \otimes$ \mathcal{M}^{-1} to each fiber $\pi^{-1}(c), c \in B^{\prime}$ is the trivial bundle, hence is an element of P_{2}.

Lemma 7 There exists a natural group isomorphism

$$
\begin{equation*}
j: \operatorname{ker} r / P_{2} \simeq \operatorname{Hom}\left(J_{B}, \operatorname{Pic}^{0}(T)\right) \tag{38}
\end{equation*}
$$

Proof: To each line bundle $\mathcal{L} \in \operatorname{ker} r$ we can associate a holomorphic mapping (36) with property (37). This defines an element of $\operatorname{Hom}\left(J_{B}, \operatorname{Pic}^{0}(T)\right.$). If the mapping φ gives the zero element of $\operatorname{Hom}\left(J_{B}, \operatorname{Pic}^{0}(T)\right), \varphi$ is the zero map. Hence, the restriction of \mathcal{L} to each fiber $\pi^{-1}(c), c \in B^{\prime}$ is the trivial bundle. Hence, \mathcal{L} belongs to P_{2}. This shows the injectivity.

Conversely, let $\varphi: B \rightarrow T^{\vee}$ be a non-constant holomorphic mapping with $\varphi(b)=[0]$. Then, on $X^{\prime}=\pi^{-1}\left(B^{\prime}\right)$ we can construct a line bundle \mathcal{L}^{\prime} such that $\left.\mathcal{L}^{\prime}\right|_{\pi-1}{ }^{-1}(c)$ is a line bundle of degree zero corresponding to the point $\varphi(c)$ for each $c \in B^{\prime}$. For $\widehat{D}_{i}, i=1,2 \ldots, k$, put

$$
\hat{\varphi}_{i}=\varphi \circ \lambda_{i}
$$

Then, $\hat{\varphi}_{i}$ defines a line bundle $\widehat{\mathcal{L}}_{i}$ such that $\left.\widehat{\mathcal{L}}_{i}\right|_{s_{i} \times T}$ corresponds to $\hat{\varphi}_{i}\left(s_{i}\right)$, As the line bunde $\hat{\mathcal{L}}_{i}$ is invariant under the group G_{i}^{\prime}, it defines a line bundle \hat{L}_{i} on $\widehat{D}_{i} \times T / G_{i}$. By our construction, $\left.\mathcal{L}_{i}\right|_{\pi^{-1}\left(D_{i}^{*}\right)}$ and $\left.\mathcal{L}^{\prime}\right|_{\pi^{-1}\left(D_{i}^{\prime}\right)}$ are isomorphic. Hence, \mathcal{L}_{i} 's and \mathcal{L}^{\prime} define a line bundle \mathcal{L} on X which corresponds to the mapping φ. This shows the surjectivity of the mapping j. \diamond

Next let us consider the image of the homomorphism r.

Lemma 8 If a line bundle L of T can be extended to a line bundle \mathcal{L} on X, then L is invariant by the translations $T_{\left[a_{i}\right]}, i=1,2, \ldots, \ell$.

Proof: The pull-back $\tilde{\mathcal{L}}_{i}:=\mu_{i}^{*}\left(\left.\mathcal{L}\right|_{\pi_{i}^{-1}\left(D_{i}\right)}\right)$ is invariant by the action of the group G_{i}, where $\mu_{i}: \widehat{D}_{i} \times T \rightarrow \widehat{D}_{i} \times T / G_{i}=\pi^{-1}\left(D_{i}\right)$ is the natural quotient mapping(32). In particular, the restriction $\left.\tilde{\mathcal{L}}_{i}\right|_{0 \times T}$ is invariant by the group generated by the translation $T_{\left[a_{i}\right]}$. Since $\left.\tilde{\mathcal{L}}_{i}\right|_{0 \times T}$ has a form $L \otimes M$ with degree zero line bundle M on T and M is invariant by all the translations, the line bundle L is invariant by the translation $T_{[a ;]} \cdot \circ$

Let H be a subgroup of the torus T generated by $\left[a_{1}\right],\left[a_{2}\right], \ldots,\left[a_{\ell}\right]$. The group H is isomorphic to Λ_{0} / Λ where Λ_{0} is the lattice generated by Λ and a_{i} 's. To any H-invariant line bundle L on the torus T, we associate a cohomology class $\left\{\eta_{i j}^{L}\right\}$ in $H^{1}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right)$ as follows.

Let $\left\{U_{j}\right\}$ be an open covering of the curve B such that $U_{i}=D_{i}$ for $i=$ $1,2, \ldots, \ell$ and that $b_{i} \notin U_{i} \cap U_{j}$ for $i \neq j$. Since the line bundle L is invariant by the translation $T_{\left[a_{i}\right]}$, though $\left[\frac{a_{j}}{2 \pi \sqrt{-1}} \log t_{i}\right]$ is multivalued

$$
\begin{equation*}
T_{\left[\frac{a j}{2 \pi j-1}\right.}^{*} \log t_{i j} L \otimes L^{-1} \tag{39}
\end{equation*}
$$

is a well-defined line bundle on $\pi^{-1}\left(U_{i} \cap U_{j}\right)$ for $i=1,2, \ldots, \ell$ and $j \neq i$. Then there exists a holomorphic mapping $\varphi_{i j}$ from $U_{i j}=U_{i} \cap U_{j}$ to T^{\vee} such that the line bundle (39) is the pull-back $\left(\varphi_{i j} \times i d_{T}\right)^{*}(\mathcal{P})$ of the Poincare bundle. Put

$$
\eta_{i j}^{L}:=\left\{\begin{array}{ll}
\varphi_{i j} & \text { if } 1 \leq i \leq \ell, \ell<j \tag{40}\\
0 & \text { if } \ell<i, j
\end{array} .\right.
$$

Then, it is easy to show that $\left\{\eta_{i j}^{L}\right\}$ is a one cocycle and defines a cohomology class $\left[\left\{\eta_{i j}^{L}\right\}\right] \in H^{1}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right)$.

Lemma 9 An H-inuariant line bundle L on the toras $T=\pi^{-1}(b)$ can be extended to the one on X if and only if the cohomology class $\left[\left\{\eta_{i j}^{L}\right\}\right]$ is zero.

Proof: Assume that there exists a line bundle \mathcal{L} on X which is an extension of L. Then, the pull-back $\mu_{i}^{*}\left(\left.\mathcal{L}\right|_{\pi^{-1}\left(U_{i}\right)}\right)$ of the restriction of \mathcal{L} on $\pi^{-1}\left(U_{i}\right)$, $i=1,2, \ldots, \ell$, to $\widehat{D}_{i} \times T$ can be expressed as

$$
\begin{equation*}
L Q\left(\hat{\varphi}_{i} \times i d_{T}\right)^{*}(\mathcal{P}) \tag{41}
\end{equation*}
$$

where $\widehat{\varphi}_{i}: \widehat{D}_{i} \rightarrow T^{\vee}$ is a holomorphic mapping. Since the line bundle $\mu_{i}^{*}\left(\left.\mathcal{L}\right|_{\pi^{-1}\left(U_{i}\right)}\right)$ is invariant under the group G_{i}^{\prime}, we have

$$
\hat{\varphi}_{i}\left(s_{i}\right)=\hat{\varphi}_{i}\left(e_{m_{i}} s_{i}\right)
$$

Hence, there exists a holomorphic mapping $\varphi_{i}: U_{i} \rightarrow T^{\vee}$ with

$$
\begin{equation*}
\hat{\varphi}_{i}\left(s_{i}\right)=\varphi_{i}\left(s_{i}^{m i}\right) \tag{42}
\end{equation*}
$$

Since \mathcal{L} is a global line bundle, on $U_{i j} \neq \emptyset$ we have

$$
\begin{equation*}
T_{\left[\frac{a_{2}}{2 \pi \sqrt{2}} \log _{\left.t_{i}\right]}\right.}^{*} L \otimes\left(\varphi_{i} \times i d_{T}\right)^{*}(\mathcal{P})=L \otimes\left(\varphi_{j} \times i d_{T}\right)^{*}(\mathcal{P}) \tag{43}
\end{equation*}
$$

This implies that we have

$$
\begin{equation*}
\eta_{i j}^{L}=\varphi_{j}-\varphi_{i} \tag{44}
\end{equation*}
$$

Hence, the cohomology class is zero.
Conversely assume that the cohomology class is zero, hence we have holomorphic mappings $\varphi_{j}: U_{j} \rightarrow T^{\vee}$ which satisfy (44). For $i=1,2, \ldots, \ell$ define $\widehat{\varphi}_{i}$ by (42). Then the line bundle $\widehat{\mathcal{L}}_{i}=L \otimes\left(\widehat{\varphi}_{i} \times i d_{T}\right)^{*}(\mathcal{P})$ is invariant by the action of the group G_{i}, hence defines a line bundle \mathcal{L}_{i} on $\pi^{-1}\left(U_{i}\right)$. For $j>\ell$ put $\mathcal{L}_{j}=L \otimes\left(\varphi_{j} \times i d_{T}\right)^{*}(\mathcal{P})$. Since we have the equality (43), we can patch together these line bundles and obtain a line bundle \mathcal{L} which is an extension of L. \circ

Now as in $\S 4$ we introduce a decreasing filtration $\left\{P_{\bullet}\right\}$ of $\operatorname{Pic}(X)$ by

$$
\begin{align*}
& P_{2}=\text { the subgroup generated by } \pi^{*} P i c(B) \text { and }\left[T_{i}\right]^{\prime} \text { s, } \tag{45}\\
& P_{1}=\text { ker } r, \quad P_{0}=\operatorname{Pic}(X), \tag{46}
\end{align*}
$$

where $m_{i} T_{i}, i=1,2, \ldots, \ell$ are all the multiple fibers of the quasi T-bundle $\pi: X \rightarrow B$. By the above arguments we have the following theorem.
Theorem 10 We have the following isomorphisms.

$$
\begin{align*}
& P_{1} / P_{2} \simeq \operatorname{Hom}\left(J_{B}, \operatorname{Pic}^{0}(T)\right) \tag{47}\\
& P_{0} / P_{1} \simeq\left\{L \in \operatorname{Pic}(T)^{H} \mid\left[\left\{\eta_{i j}^{L}\right\}\right]=0\right\} . \circ \tag{48}
\end{align*}
$$

Let us reinterpret the group $\left\{L \in \operatorname{Pic}(T)^{H} \mid\left[\left\{\eta_{i j}^{L}\right\}\right]=0\right\}$ by means of a torus principal bundle associated with the quasi T-bundle $\pi: X \rightarrow B$.

Let Λ_{0} be a lattice in the vector space V generated by Λ and $a_{i}, i=$ $1,2, \ldots, \ell$ and put

$$
\begin{equation*}
T_{0}=V / \Lambda_{0} \tag{49}
\end{equation*}
$$

Then, we have

$$
T_{0}=T / H
$$

where H is a subgroup of the torus T generated by $\left[a_{1}\right],\left[a_{2}\right], \ldots\left[a_{f}\right]$. There is a canonical surjective homomorphism

$$
\begin{equation*}
h: T \rightarrow T_{0} \tag{50}
\end{equation*}
$$

of complex tori. The following lemma is well-known and easy to prove.

Lemma $11 A$ line bundle L on the torus T is invariant by the translations $T_{\left[a_{i}\right]}, i=1,2, \ldots, \ell$, if and only if there exists a line bundle L_{0} on T_{0} with

$$
L=h^{*} L_{0} \cdot \diamond
$$

Put

$$
\begin{equation*}
Y=L_{b_{1}}\left(a_{1}, 1\right) L_{b_{2}}\left(a_{2}, 1\right) \cdots L_{b_{\ell}}\left(a_{\ell}, 1\right)\left(B \times T_{0}\right) \tag{51}
\end{equation*}
$$

with structure morphism $\pi_{0}: Y \rightarrow B$, which is a T_{0}-principal bundle.
Lemma 12 There exists a holomorphic mapping

$$
f: X \rightarrow Y
$$

such that the following diayram is commutative.

$$
\begin{aligned}
X & \xrightarrow{f} Y \\
\pi & \downarrow \\
& \downarrow \pi_{0} \\
B & =B
\end{aligned}
$$

Moreover, f is unramified outside the multiple fibers.
Proof: There is a natural unramified holomorphic mapping

$$
f^{\prime}: B^{\prime} \times T \rightarrow B^{\prime} \times T_{0}
$$

We need to show that f^{\prime} can be extended to a holomorphic mapping f of X^{\prime} to Y. On $\widehat{D}_{i} \times T / G_{i}$ let us define a holomorphic mapping f_{i} by

$$
\begin{aligned}
f_{i}: \widehat{D}_{i} \times T / G_{i} & \rightarrow D_{i} \times T_{0} \\
& {\left[s_{i},[\zeta]\right] }
\end{aligned} \mapsto\left(s_{i}^{m_{i}}, h([\zeta])\right) .
$$

We need to show that these holomorphic mappings are compatible to f^{\prime}. By our definition of the logarithmic transformation we have the following commutative diagram.

$$
\begin{aligned}
& \ell_{i}: \widehat{D}_{i}^{*} \times T / G_{i} \quad \rightarrow \quad D_{i}^{*} \times T \\
& {\left[s_{i},[\zeta]\right] \quad \mapsto \quad\left(s_{i}^{m_{i}},\left[\zeta-\frac{m_{i} a_{i}}{2 \pi \sqrt{-1}} \log s_{i}\right]\right)} \\
& f^{\prime} \downarrow \quad \downarrow \quad \downarrow \quad \downarrow f_{i} \\
& \left(s_{i}^{m_{i}},[\zeta]_{0}\right) \mapsto\left(s_{i}^{m_{i}},\left[\zeta-\frac{a_{j}}{2 \pi \sqrt{-1}} \log \left(s_{i}^{m i}\right)\right]_{0}\right) \\
& \ell_{i}^{(0)}: D_{i}^{*} \times T_{0} \rightarrow \quad D_{i}^{*} \times T_{0}
\end{aligned}
$$

Here, $[\zeta]_{0}$ means the point of the torus T_{0} corresponding to ζ. The commutativity of the above diagram shows that the mappings f^{\prime} and f_{i} 's are compatible and define a holomorphic mapping $f: X \rightarrow Y$ over B. 。

Lemma 13 The quasi T-bundle X is Kähler if and only if Y is Kähler. The condition is equivalent to the equality

$$
\begin{equation*}
\sum_{i=1}^{k} a_{i}=0 \tag{52}
\end{equation*}
$$

Proof: Assume that the equality (52) holds, hence, Y is Kähler. Let ω be a Kähler form of Y. Note that $f: X \rightarrow Y$ is an abelian covering ramified along the support of T_{i} of the multiple fibers. Hence, the pull-back $f^{*} \omega$ is positive definite on $X \backslash \cup_{i=1}^{\ell} T_{i}$ and at each point of T_{i} it is positive semi-definite. Near the multiple fiber $m_{i} T_{i}, X$ is isomorphic to $\widehat{D}_{i} \times T / G_{i}$. As a (1,1)-form

$$
\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial}\left(\sum_{\nu=1}^{n}\left|\zeta_{\nu}\right|^{2}+\left|s_{i}\right|^{2}\right)
$$

is G_{i}-invariant, it defines a Kähler form on $\widehat{D}_{i} \times T / G_{i}$. Let ρ_{i} be a non-negative C^{∞}-function in $\left|s_{i}\right|^{2}$ satisfying

$$
\rho_{i}(t)= \begin{cases}1 & |t|<\epsilon^{2 / m_{i}} / 3 \\ 0 & |t| \geq 2 \epsilon^{2 / m_{i}} / 3\end{cases}
$$

Then, a form

$$
\omega_{i}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial}\left\{\rho_{i}\left(\left|s_{i}\right|^{2}\right)\left(\sum_{\nu=1}^{n}\left|\zeta_{\nu}\right|^{2}+\left|s_{i}\right|^{2}\right)\right\}
$$

is positive definite on $\pi^{-1}\left(D_{i}\left(\epsilon^{2 / m_{i}} / 3\right)\right.$ and $\omega_{i} \equiv 0$ on $\pi^{-1}\left(D_{i}\left(2 \epsilon^{2 / m_{i}} / 3\right)\right.$, where we put $D_{i}(r)=\left\{s_{i}| | s_{i} \mid<r\right\}$. Hence, we may regard ω_{i} as a global $(1,1)$ form on X. Since, $f^{*} \omega$ is positive definite on $X \backslash \cup_{i=1}^{\ell} T_{i}$, and ω_{i} is positive definite in a neighbourhood of T_{i} and zero outside a certain neighbourhood of T_{i}, the form

$$
\alpha \int \omega+\sum_{i=1}^{\ell} \omega_{i}
$$

is positive definite on X, if we choose α sufficiently large. Hence, X is Kähler.
Conversely, assume that X is Kähler. Put

$$
d=m_{1} \cdot m_{2} \cdots m_{\ell}, \quad m_{0}=\operatorname{LCM}\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}
$$

We can always find a d-fold abelian covering $\sigma: \tilde{B} \rightarrow B$ of the curve B branched at $b_{1}, b_{2}, \ldots, b_{\ell}$ and a point $b_{0} \in B \backslash\left\{b_{1}, b_{2}, \ldots, b_{\ell}\right\}$ such that σ has
d / m_{i} ramification points $\left\{b_{i}^{(m)}\right\}, m=1,2, \ldots, d / m_{i}, i=0,1,2, \ldots, \ell$. Over the points $b_{j}, \ell<j \leq k, \sigma$ is unramified. Put $\sigma^{-1}\left(b_{j}\right)=\left\{b_{j}^{(1)}, b_{j}^{(2)}, \ldots, b_{j}^{(d)}\right\}$. Then, the normalization \bar{X} of $X \times_{B} \tilde{B}$ has a natural structure of a principal T-bundle over \tilde{B} and it is isomorphic to

$$
\begin{equation*}
\prod_{i=1}^{k} \prod_{m=1}^{d / m_{i}} L_{b_{i}^{(m)}}\left(m_{i} a_{i}, 1\right)(\tilde{B} \times T) \tag{53}
\end{equation*}
$$

The natural holomorphic mapping $\tilde{\sigma}: \widetilde{X} \rightarrow X$ is only branched over $\pi^{-1}\left(b_{0}\right)$. By the similar argument as above we can show that \widetilde{X} is Kähler if X is Kähler. Then, by (52), \widehat{X}^{\prime} is Kähler if and only if

$$
\sum_{i=1}^{k} \sum_{m=1}^{d / m_{i}} m_{i} a_{i}=0
$$

The equality can be rewritten as

$$
\sum_{i=1}^{k} \frac{d}{m_{i}} m_{i} a_{i}=d \sum_{i=1}^{k} a_{i}=0 .
$$

Hence, the equality (52) holds and Y is also Kähler. This proves the lemma. -

Lemma 14 The subgroup $\pi^{*} H^{2}(B, \mathbb{Z})$ of $H^{2}(X, \mathbb{Z})$ is a finite group if and only if

$$
\sum_{i=1}^{k} a_{i} \neq 0
$$

Proof: Since the holomorphic mapping $f: X \rightarrow Y$ is finite, $\pi^{*} H^{2}(B, \mathbb{Z})$ is finite if and only if the subgroup $\pi_{0}^{*} H^{2}(B, \mathbb{Z})$ in $H^{2}(Y, \mathbb{Z})$ is finite. The latter group is finite if and only if Y is non-Kähler. On the other hand, Y is nonKähler if and only if

$$
\sum_{i=1}^{k} a_{i} \neq 0
$$

This proves the lemma.
Put

$$
\begin{align*}
& N(X)=\left\{L \in \operatorname{Pic}(T)^{H} \mid\left[\left\{\eta_{i j}^{L}\right\}\right]=0\right\} \tag{54}\\
& N(Y)=\left\{L_{0} \in \operatorname{Pic}\left(T_{0}\right) \mid \tilde{\varphi}_{L_{0}}\left(\xi_{0}\right)=0\right\} \tag{55}
\end{align*}
$$

where $\xi_{0} \in H^{1}\left(B, \mathcal{O}_{B}\left(T_{0}\right)\right)$ is the cohomology class corresponding to the $T_{0^{-}}$ principal bundle $\pi_{0}: Y \rightarrow B$. Taking the dual of the homomorphism $h: T \rightarrow$ $T_{0}(50)$ we have an exact sequence

$$
\begin{equation*}
0 \rightarrow T_{0}^{\vee} \xrightarrow{h^{\vee}} T^{\vee} \rightarrow H^{\vee} \rightarrow 0 \tag{56}
\end{equation*}
$$

where H^{\vee} is a finite abelian group. Sheafifying the exact sequence (56) and taking the cohomology, we obtain the following exact sequence.

$$
\begin{equation*}
0 \rightarrow H^{1}\left(B, \mathcal{O}_{B}\left(T_{0}^{\vee}\right)\right) \xrightarrow{h^{\vee}} H^{1}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right) \rightarrow H^{1}\left(B, H^{\vee}\right) \rightarrow \tag{57}
\end{equation*}
$$

Lemma 15 For a line bundle L_{0} on the torus T_{0} put $L=h^{*} L_{0}$. Then we have

$$
h^{\vee}\left(\tilde{\varphi}_{L_{0}}\left(\xi_{0}\right)\right)=\left[\left\{\eta_{i j}^{L}\right\}\right] .
$$

Proof: We use the same open covering $\left\{U_{j}\right\}$ of the curve B defined above. Then, the cohomology class ξ_{0} is given by a cocycle

$$
\zeta_{i j}:=\left\{\begin{array}{ll}
\frac{a_{j}}{2 \pi \sqrt{-1}} \log t_{i} & \text { if } 1 \leq i \leq \ell, \ell<j \tag{58}\\
0 & \text { if } \ell<i, j .
\end{array} .\right.
$$

Hence $\left.\tilde{\varphi}_{L_{0}}\left(\xi_{0}\right)\right)$ is given by a cocycle

$$
\zeta_{i j}^{L}:= \begin{cases}\phi_{i j} & \text { if } 1 \leq i \leq \ell, \ell<j \\ 0 & \text { if } \ell<i, j\end{cases}
$$

where $\phi_{i j}$ is given by

$$
T_{\left[\frac{a_{j}}{*} \log \log t_{i}\right.} L_{0} \otimes L_{0}^{-1}=\left(\phi_{i j} \times i d_{T}\right)^{*}\left(\mathcal{P}_{0}\right) .
$$

Here \mathcal{P}_{0} is the Poincare bundle on $\operatorname{Pic}^{0}\left(T_{0}\right) \times T_{0}$. Then it is easy to show that we have

$$
h^{\vee}\left(\phi_{i j}\right)=\varphi_{i j} .
$$

This is the desired result. -

Lemma 16

$$
h^{*}(N(Y))=N(X) .
$$

Proof: For a line bundle $L_{0} \in N(Y)$ we let \mathcal{L}_{0} be a line bundle on Y which is an extension of L_{0}. Then, $f^{*} \mathcal{L}_{0}$ is a line bundle on X which is an extension of the line bundle $h^{*} L_{0}$, where $f: X \rightarrow Y$ is the holomorphic mapping in Lemma 12. Hence, we have $h^{*}(N(Y)) \subset N(X)$.

Conversely, take a line bundle $L \in N(X)$ and choose a line bundle L_{0} on T_{0} with $h^{*} L_{0}=L$. By the above Lemma 15 and the exact sequence (57), $\tilde{\varphi}_{L_{0}}\left(\xi_{0}\right)=0$. Hence, $L_{0} \in N(Y)$. This shows $N(X) \subset h^{*}(N(Y)) . 。$

By the above argument and the arguments in the previous sections we have the following exact seguences.

$$
\begin{align*}
& 0 \rightarrow \operatorname{Hom}\left(J_{B}, T^{\vee}\right) \rightarrow \operatorname{Pic}\left(X^{\vee}\right) / P_{2} \rightarrow N(X) \rightarrow 0 \tag{59}\\
& 0 \rightarrow \operatorname{Hom}\left(J_{B}, T_{0}^{\vee}\right) \rightarrow \operatorname{Pic}(Y) / \pi_{0}^{*} \operatorname{Pic}(B) \rightarrow N(Y) \rightarrow 0 . \tag{60}
\end{align*}
$$

Taking the Chern classes of the line bundles, finally we obtain the following theorem.

Theorem 17 There exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}\left(J_{B}, T^{\vee}\right) \rightarrow N S(X) / \widetilde{F}_{2} \rightarrow \widetilde{N}(X) \rightarrow 0 \tag{61}
\end{equation*}
$$

where \tilde{F}_{2} is a subyroup of $H^{2}(X, \mathbb{Z})$ generated by $c_{1}\left(\left[T_{i}\right]\right), i=1,2, \ldots, \ell$, and

$$
\begin{equation*}
\widetilde{N}(X)=\left\{c_{1}(L) \mid L \in \operatorname{Pic}(X)^{H}, \quad\left[\left\{\eta_{i j}^{L}\right\}\right]=0\right\} . \tag{62}
\end{equation*}
$$

The subgroup \tilde{F}_{2} is finite if and only if X is non-Kähler. Moreover, we have

$$
\widetilde{N}(X)=h^{*} \widetilde{N}(Y)
$$

where

$$
\widetilde{N}(Y)=\left\{c_{1}\left(L_{0}\right) \mid L_{0} \in \operatorname{Pic}(Y), \quad \tilde{\varphi}_{L_{0}}\left(\xi_{0}\right)=0\right\}
$$

Proof: To each homomorphism

$$
\varphi \in \operatorname{Hom}\left(J_{B}, T^{\vee}\right)
$$

we can associate a line bundle \mathcal{L} on X such that for each point $c \in B^{\prime}$ the restriction $\left.\mathcal{L}\right|_{\pi_{-1}}(c)$ corresponds to $\varphi(c)$. Let us consider the first Chern class $c_{1}(\mathcal{L})$ of \mathcal{L}. Note that we have an exact sequence

$$
0 \rightarrow R^{1} \pi_{*} \mathbb{Z} \rightarrow R^{1} \pi_{\star} \mathcal{O}_{X} \rightarrow \mathcal{O}_{B}\left(T^{\vee}\right) \rightarrow 0
$$

and from this exact sequence we have the exact sequence

$$
\begin{equation*}
\rightarrow H^{0}\left(B, R^{1} \pi_{*} \mathcal{O}_{X}\right) \rightarrow H^{0}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right) \stackrel{c}{\rightarrow} H^{1}\left(B, R^{1} \pi_{*} \mathbb{Z}\right) \rightarrow \tag{63}
\end{equation*}
$$

The element $\varphi \in \operatorname{Hom}\left(J_{B}, \mathcal{O}_{B}\left(T^{\vee}\right)\right)$ gives an element $\tilde{\varphi} \in H^{0}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right)$ with $\tilde{\varphi}(b)=[0]$. Then the image of $c(\tilde{\varphi}) \in H^{1}\left(B, R^{1} \pi_{*} \mathbb{Z}\right)$ to $H^{2}(X, \mathbb{Z}) / \pi^{*} H^{2}(B, \mathbb{Z})$ is $c_{1}(\mathcal{L}) \bmod \pi^{*} H^{2}(B, \mathbb{Z})$. Since we have an isomorphism

$$
H^{0}\left(B, \mathcal{O}_{B}\left(T^{\vee}\right)\right) / \operatorname{Im} H^{\mathrm{u}}\left(B, R^{1} \pi_{.} \mathcal{O}_{X}\right) \simeq \operatorname{Hom}\left(J_{B}, T^{\vee}\right)
$$

by the exact sequence (63) we liave an inclusion

$$
H o m\left(J_{B}, \mathcal{O}_{B}\left(T^{\vee}\right)\right) \hookrightarrow H^{1}\left(B, R^{1} \pi \& \mathbb{Z}\right)
$$

To show that the natural mapping

$$
H^{1}\left(B, R^{1} \pi_{\star} \mathbb{Z}\right) \rightarrow H^{2}(X, \mathbb{Z}) / \pi^{*} H^{2}(B, \mathbb{Z})
$$

is injective, we need to consider the spectral sequence

$$
E_{2}^{p, q}=H^{p}\left(B, R^{q} \pi, \mathbb{Z}\right) \Longrightarrow H^{p+q}(X, \mathbb{Z})
$$

By the dimension reason, we have

$$
\begin{aligned}
& E_{\infty}^{0,2}=E_{3}^{0,2}=\operatorname{ker}\left\{H^{0}\left(B, R^{2} \pi_{*} \mathbb{Z}\right) \rightarrow H^{2}\left(B, R^{1} \pi_{*} \mathbb{Z}\right)\right\} \\
& E_{\infty}^{1,1}=E_{2}^{1,1}=H^{1}\left(B, R^{1} \pi_{*} \mathbb{Z}\right) \\
& E_{\infty}^{2,0}=E_{3}^{2,0}=\operatorname{coker}\left\{H^{0}\left(B, R^{1} \pi_{*} \mathbb{Z}\right) \rightarrow H^{2}(B, \mathbb{Z})\right\}
\end{aligned}
$$

The spectral sequence defines the filtration $\left\{F_{\bullet}\right\}$ on the cohomology group $H^{2}(X, \mathbb{Z})$ such that there are canonical isomorphisms

$$
\begin{align*}
& E_{\infty}^{2,0} \simeq F_{2} \tag{64}\\
& E_{\infty}^{1,1} \simeq F_{1} / F_{2} \tag{65}\\
& E_{\infty}^{0,2} \simeq F_{0} / F_{1} . \tag{66}
\end{align*}
$$

It is easy to see that $F_{2}=\pi^{*} H^{2}(B, \mathbb{Z})$, hence by the above isomorphism (65) the natural mapping

$$
H^{1}\left(B, R^{1} \pi . \mathbb{Z}\right) \rightarrow H^{2}(X, \mathbb{Z}) / \pi^{*} H^{2}(B, \mathbb{Z})
$$

is injective. Therefore, the natural mapping

$$
\operatorname{Hom}\left(J_{B}, \mathcal{O}_{B}\left(T^{\vee}\right)\right) \rightarrow H^{1}\left(B, R^{1} \pi * \mathbb{Z}\right) \rightarrow H^{2}(X, \mathbb{Z}) / \pi^{*} H^{2}(B, \mathbb{Z})
$$

is also injective. The rest of the statements follow from the above arguments. This proves the theorem. \circ

Remark. By the similar arguments as in [5, Chap. II, Lemma 1.6 and Lemma 7.3], the structure of the first homology group $H_{1}(X, \mathbb{Z})$ is given by

$$
H_{\mathbf{1}}(X, \mathbb{Z}) \simeq \mathbb{Z} \alpha_{1} \oplus \cdots \oplus \mathbb{Z} \alpha_{g} \oplus \mathbb{Z} \beta_{1} \oplus \cdots \oplus \mathbb{Z} \beta_{g} \oplus\left(\Lambda_{0} /\left(\sum_{i=1}^{k} a_{i}\right)\right)
$$

where Λ_{0} is the lattice in the vector space V generated by Λ and a_{i} 's and

$$
H_{1}(B, \mathbb{Z}) \simeq \mathbb{Z} \alpha_{1} \oplus \cdots \oplus \mathbb{Z} \alpha_{g} \oplus \mathbb{Z} \beta_{1} \oplus \cdots \oplus \mathbb{Z} \beta_{g}
$$

By virtue of Lemma 13, $H_{1}(X, \mathbb{Z})$ has torsion if and only if X is non-Kähler. Moreover, if X is non-Käller, there is a non-canonical isomorphism

$$
\operatorname{Tor} H^{2}(X, \mathbb{Z}) \simeq \operatorname{Tor} \Lambda_{0} /\left(\sum_{i=1}^{k} a_{i}\right)
$$

Thus, in this case, since $R^{1} \pi * \mathbb{Z}$ and $R^{2} \pi * \mathbb{Z}$ are constant, sheaves of finite free \mathbb{Z}-modules, by the isomorphisms (64), (65) and (66), we conclude that

$$
\text { Tor } H^{2}(X, \mathbb{Z})=\pi^{*} H^{2}(B, \mathbb{Z})
$$

Appendix

In this appendix we shall show that all quasi T-bundle over a curve B are obtained from the product $B \times T$ by means of logarithmic transformations. Let $\pi: X \rightarrow B$ be a quasi T-bundle over the curve B. We let $m_{1} T_{1}, m_{2} T_{2}, \ldots, m_{\ell} T_{\ell}$ be all the multiple fibers of π. Put

$$
b_{i}=\pi\left(T_{i}\right), \quad i=1,2, \ldots, \ell
$$

Choose a coordinate neighbourhood D_{i} of b_{i} and a local coordinate t_{i} with center b_{i}. We may assume

$$
D_{i}=\left\{t_{i} \in \mathbb{C}| | t_{i} \mid<\epsilon\right\} .
$$

Put

$$
\widehat{D}_{i}=\left\{s_{i} \in \mathbb{C}| | s_{i} \mid<\epsilon^{1 / m_{i}}\right\} .
$$

Then a homomorphism

$$
\begin{aligned}
\widehat{D D}_{i} & \rightarrow D_{i} \\
s_{i} & \mapsto s_{i}^{m_{i}}
\end{aligned}
$$

is an m_{i}-sheeted cyclic covering. We let $\widehat{X_{i}}$ be the normalization of the fiber product $\left.X\right|_{D_{i}} \times_{D_{i}} \widehat{D_{i}}$ with a natural holomorphic mapping

$$
\mu_{i}: \widehat{X_{i}} \rightarrow X_{i}=\pi^{-1}\left(D_{i}\right)
$$

At a point $p \in \pi^{-1}\left(b_{i}\right)$ we can choose local coordinates $\left(x, y_{1}, \ldots, y_{n}\right)$ where the holomorphic mapping π is expressed as

$$
t_{i}=\pi\left(\left(x, y_{1}, \ldots, y_{n}\right)\right)=x^{m_{i}} .
$$

Then, \widehat{X}_{i} is locally given by the normalization of

$$
s_{i}^{m_{i}}-x^{m_{i}}=0
$$

Hence, μ_{i} is a unramified covering. Also the complex manifold $\widehat{X_{i}}$ has a structure of a fiber space

$$
\widehat{\pi}_{i}: \widehat{X}_{i} \rightarrow \widehat{D}_{i}
$$

over \widehat{D}_{i} which is smooth over \widehat{D}_{i}. Since $X_{i} \rightarrow D_{i}$ is a T-principal bundle over the punctured disk D_{i}^{*}, it is easy to show that $\hat{\pi}_{i}$ is a T-principal bundle, hence $\hat{\pi}_{i}$ is isomorphic to the product $D_{i} \times T$ with the projection to the first factor.

By our construction $\mu_{i}: \widehat{X_{i}} \rightarrow X_{i}^{\prime}$ is an m_{i}-sheeted cyclic unramified covering and the cyclic G_{i} of order m_{i} operates on $\widehat{X_{i}}$. A generator g_{i} of the group G_{i} has a form

$$
\begin{align*}
y_{i}: \widehat{D}_{i} \times T & \rightarrow \widehat{D}_{i} \times T \\
\left(s_{i},[\zeta]\right) & \rightarrow\left(e_{m_{i}} s_{i},\left[\zeta+a_{i}\right]\right) \tag{67}
\end{align*}
$$

where $\left[a_{i}\right]$ is a point of the torus T of order m_{i}. Then, the quotient manifold $\widehat{D}_{i} \times T / G_{i}$ is isomorphic to $X_{i}=\pi^{-1}\left(D_{i}\right)$. There is an analytic isomorphism

$$
\begin{align*}
\ell_{a_{i}}: \widehat{D}_{i}^{*} \times T / G_{i} & \rightarrow D_{i}^{*} \times T \\
{\left[s_{i},[\zeta]\right] } & \rightarrow\left(s_{i}^{m_{i}},\left[\zeta-\frac{m_{i} a_{i}}{2 \pi \sqrt{-1}} \log s_{i}\right]\right) \tag{68}
\end{align*}
$$

We let \widetilde{X} be a complex manifold obtained by patching together X $\cup_{i=1}^{\ell} \pi^{-1}\left(b_{i}\right)$ and $D_{i} \times T$'s by the isomorphisms $\ell_{a_{i}}^{-1}$:

$$
\begin{equation*}
\widetilde{X}=\left(X \backslash \cup_{i=1}^{\ell} \pi^{-1}\left(b_{i}\right)\right) \bigcup_{i=1}^{l} D_{i} \times T \tag{69}
\end{equation*}
$$

Then, the complex manifold \widetilde{X} has a natural structure $\tilde{\pi}: \widetilde{X} \rightarrow B$ of a T principal bundle over the curve B.

Conversely, the quasi T-bundle $\pi: X \rightarrow B$ is obtained from the T-principal bundle $\tilde{\pi}: \widetilde{X} \rightarrow B$ by means of the logarithmic transformations:

$$
\begin{equation*}
X=L_{b_{1}}\left(a_{1}, m_{1}\right) L_{b_{2}}\left(a_{2}, m_{2}\right) \cdots L_{b_{\ell}}\left(a_{\ell}, m_{\ell}\right)(\widetilde{X}), \tag{70}
\end{equation*}
$$

by patching together $\left(\widetilde{X} \backslash \cup_{i=1}^{e} \tilde{\pi}^{-1}\left(b_{i}\right)\right)$ and $\widehat{D}_{i}^{*} \times T / G_{i}$'s by the isomorphisms $\ell_{a_{i}}$.

By the remark in $\S 1$, the T-principal bundle $\tilde{\pi}: \widetilde{X} \rightarrow B$ is obtained from $B \times T$ by means of logarithmic transformations

$$
\begin{equation*}
\bar{X}=L_{b_{\ell+1}}\left(a_{\ell+1}, 1\right) L_{b_{\ell+2}}\left(a_{\ell+2}, 1\right) \cdots L_{b_{k}}\left(a_{k}, 1\right)(B \times T) \tag{71}
\end{equation*}
$$

Hence, by (70) and (71) the quasi T-bundle $\pi: X \rightarrow B$ is obtained from $B \times T$ by means of logarithmic transformations

$$
X=L_{b_{1}}\left(a_{1}, m_{1}\right) \cdots L_{b_{\ell}}\left(a_{\ell}, m_{\ell}\right) L_{b_{\ell+1}}\left(a_{\ell+1}, 1\right) \cdots L_{b_{k}}\left(a_{k}, 1\right)(B \times T)
$$

Thus, any quasi T-bundle over the curve B is obtained from $B \times T$ by means of logarithmic transformations.

References

[1] Blanchard, A. : Espaces fibrés kählériens compacts, C.R. Acad. Sci., 238, 2281-2283 (1954)
[2] Borel, A.: A spectral sequence for complex analytic bundles, Appendix II to [6].
[3] Brînzãnescu, V.: Neron-Severi group for nonalgebraic elliptic surfaces I: elliptic bundle case, Manuscripta Math. 79, 187-195 (1993)
[4] Brînzănescu, V.: Neron-Severi group for nonalgebraic elliptic surfaces II: non-kählerian case, to appear in Manuscripta Math. (1994)
[5] Friedman, F. \& Morgan, J.W. : Smooth Four- Manifolds and Complex Surfaces, Springer-Verlag, 1994
[6] Hirzebruch, F. : Topological Methods in Algebraic Geometry. 3 rd Edition, Springer-Verlag: Berlin-Heidelberg-New York, 1966
[7] Höfer, T. : Remarks on torus principal bundles, J. Math. Kyoto Univ. (JMKYAZ), 33-1, 227-259 (1993)
[8] Mumford, D. : Abelian Varieties, Oxford University Press, 1974
[9] Ueno, K. : Degeneration of elliptic surfaces and certain non-Kähler manifolds, Progr. Math. Vol. 39, 545-566, Birkhäuser: Boston-Basel-Stuttgart, 1983

Institute of Mathematics of the Romanian Academy, P.O.BOX 1-764, RO-70700 Bucharest, Romania

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-01 Japan

