Neron-Severi group for torus quasi bundles over curves

Vasile Brînzănescu * Kenji Ueno **

.

*

Institute of Mathematics of the Romanian Academy P.O.Box 1-764 RO-70700 Bucharest Romania

**

Department of Mathematics Faculty of Science Kyoto University Kyoto 606-01 Japan Max-Planck-Institut f
ür Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany

MPI / 94-60

. •

Neron-Severi group for torus quasi bundles over curves

Vasile Brînzănescu and Kenji Ueno

0. Introduction

By the Neron-Severi group of a compact complex manifold X we mean the kernel of the natural homomorphism $H^2(X,\mathbb{Z}) \to H^2(X,\mathcal{O}_X)$. It is a subgroup of $H^2(X,\mathbb{Z})$ generated by the first Chern classes of line bundles on X. In this paper we shall study the Neron-Severi group for torus quasi bundles over curves. Firstly, we study the case of torus principal bundles $X \xrightarrow{\pi} B$ over a (complex, compact, connected, smooth) curve B, whose structure group is a compact complex torus $T = V/\Lambda$. A T-principal bundle $X \xrightarrow{\pi} B$ is defined by a cohomology class $\xi \in H^1(\mathcal{O}_B(T))$, where $\mathcal{O}_B(T)$ is the sheaf of germs of locally holomorphic maps from B to T. The cohomology class ξ determines a characteristic class $c(\xi) \in H^2(B, \Lambda)$. By a Theorem of Blanchard ([1]), the total space X of such a T-principal bundle is a non-Kähler manifold if and only if $c(\xi) \neq 0$. In the first two parts of the paper we present some basic facts on torus principal bundles (see [7]) and we compute Leray spectral sequences for the sheaves \mathbb{Z}_X and \mathcal{O}_X . In the third part we define for any line bundle $L \in Pic(T)$ an associated T^{\vee} -principal bundle, described by an element $\tilde{\varphi}_L(\xi) \in H^1(\mathcal{O}_B(T^{\vee}))$, where T^{\vee} is the dual torus, and we compute the Neron-Severi group for torus principal bundles. We state the main result (Theorem 5):

"For a T-principal bundle $X \xrightarrow{\pi} B$, defined by a cohomology class

$$\xi \in H^1(\mathcal{O}_B(T)),$$

we have an exact sequence of free groups

$$0 \to Hom(J_B, T^{\vee}) \to NS(X)/F_2 \to \tilde{N}(X) \to 0$$
,

where $F_2 = \pi^* NS(B)$ and $\tilde{N}(X)$ is the subgroup of the Neron-Severi group of the torus T defined by

 $\tilde{N}(X) = \{c_1(L) \in NS(T) \mid \tilde{\varphi}_L(\xi) \text{ is the trivial torus bundle } \}$,

 J_B is the Jacobian variety of the curve B and T^{\vee} is the dual torus. If X is Kähler F_2 is isomorphic to $NS(B) \simeq \mathbb{Z}$ and if X is non-Kähler, F_2 is the torsion subgroup of NS(X) "

In the fourth part we reinterpret the obtained results geometrically (see Theorem 6).

Then, in the fifth part, we study the case of torus quasi bundles. By a quasi T-bundle $\pi : X \to B$ over a curve B we mean that π is a T-principal bundle over $B \setminus \{b_1, b_2, ..., b_t\}$ and that the fibre $\pi^{-1}(b_i)$ over the point b_i is of the form $m_i T_i$ where $m_i \ge 2$ and T_i is a torus (the fibre $m_i T_i$ is called a multiple fibre of the multiplicity m_i). In the Appendix we show that all torus quasi bundles are obtained from $B \times T$ by means of generalized logarithmic transformations. We associate, canonically, a T_{0^-} principal bundle $\pi_0 : Y \to B$ to a quasi T-bundle $\pi : X \to B$ and a holomorphic mapping $f : X \to Y$, with $T_0 = T/H$, where H is a finite subgroup of the torus T. Then we extend the computation of the Neron-Severi group for torus quasi bundles (see Theorem 17). For the case of elliptic surfaces see [3], [4].

Acknowledgements. The first named author would like to thank the Alexander von Humboldt-Stiftung for support and both authors would like to express their thanks to Professor F. Hirzebruch and Max-Planck-Institut für Mathematik in Bonn for hospitality. This paper was prepared at the time we visited this institution.

1. Basic facts on torus principal bundles

Let $T = V/\Lambda$ be an *n*-dimensional compact complex torus, defined by a lattice $\Lambda \subset V$ in the *n*-dimensional complex vector space V. Canonical notation concerning the torus T will be used:

$$T_0(T) = H^0(T, \Theta_T) = V , \ H^i(T, \Theta_T) = H^i(T, \mathcal{O}_T) \otimes V ,$$
$$H^0(T, \Omega_T^1) = H^0(T, \Theta_T)^{\vee} = V^{\vee} , \ \Lambda = H_1(T, \mathbb{Z}) , \ H^1(T, \mathbb{Z}) = \Lambda^{\vee}$$

If B is a compact complex manifold of dimension m, then $X \xrightarrow{\pi} B$ denotes a T-principal bundle over B. Let $\mathcal{O}_B(T)$ denote the sheaf of germs of locally holomorphic maps from B to T. The T-principal bundles are described by cohomology classes ξ of $H^1(B, \mathcal{O}_B(T))$ (see [6]). For a Čech 1-cocycle (ξ_{ij}) the function

 $\xi_{ij}: U_i \cap U_j \to T$

identifies $(z,t) \in U_i \times T$ with $(z,t') = (z,\xi_{ij}(z)+t) \in U_j \times T$ for all $z \in U_i \cap U_j$.

Taking local sections of the constant sheaves

$$0 \to \Lambda \to V \to T \to 0$$

one gets an exact sequence of sheaves on the manifold B

(1)
$$0 \to \Lambda \to \mathcal{O}_B \otimes V \to \mathcal{O}_B(T) \to 0$$
,

with the induced exact cohomology sequence

(2)
$$\dots \to H^0(\mathcal{O}_B(T)) \to H^1(B,\Lambda) \to H^1(B,\mathcal{O}_B) \otimes V \to$$

 $\to H^1(\mathcal{O}_B(T)) \xrightarrow{c} H^2(B,\Lambda) \to H^2(B,\mathcal{O}_B) \otimes V \to \dots$

The cohomology class ξ of the bundle in $H^1(\mathcal{O}_B(T))$ determines a characteristic class $c(\xi) \in H^2(B, \Lambda) = H^2(B, \mathbb{Z}) \otimes \Lambda$.

Because transition functions of the T-principal bundle $X \xrightarrow{\pi} B$ act trivially on the cohomology of fibre, we get natural identifications:

(3)
$$R^{q}\pi_{*}\mathbb{Z}_{X} = \mathbb{Z}_{B} \otimes_{\mathbb{Z}} H^{q}(T,\mathbb{Z}) ; R^{q}\pi_{*}\mathcal{O}_{X} = \mathcal{O}_{B} \otimes_{\mathbb{C}} H^{q}(T,\mathcal{O}_{T}) .$$

The transgression of the fibre bundle in integral cohomology is a map

$$\delta: H^1(T,\mathbb{Z}) \to H^2(B,\mathbb{Z})$$
.

Under the identification

.

$$H^{1}(T,\mathbb{Z}) = Hom(\Lambda,\mathbb{Z}) = \Lambda^{\vee},$$

the characteristic class $c(\xi) \in H^2(B,\mathbb{Z}) \otimes \Lambda$ and the mapping $\delta : H^1(T,\mathbb{Z}) \to H^2(B,\mathbb{Z})$ coincide (see [7], 6.1). The first possibly nontrivial d_2 -homomorphism

$$H^0(B, R^1\pi_*\mathcal{O}_X) \to H^2(B, \pi_*\mathcal{O}_X)$$

in the Leray spectral sequence of \mathcal{O}_X is denoted by

$$\varepsilon: H^1(T, \mathcal{O}_T) \to H^2(B, \mathcal{O}_B)$$
.

Recall for convenience the following result of Höfer (see [7], 7.1 and 7.2):

Proposition There is an injective map

$$\Phi: Pic(B) \otimes_{\mathbf{Z}} \Lambda = H^1(\mathcal{O}_B^*) \otimes_{\mathbf{Z}} \Lambda \to H^1(\mathcal{O}_B(T))$$

compatible with taking characteristic classes, i.e. if $\Sigma \mathcal{L}_k \otimes \lambda_k$ is a combination of line bundles in $\operatorname{Pic}(B) \otimes_{\mathbb{Z}} \Lambda$, then the characteristic class $c(\xi)$ of $\Phi(\Sigma \mathcal{L}_k \otimes \lambda_k)$ equals $\Sigma c_1(\mathcal{L}_k) \otimes \lambda_k \in H^2(B, \Lambda)$.

$$\begin{array}{c|c} Pic(B) \otimes_{\mathbf{Z}} \Lambda & \xrightarrow{\Phi} & H^1(\mathcal{O}_B(T)) \\ \hline c_1 \otimes id & & \downarrow c \\ H^2(B, \mathbb{Z}) \otimes \Lambda & \xrightarrow{=} & H^2(B, \Lambda) \end{array}$$

Moreover, if $H^2(B, \mathbb{C})$ has a Hodge decomposition, then the image of Φ , i.e. the set of isomorphism classes of principal bundles constructed above, equals

$$im\Phi = \{Isom. \ classes \ of \ T - principal \ bundles \ with \ \varepsilon \ = 0\}$$
.

Remark. If B is a curve, then ε vanishes for dimension reasons. Thus, every Tprincipal bundle over B comes (in an unique way) from the above construction. The construction itself is a generalized logarithmic transformation applied to the trivial T-principal bundle $B \times T$ (see [9]). Indeed, we can write $\mathcal{L}_k = \mathcal{O}_B(D_k)$, with D_k a divisor on B; by choosing a sufficiently fine open covering (U_i) of B the transition functions of each \mathcal{L}_k are expressed by a cocycle $(f_{ij}^{(k)})$. Now, identify $(z, t_i) \in U_i \times T$ with $(z, t_j) \in U_j \times T$ if and only if

$$t_i = t_j + \left[\Sigma \; \frac{\lambda_k}{2\pi\sqrt{-1}} \; \log\left(f_{ij}^{(k)}\right) \right] \; ,$$

for all $z \in U_i \cap U_j$ (this is exactly Höfer's morphism Φ).

Also we can construct a T-principal bundle over B by using logarithmic transformations similar to the case of elliptic surfaces. Express the divisor D_k as

$$D_k = \sum_{j=1}^{n_k} m_j^{(k)} b_j^{(k)}$$

Let $U_j^{(k)}$ be a coordinate neighbourhood of $b_j^{(k)}$ with local coordinate $t_j^{(k)}$. We may assume

$$U_j^{(k)} = \{ t_j^{(k)} \in \mathbb{C} \mid |t_j^{(k)}| < \varepsilon \} ,$$

for a sufficiently small positive number ε . Let us consider a holomorphic mapping

$$l_j^{(k)} : U_j^{(k)\star} \times T \longrightarrow U_j^{(k)\star} \times T$$
$$(t_j^{(k)}, [\zeta]) \to (t_j^{(k)}, \left[\zeta - \frac{m_j^{(k)}\lambda_k}{2\pi\sqrt{-1}}\log t_j^{(k)}\right]).$$

Note that the mapping is an isomorphism. Hence, we can patch $U_j^{(k)} \times T$'s and $(B \setminus \{b_1^{(1)}, ..., b_j^{(k)}, ...\}) \times T$ by the isomorphisms $l_j^{(k)}$ and obtain a T- principal bundle over B. We denote the T-principal bundle obtained in this way by

$$L_{b_{1}^{(1)}}(m_{1}^{(1)}\lambda_{1},1)...L_{b_{n_{l}}^{(l)}}(m_{n_{l}}^{(l)}\lambda_{l},1)(B\times T)$$

or by-

$$L_{D_1}(\lambda_1, 1)...L_{D_l}(\lambda_l, 1)(B \times T)$$

Remark. By the above proposition and Blanchard's theorem ([1]) we can easily show that a *T*-principal bundle

$$L_{b_1}(a_1, 1) \dots L_{b_l}(a_l, 1)(B \times T)$$

is Kähler if and only if $\sum_{i=1}^{l} a_i = 0$.

2. Leray spectral sequences

Let $X \xrightarrow{\pi} B$ be a *T*-principal bundle over the manifold *B*. We consider the Leray spectral sequences:

(4)
$$E_2^{pq} = H^p(B, R^q \pi_* \mathbb{Z}_X) \Longrightarrow H^{p+q}(X, \mathbb{Z})$$

(5)
$$\tilde{E}_2^{pq} = H^p(B, R^q \pi_* \mathcal{O}_X) \Longrightarrow H^{p+q}(X, \mathcal{O}_X)$$

By the results of Höfer (see [7]) the first spectral sequence (4) degenerates at E_3 -level (i.e. $d_r = 0$ for r > 2) and the d_2 -differential is determined by the map $\delta : H^1(T, \mathbb{Z}) \to H^2(B, \mathbb{Z})$ (i.e. by $c(\xi)$).

Now, we suppose that B is a curve. By (3) we have:

$$E_{\infty}^{02} = E_3^{02} = ker(E_2^{02} \xrightarrow{d_2} E_2^{21}) =$$

$$= ker(H^{0}(B,\mathbb{Z}) \otimes H^{2}(T,\mathbb{Z}) \xrightarrow{d_{2}} H^{2}(B,\mathbb{Z}) \otimes H^{1}(T,\mathbb{Z})) .$$

With the natural identifications

$$H^{0}(B,\mathbb{Z}) = \mathbb{Z}, \ H^{2}(B,\mathbb{Z}) = \mathbb{Z}, \ H^{2}(T,\mathbb{Z}) = \bigwedge^{2} H^{1}(T,\mathbb{Z}),$$

we obtain

$$E_{\infty}^{02} = ker(H^2(T,\mathbb{Z}) \xrightarrow{d_2} H^1(T,\mathbb{Z})) ,$$

where

$$d_2(\varphi_1 \wedge \varphi_2) = \delta(\varphi_1)\varphi_2 - \delta(\varphi_2)\varphi_1 , \forall \varphi_1, \varphi_2 \in H^1(T, \mathbb{Z}) .$$

Obviously, we have

$$E_{\infty}^{11} = E_2^{11} = H^1(B,\mathbb{Z}) \otimes H^1(T,\mathbb{Z}) = H^1(B,\mathbb{Z}) \otimes \Lambda^{\vee} .$$

Finally, we get

$$\begin{aligned} E_{\infty}^{20} &= E_{3}^{20} = coker(H^{0}(B,\mathbb{Z}) \otimes H^{1}(T,\mathbb{Z}) \xrightarrow{d_{2}} H^{2}(B,\mathbb{Z})) = \\ &= coker(H^{1}(T,\mathbb{Z}) \xrightarrow{\delta} H^{2}(B,\mathbb{Z})) \,. \end{aligned}$$

The cohomology class $\xi \in H^1(\mathcal{O}_B(T))$ of the *T*- principal bundle $X \xrightarrow{\pi} B$ has the form $\Phi(\Sigma \mathcal{L}^0_k \otimes \lambda^0_k)$ and its characteristic class has the form

(6)
$$c(\xi) = \Sigma c_1(\mathcal{L}^0_k) \otimes \lambda^0_k = m\lambda^0 \in \Lambda = H^2(B,\Lambda) ,$$

where $\mathcal{L}_k^0 \in Pic(B)$, $\lambda_k^0 \in \Lambda$ is a primitive element (i.e. there exists no positive integer $l \geq 2$ with $\lambda_k^0 = l\tilde{\lambda}_k^0$, $\tilde{\lambda}_k^0 \in \Lambda$), $m \in \mathbb{N}, m = g.c.d.(c_1(\mathcal{L}_k^0))$ and $\lambda^0 \in \Lambda$. It follows that for any $\varphi \in H^1(T, \mathbb{Z})$ we have the equality $\delta(\varphi) = m\varphi(\lambda^0)$, under the identification $H^1(T, \mathbb{Z}) = \Lambda^{\vee} = Hom(\Lambda, \mathbb{Z})$. We get

$$E_{\infty}^{20} = \begin{cases} \mathbb{Z}_m & \text{for } c(\xi) \neq 0\\ \mathbb{Z} & \text{for } c(\xi) = 0 \end{cases}.$$

The second spectral sequence (5) degenerates at E_2 -level for torus principal bundles with $\varepsilon = 0$, since the d_2 - differential is determined by ε (see [7], 4. and [2]). With natural identifications, by (3) we get:

$$\tilde{E}_{\infty}^{20} = \tilde{E}_{2}^{20} = H^{0}(B, \mathcal{O}_{B}) \otimes H^{2}(T, \mathcal{O}_{T}) = H^{2}(T, \mathcal{O}_{T}) .$$
$$\tilde{E}_{\infty}^{11} = \tilde{E}_{2}^{11} = H^{1}(B, \mathcal{O}_{B}) \otimes H^{1}(T, \mathcal{O}_{T}) .$$
$$\tilde{E}_{\infty}^{20} = \tilde{E}_{2}^{20} = 0 .$$

3. Neron-Severi group for torus principal bundles

Let $X \xrightarrow{\pi} B$ be a *T*-principal bundle over the curve *B*, defined by $\xi \in H^1(\mathcal{O}_B(T))$ with $c(\xi) \neq 0$ (i.e. X is non-Kähler). Let

$$0 \subset F_2 \subset F_1 \subset F_0 = H^2(X, \mathbb{Z})$$

be the filtration induced by the first spectral sequence (4). Then $F_2 = E_{\infty}^{20} \cong \mathbb{Z}_m$ is a torsion subgroup of $H^2(X,\mathbb{Z})$. Since both $F_1/F_2 = E_{\infty}^{11}$ and $F_0/F_1 = E_{\infty}^{02}$ are free, it follows *Tors* $H^2(X,\mathbb{Z}) = F_2 \cong \mathbb{Z}_m$. We get the exact sequence:

(7)
$$0 \to H^1(B,\mathbb{Z}) \otimes H^1(T,\mathbb{Z}) \to H^2(X,\mathbb{Z})/Tors \ H^2(X,\mathbb{Z}) \to$$

$$\rightarrow ker(H^2(T,\mathbb{Z}) \xrightarrow{d_2} H^1(T,\mathbb{Z})) \rightarrow 0.$$

Let

$$0 \subset \tilde{F}_2 \subset \tilde{F}_1 \subset \tilde{F}_0 = H^2(X, \mathcal{O}_X)$$

be the filtration induced by the second spectral sequence (5). Then, we get the exact sequence:

(8)
$$0 \to H^1(B, \mathcal{O}_B) \otimes H^1(T, \mathcal{O}_T) \to H^2(X, \mathcal{O}_X) \to H^2(T, \mathcal{O}_T) \to 0.$$

The Neron-Severi group, denoted by NS(X), is the kernel of the map in cohomology $H^2(X, \mathbb{Z}) \xrightarrow{i} H^2(X, \mathcal{O}_X)$, induced by the natural map $\mathbb{Z}_X \xrightarrow{i} \mathcal{O}_X$. Since $F_2 \xrightarrow{i} \tilde{F}_2 = 0$, we have $F_2 \subset NS(X)$ and

(9)
$$TorsNS(X) = F_2 = TorsH^2(X, \mathbb{Z}) \cong \mathbb{Z}_m$$

Using the exact sequence of small terms of the first spectral sequence (4) we get

$$TorsNS(X) = im(H^2(B,\mathbb{Z}) \xrightarrow{\pi^{\bullet}} H^2(X,\mathbb{Z})).$$

By functoriality of the spectral sequences we get the following commutative diagram

where the first line is the exact sequence (7) and the second line is the exact sequence (8). Since $NS(X)/TorsNS(X) \cong ker(i)$, we obtain the exact sequence:

(10)
$$0 \to ker(i') \to NS(X)/TorsNS(X) \to ker(i'') \xrightarrow{\beta} coker(i').$$

Lemma 1 We have $ker(i') \cong Hom(J_B, T^{\vee})$, where J_B is the Jacobian variety of the curve B, T^{\vee} is the dual torus of the torus T and $Hom(J_B, T^{\vee})$ is the group of homomorphisms of group varieties.

Proof: By [8], Chap.I, 2, we have the exact sequence

$$0 \to \Lambda^{\vee} \to \overline{V}^{\vee} \to T^{\vee} \to 0$$

,

where

$$\Lambda^{\vee} = H^{1}(T, \mathbb{Z}), \ \overline{V}^{\vee} = H^{1}(T, \mathcal{O}_{T}), \ T^{\vee} = Pic^{0}(T).$$

Taking local sections of these constant sheaves one gets an exact sequence of sheaves on B

(11)
$$0 \to \Lambda^{\vee} \to \mathcal{O}_B \otimes \overline{V}^{\vee} \to \mathcal{O}_B(T^{\vee}) \to 0 ,$$

with the induced exact cohomology sequence:

$$(12)0 \to H^{0}(B,\Lambda^{\vee}) \to H^{0}(B,\mathcal{O}_{B}) \otimes \overline{V}^{\vee} \to H^{0}(\mathcal{O}_{B}(T^{\vee})) \to H^{1}(B,\Lambda^{\vee}) \xrightarrow{j} \\ \xrightarrow{j} H^{1}(B,\mathcal{O}_{B}) \otimes \overline{V}^{\vee} \to H^{1}(\mathcal{O}_{B}(T^{\vee})) \xrightarrow{c^{\vee}} H^{2}(B,\Lambda^{\vee}) \to 0.$$

But

$$H^{1}(B, \Lambda^{\vee}) = H^{1}(B, \mathbb{Z}) \otimes H^{1}(T, \mathbb{Z}),$$

$$H^{1}(B, \mathcal{O}_{B}) \otimes \overline{V}^{\vee} = H^{1}(B, \mathcal{O}_{B}) \otimes H^{1}(T, \mathcal{O}_{T})$$

and j = i' by naturality. It follows

$$ker(i') = ker(H^{1}(B, \Lambda^{\vee}) \xrightarrow{j} H^{1}(B, \mathcal{O}_{B}) \otimes \overline{V}^{\vee}) \cong$$
$$\cong im(H^{0}(\mathcal{O}_{B}(T^{\vee})) \to H^{1}(B, \Lambda^{\vee})) \cong$$
$$\cong coker(H^{0}(B, \mathcal{O}_{B}) \otimes \overline{V}^{\vee} \to H^{0}(\mathcal{O}_{B}(T^{\vee}))).$$

But $H^0(\mathcal{O}_B(T^{\vee}))$ is the group of global holomorphic maps $B \to T^{\vee}$ and

$$im(H^0(B, \mathcal{O}_B) \otimes \overline{V}^{\vee} \to H^0(\mathcal{O}_B(T^{\vee}))) \cong \overline{V}^{\vee}/\Lambda^{\vee} = T^{\vee}$$

is the subgroup of constant maps $B \to T^{\vee}$, which can be identified with the points of T^{\vee} (or, with the translations of T^{\vee}). Let $B \to J_B$ be the canonical holomorphic map (determined up to a translation of J_B). Given any holomorphic map $B \to T^{\vee}$ then, if we choose the proper origin on T^{\vee} , the holomorphic map $B \to T^{\vee}$ is the composition of the canonical map $B \to J_B$ and an homomorphism from J_B to T^{\vee} (the universal property of the Jacobian). It follows the isomorphism

$$ker(i') \cong Hom(J_B, T^{\vee}). \diamond$$

Lemma 2 We have

$$ker(i'') = \{c_1(L) \in NS(T) \mid c_1(L)(\lambda^0) = 0\},\$$

where $c(\xi) = m\lambda^0 \in \Lambda$.

Proof: From the previous diagram we get

$$ker(i'') = \{c_1(L) \in NS(T) \mid d_2(c_1(L)) = 0\}.$$

Let $\{e_1, ..., e_{2n}\}$ be a basis of the lattice Λ and let $\{e^1, ..., e^{2n}\}$ be the dual basis in the lattice Λ^{\vee} . Any element $E = c_1(L) \in NS(T)$ can be written in the form

$$E = \sum_{1 \leq i < j \leq 2n} a_{ij} e^i \wedge e^j , \ a_{ij} \in \mathbb{Z}$$

(see [8], Chap. I, 2). By direct computation we obtain

$$d_{2}(c_{1}(L)) = \sum_{i < j} a_{ij} d_{2}(e^{i} \wedge e^{j}) = \sum_{i < j} a_{ij}(\delta(e^{i})e^{j} - \delta(e^{j})e^{i}) =$$

= $m \sum_{i < j} a_{ij}(e^{i}(\lambda^{0})e^{j} - e^{j}(\lambda^{0})e^{i}) = mc_{1}(L)(\lambda^{0}),$

where we made the natural identifications

$$Bil(\Lambda \times \Lambda, \mathbb{Z}) = Hom_{\mathbb{Z}}(\Lambda \otimes \Lambda, \mathbb{Z}) = Hom_{\mathbb{Z}}(\Lambda, \Lambda^{\vee}).$$

The assertion follows. \diamond

For any line bundle $L \in Pic(T)$ we have the homomorphism

(13)
$$\varphi_L: T \to Pic^0(T) = T^{\vee}, \ \varphi_L(x) = isom.class of \ T_x^*L \otimes L^{-1},$$

where $T_x : T \to T$ is the translation with $x \in T$ (see [8]). The *T*-principal bundle $X \xrightarrow{\pi} B$ being fixed, we can associate to any line bundle $L \in Pic(T)$ an element in $H^1(\mathcal{O}_B(T^{\vee}))$ in the following way: For the Čech 1-cocycle (ξ_{ij}) defining our *T*-principal bundle, $\xi_{ij} : U_i \cap U_j \to T$, we put

$$\eta_{ij}^L := \varphi_L \circ \xi_{ij} : U_i \cap U_j \to T^{\vee}.$$

Then (η_{ij}^L) is a Čech 1-cocycle (φ_L is a homomorphism) and defines a cohomology class in $H^1(\mathcal{O}_B(T^{\vee}))$, denoted by $\tilde{\varphi}_L(\xi)$.

Definition Let $\xi \in H^1(\mathcal{O}_B(T))$ be fixed. For any $L \in Pic(T)$ the T^{\vee} -principal bundle described by $\tilde{\varphi}_L(\xi)$ will be called the *associated* T^{\vee} -bundle to L.

Lemma 3 Let $L \in Pic(T)$ be a line bundle. Then, the obstruction to extend L to a line bundle on the total space of the fixed T-principal bundle $X \xrightarrow{\pi} B$ is the associated T^{\vee} -bundle to $L, \tilde{\varphi}_L(\xi)$.

Proof: Let \mathcal{L}_i be a line bundle on $U_i \times T$ such that for each point $x \in U_i$, we have

(14)
$$c_1(\mathcal{L}_i|_{x \times T}) = c_1(L).$$

Then, for each point $x \in U_i$,

$$\mathcal{M}_x = (\mathcal{L}_i|_{x \times T}) \otimes L^{-1}$$

is a line bundle of degree zero on T, hence determines a point of $Pic^0(T) = T^{\vee}$. In this way, the line bundle \mathcal{L}_i defines a holomorphic mapping

 $\varphi_i: U_i \to T^{\vee},$

such that the line bundle

(15)
$$p_i^*(L) \otimes (\varphi_i \times id_T)^*(\mathcal{P})$$

is isomorphic to \mathcal{L}_i , where $p_i : U_i \times T \to T$ is the natural projection to the second factor and \mathcal{P} is the Poincaré bundle of T^{\vee} (which is a line bundle on $T^{\vee} \times T$). Conversely, if a holomorphic mapping $\varphi_i : U_i \to T^{\vee}$ is given, then (15) defines a line bundle \mathcal{L}_i on $U_i \times T$ with the property (14). Patching together \mathcal{L}_i 's to obtain a line bundle on X, we need to have isomorphisms

(16)
$$T^*_{\xi_{ij}}\mathcal{L}_j|_{U_{ij}\times T} \cong \mathcal{L}_i|_{U_{ij}\times T}$$

for all $U_{ij} = U_i \cap U_j \neq \emptyset$, where $T_{\xi_{ij}}$ is an automorphism of $U_{ij} \times T$ induced by the translation of T by $\xi_{ij}(x)$ for each $x \in U_{ij}$.

Since we may assume that \mathcal{L}_i has the form (15), the isomorphism (16) can be rewritten as

(17)
$$T^*_{\xi_{ij}}(p_j^*L) \otimes (\varphi_j \times id_T)^*(\mathcal{P})|_{U_{ij} \times T} \cong (p_i^*L) \otimes (\varphi_i \times id_T)^*(\mathcal{P})|_{U_{ij} \times T}$$

Note that for any line bundle M of degree zero on T, we have an isomorphism $T_a^*M \cong M$ for any translation T_a of the torus T. On the other hand, for each $x \in U_{ij}$, the line bundle

$$T^*_{\mathcal{E}_{i,i}(x)}(L)\otimes L^{-1}$$

defines an element of T^{\vee} and we have a holomorphic mapping of U_{ij} to T^{\vee} . This holomorphic mapping is nothing but

$$\eta_{ij}^L = \varphi_L \circ \xi_{ij} : U_{ij} \to T^{\vee} .$$

Then, the existence of an isomorphism (17) is equivalent to the equality

(18)
$$\eta_{ij}^L + \varphi_j = \varphi_i \,,$$

as the equality in $H^0(U_{ij}, \mathcal{O}_{U_{ij}}(T^{\vee}))$.

If there exists a line bundle \mathcal{L} on X such that for a point $y \in B$, $\mathcal{L}|_{\pi^{-1}(y)}$ is isomorphic to L, then

$$\mathcal{L}_i := \mathcal{L}|_{U_i \times T} \ i \in I ,$$

satisfy (14) and (16). Therefore, the equality holds for (i, j) with $U_{ij} \neq \emptyset$. Hence, the cocycle $\tilde{\varphi}_L(\xi)$ is zero in $H^1(B, \mathcal{O}_B(T^{\vee}))$. Conversely, if $\tilde{\varphi}_L(\xi)$ is zero in $H^1(B, \mathcal{O}_B(T^{\vee}))$, by chossing a suitable open covering $\{U_i\}$ of B, we may assume that the equality (18) holds. Define a line bundle \mathcal{L}_i on $U_i \times T$ by

$$\mathcal{L}_i = p_i^* L \otimes (\varphi_i \times id_T)^* (\mathcal{P}).$$

By (18) we have an isomorphism

$$g_{ij}: \mathcal{L}_j|_{U_{ij} \times T} \to \mathcal{L}_i|_{U_{ij} \times T}.$$

Note that g_{ij} is uniquely determined up to the multiplication of an element of $H^0(U_{ij}, \mathcal{O}^*_{U_{ij}})$. For i < j choose an isomorphism g_{ij} and fix it. Put

$$g_{ji} = g_{ij}^{-1}, \quad i < j$$

$$g_{ii} = id.$$

For $U_{ijk} = U_i \cap U_j \cap U_k \neq \emptyset$, put

$$g_{ijk} = g_{ki} \circ g_{ij} \circ g_{jk}.$$

Since there is a canonical isomorphism of $\operatorname{Aut}(\mathcal{L}|_{\pi^{-1}(U)})$ to $H^0(\pi^{-1}(U), \mathcal{O}^*_{\pi^{-1}(U)})$ = $H^0(U, \mathcal{O}^*_U)$, the automorphism g_{ijk} of $\mathcal{L}_k|_{U_{ijk}\times T}$ determines and element $\sigma(g_{ijk}) \in H^0(U_{ijk}, \mathcal{O}^*_{U_{ijk}})$. Note that we have equalities:

$$\begin{aligned} \sigma(g_{\ell k} \circ g_{ijk} \circ g_{k\ell}) &= \sigma(g_{ijk}) \quad \text{on } U_{ijk\ell} \\ \sigma(g_{ijk} \circ g_{\ell m k}) &= \sigma(g_{ijk})\sigma(g_{\ell m k}) \quad \text{on } U_{ijk\ell m}. \end{aligned}$$

By using these equalities, it is easy to show that $\{\sigma(g_{ijk})\}\$ is a two-cocycle with values in \mathcal{O}_B^* . Since we have $H^2(B, \mathcal{O}_B^*) = 0$, if necessarily, by choosing a finer open covering of B and changing the isomorphism g_{ij} by the multiplication of a nowhere vanishing function, we may assume that

$$\sigma(g_{ijk}) = 1.$$

This means that $g_{ijk} = id$ and we can patch together the line bundles \mathcal{L}_i by the isomorphism g_{ij} to obtain a line bundle \mathcal{L} on X. We may also assume that for a point $x \in U_i$ we have $\varphi_i(x) = 0$. Then, we have an isomorphism $\mathcal{L}|_{\pi^{-1}(x)} \cong L$. This proves the lemma. \diamond

Lemma 4 The homomorphism β : $ker(i'') \rightarrow coker(i')$ is given by the correspondence $c_1(L) \mapsto \tilde{\varphi}_L(\xi)$.

Proof: Let $L \in Pic(T)$ be a line bundle. By Appel-Humbert Theorem (see [8]. Chap.I, 2) one has $L = L(H, \alpha)$, where H is a hermitian form on V with $E(\Lambda \times \Lambda) \subset \mathbb{Z}$ (E = ImH) and $\alpha : \Lambda \to U(1)$ is a map with

$$\alpha(\lambda_1 + \lambda_2) = e^{i\pi E(\lambda_1, \lambda_2)} \alpha(\lambda_1) \alpha(\lambda_2), \ \lambda_i \in \Lambda.$$

Let us denote by p the canonical projection $V \to T$. By [8], Chap.II, 9, if $a \in V$ with $p(a) = x \in T$, we have

$$\varphi_{L(H,\alpha)}(x) = isom.class of L(0, \gamma_a),$$

where $\gamma_a : \Lambda \to U(1)$ is the map

(19)
$$\gamma_a(\lambda) = e^{2\pi i E(a,\lambda)}, \lambda \in \Lambda.$$

From the exact sequence (12) we get

$$coker(i') \cong ker(H^1(\mathcal{O}_B(T^{\vee})) \xrightarrow{c^{\vee}} H^2(B, \Lambda^{\vee})).$$

By the previous lemmas it remains to show that the condition $c_1(L)(\lambda^0) = 0$ implies the condition $c^{\vee}(\eta) = 0$, where $\eta = \tilde{\varphi}_L(\xi)$. For any $z \in U_i \cap U_j$ we choose $a_{ij}(z) \in V$ such that $p(a_{ij}(z)) = \xi_{ij}(z) \in T$. Then

$$\eta_{ij}^L(z) = \varphi(\xi_{ij}(z)) = L(0, \gamma_{a_{ij}(z)}),$$

where $\gamma_{a_{ij}(z)}$ is given by the formula (19) for $c_1(L) = E$. Since (ξ_{ij}) is a cocycle we have $a_{jk}(z) - a_{ik}(z) + a_{ij}(z) \in \Lambda$. More precisely, we have

$$cls(a_{jk}(z) - a_{ik}(z) + a_{ij}(z)) = m\lambda^0 = c(\xi) \in \Lambda = H^2(B, \Lambda).$$

Let us denote by p^{\vee} the canonical projection $\overline{V}^{\vee} \to T^{\vee}$ and recall that

$$\overline{V}^{\mathsf{v}} = Hom_{\mathbb{C}-antilin.}(V,\mathbb{C}).$$

If $l \in \overline{V}^{\vee}$ then $p^{\vee}(l) = L(0, \alpha_l)$, where $\alpha_l : \Lambda \to U(1)$ is the map

$$\alpha_l(\lambda) = e^{2\pi i Iml(\lambda)}, \lambda \in \Lambda,$$

(see [8], Chap.II, 9). In order to define $c^{\vee}(\eta)$ in Čech cohomology we can choose $l_{ij;z} \in \overline{V}^{\vee}$ such that

$$Iml_{ij;z} = E(a_{ij}(z), \cdot).$$

Then, the characteristic class $c^{\vee}(\eta)$ is given by the 2-cocycle $(\rho_{ijk;z})$, where

$$\rho_{ijk;z} = l_{jk;z} - l_{ik;z} + l_{ij;z} \in \Lambda^{\vee} = H^2(B, \Lambda^{\vee}).$$

But, for all $\lambda \in \Lambda$, we have

$$Im\rho_{ijk;z}(\lambda) = E(a_{jk}(z) - a_{ik}(z) + a_{ij}(z), \lambda) = E(m\lambda^0, \lambda) = 0.$$

Since a linear form $l \in \overline{V}^{\vee}$ is uniquely determined by its imaginary part, we get $c^{\vee}(\eta) = 0$ in $H^2(B, \Lambda^{\vee})$.

We have proved the following result:

Theorem 5 Let $X \xrightarrow{\pi} B$ be a *T*-principal bundle over the curve *B*, defined by a cohomology class $\xi \in H^1(\mathcal{O}_B(T))$ with $c(\xi) \neq 0$ (i.e. X is non-Kähler). Then we have an exact sequence of free abelian groups

$$0 \to Hom(J_B, T^{\vee}) \to NS(X)/TorsNS(X) \to \tilde{N}(X) \to 0$$
,

where $\tilde{N}(X)$ is the subgroup of the Neron-Severi group of the torus T defined by

$$\tilde{N}(X) = \{c_1(L) \in NS(T) \mid \tilde{\varphi}_L(\xi) \text{ is the trivial torus bundle }\}.$$

Remark. In the case T is an elliptic curve we have $\tilde{N}(X) = 0$ (see [3]).

Remark. Clearly, a similar result holds in the case of a Kähler torus principal bundle for the group $NS(X)/\pi^*NS(B)$ (see also the last section).

Example. Let T be a two-dimensional complex torus with period matrix Ω , where

$$\Omega^t = \left(\begin{array}{rrr} 1 & 0 & \tau_1 & \alpha \\ 0 & 1 & 0 & \tau_2 \end{array}\right)$$

with $Im\tau_j > 0$, j = 1, 2. If the complex numbers τ_1, τ_2, α are algebraically independent over the rational numbers \mathbb{Q} then, it is well-known that T is not algebraic, that is, T is not an abelian variety. Let E_j be an elliptic curve with period matrix $(1, \tau_j)$, j = 1, 2. Then, there exists a holomorphic mapping

 $\pi: T \to E_2$

such that π is an E_1 -principal bundle over E_2 . The lattice Λ of T is generated by vectors $(1,0), (0,1), (\tau_1,0), (\alpha,\tau_2)$. Put $\lambda^0 = (\tau_1,0)$. Choose a point b of a curve B and make a logarithmic transformation to obtain a T-principal bundle

$$X = L_b(m\lambda^0, 1)(B \times T),$$

where m is an arbitrary positive integer. Then, we have $c(X) = m\lambda^0$ and X is non-Kähler.

Since the second coordinate of λ^0 is zero, there exists a holomorphic mapping

$$\mu: X \to B \times E_2$$

Then, any line bundle L on T, which is the pull-back of a line bundle L_2 on E_2 by π , can be extended holomorphically to the one on X, since L_2 can be extended to a line bundle on $B \times E_2$. Hence, for our T-principal bundle X, we have $\tilde{N}(X) \neq 0$.

Similarly, we can also construct a T-principal bundle over B with $\tilde{N}(X) \neq 0$ from a period matrix Ω

$$\Omega^{t} = \left(\begin{array}{ccc} I_{m} & 0 & \tau_{m} & \alpha \\ 0 & I_{n} & 0 & \tau_{n} \end{array}\right),$$

where $(I_m, \tau_m)^t$ and $(I_n, \tau_n)^t$ are period matrix of tori and α is an $m \times n$ matrix.

4. A filtration on Pic(X)

In this section we reinterpret the results in the previous section geometrically. We use freely the notation in the previous section. Let $\pi : X \to B$ be a *T*-principal bundle as in the previous section. Choose a general point $b \in B$ and fix it. In the following we identify the torus *T* with the fiber $\pi^{-1}(b)$. Restricting a line bundle \mathcal{L} on *X* to the fiber $\pi^{-1}(b)$, we have a natural group homomorphism

(20)
$$Pic(X) \xrightarrow{r} Pic(\pi^{-1}(b)) = Pic(T)$$

Then ker r consists of isomorphism classes of line bundles whose restriction to the fibre $\pi^{-1}(b)$ is trivial, hence the restriction to each fiber of π is a line bundle of degree 0 on the torus under identification of the torus with each fiber.

Let $\{U_j\}$ be an open covering of B with trivialization

(21)
$$\pi^{-1}(U_i) \simeq U_i \times T$$

For each line bundle \mathcal{L} belonging to ker r there exists a holomorphic mapping

$$\varphi_j: U_j \to Pic^0(T) = T^{\vee}$$

with

$$\mathcal{L}|_{\pi^{-1}(U_j)} \simeq (\varphi_j \times id_T)^*(\mathcal{P}),$$

where \mathcal{P} is the Poincaré bundle on $Pic^{0}(T) \times T$. Since any line bundle of degree 0 on the torus is invariant by the translations, on $U_{j} \cap U_{k} \neq \emptyset$ we have

$$\varphi_j = \varphi_k.$$

Hence, the line bundle \mathcal{L} defines a holomorphic mapping

(22)
$$\varphi: B \to T^{\vee}.$$

Since the restriction $\mathcal{L}|_{\pi^{-1}(b)}$ is trivial, the holomorphic mapping (22) satisfies

(23)
$$\varphi(b) = [0].$$

The line bundle \mathcal{L} and the holomorphic mapping φ are related by

$$\mathcal{L} \simeq \pi^*(M) \otimes \varphi^*(\mathcal{P}),$$

where M is a line bundle on the curve B and $\varphi^*(\mathcal{P})$ is the line bundle on Xwhose restriction to $\pi^{-1}(U_j)$ is $(\varphi_j \times id_T)^*(\mathcal{P})$. Note that by the argument of the proof of Lemma 3 we can patch together $(\varphi_j \times id_T)^*(\mathcal{P})$'s to get $\varphi^*(\mathcal{P})$, since the line bundle of degree 0 on a torus is invariant under the translations. Also note that there is a one to one correspondence between the set of holomorphic mappings (22) with property (23) and $Hom(J_B, T^{\vee})$.

Let us consider a group homomorphism

(24)
$$R: Pic(X) \xrightarrow{r} Pic(T) \xrightarrow{c} H^{2}(T, \mathbb{Z}).$$

The homomorphism R is essentially equivalent to a natural homomorphism

$$Pic(X) \rightarrow Pic(T) / Pic^{0}(T)$$

induced by the homomorphism r. A line bundle \mathcal{L} belonging to ker R is the one whose restriction to each fiber of π is of degree 0. Note that by the proof of Lemma 3 each line bundle $L \in Pic^{0}(T)$ can be extended to a line bundle \mathcal{L} on X in such a way that its restriction to each fiber is isomorphic to L. Hence, there is an isomorphism

(25)
$$\ker R/\ker r \simeq Pic^0(T).$$

Define subgroups P_j of Pic(X) by

(26)
$$P_2 = \pi^* Pic(B), \quad P_1 = ker r, \quad P_0 = Pic(X).$$

Then, $\{P_{\bullet}\}$ defines an decreasing filtration of Pic(X). By the above consideration and the arguments of the previous section we have the following theorem.

Theorem 6 We have the following isomorphisms.

- (27) $P_1/P_2 \simeq Hom(J_B, Pic^0(T))$
- (28) $P_0/P_1 \simeq \{ L \in Pic(T) \mid \tilde{\varphi}_L(\xi) = 0 \}$

where $\xi \in H^1(B, \mathcal{O}_B(T))$ is the cohomology class corresponding to the *T*-principal bundle $\pi : X \to B$ and $\tilde{\varphi}_L(\xi) = 0$ is defined in §3.

Remark. Taking the Chern classes, we have

(29)
$$c_1(P_2) = F_2, \quad c_1(P_1) = F_1.$$

5. Neron-Severi group for torus quasi bundles

Let $T = V/\Lambda$ be an *n*-dimensional torus. By a quasi *T*-bundle $\pi : X \to B$ over a curve *B* we mean that π is a *T*-principal bundle over $B \setminus \{b_1, b_2, \ldots, b_\ell\}$ and that the fiber $\pi^{-1}(b_j)$ over the point b_j is of the form $m_j T_j$ where $m_j \ge 2$ and T_j is a torus. The fiber $m_j T_j$ is called a multiple fiber of the multiplicity m_j . To construct such a quasi *T*-bundle we first generalize the notion of logarithmic transformation.

Choose points b_1, b_2, \ldots, b_k on B and put $B' = B - \{b_1, b_2, \ldots, b_k\}$. For each point b_i fix a positive integer m_i . We let a_i be an element of $\frac{1}{m_i}\Lambda$ such that the order of the point $[a_i]$ of the torus T corresponding to a_i is precisely m_i . Let

$$D_i = \{ t_i \in \mathbb{C} \mid |t_i| < \epsilon \}$$

be a coordinate neighbourhood of the point b_i and put

$$\widehat{D}_i = \{ s_i \in \mathbb{C} \mid |s_i| < \epsilon^{1/m_i} \}.$$

By the mapping

(30)
$$\lambda_i : \widehat{D}_i \to D_i$$
$$s_i \mapsto s_i^{m_i},$$

 \widehat{D}_i is an m_i -sheeted ramified covering of D_i . A holomorphic mapping g_i : $\widehat{D}_i \times T \to \widehat{D}_i \times T$ defined by

(31)
$$g_i: (s_i, [\zeta]) \mapsto (e_{m_i} s_i, [\zeta + a_i])$$

is an analytic automorphism of order m_i and generates the cyclic group $G_i = \langle g_i \rangle$ of order m_i where

$$e_{m_i} = \exp(2\pi\sqrt{-1}/m_i).$$

Since the automorphism g_i has no fixed points, the quotient $\widehat{D}_i \times T/G_i$ is a complex manifold. Let

(32)
$$\mu_i: \widehat{D}_i \times T \to \widehat{D}_i \times T/G_i$$

be the canonical quotient mapping. By $[s_i, [\zeta]]$ we denote the point of the quotient manifold $\widehat{D}_i \times T/G_i$ corresponding to a point $(s_i, [\zeta])$ of $\widehat{D}_i \times T$. We have a holomorphic mapping

$$\pi_i : \widehat{D}_i \times T/G_i \to D_i$$
$$[s_i, [\zeta]] \mapsto s_i^{m_i}.$$

Over the punctured disk D_i^* the holomorphic mapping π_i gives a T-principal bundle, and over the origin 0 the equation

 $\pi_i = 0$

defines a divisor of a form $m_i T_i$ where $T_i = T/\langle [a_i] \rangle$ is a torus obtained as the quotient by a finite subgroup generated by the point $[a_i]$.

The mapping

(33)
$$\ell_{a_i} : \widehat{D}_i^* \times T/G \to D_i^* \times T$$
$$[s_i, [\zeta]] \mapsto (s_i^m, [\zeta - \frac{m_i a_i}{2\pi\sqrt{-1}} \log s_i])$$

is a well-defined holomorphic mapping and isomorphic. Therefore, we can patch together $\widehat{D}_i \times T/G_i$, i = 1, 2, ..., k and $B' \times T$ by the isomorphisms ℓ_{a_i} to obtain a compact complex manifold X which is denoted by

(34)
$$L_{b_1}(a_1, m_1) L_{b_2}(a_2, m_2) \cdots L_{b_k}(a_k, m_k) (B \times T)$$

and is called the manifold obtained from $B \times T$ by means of logarithmic transformations. There is a natural holomorphic mapping $\pi : X \to B$ given by π_i on $\widehat{D}_i \times T/G_i$ and the projection to the first factor on $B' \times T$. The fiber space $\pi : X \to B$ is a *T*-principal bundle over B' and has multiple fibres with multiplicity m_i , if $m_i \geq 2$. In the Appendix we shall show that all quasi *T*-bundle are obtained in this manner.

In the following let us consider a quasi T-bundle $\pi: X \to B$ of the form (34) and we assume that

$$m_i \ge 2, \quad i = 1, 2, \dots, \ell, \quad m_{\ell+1} = \dots = m_k = 1.$$

Let us consider geometrically line bundles on X. Choose a general point b and consider a natural restriction homomorphism

(35)
$$r: Pic(X) \to Pic(\pi^{-1}(b)) = Pic(T)$$

Let us first consider the structure of ker r. Note that for the multiple fiber $m_i T_i$ the line bundle $[T_i]$ associated with the divisor T_i of X is an element of ker r and $[T_i]^{\otimes m_i} = [m_i T_i]$ is the pull-back of the line bundle $[b_i]$ on the curve B.

Let P_2 be a subgroup of Pic(X) generated by $\pi^*Pic(B)$ and $[T_i]$, $i = 1, 2, ..., \ell$. A line bundle \mathcal{L} belonging to P_2 is characterized by the fact that the restriction of \mathcal{L} to each fiber $\pi^{-1}(c), c \in B'$ is the trivial line bundle.

To a line bundle $\mathcal{L} \in ker r$, by the same argument as in §4, we can associate a holomorphic mapping

$$\varphi': B' \to Pic^0(T) = T^{\vee}.$$

The pull-back $\mu_i^*(\mathcal{L}|_{\pi^{-1}(D_i)})$ defines also a holomorphic mapping

$$\widehat{\varphi}_i: \widehat{D}_i \to Pic^0(T),$$

where $\mu_i: \widehat{D} \times T \to \pi^{-1}(D_i) = \widehat{D}_i \times T/G_i$ is a natural quotient mapping (32). Then, on \widehat{D}_i^* we have

 $\widehat{\varphi}_i = \varphi' \circ \lambda_i,$

where $\lambda_i : \widehat{D}_i \to D_i$ is defined in (30). This implies that the holomorphic mapping φ' can be extended to a holomorphic mapping

(36)
$$\varphi: B \to Pic^0(T) = T^{\vee}.$$

As $\mathcal{L}|_{\pi^{-1}(b)}$ is a trivial bundle, we have

(37)
$$\varphi(b) = [0].$$

Note that the set of holomorphic mappings (36) with property (37) are canonically isomorphic to $Hom(J_B, Pic^0(X))$. If \mathcal{L} and \mathcal{M} in ker r give the same holomorphic mapping (36), then the restriction of the line bundle $\mathcal{L} \otimes \mathcal{M}^{-1}$ to each fiber $\pi^{-1}(c), c \in B'$ is the trivial bundle, hence is an element of P_2 .

Lemma 7 There exists a natural group isomorphism

(38)
$$j: ker r/P_2 \simeq Hom(J_B, Pic^0(T)).$$

Proof: To each line bundle $\mathcal{L} \in \ker r$ we can associate a holomorphic mapping (36) with property (37). This defines an element of $Hom(J_B, Pic^0(T))$. If the mapping φ gives the zero element of $Hom(J_B, Pic^0(T)), \varphi$ is the zero map. Hence, the restriction of \mathcal{L} to each fiber $\pi^{-1}(c), c \in B'$ is the trivial bundle. Hence, \mathcal{L} belongs to P_2 . This shows the injectivity.

Conversely, let $\varphi: B \to T^{\vee}$ be a non-constant holomorphic mapping with $\varphi(b) = [0]$. Then, on $X' = \pi^{-1}(B')$ we can construct a line bundle \mathcal{L}' such that $\mathcal{L}'|_{\pi^{-1}(c)}$ is a line bundle of degree zero corresponding to the point $\varphi(c)$ for each $c \in B'$. For \widehat{D}_i , i = 1, 2, ..., k, put

$$\widehat{\varphi}_i = \varphi \circ \lambda_i.$$

Then, $\widehat{\varphi}_i$ defines a line bundle $\widehat{\mathcal{L}}_i$ such that $\widehat{\mathcal{L}}_i|_{s_i \times T}$ corresponds to $\widehat{\varphi}_i(s_i)$, As the line bundle $\widehat{\mathcal{L}}_i$ is invariant under the group G_i , it defines a line bundle \mathcal{L}_i on $\widehat{D}_i \times T/G_i$. By our construction, $\mathcal{L}_i|_{\pi^{-1}(D_i^*)}$ and $\mathcal{L}'|_{\pi^{-1}(D_i^*)}$ are isomorphic. Hence, \mathcal{L}_i 's and \mathcal{L}' define a line bundle \mathcal{L} on X which corresponds to the mapping φ . This shows the surjectivity of the mapping j.

Next let us consider the image of the homomorphism r.

Lemma 8 If a line bundle L of T can be extended to a line bundle \mathcal{L} on X, then L is invariant by the translations $T_{[a_i]}$, $i = 1, 2, \ldots, \ell$.

Proof: The pull-back $\tilde{\mathcal{L}}_i := \mu_i^*(\mathcal{L}|_{\pi_i^{-1}(D_i)})$ is invariant by the action of the group G_i , where $\mu_i : D_i \times T \to D_i \times T/G_i = \pi^{-1}(D_i)$ is the natural quotient mapping(32). In particular, the restriction $\tilde{\mathcal{L}}_i|_{0\times T}$ is invariant by the group generated by the translation $T_{[a_i]}$. Since $\tilde{\mathcal{L}}_i|_{0\times T}$ has a form $L \otimes M$ with degree zero line bundle M on T and M is invariant by all the translations, the line bundle L is invariant by the translation $T_{[a_i]}$.

Let H be a subgroup of the torus T generated by $[a_1], [a_2], \ldots, [a_\ell]$. The group H is isomorphic to Λ_0/Λ where Λ_0 is the lattice generated by Λ and a_i 's. To any H-invariant line bundle L on the torus T, we associate a cohomology class $\{\eta_{ij}^L\}$ in $H^1(B, \mathcal{O}_B(T^{\vee}))$ as follows.

Let $\{U_j\}$ be an open covering of the curve *B* such that $U_i = D_i$ for $i = 1, 2, \ldots, \ell$ and that $b_i \notin U_i \cap U_j$ for $i \neq j$. Since the line bundle *L* is invariant by the translation $T_{[a_i]}$, though $\left[\frac{a_i}{2\pi\sqrt{-1}}\log t_i\right]$ is multivalued

(39)
$$T^{*}_{[\frac{\alpha_i}{2\pi\sqrt{-1}}\log t_i]}L\otimes L^{-1}$$

is a well-defined line bundle on $\pi^{-1}(U_i \cap U_j)$ for $i = 1, 2, ..., \ell$ and $j \neq i$. Then there exists a holomorphic mapping φ_{ij} from $U_{ij} = U_i \cap U_j$ to T^{\vee} such that the line bundle (39) is the pull-back $(\varphi_{ij} \times id_T)^*(\mathcal{P})$ of the Poincaré bundle. Put

(40)
$$\eta_{ij}^{L} := \begin{cases} \varphi_{ij} & \text{if } 1 \leq i \leq \ell, \ \ell < j \\ 0 & \text{if } \ell < i, j \end{cases}$$

Then, it is easy to show that $\{\eta_{ij}^L\}$ is a one cocycle and defines a cohomology class $[\{\eta_{ij}^L\}] \in H^1(B, \mathcal{O}_B(T^{\vee})).$

Lemma 9 An H-invariant line bundle L on the torus $T = \pi^{-1}(b)$ can be extended to the one on X if and only if the cohomology class $[\{\eta_{ij}^L\}]$ is zero.

Proof: Assume that there exists a line bundle \mathcal{L} on X which is an extension of L. Then, the pull-back $\mu_i^*(\mathcal{L}|_{\pi^{-1}(U_i)})$ of the restriction of \mathcal{L} on $\pi^{-1}(U_i)$, $i = 1, 2, \ldots, \ell$, to $\widehat{D}_i \times T$ can be expressed as

(41)
$$L \otimes (\widehat{\varphi}_i \times id_T)^*(\mathcal{P}),$$

where $\widehat{\varphi}_i : \widehat{D}_i \to T^{\vee}$ is a holomorphic mapping. Since the line bundle $\mu_i^*(\mathcal{L}|_{\pi^{-1}(U_i)})$ is invariant under the group G_i , we have

$$\widehat{\varphi}_i(s_i) = \widehat{\varphi}_i(e_{m_i}s_i)$$

Hence, there exists a holomorphic mapping $\varphi_i: U_i \to T^{\vee}$ with

(42)
$$\widehat{\varphi}_i(s_i) = \varphi_i(s_i^{m_i}).$$

Since \mathcal{L} is a global line bundle, on $U_{ij} \neq \emptyset$ we have

(43)
$$T^*_{[\frac{a_j}{2\pi\sqrt{-1}}\log t_i]}L\otimes (\varphi_i\times id_T)^*(\mathcal{P})=L\otimes (\varphi_j\times id_T)^*(\mathcal{P}).$$

This implies that we have

(44)
$$\eta_{ij}^L = \varphi_j - \varphi_i.$$

Hence, the cohomology class is zero.

Conversely assume that the cohomology class is zero, hence we have holomorphic mappings $\varphi_j : U_j \to T^{\vee}$ which satisfy (44). For $i = 1, 2, \ldots, \ell$ define $\hat{\varphi}_i$ by (42). Then the line bundle $\hat{\mathcal{L}}_i = L \otimes (\hat{\varphi}_i \times id_T)^*(\mathcal{P})$ is invariant by the action of the group G_i , hence defines a line bundle \mathcal{L}_i on $\pi^{-1}(U_i)$. For $j > \ell$ put $\mathcal{L}_j = L \otimes (\varphi_j \times id_T)^*(\mathcal{P})$. Since we have the equality (43), we can patch together these line bundles and obtain a line bundle \mathcal{L} which is an extension of L. \diamond

Now as in §4 we introduce a decreasing filtration $\{P_{\bullet}\}$ of Pic(X) by

(45)
$$P_2$$
 = the subgroup generated by $\pi^* Pic(B)$ and $[T_i]$'s,

(46)
$$P_1 = ker r, P_0 = Pic(X),$$

where $m_i T_i$, $i = 1, 2, ..., \ell$ are all the multiple fibers of the quasi T-bundle $\pi: X \to B$. By the above arguments we have the following theorem.

Theorem 10 We have the following isomorphisms.

(47)
$$P_1/P_2 \simeq Hom(J_B, Pic^0(T))$$

(48)
$$P_0/P_1 \simeq \{ L \in Pic(T)^H \mid [\{\eta_{ij}^L\}] = 0 \}.\diamond$$

Let us reinterpret the group { $L \in Pic(T)^H \mid [\{\eta_{ij}^L\}] = 0$ } by means of a torus principal bundle associated with the quasi *T*-bundle $\pi : X \to B$.

Let Λ_0 be a lattice in the vector space V generated by Λ and a_i , $i = 1, 2, ..., \ell$ and put

(49)
$$T_0 = V/\Lambda_0.$$

Then, we have

$$T_0 = T/H,$$

where H is a subgroup of the torus T generated by $[a_1], [a_2], \ldots [a_\ell]$. There is a canonical surjective homomorphism

of complex tori. The following lemma is well-known and easy to prove.

Lemma 11 A line bundle L on the torus T is invariant by the translations $T_{[a_i]}$, $i = 1, 2, ..., \ell$, if and only if there exists a line bundle L_0 on T_0 with

$$L = h^* L_0.\diamond$$

Put

(51)
$$Y = L_{b_1}(a_1, 1)L_{b_2}(a_2, 1)\cdots L_{b_\ell}(a_\ell, 1)(B \times T_0)$$

with structure morphism $\pi_0: Y \to B$, which is a T₀-principal bundle.

Lemma 12 There exists a holomorphic mapping

$$f: X \to Y$$

such that the following diagram is commutative.

$$\begin{array}{cccc} X & \xrightarrow{f} & Y \\ \pi & \downarrow & \downarrow & \pi_0 \\ B & = & B \end{array}$$

Moreover, f is unramified outside the multiple fibers.

Proof: There is a natural unramified holomorphic mapping

 $f': B' \times T \to B' \times T_0.$

We need to show that f' can be extended to a holomorphic mapping f of X to Y. On $\widehat{D}_i \times T/G_i$ let us define a holomorphic mapping f_i by

$$f_i : D_i \times T/G_i \to D_i \times T_0$$
$$[s_i, [\zeta]] \mapsto (s_i^{m_i}, h([\zeta])).$$

We need to show that these holomorphic mappings are compatible to f'. By our definition of the logarithmic transformation we have the following commutative diagram.

$$\ell_{i} : D_{i}^{*} \times T/G_{i} \longrightarrow D_{i}^{*} \times T$$

$$[s_{i}, [\zeta]] \mapsto (s_{i}^{m_{i}}, [\zeta - \frac{m_{i}a_{i}}{2\pi\sqrt{-1}}\log s_{i}])$$

$$f' \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad f_{i}$$

$$(s_{i}^{m_{i}}, [\zeta]_{0}) \mapsto (s_{i}^{m_{i}}, [\zeta - \frac{a_{i}}{2\pi\sqrt{-1}}\log(s_{i}^{m_{i}})]_{0})$$

$$\ell_{i}^{(0)} : D_{i}^{*} \times T_{0} \longrightarrow D_{i}^{*} \times T_{0}$$

Here, $[\zeta]_0$ means the point of the torus T_0 corresponding to ζ . The commutativity of the above diagram shows that the mappings f' and f_i 's are compatible and define a holomorphic mapping $f: X \to Y$ over B.

Lemma 13 The quasi T-bundle X is Kähler if and only if Y is Kähler. The condition is equivalent to the equality

(52)
$$\sum_{i=1}^{k} a_i = 0$$

Proof: Assume that the equality (52) holds, hence, Y is Kähler. Let ω be a Kähler form of Y. Note that $f: X \to Y$ is an abelian covering ramified along the support of T_i of the multiple fibers. Hence, the pull-back $f^*\omega$ is positive definite on $X \setminus \bigcup_{i=1}^{\ell} T_i$ and at each point of T_i it is positive semi-definite. Near the multiple fiber $m_i T_i$, X is isomorphic to $\widehat{D}_i \times T/G_i$. As a (1,1)-form

$$\frac{\sqrt{-1}}{2\pi}\partial\overline{\partial}(\sum_{\nu=1}^{n}|\zeta_{\nu}|^{2}+|s_{i}|^{2})$$

is G_i -invariant, it defines a Kähler form on $\widehat{D}_i \times T/G_i$. Let ρ_i be a non-negative C^{∞} -function in $|s_i|^2$ satisfying

$$\rho_i(t) = \begin{cases} 1 & |t| < \epsilon^{2/m_i}/3 \\ 0 & |t| \ge 2\epsilon^{2/m_i}/3. \end{cases}$$

Then, a form

$$\omega_i = \frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \{ \rho_i(|s_i|^2) (\sum_{\nu=1}^n |\zeta_\nu|^2 + |s_i|^2) \}$$

is positive definite on $\pi^{-1}(D_i(\epsilon^{2/m_i}/3) \text{ and } \omega_i \equiv 0 \text{ on } \pi^{-1}(D_i(2\epsilon^{2/m_i}/3), \text{ where}$ we put $D_i(r) = \{ s_i \mid |s_i| < r \}$. Hence, we may regard ω_i as a global (1,1)form on X. Since, $f^*\omega$ is positive definite on $X \setminus \bigcup_{i=1}^{\ell} T_i$, and ω_i is positive definite in a neighbourhood of T_i and zero outside a certain neighbourhood of T_i , the form

$$\alpha f^* \omega + \sum_{i=1}^{\ell} \omega_i$$

is positive definite on X, if we choose α sufficiently large. Hence, X is Kähler.

Conversely, assume that X is Kähler. Put

$$d = m_1 \cdot m_2 \cdots m_\ell, \quad m_0 = LCM\{m_1, m_2, \dots, m_\ell\}.$$

We can always find a *d*-fold abelian covering $\sigma : \tilde{B} \to B$ of the curve *B* branched at b_1, b_2, \ldots, b_ℓ and a point $b_0 \in B \setminus \{b_1, b_2, \ldots, b_\ell\}$ such that σ has

 d/m_i ramification points $\{b_i^{(m)}\}, m = 1, 2, ..., d/m_i, i = 0, 1, 2, ..., \ell$. Over the points $b_j, \ell < j \leq k, \sigma$ is unramified. Put $\sigma^{-1}(b_j) = \{b_j^{(1)}, b_j^{(2)}, ..., b_j^{(d)}\}$. Then, the normalization \widetilde{X} of $X \times_B \widetilde{B}$ has a natural structure of a principal *T*-bundle over \widetilde{B} and it is isomorphic to

(53)
$$\prod_{i=1}^{k} \prod_{m=1}^{d/m_i} L_{b_i^{(m)}}(m_i a_i, 1) (\tilde{B} \times T)$$

The natural holomorphic mapping $\tilde{\sigma} : \widetilde{X} \to X$ is only branched over $\pi^{-1}(b_0)$. By the similar argument as above we can show that \widetilde{X} is Kähler if X is Kähler. Then, by (52), \widetilde{X} is Kähler if and only if

$$\sum_{i=1}^{k} \sum_{m=1}^{d/m_i} m_i a_i = 0.$$

The equality can be rewritten as

$$\sum_{i=1}^{k} \frac{d}{m_i} m_i a_i = d \sum_{i=1}^{k} a_i = 0.$$

Hence, the equality (52) holds and Y is also Kähler. This proves the lemma. \diamond

Lemma 14 The subgroup $\pi^{\bullet}H^2(B,\mathbb{Z})$ of $H^2(X,\mathbb{Z})$ is a finite group if and only if

$$\sum_{i=1}^k a_i \neq 0.$$

Proof: Since the holomorphic mapping $f: X \to Y$ is finite, $\pi^* H^2(B, \mathbb{Z})$ is finite if and only if the subgroup $\pi_0^* H^2(B, \mathbb{Z})$ in $H^2(Y, \mathbb{Z})$ is finite. The latter group is finite if and only if Y is non-Kähler. On the other hand, Y is non-Kähler if and only if

$$\sum_{i=1}^k a_i \neq 0.$$

This proves the lemma. \diamond

Put

(54)
$$N(X) = \{ L \in Pic(T)^{H} \mid [\{\eta_{ij}^{L}\}] = 0 \}$$

(55)
$$N(Y) = \{ L_0 \in Pic(T_0) \mid \tilde{\varphi}_{L_0}(\xi_0) = 0 \}$$

where $\xi_0 \in H^1(B, \mathcal{O}_B(T_0))$ is the cohomology class corresponding to the T_0 principal bundle $\pi_0: Y \to B$. Taking the dual of the homomorphism $h: T \to T_0$ (50) we have an exact sequence

(56)
$$0 \to T_0^{\vee} \xrightarrow{h^{\vee}} T^{\vee} \to H^{\vee} \to 0.$$

where H^{\vee} is a finite abelian group. Sheafifying the exact sequence (56) and taking the cohomology, we obtain the following exact sequence.

(57)
$$0 \to H^1(B, \mathcal{O}_B(T_0^{\vee})) \xrightarrow{h^{\vee}} H^1(B, \mathcal{O}_B(T^{\vee})) \to H^1(B, H^{\vee}) \to .$$

Lemma 15 For a line bundle L_0 on the torus T_0 put $L = h^*L_0$. Then we have

$$h^{\vee}(\tilde{\varphi}_{L_0}(\xi_0)) = [\{\eta_{ij}^L\}].$$

Proof: We use the same open covering $\{U_j\}$ of the curve B defined above. Then, the cohomology class ξ_0 is given by a cocycle

(58)
$$\zeta_{ij} := \begin{cases} \frac{a_i}{2\pi\sqrt{-1}} \log t_i & \text{if } 1 \le i \le \ell, \, \ell < j \\ 0 & \text{if } \ell < i, j. \end{cases}$$

Hence $\tilde{\varphi}_{L_0}(\xi_0)$ is given by a cocycle

$$\zeta_{ij}^{L} := \begin{cases} \phi_{ij} & \text{if } 1 \leq i \leq \ell, \ \ell < j \\ 0 & \text{if } \ell < i, j \end{cases}$$

where ϕ_{ij} is given by

$$T^*_{[\frac{a_i}{2\pi\sqrt{-1}}\log t_i]}L_0 \otimes L_0^{-1} = (\phi_{ij} \times id_T)^*(\mathcal{P}_0).$$

Here \mathcal{P}_0 is the Poincaré bundle on $Pic^0(T_0) \times T_0$. Then it is easy to show that we have

$$h^{\vee}(\phi_{ij}) = \varphi_{ij}.$$

This is the desired result. \diamond

Lemma 16

$$h^*(N(Y)) = N(X).$$

Proof: For a line bundle $L_0 \in N(Y)$ we let \mathcal{L}_0 be a line bundle on Y which is an extension of L_0 . Then, $f^*\mathcal{L}_0$ is a line bundle on X which is an extension of the line bundle h^*L_0 , where $f: X \to Y$ is the holomorphic mapping in Lemma 12. Hence, we have $h^*(N(Y)) \subset N(X)$.

Conversely, take a line bundle $L \in N(X)$ and choose a line bundle L_0 on T_0 with $h^*L_0 = L$. By the above Lemma 15 and the exact sequence (57), $\tilde{\varphi}_{L_0}(\xi_0) = 0$. Hence, $L_0 \in N(Y)$. This shows $N(X) \subset h^*(N(Y))$.

By the above argument and the arguments in the previous sections we have the following exact sequences.

(59) $0 \rightarrow Hom(J_B, T^{\vee}) \rightarrow Pic(X)/P_2 \rightarrow N(X) \rightarrow 0$

(60)
$$0 \rightarrow Hom(J_B, T_0^{\vee}) \rightarrow Pic(Y)/\pi_0^*Pic(B) \rightarrow N(Y) \rightarrow 0.$$

Taking the Chern classes of the line bundles, finally we obtain the following theorem.

Theorem 17 There exists an exact sequence

(61)
$$0 \to Hom(J_B, T^{\vee}) \to NS(X)/\widetilde{F}_2 \to \widetilde{N}(X) \to 0,$$

where \tilde{F}_2 is a subgroup of $H^2(X, \mathbb{Z})$ generated by $c_1([T_i])$, $i = 1, 2, ..., \ell$, and

(62)
$$\widetilde{N}(X) = \{ c_1(L) \mid L \in Pic(X)^H, [\{\eta_{ij}^L\}] = 0 \}.$$

The subgroup \tilde{F}_2 is finite if and only if X is non-Kähler. Moreover, we have

$$\widetilde{N}(X) = h^* \widetilde{N}(Y)$$

where

$$N(Y) = \{ c_1(L_0) \mid L_0 \in Pic(Y), \quad \tilde{\varphi}_{L_0}(\xi_0) = 0 \}.$$

Proof: To each homomorphism

$$\varphi \in Hom(J_B, T^{\vee})$$

we can associate a line bundle \mathcal{L} on X such that for each point $c \in B'$ the restriction $\mathcal{L}|_{\pi_{-1}}(c)$ corresponds to $\varphi(c)$. Let us consider the first Chern class $c_1(\mathcal{L})$ of \mathcal{L} . Note that we have an exact sequence

$$0 \to R^1 \pi_* \mathbb{Z} \to R^1 \pi_* \mathcal{O}_X \to \mathcal{O}_B(T^{\vee}) \to 0$$

and from this exact sequence we have the exact sequence

(63)
$$\rightarrow H^0(B, R^1\pi_*\mathcal{O}_X) \rightarrow H^0(B, \mathcal{O}_B(T^{\vee})) \xrightarrow{c} H^1(B, R^1\pi_*\mathbb{Z}) \rightarrow .$$

The element $\varphi \in Hom(J_B, \mathcal{O}_B(T^{\vee}))$ gives an element $\tilde{\varphi} \in H^0(B, \mathcal{O}_B(T^{\vee}))$ with $\tilde{\varphi}(b) = [0]$. Then the image of $c(\tilde{\varphi}) \in H^1(B, R^1\pi_*\mathbb{Z})$ to $H^2(X, \mathbb{Z})/\pi^*H^2(B, \mathbb{Z})$ is $c_1(\mathcal{L}) \mod \pi^*H^2(B, \mathbb{Z})$. Since we have an isomorphism

$$H^{0}(B, \mathcal{O}_{B}(T^{\vee}))/\mathrm{Im}H^{0}(B, R^{1}\pi_{*}\mathcal{O}_{X}) \simeq Hom(J_{B}, T^{\vee}),$$

by the exact sequence (63) we have an inclusion

$$Hom(J_B, \mathcal{O}_B(T^{\vee})) \hookrightarrow H^1(B, R^1\pi_*\mathbb{Z}).$$

To show that the natural mapping

$$H^1(B, R^1\pi_*\mathbb{Z}) \to H^2(X, \mathbb{Z})/\pi^*H^2(B, \mathbb{Z})$$

is injective, we need to consider the spectral sequence

$$E_2^{p,q} = H^p(B, R^q \pi_* \mathbb{Z}) \Longrightarrow H^{p+q}(X, \mathbb{Z}).$$

By the dimension reason, we have

$$\begin{split} E_{\infty}^{0,2} &= E_{3}^{0,2} = ker \{ H^{0}(B, R^{2}\pi_{*}\mathbb{Z}) \to H^{2}(B, R^{1}\pi_{*}\mathbb{Z}) \} \\ E_{\infty}^{1,1} &= E_{2}^{1,1} = H^{1}(B, R^{1}\pi_{*}\mathbb{Z}) \\ E_{\infty}^{2,0} &= E_{3}^{2,0} = coker \{ H^{0}(B, R^{1}\pi_{*}\mathbb{Z}) \to H^{2}(B, \mathbb{Z}) \}. \end{split}$$

The spectral sequence defines the filtration $\{F_{\bullet}\}$ on the cohomology group $H^{2}(X,\mathbb{Z})$ such that there are canonical isomorphisms

(64)
$$E_{\infty}^{2,0} \simeq F_2,$$

(65)
$$E_{\infty}^{1,1} \simeq F_1/F_2,$$

$$(66) E_{\infty}^{0,2} \simeq F_0/F_1.$$

It is easy to see that $F_2 = \pi^* H^2(B, \mathbb{Z})$, hence by the above isomorphism (65) the natural mapping

$$H^1(B, R^1\pi_{\bullet}\mathbb{Z}) \to H^2(X, \mathbb{Z})/\pi^{\bullet}H^2(B, \mathbb{Z})$$

is injective. Therefore, the natural mapping

$$Hom(J_B, \mathcal{O}_B(T^{\vee})) \to H^1(B, R^1\pi_*\mathbb{Z}) \to H^2(X, \mathbb{Z})/\pi^*H^2(B, \mathbb{Z})$$

is also injective. The rest of the statements follow from the above arguments. This proves the theorem. \diamond

Remark. By the similar arguments as in [5, Chap. II, Lemma 1.6 and Lemma 7.3], the structure of the first homology group $H_1(X, \mathbb{Z})$ is given by

$$H_1(X,\mathbb{Z}) \simeq \mathbb{Z}\alpha_1 \oplus \cdots \oplus \mathbb{Z}\alpha_g \oplus \mathbb{Z}\beta_1 \oplus \cdots \oplus \mathbb{Z}\beta_g \oplus (\Lambda_0/(\sum_{i=1}^k a_i)),$$

where Λ_0 is the lattice in the vector space V generated by Λ and a_i 's and

$$H_1(B,\mathbb{Z})\simeq \mathbb{Z}\alpha_1\oplus\cdots\oplus\mathbb{Z}\alpha_q\oplus\mathbb{Z}\beta_1\oplus\cdots\oplus\mathbb{Z}\beta_q.$$

By virtue of Lemma 13, $H_1(X,\mathbb{Z})$ has torsion if and only if X is non-Kähler. Moreover, if X is non-Kähler, there is a non-canonical isomorphism

Tor
$$H^2(X, \mathbb{Z}) \simeq Tor \Lambda_0 / (\sum_{i=1}^k a_i).$$

Thus, in this case, since $R^1\pi_*\mathbb{Z}$ and $R^2\pi_*\mathbb{Z}$ are constant sheaves of finite free \mathbb{Z} -modules, by the isomorphisms (64), (65) and (66), we conclude that

Tor
$$H^2(X,\mathbb{Z}) = \pi^* H^2(B,\mathbb{Z}).$$

Appendix

In this appendix we shall show that all quasi *T*-bundle over a curve *B* are obtained from the product $B \times T$ by means of logarithmic transformations. Let $\pi : X \to B$ be a quasi *T*-bundle over the curve *B*. We let $m_1T_1, m_2T_2, \ldots, m_\ell T_\ell$ be all the multiple fibers of π . Put

$$b_i = \pi(T_i), \quad i = 1, 2, \dots, \ell.$$

Choose a coordinate neighbourhood D_i of b_i and a local coordinate t_i with center b_i . We may assume

$$D_i = \{ t_i \in \mathbb{C} \mid |t_i| < \epsilon \}.$$

Put

$$\widehat{D}_i = \{ s_i \in \mathbb{C} \mid |s_i| < \epsilon^{1/m_i} \}.$$

Then a homomorphism

$$\begin{array}{rccc} \widehat{D}_i & \to & D_i \\ s_i & \mapsto & s_i^{m_i} \end{array}$$

is an m_i -sheeted cyclic covering. We let \widehat{X}_i be the normalization of the fiber product $X|_{D_i} \times_{D_i} \widehat{D}_i$ with a natural holomorphic mapping

$$\mu_i: \widehat{X}_i \to X_i = \pi^{-1}(D_i).$$

At a point $p \in \pi^{-1}(b_i)$ we can choose local coordinates (x, y_1, \ldots, y_n) where the holomorphic mapping π is expressed as

$$t_i = \pi((x, y_1, \ldots, y_n)) = x^{m_i}.$$

Then, \widehat{X}_i is locally given by the normalization of

$$s_i^{m_i} - x^{m_i} = 0.$$

Hence, μ_i is a unramified covering. Also the complex manifold \widehat{X}_i has a structure of a fiber space

$$\widehat{\pi}_i:\widehat{X}_i\to\widehat{D}_i$$

over \widehat{D}_i which is smooth over \widehat{D}_i . Since $X_i \to D_i$ is a *T*-principal bundle over the punctured disk D_i^* , it is easy to show that $\widehat{\pi}_i$ is a *T*-principal bundle, hence $\widehat{\pi}_i$ is isomorphic to the product $D_i \times T$ with the projection to the first factor.

By our construction $\mu_i : \widehat{X}_i \to X_i$ is an m_i -sheeted cyclic unramified covering and the cyclic G_i of order m_i operates on \widehat{X}_i . A generator g_i of the group G_i has a form

(67)
$$g_i: \ \widehat{D}_i \times T \to \widehat{D}_i \times T (s_i, [\zeta]) \mapsto (e_{m_i} s_i, [\zeta + a_i])$$

where $[a_i]$ is a point of the torus T of order m_i . Then, the quotient manifold $\widehat{D}_i \times T/G_i$ is isomorphic to $X_i = \pi^{-1}(D_i)$. There is an analytic isomorphism

(68)
$$\ell_{a_i}: \ \overline{D}_i^* \times T/G_i \to D_i^* \times T \\ [s_i, [\zeta]] \to (s_i^{m_i}, [\zeta - \frac{m_i a_i}{2\pi\sqrt{-1}} \log s_i])$$

We let \widetilde{X} be a complex manifold obtained by patching together $X - \bigcup_{i=1}^{\ell} \pi^{-1}(b_i)$ and $D_i \times T$'s by the isomorphisms $\ell_{a_i}^{-1}$:

(69)
$$\widetilde{X} = (X \setminus \bigcup_{i=1}^{\ell} \pi^{-1}(b_i)) \bigcup_{i=1}^{\ell} D_i \times T.$$

Then, the complex manifold \widetilde{X} has a natural structure $\widetilde{\pi} : \widetilde{X} \to B$ of a *T*-principal bundle over the curve B.

Conversely, the quasi T-bundle $\pi : X \to B$ is obtained from the T-principal bundle $\tilde{\pi} : \tilde{X} \to B$ by means of the logarithmic transformations:

(70)
$$X = L_{b_1}(a_1, m_1) L_{b_2}(a_2, m_2) \cdots L_{b_{\ell}}(a_{\ell}, m_{\ell})(\widetilde{X}),$$

by patching together $(\widetilde{X} \setminus \bigcup_{i=1}^{\ell} \widetilde{\pi}^{-1}(b_i))$ and $\widehat{D}_i^* \times T/G_i$'s by the isomorphisms ℓ_{a_i} .

By the remark in §1, the *T*-principal bundle $\tilde{\pi} : \tilde{X} \to B$ is obtained from $B \times T$ by means of logarithmic transformations

(71)
$$\widetilde{X} = L_{b_{\ell+1}}(a_{\ell+1}, 1) L_{b_{\ell+2}}(a_{\ell+2}, 1) \cdots L_{b_k}(a_k, 1) (B \times T).$$

Hence, by (70) and (71) the quasi T-bundle $\pi : X \to B$ is obtained from $B \times T$ by means of logarithmic transformations

$$X = L_{b_1}(a_1, m_1) \cdots L_{b_{\ell}}(a_{\ell}, m_{\ell}) L_{b_{\ell+1}}(a_{\ell+1}, 1) \cdots L_{b_k}(a_k, 1) (B \times T).$$

Thus, any quasi T-bundle over the curve B is obtained from $B \times T$ by means of logarithmic transformations.

References

- Blanchard, A. : Espaces fibrés kählériens compacts, C.R. Acad. Sci., 238, 2281-2283 (1954)
- [2] Borel, A. : A spectral sequence for complex analytic bundles, Appendix II to [6].
- [3] Brînzănescu, V. : Neron-Severi group for nonalgebraic elliptic surfaces I: elliptic bundle case, Manuscripta Math. 79, 187–195 (1993)
- [4] Brînzănescu, V. : Neron-Severi group for nonalgebraic elliptic surfaces II: non-kählerian case, to appear in Manuscripta Math. (1994)
- [5] Friedman, F. & Morgan, J.W. : Smooth Four- Manifolds and Complex Surfaces, Springer-Verlag, 1994
- [6] Hirzebruch, F.: Topological Methods in Algebraic Geometry. 3 rd Edition, Springer-Verlag: Berlin-Heidelberg-New York, 1966
- [7] Höfer, T. : Remarks on torus principal bundles, J. Math. Kyoto Univ. (JMKYAZ), 33-1, 227-259 (1993)
- [8] Mumford, D.: Abelian Varieties, Oxford University Press, 1974
- Ueno, K. : Degeneration of elliptic surfaces and certain non-Kähler manifolds, Progr. Math. Vol. 39, 545–566, Birkhäuser: Boston-Basel-Stuttgart, 1983

τ

:

Institute of Mathematics of the Romanian Academy, P.O.BOX 1-764, RO-70700 Bucharest, Romania

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-01 Japan