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1 Introduction

Let M be an oriented real hypersurface of class C? in C*, i.e. M = {z € §: p(z) =0},
where 4 is an open subset of C" and p is a real C? function on # with dg(z) # 0 for
all z € 8. For z € M and £ € C", we denote by §(¢, z) the Euclidean distance between
£ and the complex tangent plane of M at z. The aim of this paper is to prove the
following theorem:

Theorem 1.1 Suppose, for some zy € M, the restriction of the Levi form of p at 2 to
the complex tangent plane of M at z, has at least one positive and at least one negative
eigenvalue. Then there exist an open neighbourhood My C M of zy and a continuous
differential form K(z,£) defined and continuous for all (2,£) € My x My with z # £
such that:

(t) K(z,£) is of degree zero in z and of bidegree (n,n — 2) in €.
(1) deK(2,&) =0 for all (2,£) € My x M, with z # .
(#11) There is a constant C > 0 such that

1+{1n)€ — 2]

N < C e+ 1= =Pig — a3 2

for all €,z € My with £ # z.

(iv) For each 0 < a < 1, the coefficients of K(z,§) are of class C:‘ellz for all (2,€) €
My x My with z # £ (for the definition of C:‘;ﬁ cf. the end of Section 2).

(v) Let @ CC M, be a domain with piecewise C! boundary. If f is a continuous
function on  such that df (€) A d€; A ... AdE, is also continuous on ) then

f@= [ fOK&O- [ d©AKEE @

{etd £eq

for all 2 € 2.



Remark 1.2 From estimate (1) it follows that ||K(z,£)|| is integrable with respect
to £ and 2. More precisely, it i easy to see that the following estimates hold: Denote
by d) the Euclidean volume form on M. Then there is a constant C > 0 such that

1K (2, )1 dA(€) < Ce(1 + |Inef?) - (3)

€My
{€~s|<e

for all z € My and € > 0, and

IK(z,€)l|d)(z) < Ce(1 + |Inef?) (4)
el

for all £ € M, and £ > 0.
To obtain the kernel K(z,{) in Theorem 1.1 we proceed as follows: Consider the
Martinelli-Bochner kernel

B(z,¢) =" 2,,),, Z( )”'1 I,,,df AguNdlaAdO A AdG  (5)

and a sufficiently small open ball U C C" centered at z. Set Uy := {{ € U: p(¢) < 0}
and U_ ;= {¢ € U : o(¢) > 0}. Then, in view of the hypothesis on the Levi form of g,
it follows from the Andreotti~Grauert theory that, for fixed z € M, one can solve the
equations

5K+(Z,') = —B(Zi') on U,

and

8K_(z,-)= -B(z,") on U..

We prove that this can be done with appropriate uniform estimates so that K, (z,£) and
K_(2,£) extend to (U N M)\{z} and K(2,£) := K, (2,€§) — K_(2,£) has the required
properties. For that we use a version of the classical integral operators constructed
by GrauerT/Li1EB [G/L}, HENKIN [H 1] and W. FiscHER/LIEB [WF/L).

Formula (2) is an analogon of the Martinelli-Bochner formula in C". At the end
of this paper (Section 6) we want to show that this analogy extends also to some
of the applications of the Martinelli-Bochner formula: using the kernel K(z,£), we
prove strengthened versions of some of the results on the tangential Cauchy-Riemann
equation obtained by HENKIN in [H 2] and [H 3] (see the regularity theorems 6.6
and 6.8, the solvability theorem 6.10 for (0,1)-currents with small support, and the
Hartogs-Bochner extension theorem 6.11).

2 Preliminaries

Let K CC C" be a compact set. Then C°(K) is the Banach space of all continuous
complex functions on K. For 0 < a < 1, C*(K) is the Banach space of all complex
functions which are Holder continuous with exponent a on K. The norm in C*(K), 0 <



a < 1 will be denoted by |}-|}o,x. That means ||-||o x is the max-norm and for0 < a < 1,
|| - la,c i8 the Holder norm with exponent a.

Let D CC C" be a domain and 0 € a < 1. Then C2(D) is the Banach space
of differential forms whose coefficients belong to C*(D). The norm in C#(D) will be
denoted by || ||a,5- By C(‘:I,.)(D) we denote the subspace of forms in C#(D) which are
of bidegree (s,r). By L1(D) we denote the Banach space of all differential forms whose
coefficients are integrable on D. The norm in L}(D) will be denoted by || - ||;:(p) and
L}, (D) is the subspace of all forms in L}(D) which are of bidegree (s,r).

Proposition 2.1 If A,B CC C" are two compact sets, f(z,£) is a complez function
defined for (2,§) € Ax B and 0 € a, f < 1 then it is easy to see that the following
two conditions are equivalent:

(i) f(z,-) € CP(B) for all z € A and the assignment A 3 z — f(z,-) is Holder
continuous with exponent a as @ map with values in C?(B).

(1) f(-,§) € C*(A) for all { € B and the assignment B 3 £ — f(-,§) is Holder
continuous with ezponent § as ¢ map with values in C*(A).

Let Z be an arbitrary subset of C* x C", f(2,£) a complex function defined for
(2,€) € Z and let 0 € @, < 1. Then we say that f(2,£) is of class C,‘,”'e“9 on Z if for
each pair of compact sets A, B C C" with A x B C Z the both equivalent conditions
(i) and (ii) in Proposition 2.1 are fulfilled.

3 Local g-convex C? domains

If ¢ is a real C? function in some neighbourhood of & point z € C* then we denote by
L,(z) the Levi form and by H,(2) the Hessian form of ¢ at 2. That means

2 p(2), .

L (2)t:= ——Lt.dy for teC
P( ) "21 82562* 7
and
1 2n azlP(Z)

H,(z)t := z,(t)z,(t) for teC"

2 0z,0z,

where z,,..., z3, are the real coordinates on C* with zj = zj(2) +izjyn(2) if 2 =
(21, 20) €C",

=1

Definition. Let 0 < ¢ €< n —1 be an integer.

(i) f G cC C" is a C? domain then we say that G is strictly convex with respect
to the real coordinates of zy,...,2z4; if there exists a real C? function g in a
neighbourhood Ug of G such that G = {z € Ug : g(z) < 0} and do(z) # 0 for
z € bG and g is strictly convex with respect to the real coordinates of z, ..., 2g41,
ie.

H,()t>0 (6)
forall{ eUzand t € C" withtg 3 =..=¢t, =0.
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(ii) A local g-convex C? domain is & C* domain D CC C" for which there exists a
biholomorphic map A from a neighbourhood of D onto an open set in C” such
that k(D) is strictly convex with respect to the real coordinates of z, ..., 2g41.

Lemma 3.1 Let 0 < g < n—1 be an integer. Further let @ C C" be an open set, p a
real C? function on 6 with do(z) #£ 0 for 2 € 0 and let M = {z € 8 : p(z) = 0}. Set
6y = {z € 8 : p(z) < 0} and suppose that for some z, € M the restriction of L (%)
to the complez tangent plane of M at z; has at least q positiv eigenvalues. Then there
erist a local g-conver C? domain D and a neighbourhood U of z, such that

Uné, CDCH,. (7)

Proof. Choose a real C? function ¢ on @ with dp(z) # 0 for z €  and 6, = {2 €
6 : ¢(z) < 0} such that L,(z) has at least ¢ + 1 positive eigenvalues (see Proposition
5.8 in [H/Le 2]). Then the restriction of ¢ to a certain (g + 1)-dimensional complex
submanifold through 2, is strictly plurisubharmonic and non-critical. Therefore in view
of the Narasimhan lemma (see Theorem 1.4.14 in [H/Le 1]) we may assume that ¢ is
strictly convex with respect to the real coordinates of 2y, ..., zg41. Fix r > 0 so small
that for the ball B,(z) := {z € C" : |z — z| < r} we have B,(z) C 0, dip(z) # 0 for
all z € B,(2) and the intersection of bB,(2) and the surface {¢ = 0} is transversal.

Now let § > 0, 7(z) := maxp(¢(2),]z — z|* — r*) and D = {z € 0 : 7(2) < 0}
where maxg(-,-) is the smoothing of the function max(-,:) from Definition 4.12 in
[H/Le 2]. By Lemma 4.13 in [H/Le 2] maxy(-,-) is convex and has non negative first
order derivatives at least one of which is positive. Therefore 7 is strictly convex with
respect to the real coordinates of 2y, ..., 2,41 for any § > 0. Moreover by Lemma 4.13
in [H/Le 2}

max(t1, ;) < maxg(t1,tz) < max(ty,tz) + 8

and
ma.x(tl,tg) = mﬁﬁ(tl,tg) for |t1 - tgl 2 ﬁ

Therefore it is clear that for each neighbourhood U CC B,(2) of z (7) will be satisfied
if S is sufficiently small. :

It remains to prove that dr(z) # 0 for all z € bD if 3 is sufficiently small. For that
first we observe that dr is a non-trivial linear combination of di(z) and d|z — %|? (see
the proof of Lemma 4.13 in [H/Le 2]). Since the intersection of bB,(z) and {¢ =0} is
transversal this implies that for some neighbourhood V' of this intersection dr(z) # 0
for all z € V. Finally we observe that since maxg(t;,t;) = max(ty, ty) if [t, — t3] > § we
can choose J so small that for all 2 in some neighbourhood of bD\V either 7(z) = (2)
or 7(z) = |z — z|* — r2. [
Lemma 3.2 Let G CC C" be a C? domasn which is strictly conver with respect to the
real coordinates of z1,...,2,41. Let0< g<n—1 andlet p: Us — R be as in part (i)
of the Definition. Further let § > 0 be so small that the neighbourhood

Vg i={z€Upy:o(2) < 8}




of G is relatively compact in Uy. Then there exist constants a, A > 0 such that

2Re Z agg)((: —z)+A i €5 — z.,-|2 > 0(0) — o(2) + ¢ - zlz ®8)

j=1 J=¢#l

for all 2,( € Vg.

Proof. Sett = (tl,...,tﬁ.l,O,..., 0) and ¥ = (O, ...,O,tﬁg,...,tn) if t € C*. Then by
(6) there is a constant § > 0 such that

H(Q)Y > 3plEP (9)

for all ¢ € Vi and t € C". Using the inequality 2ab = 2(ea)(b/e) < £%a® + b?*/e? we can
choose a constant C > 0 such that

[Ho(C)t — H (O] < BIEI + (C - 28)" | (10)
for { € V3 and t € C". Since by Taylor’s theorem

j=1 aCJ

it follows from (9) and (10) that for some € > 0 we have the estimate

2Re 3° 220 (¢ _ ) o) - e2) + HaQ)(C - 2) +o(l¢ — 21P)

2Re Z:l agg) G —2z)+CK" - 2’1 > 0(C) - o(2) + B¢ — 2 (11)

if z,( € Vg with |[( — z| < e.
Now let z,{ € Vg with |{ — z] > ¢ and (" = 2". Set

# == T+

Since g is strictly convex with respect to the real coordinates of z, ..., 2z, we get 2° € V3
and

o(=)< (- l)e(() = |e(2)
and since |[( — 2| = ¢ it follows from (11) that
(=

£ =2 o0) - o) + e%)
> o) ole) + felc -

2Re Z_:l 8;2;) (¢ — %)

v

Hence we can find 6 > 0 so small that

2Re 3= 200G, — ) 2 o(0) - o) + e - o



for all z,{ € Vg with | — 2| > € and |[(" — #’| < 6. Clearly this implies that for
sufficiently large constants B > 0 we have

e 3220 (¢ )4 BIC - P2 o) - o)+ Bl -dl (1)
275 2

for all z,¢ € V5 with ¢ — z} > €. (8) now follows from (12) and (11) if we set
A =max(C,B) and @ = min z-=. n
J(GVG ( ¥
IC-a12e

4 Certain new estimates for 0

In this section ¢ is an integer with 0 < ¢ < n—1 and D CC C" is a local g-convex
C? domain. Then we have by definition a C? domain G CC C" which is strictly
convex with respect to the real coordinates of z,,..., 2,41 and a biholomorphic map h
from a neighbourhood Up of D onto a neighbourhood Uy of G such that h(D) =
After shrinking these neighbourhoods we may also assume that there is a C? function
¢ : Uz — R as in the first part of the Definition in Section 3. Further let Vg, A,a be
as in Lemma 3.2. Before we come to the announced estimates we construct an integral
operator which gives a homotopy formula for (n,r)-forms withn —g¢<r < n.
For all (§,{) € C"* x Uy we set

5 80(0)

faC =
w;(§,¢) agEC)+A(E’ ;) for g+2<j<n,

w(f!() = (wl(EiC) awﬂ(E)C))’
®(£,0) (w(€, ()¢ =€) — 20(¢)

Then by (8)

for 1<j<q+1

Re®(¢,() 2 ~o(C) — e(§) + al¢ — ¢ (13)
forall £, € V. In particular (¢,() # 0if {,{ € G and forall (€,(, ) € VaxVgx[0,1]
with £ # ( we can define

W(EC) 384
Q) ‘e=ep

'f(ﬁ)(a’\) = (1 - A)

and

BOGGN) = g ),,drh(f WON) A Adra(6,60) Adér A . A dE

where 1, ..., 7, are the component.s of n and d is the exterior differential operator with
respect to £,{,\. For { # €, (f(,‘ A) is of class C™ in £,) and all derivatives
with respect to £, A are continuous in §,{,A. Moreover if we consider only the part of
HE(¢,¢,)) which is of degree 1 in A then we see that the singularity at £ = ¢ of this

form is of order < 2n — 1.



Hence for each g € L(G) N CY(G) the integrals

Bo©):= [ gOAEE(N) for £eG

(€, M)eGx{0,1]

converge (for the definition of such integrals see for instance Section 0.2 in [H/Le 2])
and in this way we obtain a form H% € CJ(G). Denote by H(£,(,)) the pull back
of the form HS(¢,(,)) to Up x Up x [0,1] with respect to the biholomorphic map h.

That means X A
H(§,¢,A) = (hg x K)HO(E,(, ). (14)

Further let
H=hoH%o(h ')

be the pull back of the operator H to the domain D with respect to h. Then H is
a linear operator from L}(D) N C?(D) to C?(D) and for each f € L}(D) N CY(D) we

have A
Hf©= [ FOAEECN) for €D
(CA)eDx[0,1)
Note that forr =1,...,n
H(L}, (D) N C (D)) € Coir—y)(D). (15)

Theorem 4.1 Ifn—q < r < nand if f € Li, (D) N CQ, 5(D) such that df also
belongs to L}(D) N CY(D) then

dH f for r=n
f= {dHf-}-de for n—q<r<n—1. (16)

Theorem 4.2 There is a constant C < 0 such that for each bounded f € C(D), Hf
is Holder continuous on D end

1Bl < CauplIf Ol

Essentially these theorems are contained already in the works of GRAUERT/LIEB
[G/L], HENkIN [H 1] and W- FiscHER/LIEB [WF/L] where certain versions of the
operator H with boundary integrals are used. To obtain proofs precisely for the state-
ments formulated here one can use many different sources in the literature. We restrict
ourselves to the following remarks: The idea to use operators without boundary inte-
grals is due to HENKIN, LIEB and RANGE (see [L/R) or [H/Le 1}); Theorem 4.1 can
be proved by the same arguments as Theorem 4.11 in [La/Le}; Theorem 4.2 can be
proved by the same arguments as Theorem 3.1 in [BF].

Theorem 4.2 admits generalisations to forms satisfying different uniform growth
conditions ([L/R], [BF]). For example in [BF]} the case is studied where for a smooth

submanifold N of 4D
HF)Il < [dist(¢,N)]# for (€D
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where 0 < f < 2n — dimp N. In the present paper we need the following improvement
of this result for the case when N consists only of one point and f = 2n — 1: Set

() =3 2506 - 5) a7)

j=1

for z € Up and £ € C*. Note that for z € bD, 7(§, z) is proportional to the Euclidean
distance §(¢, z) between £ and the complex tangent plane of D at 2.

Theorem 4.3 There s a constant C > 0 such that the following holds: If z € Up\D
(in particuler z € bD is admitted) and f € C’°(D) satisfies the estimate

1
O € =3t (18)

for all ¢ € D then Hf belongs to C:/*(D\{z}) and moreover

14 |Inj¢ - z|]

MOl o+ 1= P P 1)

for all £ € D\{z}.

Proof. We may assume that D = G and h is the identical map. Let z € Up\D and
f € C¥(D) with (18) be given. That Hf belongs to C5/ ?(D\{z}) then follows from
Theorem 4.2 and the fact that for { # { the derivatives of H(,(, A) with respect to §
are continuous in §,(, A.

Now we are going to prove estimate (19). During this proof by C, C,, C; we denote
positive constants which are independent of f and z. The constant C used in different
places may have different values there. Observe that as usual (see for instance Section
3.2.7 in [H/Le 1)) we obtain that

AN < C(Jo(§) + Hh(§) + I(€)) for (€D (20)
where o
Ii(€) =
0= | B
and do is the Lebesgue measure. We omit the elementary arguments which show that
[1(§)] < E‘% for £€D. (21)

To estimate I;(£) and I;(£) we first give some auxiliary estimates. From the definition
of @ it is clear that

|®(¢,2)| > 27(€,z) — Al§ = z|* for z2€ D

and

18(€,2) - B(6, Q)| S CI — 2| for €,C€D.

8



Hence
1B, 2 27(€,2) — CL(I¢ — 2l + ¢ — 2I*) (22)

for all £,{ € D. Further we introduce the abbreviation t(¢,{) := Im ®(¢,() and recall
the fact that dt(€,C) _  Ade(() # 0 if C € bD. Choose » neighbourhood Usp of D

and a number £ > 0 so small that

det(§,() Ado(¢) #£0 (23)
for all £ € Upp and ¢ € C" with |¢ — €] < &. Note also that by (13)
[B(&, O 2 [£(€, )] + |e(O)] + le(©)) + ¢ — £ (24)
for all ¢, € D. It follows from (24) and (21) that
L(§) < CL(¢) < Tf% for £ € D\Uip (25)
and do
2n
| e <© (#6)

(€D
I¢=¢i>e

for all £ € D\{z} and k =1,2. Set

* — da'zn
0= | BEoRKC g
K~tl<e
for ¢ € (DN Usp)\{z}. Since
' 7(€,2) < Caf€ - 2 (27)
for all £ € D now by (20), (21), (25) and (26) it remains to prove that
1+|lnf¢ -
and 1+ 1ln
he) < oA (29)

7€, 2)|€ — 2|3
for all £ € (DN Uyp)\{z} and k = 1,2. In doing so we use the following notation: If
¢ € (DN Usp)\{z}, W(€) C D and k € {1,2} then

. don,

LW O= | e gm =

CEW (L)
I¢-€l<s

Proof of (28). For £ € (D NUyp)\{z} we set

W) ={CeD:|(—z < ¢ -4/2}




and
Wi(e)={Ce D: I — 2| > Ie - 21/2).
Then
Le(€) = I dW'(6)) + Lo (W' () (30)

for all £ € (DNUyp)\{z} and k € {1,2}. Since | - £| > [€ — 2|/2 if € W'(£) and by
(24) we have

, C dU?n
LdWQ) < e . J( o QEEOT+Te(Q) + 1€ — 2P — 2P

[€-€i<e

for all £ € (DN Uyp)\{z} and k € {1,2}. By (23) g and ¢(¢, ) may be considered as
local coordinates. Hence

C dzy A ... Adxa,
WieE)y € —— f
I o( (E)) = Je- zlzn-x—bsenh (lz1] + |za| + |€ - 2P|z |pn-1
< C / a'.zl ALA d-’L'gn
=~ lE _ zlﬂn—lﬁ-b e lzlan-l
Isj <[~ 512
+C(1 +|Inf§ — 2]|) / dzy A ... Adzg,_y
[€ = z[fn-1-k s [z[tn-T
|#]>1€~2|3
14 |In{ - 2||
S @)

for all £ € (DN Up)\{z} and k € {1,2}. By similar arguments we obtain that

C / le ALLA d.‘bg,-,
€ — z[*~1 (lzsl + |z + |z [?) [z f2n-1-

I,,,.(W”(E)) <

2R
< C (1 +|ln|z||)dz; A ... A dzg-a
= |£ - zlzn—laen’“-h Iz|2n-l-h
C
S g (32)

for all £ € (DN Uyp)\{z} and k € {1,2}. Estimate (28) now follows from (30)-(32).
Proof of (29). Let Cy = 2(C) + C,) where C; and C; are the same constants as in
(22) and (27), and set

Wo¢) = {(€D:I(-z|<7(£2)/Cs},

Wi¢) = {(€D:|(~z2|>(2)/Cs},
WRE) = {(eW'(&):I¢ -2l < |~ 2l/2},
WHE) = {(eW () :I¢ -« > [ -=l/2},
W) = {(eW™ (&) I(-¢l <€~z
WG = {CeWH(O):I(—¢&1> |E- 21}

10



Then

Le(€) = Le(WO(€)) + T e(WH () + L e (W) + L e(WHH(E))  (33)

for all £ € (DN Uyp)\{2} and k € {1,2}. Since |¢ — &] > |€ — z|/2 if { € W'°(£) and
by (24) and (23) we obtain that

C dzr, A ... Adza,
€ — zftor-* (21| + |za] + [€ — 2|

L (W (€) <

o i<l
C(1+|ln|£—z| |) /‘ d&'l/\.../\dzgn_i
< € = zpr-1-* - [zt

7({,2)/Cy <fel<{-|/2

for all £ € (DN Uyp)\{z} and k € {1,2}. Hence

C(1+ |ln|f—z| l) / d:cl A...Adzz,._l

Il's(wlo(f)) S T(f, z)lf — z|2n—1 . lzlin—Z

eMan—1
lsi<lE—s1/2
Cl+|ln|§~2|[)
€ - 7 &4
and
1 C(l + |In|f - ZI I) d:lh A A dxgn_a
I?,c(w 0(5)) S lf _ zlg,...g p_[-a lzlzn—l
r(E.)/Ca <l
CQA+|In|¢—z|])
6 - 7 &)
for all £ € (DN Usp)\{z}. Further it follows from (24), (23) and (27) that
110 __Cc dz, A ... Adza,
L(W™() < €=zt A (Iz1] + [za] + [2)*[z 1
isl<it—al
C 1+ jln|z|dz; A ... Adzga—s
< =1 ep_[_i I$|2ni1—h -
i=l<i¢—1)
Cll+|lnj¢—2||) CQ+|In|l-2||)
S T-a S TEok- A (36)

for all § € (DNUyp)\{2} and k € {1,2}. Since |( — 2| > | — z|/2 and |( — €| > | - 2|
imply |¢ - €| > (1/2)|¢ — 2| we get
daﬁn

Wlll
helWHO) € o) BEOTE —EPni — sprers

(ewili{g)

11



e i A s B, AP, &

< C / dIBl AA d::g,,

S EFs [ Tl Rl R
r(£.2}/Cy<|n|

C(1+|1n[£—z|]) dzy A ... ANdzg,_,

€ = z[2n-3 |z|2n+1-*

IA

sch3n-k
(€.0)1C3 <8l

Ca+||{-2])
(€, 2)l — 22

for all ¢ € (DNUp)\{z} and k € {1,2}. Finally we consider the integrals I; .(W°(¢)).
It follows from estimate (28) which is already proved that

CCs(1+ | - 2| )
(& 2)E — 2[*-°
for all £ € (DNU,p)\{z} with 7(£, 2) < Cy|€ — 2|* and k € {1,2}. Therefore it remains

to estimate I ((W°(£)) for all £ € (D NUyp)\{z} with
7(€,2) 2 Csl€ — 2. (39)

It follows from (27) that |( — z| < € — 2|/2 and therefore |( — £| > |€ — 2|/2 for all
¢ € (DNU,p)\{z} and ¢ € W°(£). Moreover it follows from (22) that |®(¢, () > (£, 2)
for all ¢ € (D N Uyp)\{2} satisfying (39) and ¢ € WP°(£). Hence

(37)

L (W°(§)) <

(38)

c dzl A A dz:n
I;,_,(Wo(f)) < (‘r(f, z))ilf i1k mi[ﬁ S
lel<r{¢a)/Ca
C
S GEE
C
< € )= zP~3 (40)

forall ¢ € (DN Uw)\{z} satisfying (39) and { € WO(£) (for k = 1 we used (27)).
Estimate (29) now follows from (33)-(38) and (40).

5 Construction of the kernel

We start this section with a corollary to Section 4.

Corollary 5.1 Let D CC C" be a local 1-convez C? domain and let H be the operator
constructed in Section § for D. Set

Kp(2,§) = [H(B(z,-)))(§)

for all z € C"\D and { € D where B(z,§) is the Martinelli-Bochner kernel (5). By
Theorem 4.3, Kp(z,£) is defined and continuous even for all z € C*\D and £ € D
with z # €. Moreover this form has the following properties:
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(i) Kp(z,§) is of bidegree (n,n —2) in £ and of degree zero in 2.
(i) deKp(z,€) = B(2,£) for all z € C°\D and { € D with z # €.
(iti) There is a constant C > 0 such that

1+|ln|¢ - 2|
((2,6) + |€ — z]?)|€ — 2|3 (41)

for all z € Up\D and £ € D with z # £ where 7(2,£) is defined by (17).

Kbz, 0)ll < C

(iv) For each z € C"\D, the form Kp(z,-) belongs to (l,ff‘_a)(D) and the assignement
z = Kp(z,') is of class C* as a map from C"\ D with values in the Banach space
Colr_y)(D).

(n,n—

(v) Forany0 < a <1, Kp(z,£) is of class C,. 1/2 for all 2 € C"\D and £ € D with
z#E.

Proof. (i) follows from (15), (ii) follows from Theorem 4.1 and (iii) follows from
Theorem 4.3. Since the Martinelli-Bochner kernel is of class C'°° outmde the diagonal
and, by Theorem 4.2, H acts continuously from C7, ,_,,(D) to C(w, _2)(D), (iv) is also
clear.
It remains to prove (v). Fix 0 < a <1, z € C*\D and £ € D with z # §. Set
= |z — &o|/5 and .

B(z) = {2€C"\D:|z -z} <~}
B(¢o) = {€€D:[£-&| <~}
It is sufficient to prove that Kp(z,£) is of class C3y/” for (2,€) € B(z) x B(£o). For

that we choose a real C* function x on C* with x({) = 1if |{ —&| < 2y and x({) =0
if |( — ol > 3. Set

K3(2,€) = [H(xB(z,"))I(§),
K5 *(2,6) = H((1 - x)B(z,))(¢)
for z € C*\D and ¢ € D with z # £. Since x(¢)B(z, C) is of class C*™ for (z,() €
B(z) x C" and H acts continuously and linearly from C, ,_,\(D) to C}/%,_, (D), we
see that the map z — K%(z,-) is C* from B(z) to (1,{’" 2(D). Hence in particular,
K3(2,€) is of class C'f'gm for (2,€) € B(z)x B(&o). It remains to prove that K}, %(z,£)
is of class C"'l/z for (z,€) € B(z) x B(£). For that we consider the form

£760= [ Q=xOAEGN

A€f0,1]

13



(see (14) for the definition of E(E,C,A)). Since 1 — x(¢) = 0 if { € B(§p) the map
£ — f(&,-) is C* from B(&) to C?(D). Since

K5Xz8 =% [ f(60)AB(0)

(eD

for z € C"\D and { € B({) and since the Martinell-Bochner integral induces a
continuous linear operator from C?(D) to C*(B(z)) this implies that the map & —
K5 *(-,€) is C* from B(£) to C*(B(z)). This completes the proof. ]

Proof of Theorem 1.1. Choose an open ball B CC C" centered at z, 50 small that
B\M consists of precisely two connected components and BN M is relatively compact
in M. The two connected components of B\M we denote by B, and B. so that on
B N M the orientations of M and bB, coincide. In view of Lemma 3.1 we can find
local 1-convex C? domains D, and D_ and open balls By CC B; CC B centered at
zo such that BN By C Dy C B;. Set M, := M N By and denote by H, and H. the
operators defined in Section 4 for D, and D_ respectively. Set

K+(2,€) := —[H+B(z,-))(£)

for all 2 € C"\ D4 and € € D, with z # €. By (15) Ky(z,§) is defined and continuous
for all z € C*\D,. and ¢ € D, with z # £. Therefore by setting

K(z¢) = K+(z’£)]Mo x My K_(z’£)|Mo X My
we obtain a differential form defined and continuous for all (z,£) € M, x M, with
z # £. It follows immediately from the statements (i), (ii), (iii) and (v) in Corollary
5.1 that K(z,{) has the properties (i)}-(iv) formulated in Theorem 1.1.
Now we prove part (v). Let 1 CC M, be a domain with piecewise C' boundary.
An approximation argument shows that we may restrict ourselves to C! functions f.
First we consider a C* function f on £ with compact support. Then there is a C*
function f on C" with f(¢§) = f(£) if £ € Q and

suppf CC D,UD_UQ=:D

and since, by Corollary 5.1 (ii), d¢ K3 (2,€) = B(z,£), it follows from Stokes theorem
and the Martinelli~Bochner formula that

—/auf(f)AK(z,f) .= f Bf(f)/\deK+(2,f)+ / af(e)Ade-(z$£)

¢en (€D, - ¢eD-
= - [ 31 AB(2,6) = f(2) = £(2)
geD

for all 2 € 0. That is (2) is proved in the case when f has compact support.
Now let f be an arbitrary C? function on §}. Fix z €  and choose a C? function ¥,
on M, with supp x, CC Q and x, = 1 in some neighbourhood of z.Then (1-x,)fK(z,)

14



is a continuous form on {} which is identically zero in a neighbourhood of 2 and since |
de K(2,€) =0 for £ # z we have the relation

d(1-x,)fK(z-) = dl(1 -x.)fIAK(z2,)
= agf /\'K(Z, ) - By(x,f) A K(Z, )

on 2. Therefore d|(1— x,)fK(z,-)] is also continuous on {2 and Stokes theorem implies -
that

[fAK@E)= f Buf AK(z) = [Bu(0f) AK(3,).

) 0 n . :
Since formula (2) is already proved for x,f and therefore

~ [ ) A K(2,) = xa(2)F(2) = £(2)
111 .

this completes the proof of (2). - m

6 Further propertles of the kernel K(z,£) and ap-
- plications

In this section we assume that g, M, z, My and K(z,£) are as in Theorem 1.1 and
By, B, B, B_, K, (z,£) and K_(z,£) are as in Section 5. Moreover we shall assume
that the ball By is chosen sufficiently small so that the following two propositions hold:

Proposition 6.1 Any continuous CR-function defined on an open set {I C M, extends
to a holomorphic functton in some C"-neighbourhood of ﬂ

Proposition 6.2 If B(z) C B, is an open ball ocntered at some point z € M, then
any continuous and closed (n,n—2)-form on B, N B(z) respectively B_ N B(Z) can be
approzimated uniformly on B, N B(z) respectively B_ N B(z) by 5-ezact Clan—g)-forms
on ",

That this is possible follows from the hypothesis on the Levi form of g: Proposition
6.1 is a consequence of the Levi extension theorem (see, e.g., Theorem 1.3.8 in [H/Le
2)), since, in the sense of distributions, any continnous CR-function on a hypersurface
" is the jump of two holomorphic functions (the latter assertion can be proved by means
of the Martinelli-Bochner-Koppelmann formula). Since By N B(z) is starshaped if B,
is sufficiently small, Proposition 6.2 follows from the Andreotti-Grauert-Hérmander
approximation theorem (see, e.g., Theorem 8.1 in [H/Le 2]).
Further for each open I C M, we use the following notations:

Spaces of forms. C{, () (0<r<n—-1,k= 012)mthespa.ceofc(“)forms‘
on {1 endowed with the topology of uniform convergence together with all derivatives
of order < k on the compact subsets of (1. By D, ,,(2) we denote the space of all

f € C{, () with compact support endowed with the test-function-topology of order

15



k: a sequence f, converges in Df, () if it converges in Cf, ,,(92) and moreover there
is a compact set w CC Q1 with supp f, C w for all v. By L(M)(Q) 0<r<n-1)
we denote the Banach space of (n, r)-forms with bounded measurable coefficients on 0
endowed with the sup-norm.

Spaces of currents. Cf, () and Df, () are the spaces of continuous linear
forms on Cf, () and D, () respectively, i.e. the elements in Df, () are the
(0, n—r—1)-currents of order  on £2, and the elements in C{, ,,(?)’ are the (0, n—r—1)-
currents of order k£ with compact support on {1.

If f is a differential form with locally integrable coefficients and of degree s on Q
then we denote by (f) the current in D, ,,_, ,)(£?)’ defined by

(£)(e): j fAe for €D, , @)

The operator 8;: For 0 < r <n -1 and k =0,1 we denote by 8; the operator
ba: Dfn,ﬁl)(ﬂ)’ — Df, r.+ rl)(ﬂ)’
defined by (8aT)p := (=1)""""T(dyp) for T € D, ,,)(?) and ¢ € D} ).

Definition. Let §2 C M, be an open set. Set

Kaf(©) = [ f(z) AK(2,8)

3€0)

for f € L{; ,_1)(?) and £ € €. It follows from estimate (4) that in this way a continuous
linear operator
Ka: L oo1)(82) = Chp n)(9)

is defined. Denote by K3 the operator from Cf, ,_5, () to Df, . _,() defined by

KaT(p) = T(Kap)
for T € C},,5)(0) and ¢ € Df, . ;)(Q). Denote by L'(§2) the Banach space of
integrable functions on 2 and set (L‘(Q)) = {{f) : f € L}(2)}. Then it follows from
estimate (4) and the fact that K(2,£) is continuous for z # ¢ that the values of K§
belong to (L'(Q)) and the map

(n n—z)(n)' (Ll (Q))

is continuous if we identify (L1(Q2)) with L*(12).
Theorem 6.3 Let @ C My be an open set and f € L ,_1,(2). Then

dKaf = f.
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Proof. If ¢ isa C! function with compact support on  then, by formula (2), it is
[er=[ [ @ AK@EEAI()=- [doAKaf.
f !

s€Q €l
|

Lemma 6.4 (i) Let p € Dy, ,_5(Mo). Then the form ¢ — Ky,dyp can be approzi-
mated in Cf,, ,_5(Mo) by 8-ezact CF,,_,)-forms on C™.

(i) Let z € My and B' CC By an open ball such that z ¢ B'. Then the form K(z,-)
can be approzimated uniformly on My N B' by 3-ezact Cf’,f’n_z) -forms on C".

Both assertions of this lemma are special cases of an approximation theorem of
HENKIN for arbitrary continuous d-closed (n,n — 2)-forms (see the arguments proving
relation (6) in [H 2]). Since the proof of this general theorem is not so easy let us give
direct proofs:

Proof of Lemma 6.4 (i). Set

K do(®) = [ do(z) AKs(2,6) for €€ BonBa.

€M,

Then it follows from estimate (41) that the forms K, di admit continuous extensions
onto (By N By) U M,. Further we set ‘

(€)= / ¢(z) A B,(2,£) for £ € BynBy,
€M
where B,(z,§) is the part of the Martinelli-Bochner-Koppelman kernel which is of
bidegree (0,1) in z. Since ¢ is Hélder continuous (it is even C?) it is well known that
also the forms ¢4 admit continuous extensions onto (B; N By) U My. Moreover it
follows from the Martinelli-Bochner-Koppelman formula that ¢ = gp+| M, - zp_l M,

and therefore
- = - K# - - K¢
p— Ky dp=(py — K Mo dzp)l a (p- — K Mo dga)i )

Using the relations d¢ By (z,€) = —8,B(2,£) and d¢ K3, (2,€) = —B(z,£) we see that the
forms @4 — K}'}odcp are d-closed on By N B.. The required assertion on approximation
now follows from Proposition 6.2. u

Proof of Lemma 6.4 (ii). Since B' is pseudoconvex and z ¢ B’ we can solve
the equation dG = B(z,-) with some continuous (n,n — 2)-form G on B'. Since
dK4(z,) = —B(z,-) the forms K.(z,:) + G are closed on B’ N B, and the assertion
follows from Proposition 6.2 and the representation

Kz Y pgyn g = B0+ GY g = (K-(20) + G)‘Mo NB"
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Definition. Let @ C M, be an open set and let f be a continuous 1-form with
compact support on 2. Then we define

af(2) 3=/f(E)AK(Z,E) for z €.

¢€n
It follows from estimate (3) that KGf is a continuous function on £2.

Remark 6.5 Let @ C M; be an open set and let f be a continuous 1-form with
compact support on 2. Then it follows from Fubini’s theorem that Kg(f) = (K f).

Theorem 6.6 Let 2 C M, be an open set and let T € C’("M 1)(Q) If 8T €
2)(8), that means if 8aT is also of order 0, then

T = —K38:T.
In particular then T is defined by an L' function on Q.

(ﬂ n—

Proof. If ¢ € D, ,_,)(£?) then by Theorem 6.3

T(p) = T(dKay) = —3aT(Kav) = ~K35aT(9).
Since D}, ,_1)(®) is dense in Df, | _,)(£2) this implies the assertion. o

Remark 6.7 Let 1 C M, be an open set and let T € C{, ,_,()'. Then it is easy
to see that

f(2) =T(K(z,")), z € ﬂ\suppT,

is a continuous function and, on Q\suppT, KT is defined by f. Hence for each
T € Cl,n-2(R), KiT is defined by an L' function on Q which is contimuous on
2\suppT.

Theorem 6.8 Let Q@ C M, be an open set and let T € D‘(’ﬂ n0)()'. If BT is defined
by a continuous I-form on {1 then T is defined by a continuous function on {).

Proof. Let w CC €1 be an open and relatively compact subset of 2. It is sufficient
to find a continuous function ¢ on w with

T(p) = f gp forall ¢ € Dy, . (W) (42)
Q

Choose a C? function x with compact support on {2 such that y = 1 in a neighbourhood
of ©. Then by Theorem 6.6 we have

T(p) = XT(p) = —K5(8a(xT))(v) = =K5(xSaT)(¢) — Ka(dx AT)(p)
for all € DY, ,_;y(w). In view of Remarks 6.5 and 6.7 this implies (42) if we set

nu—

9(2) = ~(Ka(xf))(z) - T(dx A K(z,)) for zE€uw,
where f is the continuous 1-form defining 8,7 ]
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Corollary 6.9 Let Q C My be open and T € D‘(’n‘"_l)(ﬂ)' such that 8qT = 0. Then
T is holomorphic in a C"-neighbourhood of §1, that means there ezists a holomorphic
function h in some C"-neighbourhood of §} such that

T(p)= [ho forall @€ D}, (®).
Q

Proof. This follows from Theorem 6.8 and Proposition 6.1. n

Corollary 6.9 was obtained by HENKIN (see Theorem 3 in [H 3]). Note that Theorem
6.8 does not follow from Corollary 6.9 (as the corresponding statement for §) because
under the given hypothesis on the Levi form of p the tangential Cauchy-Riemann
equation for (0,1)-currents on M, cannot be solved locally (see [A/F/N]).

Theorem 6.10 Let T € C7, ,_3(Mo)' such that 8y, T = 0. Denote by wr the con-
nected component of My\supp T whose boundary contains the boundary of My. Then

T - —auu K;,DT (43)

and
supp K, T C Mo\wr. (44)

That under the hypothesis of Theorem 6.10 there exists a L! function u on  with
Ou,{s) = T and suppu C Mo\wr was proved by HENKIN (see Theorem 1’ in [H 2]).
The new information contained in Theorem 6.10 consists in the representation

(w) = —Kiy,T. (45)

Although the validity of this representation follows immediately from Theorem 6.6 let
us give also a proof of Theorem 6.10 which is independent of HENKINs result:

Proof of Theorem 6.10. Since Sy, T = 0 it follows from Lemma 6.4 (i) that for
each ¢ € D{, ,_3,(Mo), T(¢ — Ku,dip) = 0 and therefore

~Ou, K34, T(9) = T(Kng,dp) = T(p)-

Since DY, ,_4)(Mo) is dense in D, , 5 (Mo) this proves (43).

From (43) and Corollary 6.9 it follows that on My\suppT, KT is defined by some
holomorphic function k. Choose an open ball B’ CC B, centered at 2y such that
suppT C B'. Then, by Lemma 6.4 (ii), for each ¢ € D}, ,_,,(Mo\B'), the form Ky,
can be approximated uniformly on My N B’ by J-exact C§,,_;)-forms on C". Since
Ox,T = 0 and suppT C B' this implies that

[ ho = KiT(#) = T(Knap) =0
Mo

for all such . Hence h = 0 on Mp\B' and, by uniqueness of holomorphic functions,
h =0 on wr, that means (44) is also proved. =
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It was observed by HENKIN (see Theorem 1 in [H 2]) that in the case of sufficiently
smooth functions Theorem 6.10 leads to an Hartogs-Bochner extension theorem on M,
using the same arguments as in EHRENPREIS’ proof of the classical Hartogs extension
theorem (see the proof of Theorem 2.3.2 in [H3]). We want to show that using repre-
sentation (45) and estimate (1) one can prove this theorem also in the case of Holder
continuous functions. Let § CC M, be a domain with C?-bounday. A continuous
function f on b will be called a CR-function if

/ fdp=0 (46)

0

for all CT; ,_s)-forms ¢ on C".

Theorem 6.11 Suppose Mg\{Ql is connected and let f be a Holder continuous CR-
function on b0. Then there ezists a (unique) continuous function F on () which eztends
holomorphically to some C*-neighbourhood of Q1 such that F(z) = f(2) for all z € bQ.
For z € Q1 this function is given by

F@)= [ fOK(¢). (40

£k

Proof. (All positive constants will be denoted by the same letter C.) First we note
that

1 for 2€0
/ K(z¢) = { 0 for ze€ M)\ (48)
(et .

If z‘e 0 this follows from (2) and for z € M,\{ this follows from Stokes’ theorem and
the fact that d¢K(z,€) = 0. Denote by T € C{, ,_3)(Mo)’ the current defined by

T(p) = / fo for o EC{',,’,,_,)(MQ).
vy

Then by (46), 9y, T = 0 and it follows from Theorem 6.10 that supp K3, T C © (Mo\Q
is connected) and T = —8, K}, T. Since by Remark 6.7 on Mo\b2, K}, T is defined
by the function

2= [ FOK(E
{1
this implies that ‘
[ 1OKGEH=0 for zeM\D | (49)
£ebil

and, by Corollary 6.9, the function F defined by (47) extends holomorphically to some
C*-neighbourhood of .
It remains to prove that

olim, F(z) = f(6) forall & e b0
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For z € M; denote by §, a point in b2 with |z — £,| = dist(z, b02) (£, is uniquely
determined if z is close to b§2). Then f(£,) — f(&) if 2 — &. Therefore it is sufficient
to prove that

Jdim (F(2) = f(£) =0 forall & e (50)

To prove (50) we fix some £, € b§2. Denote by B.({o), r > 0 the open ball of radius
r centered at £;. Set

@)= [ 17 - £E) 1K), lNe)

€EMINB,(Eo)

for r > 0 and 2 € Mo\ (b2 N B,(&0)), where dA(€) is the Euclidean volume form of 5.
Since | — £,]| € 2|¢€ - z| and f is Holder continuous there exists 0 < oy < 1 with

|f€) — fF&) S CKE - 2™ S (29
for all £ € b2 and 2 € My. Fix 0 < a < oy and prove that then
L(z)<Cr® (52)

for all r > 0 and z € M\ (b2 N B, (§o))-
Proof of estimate (52): Since K(z,£) is of maximal holomorphic degree in £ one

has
1 (2, €), I < CUK )1 19e(€Y, (53)
for all £ € b2 and z € M; with z # £. Set .
1o 3= 30(6)
u(z,{) :=Im le —8—&7*(5-' - z;).
Then
|u(z,6)| < C8(z,£) (54)
and
108(€) I < Cllldeu(z, )] I + I ~ 21 (55)

for all £ € b2 and z € My. Set € = (ap — )/2. Then it follows from (51)-(55) and (1)
that

L(z) £ C llden(z,€)], o 1dA(€)
s £€INB. (&) (lu(z, &) + |€ — z[)|€ — z|?n-3-o-
4+C dr(§)

[€ — z|3n-3-a

(56)
femﬂr(&)

for all r > 0 and z € Mo\(¥Q N B, (£)). It is clear that the second integral in (56) is
bounded by Cr®. To estimate the first integral we use the trick of RANGE and Siu
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(see the proof of Proposition (3.7) in [R/S]), which allows us to consider u(z,-) as a
local coordinate. So we obtain that this integral is bounded by
dzy A ... Adza,_s
C .
-[ (lza] + |zPP)a|?n=3-e"

welIn-2
Idl<r

Integrating first with respect to z, we see that the last integral is also bounded f)y Cre.
Hence estimate (52) is proved.
End of proof of (50): For r > 0 we set

B@= [ (- 1E)KEE)

§€dNBr(§o)
if z € Mo\(bn n B,(Eo)) and

Gl)= [ (FO-FENKEE

£e¥\ B, (ko)
if z € My\(bS1\B,(£o)). Then by (52) it is

|H,(2)] < Cr* (57)

for all r > 0 and z € Mo\(b2 N B,(§)). Since by (48) and (49), H,(z) + G,(z) =0 if
z € Mo\{} and G, is continuous on My N B,(§,) this implies that

|olim, G.(2)] = IG. (€] < Cr (58)

for all r > 0. Moreover it follows from (48) that

H,(2) + G.(z) = F(z) - f((,)
if z € Q. In voew of (57) and (58) this implies that for all r > 0 we have
limsup |F(2) - f(€)| < Cr°.

Remarks to Theorem 6.11.
() It follows from this theorem (by standard arguments) that
|F(2)| < max|f(¢)| foral ze€q
Hence the assertion of the theorem holds for each continuous CR-function f on

b2 which can be approximated uniformly by Hélder continuous CR-functions. It.
is not clear if this is possible for all contimious CR-functions on ).

(ii) We do not assume that the boundary 5Q is a CR-manifold. Note however that,
by the hiypothesis on the Levi form of g, the set of points in b2 with complex
tangent space is nowhere dense in ().

(iii) The hypothesis that b2 is of class C? is necessary for the Range-Siu trick in the
proof.
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