A local Martinelli-Bochner formula on hypersurfaces

Bert Fischer and Jürgen Leiterer

Fachbereich Mathematik der Humboldt-Universität

Max-Planck-Institut für Mathematik
Gotffried-Claren-Straße 26
D-5300 Bonn 3
O-1086 Berlin

Germany

A local Martinelli-Bochner formula on hypersurfaces

by Bert Fischer and Jürgen Leiterer

1 Introduction

Let M be an oriented real hypersurface of class C^{2} in \mathbb{C}^{n}, i.e. $M=\{z \in \theta: \varrho(z)=0\}$, where θ is an open subset of \mathbb{C}^{n} and ϱ is a real C^{2} function on θ with $d \varrho(z) \neq 0$ for all $z \in \theta$. For $z \in M$ and $\xi \in \mathbb{C}^{n}$, we denote by $\delta(\xi, z)$ the Euclidean distance between ξ and the complex tangent plane of M at z. The aim of this paper is to prove the following theorem:

Theorem 1.1 Suppose, for some $z_{0} \in M$, the restriction of the Levi form of ϱ at z_{0} to the complex tangent plane of M at z_{0} has at least one positive and at least one negative eigenvalue. Then there exist an open neighbourhood $M_{0} \subseteq M$ of z_{0} and a continuous differential form $K(z, \xi)$ defined and continuous for all $(z, \xi) \in \bar{M}_{0} \times \bar{M}_{0}$ with $z \neq \xi$ such that:
(i) $K(z, \xi)$ is of degree zero in z and of bidegree $(n, n-2)$ in ξ.
(ii) $d_{\xi} K(z, \xi)=0$ for all $(z, \xi) \in M_{0} \times M_{0}$ with $z \neq \xi$.
(iii) There is a constant $C>0$ such that

$$
\begin{equation*}
\|K(z, \xi)\| \leq C \frac{1+|\ln | \xi-z| |}{\left(\delta(\xi, z)+|\xi-z|^{2}\right)|\xi-z|^{2 \mathbf{n}-3}} \tag{1}
\end{equation*}
$$

for all $\xi, z \in M_{0}$ with $\xi \neq z$.
(iv) For each $0<\alpha<1$, the coefficients of $K(z, \xi)$ are of class $C_{x, \xi}^{\alpha, 1 / 2}$ for all $(z, \xi) \in$ $M_{0} \times M_{0}$ with $z \neq \xi$ (for the definition of $C_{s ; \xi}^{\alpha, 1 / 2} c f$. the end of Section 2).
(v) Let $\Omega \subset \subset M_{0}$ be a domain with piecewise C^{1} boundary. If f is a continuous function on $\bar{\Omega}$ such that $d f(\xi) \wedge d \xi_{1} \wedge \ldots \wedge d \xi_{n}$ is also continuous on $\bar{\Omega}$ then

$$
\begin{equation*}
f(z)=\int_{\xi \in \cup \Omega \Omega} f(\xi) K(z, \xi)-\int_{\xi \in \Omega} d f(\xi) \wedge K(z, \xi) \tag{2}
\end{equation*}
$$

for all $z \in \Omega$.

Remark 1.2 From estimate (1) it follows that $\|K(z, \xi)\|$ is integrable with respect to ξ and z. More precisely, it is easy to see that the following estimates hold: Denote by $d \lambda$ the Euclidean volume form on M. Then there is a constant $C>0$ such that

$$
\begin{equation*}
\int_{\substack{\left|\in \in \mathcal{N}_{0}\\\right| \xi \rightarrow \mid \ll}}\|K(z, \xi)\| d \lambda(\xi) \leq C \varepsilon\left(1+|\ln \varepsilon|^{2}\right) \tag{3}
\end{equation*}
$$

for all $z \in \bar{M}_{0}$ and $\varepsilon>0$, and

$$
\begin{equation*}
\int_{\substack{1 \in \mathcal{N}_{0} \\|z-\varepsilon|<\varepsilon}}\|K(z, \xi)\| d \lambda(z) \leq C \varepsilon\left(1+|\ln \varepsilon|^{2}\right) \tag{4}
\end{equation*}
$$

for all $\xi \in \bar{M}_{0}$ and $\varepsilon>0$.
To obtain the kernel $K(z, \xi)$ in Theorem 1.1 we proceed as follows: Consider the Martinelli-Bochner kernel

$$
\begin{equation*}
B(z, \zeta):=\frac{(n-1)!}{(2 \pi i)^{n}} \sum_{j=1}^{n}(-1)^{j+1} \frac{\bar{\zeta}_{j}-\bar{z}_{j}}{|\bar{\zeta}-z|^{2 n}} d \bar{\zeta}_{1} \wedge . . j . . \wedge d \bar{\zeta}_{n} \wedge d \zeta_{1} \wedge \ldots \wedge d \zeta_{n} \tag{5}
\end{equation*}
$$

and a sufficiently small open ball $U \subseteq \mathbb{C}^{n}$ centered at z_{0}. Set $U_{+}:=\{\zeta \in U: \varrho(\zeta)<0\}$ and $U_{-}:=\{\zeta \in U: \rho(\zeta)>0\}$. Then, in view of the hypothesis on the Levi form of ϱ, it follows from the Andreotti-Grauert theory that, for fixed $z \in M$, one can solve the equations

$$
\bar{\partial} K_{+}(z, \cdot)=-B(z, \cdot) \text { on } U_{+}
$$

and

$$
\partial K_{-}(z, \cdot)=-B(z, \cdot) \quad \text { on } \quad U_{-} .
$$

We prove that this can be done with appropriate uniform estimates so that $K_{+}(z, \xi)$ and $K_{-}(z, \xi)$ extend to $(U \cap M) \backslash\{z\}$ and $K(z, \xi):=K_{+}(z, \xi)-K_{-}(z, \xi)$ has the required properties. For that we use a version of the classical integral operators constructed by Grauert/Lieb [G/L], Henkin [H 1] and W. Fischer/Lieb [WF/L].

Formula (2) is an analogon of the Martinelli-Bochner formula in \mathbb{C}^{n}. At the end of this paper (Section 6) we want to show that this analogy extends also to some of the applications of the Martinelli-Bochner formula: using the kernel $K(z, \xi)$, we prove strengthened versions of some of the results on the tangential Cauchy-Riemann equation obtained by Henkin in [H2] and [H 3] (see the regularity theorems 6.6 and 6.8 , the solvability theorem 6.10 for (0,1)-currents with small support, and the Hartogs-Bochner extension theorem 6.11).

2 Preliminaries

Let $K \subset \subset \mathbb{C}^{n}$ be a compact set. Then $C^{0}(K)$ is the Banach space of all continuous complex functions on K. For $0<\alpha<1, C^{\alpha}(K)$ is the Banach space of all complex functions which are Hölder continuous with exponent α on K. The norm in $C^{\alpha}(K), 0 \leq$
$\alpha<1$ will be denoted by $\|\cdot\|_{\alpha, K}$. That means $\|\cdot\|_{0, K}$ is the max-norm and for $0<\alpha<1$, $\|\cdot\|_{\alpha, K}$ is the Hölder norm with exponent α.

Let $D \subset \subset \mathbb{C}^{n}$ be a domain and $0 \leq \alpha<1$. Then $C_{*}^{\alpha}(D)$ is the Banach space of differential forms whose coefficients belong to $C^{\alpha}(D)$. The norm in $C_{*}^{\alpha}(\mathbb{D})$ will be denoted by $\|\cdot\|_{\alpha, \bar{D}}$. By $C_{(e, r)}^{\alpha}(\bar{D})$ we denote the subspace of forms in $C_{*}^{\alpha}(\bar{D})$ which are of bidegree (s, r). By $L_{*}^{1}(D)$ we denote the Banach space of all differential forms whose coefficients are integrable on D. The norm in $L_{*}^{1}(D)$ will be denoted by $\|\cdot\|_{L^{1}(D)}$ and $L_{(o, r)}^{1}(D)$ is the subspace of all forms in $L_{*}^{1}(D)$ which are of bidegree (s, r).

Proposition 2.1 If $A, B \subset \subset \mathbb{C}^{n}$ are two compact sets, $f(z, \xi)$ is a complex function defined for $(z, \xi) \in A \times B$ and $0 \leq \alpha, \beta<1$ then it is easy to see that the following two conditions are equivalent:
(i) $f(z, \cdot) \in C^{\beta}(B)$ for all $z \in A$ and the assignment $A \ni z \rightarrow f(z, \cdot)$ is Hölder continuous with exponent α as a map with values in $C^{\beta}(B)$.
(ii) $f(\cdot, \xi) \in C^{\alpha}(A)$ for all $\xi \in B$ and the assignment $B \ni \xi \rightarrow f(\cdot, \xi)$ is Hôlder continuous with exponent β as a map with values in $C^{\alpha}(A)$.

Let Z be an arbitrary subset of $\mathbb{C}^{n} \times \mathbb{C}^{n}, f(z, \xi)$ a complex function defined for $(z, \xi) \in Z$ and let $0 \leq \alpha, \beta<1$. Then we say that $f(z, \xi)$ is of class $C_{x, \xi}^{\alpha, \beta}$ on Z if for each pair of compact sets $A, B \subseteq \mathbb{C}^{n}$ with $A \times B \subseteq Z$ the both equivalent conditions (i) and (ii) in Proposition 2.1 are fulfilled.

3 Local q-convex C^{2} domains

If φ is a real C^{2} function in some neighbourhood of a point $z \in \mathbb{C}^{n}$ then we denote by $L_{\varphi}(z)$ the Levi form and by $H_{\varphi}(z)$ the Hessian form of φ at z. That means

$$
L_{\varphi}(z) t:=\sum_{j, k=1}^{n} \frac{\partial^{2} \varphi(z)}{\partial z_{j} \partial \bar{z}_{k}} t_{j} \bar{t}_{k} \quad \text { for } \quad t \in \mathbb{C}^{n}
$$

and

$$
H_{\varphi}(z) t:=\frac{1}{2} \sum_{\nu, \mu=1}^{2 n} \frac{\partial^{2} \varphi(z)}{\partial x_{\nu} \partial x_{\mu}} x_{\nu}(t) x_{\mu}(t) \text { for } t \in \mathbb{C}^{n}
$$

where $x_{1}, \ldots, x_{2 n}$ are the real coordinates on \mathbb{C}^{n} with $z_{j}=x_{j}(z)+i x_{j+n}(z)$ if $z=$ $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$.

Deflnition. Let $0 \leq q \leq n-1$ be an integer.
(i) If $G \subset \subset \mathbb{C}^{n}$ is a C^{2} domain then we say that G is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q+1} if there exists a real C^{2} function ϱ in a neighbourhood $U_{\bar{G}}$ of \bar{G} such that $G=\left\{z \in U_{\bar{G}}: \varrho(z)<0\right\}$ and $d \varrho(z) \neq 0$ for $z \in b G$ and ϱ is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q+1}, i.e.

$$
\begin{equation*}
H_{e}(\zeta) t>0 \tag{6}
\end{equation*}
$$

for all $\zeta \in U_{G}$ and $t \in \mathbb{C}^{n}$ with $t_{q+2}=\ldots=t_{n}=0$.
(ii) A local q-convex C^{2} domain is a C^{2} domain $D \subset \subset \mathbb{C}^{n}$ for which there exists a biholomorphic map h from a neighbourhood of \bar{D} onto an open set in \mathbb{C}^{n} such that $h(D)$ is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q+1}.

Lemma 3.1 Let $0 \leq q \leq n-1$ be an integer. Further let $\theta \subseteq \mathbb{C}^{n}$ be an open set, ρ a real C^{2} function on θ with $d \varrho(z) \neq 0$ for $z \in \theta$ and let $M=\{z \in \theta: \varrho(z)=0\}$. Set $\theta_{+}=\{z \in \theta: \varrho(z)<0\}$ and suppose that for some $z_{0} \in M$ the restriction of $L_{\rho}\left(z_{0}\right)$ to the complex tangent plane of M at z_{0} has at least q positiv eigenvalues. Then there exist a local q-convex C^{2} domain D and a neighbourhood U of z_{0} such that

$$
\begin{equation*}
U \cap \theta_{+} \subseteq D \subseteq \theta_{+} \tag{7}
\end{equation*}
$$

Proof. Choose a real C^{2} function φ on θ with $d \varphi(z) \neq 0$ for $z \in \theta$ and $\theta_{+}=\{z \in$ $\theta: \varphi(z)<0\}$ such that $L_{\varphi}\left(z_{0}\right)$ has at least $q+1$ positive eigenvalues (see Proposition 5.8 in [H/Le 2]). Then the restriction of φ to a certain ($q+1$)-dimensional complex submanifold through z_{0} is strictly plurisubharmonic and non-critical. Therefore in view of the Narasimhan lemma (see Theorem 1.4.14 in [H/Le 1]) we may assume that φ is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q+1}. Fix $r>0$ so small that for the ball $B_{r}\left(z_{0}\right):=\left\{z \in \mathbb{C}^{n}:\left|z-z_{0}\right|<r\right\}$ we have $B_{r}\left(z_{0}\right) \subseteq \theta, d \varphi(z) \neq 0$ for all $z \in \bar{B}_{r}\left(z_{0}\right)$ and the intersection of $b B_{r}\left(z_{0}\right)$ and the surface $\{\varphi=0\}$ is transversal.

Now let $\beta>0, \tau(z):=\max _{\theta}\left(\varphi(z),\left|z-z_{0}\right|^{2}-r^{2}\right)$ and $D:=\{z \in \theta: \tau(z)<0\}$ where $\max _{\beta}(\cdot, \cdot)$ is the smoothing of the function $\max (\cdot, \cdot)$ from Definition 4.12 in [H/Le 2]. By Lemma 4.13 in [H/Le 2] $\max _{\beta}(\cdot, \cdot)$ is convex and has non negative first order derivatives at least one of which is positive. Therefore τ is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q+1} for any $\beta>0$. Moreover by Lemma 4.13 in [H/Le 2]

$$
\max \left(t_{1}, t_{2}\right) \leq \max \beta_{\beta}\left(t_{1}, t_{2}\right) \leq \max \left(t_{1}, t_{2}\right)+\beta
$$

and

$$
\max \left(t_{1}, t_{2}\right)=\max _{\beta}\left(t_{1}, t_{2}\right) \quad \text { for } \quad\left|t_{1}-t_{2}\right| \geq \beta
$$

Therefore it is clear that for each neighbourhood $U \subset \subset B_{\mathrm{r}}\left(z_{0}\right)$ of z_{0} (7) will be satisfied if β is sufficiently small.

It remains to prove that $d \tau(z) \neq 0$ for all $z \in b D$ if β is sufficiently small. For that first we observe that $d \tau$ is a non-trivial linear combination of $d \varphi(z)$ and $d\left|z-z_{0}\right|^{2}$ (see the proof of Lemma 4.13 in $[\mathrm{H} / \mathrm{Le} 2])$. Since the intersection of $b B_{r}\left(z_{0}\right)$ and $\{\varphi=0\}$ is transversal this implies that for some neighbourhood V of this intersection $d \tau(z) \neq 0$ for all $z \in V$. Finally we observe that since $\max _{\beta}\left(t_{1}, t_{2}\right)=\max \left(t_{1}, t_{2}\right)$ if $\left|t_{1}-t_{2}\right| \geq \beta$ we can choose β so small that for all z in some neighbourhood of $b D \backslash V$ either $\tau(z)=\varphi(z)$ or $\tau(z)=\left|z-z_{0}\right|^{2}-r^{2}$.

Lemma 3.2 Let $G \subset \subset \mathbb{C}^{n}$ be a C^{2} domain which is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q+1}. Let $0 \leq q \leq n-1$ and let $\varrho: U_{G} \rightarrow \mathbb{R}$ be as in part (i) of the Definition. Further let $\delta>0$ be so small that the neighbourhood

$$
V_{G}:=\left\{z \in U_{G}: \varrho(z)<\delta\right\}
$$

of \bar{G} is relatively compact in $U_{\bar{C}}$. Then there exist constants $\alpha, A>0$ such that

$$
\begin{equation*}
2 \operatorname{Re} \sum_{j=1}^{n} \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)+A \sum_{j=q+1}^{n}\left|\zeta_{j}-z_{j}\right|^{2} \geq \varrho(\zeta)-\varrho(z)+\alpha|\zeta-z|^{2} \tag{8}
\end{equation*}
$$

for all $z, \zeta \in V_{\bar{G}}$.
Proof. Set $t^{\prime}=\left(t_{1}, \ldots, t_{q+1}, 0, \ldots, 0\right)$ and $t^{\prime \prime}=\left(0, \ldots, 0, t_{q+2}, \ldots, t_{n}\right)$ if $t \in \mathbb{C}^{n}$. Then by (6) there is a constant $\beta>0$ such that

$$
\begin{equation*}
H_{\ell}(\zeta) t^{\prime} \geq 3 \beta\left|t^{\prime}\right|^{2} \tag{9}
\end{equation*}
$$

for all $\zeta \in \bar{V}_{\bar{G}}$ and $t \in \mathbb{C}^{n}$. Using the inequality $2 a b=2(\varepsilon a)(b / \varepsilon) \leq \varepsilon^{2} a^{2}+b^{2} / \varepsilon^{2}$ we can choose a constant $C>0$ such that

$$
\begin{equation*}
\left|H_{e}(\zeta) t-H_{e}(\zeta) t^{\prime}\right| \leq \beta\left|t^{\prime}\right|^{2}+(C-2 \beta)\left|t^{\prime \prime}\right|^{2} \tag{10}
\end{equation*}
$$

for $\zeta \in \bar{V}_{G}$ and $t \in \mathbb{C}^{n}$. Since by Taylor's theorem

$$
2 \operatorname{Re} \sum_{j=1}^{n} \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)=\varrho(\zeta)-\varrho(z)+H_{\varrho}(\zeta)(\zeta-z)+o\left(|\zeta-z|^{2}\right)
$$

it follows from (9) and (10) that for some $\varepsilon>0$ we have the estimate

$$
\begin{equation*}
2 \operatorname{Re} \sum_{j=1}^{n} \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)+C\left|\zeta^{\prime \prime}-z^{\prime \prime}\right|^{2} \geq \varrho(\zeta)-\varrho(z)+\beta|\zeta-z|^{2} \tag{11}
\end{equation*}
$$

if $z, \zeta \in \bar{V}_{G}$ with $|\zeta-z| \leq \varepsilon$.
Now let $z, \zeta \in \bar{V}_{\tilde{O}}$ with $|\zeta-z| \geq \varepsilon$ and $\zeta^{\prime \prime}=z^{\prime \prime}$. Set

$$
z^{c}=\left(1-\frac{\varepsilon}{|\zeta-z|}\right) \zeta+\frac{\varepsilon}{|\zeta-z|} z
$$

Since ϱ is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q} we get $z^{\boldsymbol{\varepsilon}} \in V_{\widetilde{\sigma}}$ and

$$
\varrho\left(z^{\varepsilon}\right) \leq\left(1-\frac{\varepsilon}{|\zeta-z|}\right) \varrho(\zeta)+\frac{\varepsilon}{|\zeta-z|} \varrho(z)
$$

and since $\left|\zeta-z^{e}\right|=\varepsilon$ it follows from (11) that

$$
\begin{aligned}
2 \operatorname{Re} \sum_{j=1}^{n} \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right) & \geq \frac{|\zeta-z|}{\varepsilon}\left(\varrho(\zeta)-\varrho\left(z^{c}\right)+\beta \varepsilon^{2}\right) \\
& \geq \varrho(\zeta)-\varrho(z)+\beta \varepsilon|\zeta-z|
\end{aligned}
$$

Hence we can find $\delta>0$ so small that

$$
2 \operatorname{Re} \sum_{j=1}^{n} \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right) \geq \varrho(\zeta)-\varrho(z)+\frac{\beta \varepsilon}{2}|\zeta-z|
$$

for all $z, \zeta \in V_{\partial}$ with $|\zeta-z| \geq \varepsilon$ and $\left|\zeta^{\prime \prime}-z^{\prime \prime}\right| \leq \delta$. Clearly this implies that for sufficiently large constants $B>0$ we have

$$
\begin{equation*}
2 \operatorname{Re} \sum_{j=1}^{n} \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}}\left(\zeta_{j}-z_{j}\right)+B\left|\zeta^{\prime \prime}-z^{\prime \prime}\right|^{2} \geq \varrho(\zeta)-\varrho(z)+\frac{\beta \varepsilon}{2}|\zeta-z| \tag{12}
\end{equation*}
$$

for all $z, \zeta \in \bar{V}_{\bar{G}}$ with $|\zeta-z| \geq \varepsilon$. (8) now follows from (12) and (11) if we set

4 Certain new estimates for $\bar{\partial}$

In this section q is an integer with $0 \leq q \leq n-1$ and $D \subset \subset \mathbb{C}^{n}$ is a local q-convex C^{2} domain. Then we have by definition a C^{2} domain $G \subset \subset \mathbb{C}^{n}$ which is strictly convex with respect to the real coordinates of z_{1}, \ldots, z_{q+1} and a biholomorphic map h from a neighbourhood U_{D} of \bar{D} onto a neighbourhood $U_{\bar{G}}$ of \bar{G} such that $h(D)=G$. After shrinking these neighbourhoods we may also assume that there is a C^{2} function $\varrho: U_{\mathscr{G}} \rightarrow \mathbb{R}$ as in the first part of the Definition in Section 3. Further let $V_{\mathscr{G}}, A, \alpha$ be as in Lemma 3.2. Before we come to the announced estimates we construct an integral operator which gives a homotopy formula for (n, r)-forms with $n-q \leq r \leq n$.

For all $(\xi, \zeta) \in \mathbb{C}^{n} \times U_{G}$ we set

$$
\begin{aligned}
w_{j}(\xi, \zeta) & :=\left\{\begin{array}{lll}
2 \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}} & \text { for } & 1 \leq j \leq q+1 \\
2 \frac{\partial \varrho(\zeta)}{\partial \zeta_{j}}+A\left(\bar{\zeta}_{j}-\bar{\xi}_{j}\right) & \text { for } & q+2 \leq j \leq n
\end{array}\right. \\
w(\xi, \zeta) & :=\left(w_{1}(\xi, \zeta), \ldots, w_{n}(\xi, \zeta)\right) \\
\Phi(\xi, \zeta) & :=\langle w(\xi, \zeta), \zeta-\xi\rangle-2 \varrho(\zeta)
\end{aligned}
$$

Then by (8)

$$
\begin{equation*}
\operatorname{Re} \Phi(\xi, \zeta) \geq-\varrho(\zeta)-\varrho(\xi)+\alpha|\zeta-\xi|^{2} \tag{13}
\end{equation*}
$$

for all $\xi, \zeta \in \bar{V}_{\hat{G}}$. In particular $\Phi(\xi, \zeta) \neq 0$ if $\xi, \zeta \in G$ and for all $(\xi, \zeta, \lambda) \in V_{\tilde{G}} \times V_{\hat{G}} \times[0,1]$ with $\xi \neq \zeta$ we can define

$$
\eta(\xi, \zeta, \lambda):=(1-\lambda) \frac{w(\xi, \zeta)}{\Phi(\xi, \zeta)}+\lambda \frac{\bar{\zeta}-\bar{\xi}}{|\zeta-\xi|^{2}}
$$

and

$$
\hat{H}^{G}(\xi, \zeta, \lambda):=\frac{n!}{(2 \pi i)^{n}} d \eta_{1}(\xi, \zeta, \lambda) \wedge \ldots \wedge d \eta_{n}(\xi, \zeta, \lambda) \wedge d \xi_{1} \wedge \ldots \wedge d \xi_{n}
$$

where $\eta_{1}, \ldots, \eta_{n}$ are the components of η and d is the exterior differential operator with respect to ξ, ζ, λ. For $\zeta \neq \xi, \hat{H}^{G}(\xi, \zeta, \lambda)$ is of class C^{∞} in ξ, λ and all derivatives with respect to ξ, λ are continuous in ξ, ζ, λ. Moreover if we consider only the part of $\hat{H}^{G}(\xi, \zeta, \lambda)$ which is of degree 1 in λ then we see that the singularity at $\xi=\zeta$ of this form is of order $\leq 2 n-1$.

Hence for each $g \in L_{*}^{1}(G) \cap C_{*}^{0}(G)$ the integrals

$$
H^{G} g(\xi):=\int_{(\zeta, \lambda) \in G \times\{0,1]} g(\zeta) \wedge \hat{H}^{G}(\xi, \zeta, \lambda) \text { for } \xi \in G
$$

converge (for the definition of such integrals see for instance Section 0.2 in [H/Le 2]) and in this way we obtain a form $H^{G} g \in C_{*}^{0}(G)$. Denote by $\hat{H}(\xi, \zeta, \lambda)$ the pull back of the form $\hat{H}^{G}(\xi, \zeta, \lambda)$ to $U_{D} \times U_{D} \times[0,1]$ with respect to the biholomorphic map h. That means

$$
\begin{equation*}
\hat{H}(\xi, \zeta, \lambda)=\left(h_{\xi}^{*} \times h_{\zeta}^{*}\right) \hat{H}^{G}(\xi, \zeta, \lambda) . \tag{14}
\end{equation*}
$$

Further let

$$
H=h^{*} \circ H^{G} \circ\left(h^{-1}\right)^{*}
$$

be the pull back of the operator H^{G} to the domain D with respect to h. Then H is a linear operator from $L_{*}^{1}(D) \cap C_{*}^{0}(D)$ to $C_{*}^{0}(D)$ and for each $f \in L_{*}^{1}(D) \cap C_{*}^{0}(D)$ we have

$$
H f(\xi)=\int_{(\zeta, \lambda) \in D \times[0,1]} f(\zeta) \wedge \hat{H}(\xi, \zeta, \lambda) \text { for } \xi \in D
$$

Note that for $r=1, \ldots, n$

$$
\begin{equation*}
H\left(L_{(n, r)}^{2}(D) \cap C_{(n, r)}^{0}(D)\right) \subseteq C_{(n, r-1)}^{0}(D) \tag{15}
\end{equation*}
$$

Theorem 4.1 If $n-q \leq r \leq n$ and if $f \in L_{(n, r)}^{1}(D) \cap C_{(n, r)}^{0}(D)$ such that df also belongs to $L_{*}^{1}(D) \cap C_{*}^{0}(D)$ then

$$
f=\left\{\begin{array}{lll}
d H f & \text { for } r=n \tag{16}\\
d H f+H d f & \text { for } n-q \leq r \leq n-1
\end{array}\right.
$$

Theorem 4.2 There is a constant $C<0$ such that for each bounded $f \in C_{*}^{0}(D), H f$ is Hölder continuous on D and

$$
\|H f\|_{1 / 2, D} \leq C \sup _{\zeta \in D}\|f(\zeta)\| .
$$

Essentially these theorems are contained already in the works of Grauert/Lieb [G/L], Henkin [H 1] and W: Ftscher/Lieb [WF/L] where certain versions of the operator H with boundary integrals are used. To obtain proofs precisely for the statements formulated here one can use many different sources in the literature. We restrict ourselves to the following remarks: The idea to use operators without boundary integrals is due to Henkin, Lieb and Range (see [L/R] or [H/Le 1]); Theorem 4.1 can be proved by the same arguments as Theorem 4.11 in [La/Le]; Theorem 4.2 can be proved by the same arguments as Theorem 3.1 in [BF].

Theorem 4.2 admits generalisations to forms satisfying different uniform growth conditions ($[\mathrm{L} / \mathrm{R}],[\mathrm{BF}]$). For example in $[\mathrm{BF}]$ the case is studied where for a smooth submanifold N of $b D$

$$
\|f(\zeta)\| \leq[\operatorname{dist}(\zeta, N)]^{-\beta} \quad \text { for } \quad \zeta \in D
$$

where $0 \leq \beta<2 n-\operatorname{dim}_{\boldsymbol{p}} N$. In the present paper we need the following improvement of this result for the case when N consists only of one point and $\beta=2 n-1$: Set

$$
\begin{equation*}
\tau(\xi, z):=\left|\sum_{j=1}^{n} \frac{\partial \varrho \circ h(z)}{\partial z_{j}}\left(\xi_{j}-z_{j}\right)\right| \tag{17}
\end{equation*}
$$

for $z \in U_{D}$ and $\xi \in \mathbb{C}^{n}$. Note that for $z \in b D, \tau(\xi, z)$ is proportional to the Euclidean distance $\delta(\xi, z)$ between ξ and the complex tangent plane of $b D$ at z.

Theorem 4.3 There is a constant $C>0$ such that the following holds: If $z \in U_{D} \backslash D$ (in particular $z \in b D$ is admitted) and $f \in C_{*}^{0}(D)$ satisfies the estimate

$$
\begin{equation*}
\|f(\zeta)\| \leq \frac{1}{|\zeta-z|^{2 n-1}} \tag{18}
\end{equation*}
$$

for all $\zeta \in D$ then $H f$ belongs to $C_{*}^{1 / 2}(D \backslash\{z\})$ and moreover

$$
\begin{equation*}
\|H f(\xi)\| \leq C \frac{1+|\ln | \xi-z| |}{\left(\tau(\xi, z)+|\xi-z|^{2}\right)|\xi-z|^{2 n-3}} \tag{19}
\end{equation*}
$$

for all $\xi \in \bar{D} \backslash\{z\}$.
Proof. We may assume that $D=G$ and h is the identical map. Let $z \in U_{D} \backslash D$ and $f \in C_{*}^{0}(D)$ with (18) be given. That $H f$ belongs to $C_{*}^{1 / 2}(\bar{D} \backslash\{z\})$ then follows from Theorem 4.2 and the fact that for $\zeta \neq \xi$ the derivatives of $\bar{H}(\xi, \zeta, \lambda)$ with respect to ξ are continuous in ξ, ζ, λ.

Now we are going to prove estimate (19). During this proof by C, C_{1}, C_{2} we denote positive constants which are independent of f and z. The constant C used in different places may have different values there. Observe that as usual (see for instance Section 3.2.7 in [H/Le 1]) we obtain that

$$
\begin{equation*}
\|H f(\xi)\| \leq C\left(I_{0}(\xi)+I_{1}(\xi)+I_{2}(\xi)\right) \text { for } \xi \in D \tag{20}
\end{equation*}
$$

where

$$
I_{k}(\xi):=\int_{\zeta \in D} \frac{d \sigma}{|\Phi(\xi, \zeta)|^{k}|\zeta-\xi|^{2 n-1-k}|\zeta-z|^{2 n-1}}
$$

and $d \sigma$ is the Lebesgue measure. We omit the elementary arguments which show that

$$
\begin{equation*}
\left|I_{0}(\xi)\right| \leq \frac{C}{|\xi-z|^{2 n-2}} \quad \text { for } \quad \xi \in \bar{D} \tag{21}
\end{equation*}
$$

To estimate $I_{1}(\xi)$ and $I_{2}(\xi)$ we first give some auxiliary estimates. From the definition of Φ it is clear that

$$
|\Phi(\xi, z)| \geq 2 \tau(\xi, z)-A|\xi-z|^{2} \text { for } \quad z \in D
$$

and

$$
|\Phi(\xi, z)-\Phi(\xi, \zeta)| \leq C|\zeta-z| \text { for } \xi, \zeta \in D .
$$

Hence

$$
\begin{equation*}
|\Phi(\xi, \zeta)| \geq 2 \tau(\xi, z)-C_{1}\left(|\zeta-z|+|\xi-z|^{2}\right) \tag{22}
\end{equation*}
$$

for all $\xi, \zeta \in \bar{D}$. Further we introduce the abbreviation $t(\xi, \zeta):=\operatorname{Im} \Phi(\xi, \zeta)$ and recall the fact that $\left.d_{\zeta} t(\xi, \zeta)\right|_{\zeta=\xi^{\wedge}} \wedge d \varrho(\zeta) \neq 0$ if $\zeta \in b D$. Choose a neighbourhood $U_{b D}$ of $b D$ and a number $\varepsilon>0$ so small that

$$
\begin{equation*}
d_{\varsigma} t(\xi, \zeta) \wedge d \varrho(\zeta) \neq 0 \tag{23}
\end{equation*}
$$

for all $\xi \in U_{b D}$ and $\zeta \in \mathbb{C}^{n}$ with $|\zeta-\xi| \leq \varepsilon$. Note also that by (13)

$$
\begin{equation*}
|\Phi(\xi, \zeta)| \geq|t(\xi, \zeta)|+|\varrho(\zeta)|+|\varrho(\xi)|+\alpha|\zeta-\xi|^{2} \tag{24}
\end{equation*}
$$

for all $\zeta, \xi \in \bar{D}$. It follows from (24) and (21) that

$$
\begin{equation*}
I_{k}(\xi) \leq C I_{0}(\xi) \leq \frac{C}{|\xi-z|^{2 n-2}} \quad \text { for } \quad \xi \in D \backslash U_{b D} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\substack{\zeta \in D \\ \mid \zeta-\{\mid>E}} \frac{d \sigma_{2 n}}{|\Phi(\xi, \zeta)|^{k}|\zeta-\xi|^{2 n-1-k}|\zeta-z|^{2 n-1}} \leq C \tag{26}
\end{equation*}
$$

for all $\xi \in D \backslash\{z\}$ and $k=1,2$. Set

$$
I_{k, c}(\xi):=\int_{\substack{\mathcal{K} \in \mathcal{D} \\ K-\epsilon \mid<c}} \frac{d \sigma_{2 n}}{\left.|\Phi(\xi, \zeta)|^{k}|\zeta-\xi|\right|^{2 n-1-k}|\zeta-z|^{2 n-1}}
$$

for $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$. Since

$$
\begin{equation*}
\tau(\xi, z) \leq C_{2}|\xi-z| \tag{27}
\end{equation*}
$$

for all $\xi \in \bar{D}$ now by (20), (21), (25) and (26) it remains to prove that

$$
\begin{equation*}
I_{k, \varepsilon}(\xi) \leq C \frac{1+|\ln | \xi-z| |}{|\xi-z|^{2 n-1}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{k, \varepsilon}(\xi) \leq C \frac{1+|\ln | \xi-z| |}{\tau(\xi, z)|\xi-z|^{2 n-3}} \tag{29}
\end{equation*}
$$

for all $\xi \in\left(\stackrel{\rightharpoonup}{D} \cap U_{b D}\right) \backslash\{z\}$ and $k=1,2$. In doing so we use the following notation: If $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}, W(\xi) \subseteq D$ and $k \in\{1,2\}$ then

$$
I_{k, e}(W(\xi)):=\int_{\substack{(\in \in \mathbb{W}(\varepsilon) \\|\zeta-\xi| \ll}} \frac{d \sigma_{2 n}}{|\Phi(\xi, \zeta)|^{k}|\zeta-\xi|^{2 n-1-k}|\zeta-z|^{2 n-1}}
$$

Proof of (28). For $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$ we set

$$
W^{\prime}(\xi)=\{\zeta \in D:|\zeta-z|<|\xi-z| / 2\}
$$

and

$$
W^{\prime \prime}(\xi)=\{\zeta \in D:|\zeta-z|>|\xi-z| / 2\} .
$$

Then

$$
\begin{equation*}
I_{k, c}(\xi)=I_{k, c}\left(W^{\prime}(\xi)\right)+I_{k, c}\left(W^{\prime \prime}(\xi)\right) \tag{30}
\end{equation*}
$$

for all $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. Since $|\zeta-\xi|>|\xi-z| / 2$ if $\zeta \in W^{\prime}(\xi)$ and by (24) we have

$$
I_{k, c}\left(W^{\prime}(\xi)\right) \leq \frac{C}{|\xi-z|^{2 n-1-k}} \int_{\substack{\zeta \in W^{\prime}(\ell) \\|<-\varepsilon| \ll}} \frac{d \sigma_{2 n}}{\left(|t(\xi, \zeta)|+|\varrho(\zeta)|+|\xi-z|^{2}\right)^{k}|\zeta-z|^{2 n-1}}
$$

for all $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. By (23) ϱ and $t(\xi, \cdot)$ may be considered as local coordinates. Hence

$$
\begin{align*}
& I_{k, c}\left(W^{\prime}(\xi)\right) \leq \frac{C}{|\xi-z|^{2 n-1-k}} \int_{\in \in \mathbb{R}^{2 m}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{1}\right|+\left|x_{2}\right|+|\xi-z|^{2}\right)^{k}|x|^{2 n-1}} \\
& \leq \frac{C}{|\xi-z|^{2 n-1+k}} \int_{\substack{=\in \mathbb{1} 2 n \\
\left|=\left|<|z-3|^{2}\right.\right.}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{|x|^{2 n-1}} \\
& +\frac{C(1+|\ln | \xi-z| |)}{|\xi-z|^{2 n-1-k}} \int_{\substack{-\in \mathbb{1} 2 \times-k \\
\left|=\left|>|\xi-1|^{2}\right.\right.}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-k}}{|x|^{2 n-1}} \\
& \leq C \frac{1+|\ln | \xi-z| |}{|\xi-z|^{2 n-1}} \tag{31}
\end{align*}
$$

for all $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. By similar arguments we obtain that

$$
\begin{align*}
I_{h, c}\left(W^{\prime \prime}(\xi)\right) & \leq \frac{C}{|\xi-z|^{2 n-1}} \int_{x \in \mathbb{R}^{2 n}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{1}\right|+\left|x_{2}\right|+|x|^{2}\right)^{4}|x|^{2 n-1-k}} \\
& \leq \frac{C}{|\xi-z|^{2 n-1}} \int_{x \in \mathbb{R}^{2 n-k}} \frac{(1+|\ln | x| |) d x_{1} \wedge \ldots \wedge d x_{2 n-k}}{|x|^{2 n-1-k}} \\
& \leq \frac{C}{|\xi-z|^{2 n-1}} \tag{32}
\end{align*}
$$

for all $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. Estimate (28) now follows from (30)-(32).
Proof of (29). Let $C_{3}=2\left(C_{1}+C_{2}\right)$ where C_{1} and C_{2} are the same constants as in (22) and (27), and set

$$
\begin{aligned}
W^{0}(\xi) & =\left\{\zeta \in D:|\zeta-z|<\tau(\xi, z) / C_{3}\right\}, \\
W^{1}(\xi) & =\left\{\zeta \in D:|\zeta-z|>\tau(\xi, z) / C_{3}\right\}, \\
W^{10}(\xi) & =\left\{\zeta \in W^{1}(\xi):|\zeta-z|<|\xi-z| / 2\right\}, \\
W^{11}(\xi) & =\left\{\zeta \in W^{1}(\xi):|\zeta-z|>|\xi-z| / 2\right\}, \\
W^{110}(\xi) & =\left\{\zeta \in W^{11}(\xi):|\zeta-\xi|<|\xi-z|\right\}, \\
W^{111}(\xi) & =\left\{\zeta \in W^{11}(\xi):|\zeta-\xi|>|\xi-z|\right\} .
\end{aligned}
$$

Then

$$
\begin{equation*}
I_{k, e}(\xi)=I_{k, c}\left(W^{0}(\xi)\right)+I_{k, c}\left(W^{10}(\xi)\right)+I_{k, c}\left(W^{110}(\xi)\right)+I_{k, e}\left(W^{111}(\xi)\right) \tag{33}
\end{equation*}
$$

for all $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. Since $|\zeta-\xi| \geq|\xi-z| / 2$ if $\zeta \in W^{10}(\xi)$ and by (24) and (23) we obtain that
for all $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. Hence

$$
\begin{align*}
I_{1,6}\left(W^{10}(\xi)\right) & \leq \frac{C(1+|\ln | \xi-z \mid)}{\tau(\xi, z)|\xi-z|^{2 n-2}} \int_{\substack{-\in(1) n-1 \\
|=|<|\xi-1| / 2}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-1}}{|x|^{2 n-2}} \\
& \leq \frac{C(1+|\ln | \xi-z| |)}{\tau(\xi, z)|\xi-z|^{2 n-3}} \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
I_{2, e}\left(W^{10}(\xi)\right) & \leq \frac{C(1+|\ln | \xi-z| |)}{|\xi-z|^{2 n-3}} \int_{\substack{\left(\epsilon^{(12 n-2} \\
+\left(\xi_{,}, 2\right) / C_{3}<\mid=1\right.}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-2}}{|x|^{2 n-1}} \\
& \leq \frac{C(1+|\ln | \xi-z \mid)}{\tau(\xi, z)|\xi-z|^{2 n-3}} \tag{35}
\end{align*}
$$

for all $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$. Further it follows from (24), (23) and (27) that

$$
\begin{align*}
& I_{k, c}\left(W^{110}(\xi)\right) \leq \frac{C}{|\xi-z|^{2 n-1}} \int_{\substack{z \in \in \in 2=\\
|\in \ll|<-x \mid}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{1}\right|+\left|x_{2}\right|+|x|^{2}\right)^{k}|x|^{2 n-1-k}} \\
& \leq \frac{C}{|\xi-z|^{2 n-1}} \int_{\substack{|\in \mathcal{E} 2 n-k\\
| 1|\ll-2|}} \frac{(1+|\ln | x| |) d x_{1} \wedge \ldots \wedge d x_{2 n-k}}{|x|^{2 n-1-k}} \\
& \leq \frac{C(1+|\ln | \xi-z| |)}{|\xi-z|^{2 n-2}} \leq \frac{C(1+|\ln | \xi-z| |)}{\tau(\xi, z)|\xi-z|^{2 n-3}} \tag{36}
\end{align*}
$$

for all $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. Since $|\zeta-z| \geq|\xi-z| / 2$ and $|\zeta-\xi| \geq|\xi-z|$ imply $|\zeta-\xi| \geq(1 / 2)|\zeta-z|$ we get

$$
I_{k, c}\left(W^{111}(\xi)\right) \leq C \int_{\zeta \in W^{111}(\xi)} \frac{d \sigma_{2 n}}{|\Phi(\xi, \zeta)|^{k}|\zeta-\xi|^{2 n-3}|\zeta-z|^{2 n+1-k}}
$$

$$
\begin{align*}
& \leq \frac{C}{|\xi-z|^{2 n-3}} \int_{\substack{\left.c \in \mathbb{E}^{2 n} \\
r\left(\xi_{1},\right\}\right) / C_{3}<\mid=1 \times 1}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{\left(\left|x_{1}\right|+\left|x_{2}\right|+|x|^{2}\right)^{k}|x|^{2 n+1-k}} \\
& \leq \frac{C(1+|\ln | \xi-z| |)}{|\xi-z|^{2 n-3}} \int_{\substack{\left(z \in \in \in \sum ^ { 2 n - k } \\
\left((\xi, 2) / C_{3}<\mid=1\right.\right.}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-k}}{|x|^{2 n+1-k}} \\
& \leq \frac{C(1+|\ln | \xi-z| |)}{\tau(\xi, z)|\xi-z|^{2 n-3}} \tag{37}
\end{align*}
$$

for all $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$ and $k \in\{1,2\}$. Finally we consider the integrals $I_{k, e}\left(W^{0}(\xi)\right)$. It follows from estimate (28) which is already proved that

$$
\begin{equation*}
I_{k, \kappa}\left(W^{0}(\xi)\right) \leq \frac{C C_{3}(1+|\ln | \xi-z| |)}{\tau(\xi, z)|\xi-z|^{2 n-3}} \tag{38}
\end{equation*}
$$

for all $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$ with $\tau(\xi, z) \leq C_{j}|\xi-z|^{2}$ and $k \in\{1,2\}$. Therefore it remains to estimate $I_{h, c}\left(W^{0}(\xi)\right)$ for all $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$ with

$$
\begin{equation*}
\tau(\xi, z) \geq C_{3}|\xi-z|^{2} \tag{39}
\end{equation*}
$$

It follows from (27) that $|\zeta-z| \leq|\xi-z| / 2$ and therefore $|\zeta-\xi| \geq|\xi-z| / 2$ for all $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$ and $\zeta \in W^{0}(\xi)$. Moreover it follows from (22) that $|\Phi(\xi, \zeta)| \geq \tau(\xi, z)$ for all $\xi \in\left(\bar{D} \cap U_{b D}\right) \backslash\{z\}$ satisfying (39) and $\zeta \in W^{0}(\xi)$. Hence

$$
\begin{align*}
I_{k, \varepsilon}\left(W^{0}(\xi)\right) & \leq \frac{C}{(\tau(\xi, z))^{k}|\xi-z|^{2 n-1-k}} \int_{\substack{z \in D^{N} \\
|\omega|<\cdot(\xi, y) / c_{3}}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n}}{|x|^{2 \mathrm{n}-1}} \\
& \leq \frac{C}{(\tau(\xi, z))^{k-1}|\xi-z|^{2 n-1-k}} \\
& \leq \frac{C}{(\tau(\xi, z))|\xi-z|^{2 n-3}} \tag{40}
\end{align*}
$$

for all $\xi \in\left(D \cap U_{b D}\right) \backslash\{z\}$ satisfying (39) and $\zeta \in W^{0}(\xi)$ (for $k=1$ we used (27)).
Estimate (29) now follows from (33)-(38) and (40).

5 Construction of the kernel

We start this section with a corollary to Section 4.
Corollary 5.1 Let $D \subset \subset \mathbb{C}^{n}$ be a local 1-convex C^{2} domain and let H be the operator constructed in Section 4 for D. Set

$$
K_{D}(z, \xi):=[H(B(z, \cdot))](\xi)
$$

for all $z \in \mathbb{C}^{n} \backslash D$ and $\xi \in D$ where $B(z, \xi)$ is the Martinelli-Bochner kernel (5). By Theorem 4.9, $K_{D}(z, \xi)$ is defined and continuous even for all $z \in \mathbb{C}^{n} \backslash D$ and $\xi \in \bar{D}$ with $z \neq \xi$. Moreover this form has the following properties:
(i) $K_{D}(z, \xi)$ is of bidegree $(n, n-2)$ in ξ and of degree zero in z.
(ii) $d_{\xi} K_{D}(z, \xi)=B(z, \xi)$ for all $z \in \mathbb{C}^{n} \backslash D$ and $\xi \in \bar{D}$ with $z \neq \xi$.
(iii) There is a constant $C>0$ such that

$$
\begin{equation*}
\left\|K_{D}(z, \xi)\right\| \leq C \frac{1+|\ln | \xi-z| |}{\left(\tau(z, \xi)+|\xi-z|^{2}\right)|\xi-z|^{2 n-3}} \tag{41}
\end{equation*}
$$

for all $z \in U_{\bar{D}} \backslash D$ and $\xi \in \tilde{D}$ with $z \neq \xi$ where $\tau(z, \xi)$ is defined by (17).
(iv) For each $z \in \mathbb{C}^{n} \backslash \bar{D}$, the form $K_{D}(z, \cdot)$ belongs to $C_{(n, n-2)}^{1 / 2}(\bar{D})$ and the assignement $z \rightarrow K_{D}(z, \cdot)$ is of class C^{∞} as a map from $\mathbb{C}^{n} \backslash \bar{D}$ with values in the Banach space $C_{(n, n-2)}^{1 / 2}(\bar{D})$.
(v) For any $0<\alpha<1, K_{D}(z, \xi)$ is of class $C_{z ; \xi}^{\alpha, 1 / 2}$ for all $z \in \mathbb{C}^{n} \backslash D$ and $\xi \in \bar{D}$ with $z \neq \xi$.

Proof. (i) follows from (15), (ii) follows from Theorem 4.1 and (iii) follows from Theorem 4.3. Since the Martinelli-Bochner kernel is of class C^{∞} outside the diagonal and, by Theorem 4.2, H acts continuously from $C_{(n, n-1)}^{0}(\bar{D})$ to $C_{(n, n-2)}^{1 / 2}(\bar{D})$, (iv) is also clear.

It remains to prove (v). Fix $0<\alpha<1, z_{0} \in \mathbb{C}^{n} \backslash D$ and $\xi_{0} \in \bar{D}$ with $z_{0} \neq \xi_{0}$. Set $\gamma=\left|z_{0}-\xi_{0}\right| / 5$ and

$$
\begin{aligned}
& B\left(z_{0}\right)=\left\{z \in \mathbb{C}^{n} \backslash D:\left|z-z_{0}\right|<\gamma\right\} \\
& B\left(\xi_{0}\right)=\left\{\xi \in D:\left|\xi-\xi_{0}\right|<\gamma\right\}
\end{aligned}
$$

It is sufficient to prove that $K_{D}(z, \xi)$ is of class $C_{z, \xi}^{\alpha, 1 / 2}$ for $(z, \xi) \in B\left(z_{0}\right) \times B\left(\xi_{0}\right)$. For that we choose a real C^{∞} function χ on \mathbb{C}^{n} with $\chi(\zeta)=1$ if $\left|\zeta-\xi_{0}\right|<2 \gamma$ and $\chi(\zeta)=0$ if $\left|\zeta-\xi_{0}\right|>3 \gamma$. Set

$$
\begin{array}{r}
K_{D}^{\chi}(z, \xi)=[H(\chi B(z, \cdot))](\xi), \\
K_{D}^{1-\chi}(z, \xi)=[H((1-\chi) B(z, \cdot))](\xi)
\end{array}
$$

for $z \in \mathbb{C}^{n} \backslash D$ and $\xi \in D$ with $z \neq \xi$. Since $\chi(\zeta) B(z, \zeta)$ is of class C^{∞} for $(z, \zeta) \in$ $B\left(z_{0}\right) \times \mathbb{C}^{n}$ and H acts continuously and linearly from $C_{(n, n-1)}^{0}(\bar{D})$ to $C_{(n, n-2)}^{1 / 2}(\widetilde{D})$, we see that the map $z \rightarrow K_{D}^{\chi}(z, \cdot)$ is C^{∞} from $B\left(z_{0}\right)$ to $C_{(n, n-2)}^{1 / 2}(D)$. Hence in particular, $K_{D}^{\chi}(z, \xi)$ is of class $C_{x \xi}^{\alpha, 1 / 2}$ for $(z, \xi) \in B\left(z_{0}\right) \times B\left(\xi_{0}\right)$. It remains to prove that $K_{D}^{1-x}(z, \xi)$ is of class $C_{x, \xi}^{\alpha, 1 / 2}$ for $(z, \xi) \in B\left(z_{0}\right) \times B\left(\xi_{0}\right)$. For that we consider the form

$$
f(\xi, \zeta):=\int_{\lambda \in[0,1]}(1-\chi(\zeta)) \hat{H}(\xi, \zeta, \lambda)
$$

(see (14) for the definition of $\hat{H}(\xi, \zeta, \lambda)$). Since $1-\chi(\zeta)=0$ if $\zeta \in B\left(\xi_{0}\right)$ the map $\xi \rightarrow f(\xi, \cdot)$ is C^{∞} from $B\left(\xi_{0}\right)$ to $C_{*}^{0}(\bar{D})$. Since

$$
K_{D}^{1-x}(z, \xi)= \pm \int_{\zeta \in D} f(\xi, \zeta) \wedge B(z, \zeta)
$$

for $z \in \mathbb{C}^{n} \backslash D$ and $\xi \in B\left(\xi_{0}\right)$ and since the Martinell-Bochner integral induces a continuous linear operator from $C_{*}^{0}(\bar{D})$ to $C_{*}^{\alpha}\left(\bar{B}\left(z_{0}\right)\right)$ this implies that the map $\xi \rightarrow$ $K_{D}^{1-x}(\cdot, \xi)$ is C^{∞} from $B\left(\xi_{0}\right)$ to $C_{*}^{\alpha}\left(\bar{B}\left(z_{0}\right)\right)$. This completes the proof.

Proof of Theorem 1.1. Choose an open ball $B \subset \subset \mathbb{C}^{n}$ centered at z_{0} so small that $B \backslash M$ consists of precisely two connected components and $B \cap M$ is relatively compact in M. The two connected components of $B \backslash M$ we denote by B_{+}and B_{-}so that on $B \cap M$ the orientations of M and $b B_{+}$coincide. In view of Lemma 3.1 we can find local 1-convex C^{2} domains D_{+}and D_{-}and open balls $B_{0} \subset \subset B_{1} \subset \subset B$ centered at z_{0} such that $B_{1} \cap B_{ \pm} \subseteq D_{ \pm} \subseteq B_{ \pm}$. Set $M_{0}:=M \cap B_{0}$ and denote by H_{+}and H_{\sim} the operators defined in Section 4 for D_{+}and D_{-}respectively. Set

$$
K_{ \pm}(z, \xi):=-\left[H_{ \pm} B(z, \cdot)\right](\xi)
$$

for all $z \in \mathbb{C}^{n} \backslash D_{ \pm}$and $\xi \in D_{ \pm}$with $z \neq \xi$. By (15) $K_{ \pm}(z, \xi)$ is defined and continuous for all $z \in \mathbb{C}^{n} \backslash D_{ \pm}$and $\xi \in D_{ \pm}$with $z \neq \xi$. Therefore by setting

$$
K(z, \xi):=\left.K_{+}(z, \xi)\right|_{M_{0} \times M_{0}}-\left.K_{-}(z, \xi)\right|_{M_{0} \times M_{0}}
$$

we obtain a differential form defined and continuous for all $(z, \xi) \in M_{0} \times M_{0}$ with $z \neq \xi$. It follows immediately from the statements (i), (ii), (iii) and (v) in Corollary 5.1 that $K(z, \xi)$ has the properties (i)-(iv) formulated in Theorem 1.1.

Now we prove part (\mathbf{v}). Let $\Omega \subset \subset M_{0}$ be a domain with piecewise C^{1} boundary. An approximation argument shows that we may restrict ourselves to C^{1} functions f.

First we consider a C^{1} function f on Ω with compact support. Then there is a C^{1} function \tilde{f} on \mathbb{C}^{n} with $\tilde{f}(\xi)=f(\xi)$ if $\xi \in \Omega$ and

$$
\text { supp } \tilde{f} \subset \subset D_{+} \cup D_{-} \cup \Omega=: D
$$

and since, by Corollary 5.1 (ii), $d_{\xi} K_{ \pm}(z, \xi)=B(z, \xi)$, it follows from Stokes theorem and the Martinelli-Bochner formula that

$$
\begin{aligned}
-\int_{\xi \in \Omega} \partial_{M} f(\xi) \wedge K(z, \xi) & =\int_{\xi \in D_{+}} \partial \tilde{f}(\xi) \wedge d_{\xi} K_{+}(z, \xi)+\int_{\xi \in D_{-}} \delta \tilde{f}(\xi) \wedge d_{\xi} K_{-}(z, \xi) \\
& =-\int_{\xi \in D} \delta f(\xi) \wedge B(z, \xi)=\tilde{f}(z)=f(z)
\end{aligned}
$$

for all $z \in \Omega$. That is (2) is proved in the case when f has compact support.
Now let f be an arbitrary C^{1} function on Ω. Fix $z \in \Omega$ and choose a C^{1} function χ_{z} on M_{0} with supp $\chi_{z} \subset \subset \Omega$ and $\chi_{z} \equiv 1$ in some neighbourhood of z.Then $\left(1-\chi_{s}\right) f K(z, \cdot)$
is a continuous form on Ω which is identically zero in a neighbourhood of z and since $d_{\xi} K(z, \xi)=0$ for $\xi \neq z$ we have the relation

$$
\begin{aligned}
d\left[\left(1-\chi_{z}\right) f K(z, \cdot)\right] & =d\left[\left(1-\chi_{z}\right) f\right] \wedge K(z, \cdot) \\
& =\bar{\partial}_{M} f \wedge K(z, \cdot)-\bar{\partial}_{\mathcal{M}}\left(\chi_{z} f\right) \wedge K(z, \cdot)
\end{aligned}
$$

on $\bar{\Omega}$. Therefore $d\left[\left(1-\chi_{s}\right) f K(z, \cdot)\right]$ is also continuous on $\bar{\Omega}$ and Stokes theorem implies that

$$
\int_{\infty} f \wedge K(z, \cdot)=\int_{\Omega} \delta_{M} f \wedge K(z, \cdot)-\int_{\Omega} \vec{\partial}_{M}\left(\chi_{*} f\right) \wedge K(z ; \cdot)
$$

Since formula (2) is already proved for $\chi_{\mathbf{I}} f$ and therefore

$$
-\int_{\Omega} \partial_{M}\left(\chi_{s} f\right) \wedge K(z, \cdot)=\chi_{z}(z) f(z)=f(z)
$$

this completes the proof of (2).

6 Further properties of the kernel $K(z, \xi)$ and applications

In this section we assume that ϱ, M, z_{0}, M_{0} and $K(z, \xi)$ are as in Theorem 1.1 and $B_{0}, B, B_{+}, B_{-}, K_{+}(z, \xi)$ and $K_{-}(z, \xi)$ are as in Section 5. Moreover we shall assume that the ball B_{0} is chosen sufficiently small so that the following two propositions hold:

Proposition 6.1 Any continuous $C R$-function defined on an open set $\Omega \subseteq M_{0}$ extends to a holomorphic function in some \mathbb{C}^{n}-neighbourhood of Ω.

Proposition 6.2 If $B(z) \subseteq B_{0}$ is an open ball centered at some point $z \in M_{0}$, then any continuous and closed $(n, n-2)$-form on $\overline{B_{+} \cap \bar{B}(z)}$ respectively $\overline{B_{-} \cap B(z)}$ can be approximated uniformly on $\overline{B_{+} \cap B(z)}$ respectively $\overline{B_{-} \cap B(z)}$ by δ-exact $C_{(n, n-2)}^{\infty}$-forms on \mathbb{C}^{n}.

This this is possible follows from the hypothesis on the Levi form of ϱ : Proposition 6.1 is a consequence of the Levi extension theorem (see, e.g., Theorem 1.3.8 in [H/Le 2]), since, in the sense of distributions, any continuous CR-function on a hypersurface is the jump of two holomorphic functions (the latter assertion can be proved by means of the Martinelli-Bochner-Koppelmann formula). Since $\overline{B_{ \pm} \cap B(z)}$ is starshaped if B_{0} is sufficiently small, Proposition 6.2 follows from the Andreotti-Grauert-Hörmander approximation theorem (see, e.g., Theorem 8.1 in [H/Le 2]).

Further for each open $\Omega \subseteq M_{0}$ we use the following notations:
Spaces of forms. $C_{(n, r)}^{k}(\Omega)(0 \leq r \leq n-1, k=0,1,2)$ is the space of $C_{(n, r)}^{k}$-forms on Ω endowed with the topology of uniform convergence together with all derivatives of order $\leq k$ on the compact subsets of Ω. By $D_{(n, r)}^{(}(\Omega)$ we denote the space of all $f \in C_{(n, r)}^{(}(\Omega)$ with compact support endowed with the test-function-topology of order
k : a sequence f_{ν} converges in $D_{(n, r)}^{k}(\Omega)$ if it converges in $C_{(n, r)}^{k}(\Omega)$ and moreover there is a compact set $\omega \subset \subset \Omega$ with supp $f_{\nu} \subseteq \omega$ for all ν. By $L_{(n, r)}^{\infty}(\Omega)(0 \leq r \leq n-1)$ we denote the Banach space of (n, r)-forms with bounded measurable coefficients on Ω endowed with the sup-norm.

Spaces of currents. $C_{(n, r)}^{k}(\Omega)^{\prime}$ and $D_{(n, r)}^{k}(\Omega)^{\prime}$ are the spaces of continuous linear forms on $C_{(n, r)}^{k}(\Omega)$ and $D_{(n, r)}^{k}(\Omega)$ respectively, i.e. the elements in $D_{(n, r)}^{k}(\Omega)^{\prime}$ are the ($0, n-r-1$)-currents of order k on Ω, and the elements in $C_{(n, r)}^{k}(\Omega)^{\prime}$ are the $(0, n-r-1)$ currents of order k with compact support on Ω.

If f is a differential form with locally integrable coefficients and of degree s on Ω then we denote by $\langle f\rangle$ the current in $D_{(n, n-s-1)}^{0}(\Omega)^{\prime}$ defined by

$$
\langle f\rangle(\varphi):=\int_{\Omega} f \wedge \varphi \text { for } \varphi \in D_{(n, n-\infty-1)}^{0}(\Omega)
$$

The operator $\bar{\partial}_{n}$: For $0 \leq r \leq n-1$ and $k=0,1$ we denote by $\bar{\partial}_{n}$ the operator

$$
\delta_{\ell}: D_{(n, r+1)}^{k}(\Omega)^{\prime} \rightarrow D_{(n, r)}^{k+1}(\Omega)^{\prime}
$$

defined by $\left(\bar{\delta}_{n} T\right) \varphi:=(-1)^{n-r-1} T(d \varphi)$ for $T \in D_{(n, r+1)}^{k}(\Omega)^{\prime}$ and $\varphi \in D_{(n, r)}^{k+1}(\Omega)$.
Definition. Let $\Omega \subseteq M_{0}$ be an open set. Set

$$
K_{\Omega} f(\xi):=\int_{z \in \Omega} f(z) \wedge K(z, \xi)
$$

for $f \in L_{(n, n-1)}^{\infty}(\Omega)$ and $\xi \in \Omega$. It follows from estimate (4) that in this way a continuous linear operator

$$
K_{\Omega}: L_{(n, n-1)}^{\infty}(\Omega) \rightarrow C_{(n, n-2)}^{0}(\Omega)
$$

is defined. Denote by K_{Ω}^{*} the operator from $C_{(n, n-2)}^{0}(\Omega)^{\prime}$ to $D_{(n, n-1)}^{0}(\Omega)^{\prime}$ defined by

$$
K_{\Omega}^{*} T(\varphi)=T\left(K_{\Omega} \varphi\right)
$$

for $T \in C_{(n, n-2)}^{0}(\Omega)^{\prime}$ and $\varphi \in D_{(n, n-1)}^{0}(\Omega)$. Denote by $L^{1}(\Omega)$ the Banach space of integrable functions on Ω and set $\left\langle L^{1}(\Omega)\right\rangle:=\left\{\langle f\rangle: f \in L^{1}(\Omega)\right\}$. Then it follows from estimate (4) and the fact that $K(z, \xi)$ is continuous for $z \neq \xi$ that the values of K_{Ω}^{*} belong to $\left\langle L^{1}(\Omega)\right\rangle$ and the map

$$
K_{\Omega}^{*}: C_{(n, n-2)}^{0}(\Omega)^{\prime} \rightarrow\left\langle L^{1}(\Omega)\right\rangle
$$

is continuous if we identify $\left\langle L^{1}(\Omega)\right\rangle$ with $L^{1}(\Omega)$.
Theorem 6.3 Let $\Omega \subseteq M_{0}$ be an open set and $f \in L_{(n, n-1)}^{\infty}(\Omega)$. Then

$$
d K_{\mathbf{\Omega}} f=f
$$

Proof. If φ is a C^{1} function with compact support on Ω then, by formula (2), it is

$$
\int_{\Omega} \varphi f=\int_{z \in \Omega} \int_{\xi \in \Omega} d \varphi(\xi) \wedge K(z, \xi) \wedge f(z)=-\int_{\Omega} d \varphi \wedge K_{\Omega} f
$$

Lemma 6.4 (i) Let $\varphi \in D_{(n, n-2)}^{1}\left(M_{0}\right)$. Then the form $\varphi-K_{M_{0}} d \varphi$ can be approximated in $C_{(n, n-2)}^{0}\left(M_{0}\right)$ by $\bar{\partial}$-exact $C_{(n, n-2)}^{\infty}$-forms on \mathbb{C}^{n}.
(ii) Let $z \in M_{0}$ and $B^{\prime} \subset \subset B_{0}$ an open ball such that $z \notin B^{\prime}$. Then the form $K(z, \cdot)$ can be approximated uniformly on $M_{0} \cap B^{\prime}$ by $\bar{\partial}$-exact $C_{(n, n-2)}^{\infty}$-forms on \mathbb{C}^{n}.
Both assertions of this lemma are special cases of an approximation theorem of Henkin for arbitrary continuous δ-closed ($n, n-2$)-forms (see the arguments proving relation (6) in [H 2]). Since the proof of this general theorem is not so easy let us give direct proofs:

Proof of Lemma 6.4 (i). Set

$$
K_{M_{0}}^{ \pm} d \varphi(\xi):=\int_{z \in \mathcal{M}_{0}} d \varphi(z) \wedge K_{ \pm}(z, \xi) \text { for } \xi \in B_{0} \cap B_{ \pm}
$$

Then it follows from estimate (41) that the forms $K_{M_{0}}^{ \pm} d \varphi$ admit continuous extensions onto ($\left.B_{0} \cap B_{ \pm}\right) \cup M_{0}$. Further we set

$$
\varphi_{ \pm}(\xi):=\int_{z \in \mathcal{N}_{0}} \varphi(z) \wedge B_{1}(z, \xi) \text { for } \xi \in B_{0} \cap B_{ \pm}
$$

where $B_{1}(z, \xi)$ is the part of the Martinelli-Bochner-Koppelman kernel which is of bidegree (0,1) in z. Since φ is Hölder continuous (it is even C^{1}) it is well known that also the forms $\varphi_{ \pm}$admit continuous extensions onto ($B_{0} \cap B_{ \pm}$) $\cup M_{0}$. Moreover it follows from the Martinelli-Bochner-Koppelman formula that $\varphi=\left.\varphi_{+}\right|_{M_{0}}-\left.\varphi_{-\mid}\right|_{M_{0}}$ and therefore

$$
\varphi-K_{M_{0}} d \varphi=\left.\left(\varphi_{+}-K_{M_{0}}^{+} d \varphi\right)\right|_{M_{0}}-\left.\left(\varphi_{-}-K_{M_{0}}^{-} d \varphi\right)\right|_{M_{0}}
$$

Using the relations $d_{\xi} B_{1}(z, \xi)=-\widehat{\partial}_{s} B(z, \xi)$ and $d_{\xi} K_{M_{0}}^{ \pm}(z, \xi)=-B(z, \xi)$ we see that the forms $\varphi_{ \pm}-K_{N_{0}}^{ \pm} d \varphi$ are δ-closed on $B_{0} \cap B_{ \pm}$. The required assertion on approximation now follows from Proposition 6.2.

Proof of Lemma 6.4 (ii). Since B^{\prime} is pseudoconvex and $z \notin B^{\prime}$ we can solve the equation $d G=B(z, \cdot)$ with some continuous ($n, n-2$)-form G on B^{\prime}. Since $d K_{ \pm}(z, \cdot)=-B(z, \cdot)$ the forms $K_{ \pm}(z, \cdot)+G$ are closed on $B^{\prime} \cap B_{ \pm}$and the assertion follows from Proposition 6.2 and the representation

$$
\left.K(z, \cdot)\right|_{M_{0} \cap B^{\prime}}=\left.\left(K_{+}(z, \cdot)+G\right)\right|_{M_{0} \cap B^{\prime}}-\left.\left(K_{-}(z, \cdot)+G\right)\right|_{M_{0} \cap B^{\prime}}
$$

Definition. Let $\Omega \subseteq M_{0}$ be an open set and let f be a continuous 1 -form with compact support on Ω. Then we define

$$
K_{\Omega}^{\prime} f(z):=\int_{\xi \in \Omega} f(\xi) \wedge K(z, \xi) \quad \text { for } \quad z \in \Omega
$$

It follows from estimate (3) that $K_{\cap}^{\prime} f$ is a continuous function on Ω.
Remark 6.5 Let $\Omega \subseteq M_{0}$ be an open set and let f be a continuous 1 -form with compact support on Ω. Then it follows from Fubini's theorem that $K_{\Omega}^{*}\langle f\rangle=\left\langle K_{n}^{\prime} f\right\rangle$.
Theorem 6.6 Let $\Omega \subseteq M_{0}$ be an open set and let $T \in C_{(n, n-1)}^{0}(\Omega)^{\prime}$. If $\bar{\delta}_{n} T \in$ $C_{(n, n-2)}^{0}(\Omega)^{\prime}$, that means if $\bar{\delta}_{n} T$ is also of onder 0 , then

$$
T=-K_{\Omega}^{*} \partial_{\Omega} T
$$

In particular then T is defined by an L^{1} function on Ω.
Proof. If $\varphi \in D_{(n, n-1)}^{1}(\Omega)$ then by Theorem 6.3

$$
T(\varphi)=T\left(d K_{\Omega} \varphi\right)=-\bar{\partial}_{\Omega} T\left(K_{\Omega} \varphi\right)=-K_{\Omega}^{*} \bar{\partial}_{\Omega} T(\varphi)
$$

Since $D_{(n, n-1)}^{1}(\Omega)$ is dense in $D_{(n, n-1)}^{0}(\Omega)$ this implies the assertion.
Remark 6.7 Let $\Omega \subseteq M_{0}$ be an open set and let $T \in C_{(n, n-2)}^{0}(\Omega)^{\prime}$. Then it is easy to see that

$$
f(z):=T(K(z, \cdot)), \quad z \in \tilde{\Omega} \backslash \operatorname{supp} T
$$

is a continuous function and, on $\bar{\Omega} \backslash \operatorname{supp} T, K_{\mathbf{n}}^{*} T$ is defined by f. Hence for each $T \in C_{(n, n-2)}^{0}(\Omega)^{\prime}, K_{\Omega}^{*} T$ is defined by an L^{1} function on Ω which is contimious on $\bar{\Omega} \backslash$ supp T.

Theorem 6.8 Let $\Omega \subseteq M_{0}$ be an open set and let $T \in D_{(n, n-1)}^{0}(\Omega)^{\prime}$. If $\bar{\delta}_{n} T$ is defined by a continuous 1 -form on Ω then T is defined by a continuous function on Ω.

Proof. Let $\omega \subset \subset \Omega$ be an open and relatively compact subset of Ω. It is sufficient to find a continuous function g on ω with

$$
\begin{equation*}
T(\varphi)=\int_{\Omega} g \varphi \text { for all } \varphi \in D_{(n, n-1)}^{0}(\omega) \tag{42}
\end{equation*}
$$

Choose a C^{1} function χ with compact support on Ω such that $\chi=1$ in a neighbourhood of $\bar{\omega}$. Then by Theorem 6.6 we have

$$
T(\varphi)=\chi T(\varphi)=-K_{\Omega}^{*}\left(\delta_{\AA}(\chi T)\right)(\varphi)=-K_{\cap}^{*}\left(\chi \bar{\partial}_{\Omega} T\right)(\varphi)-K_{\Omega}^{*}(d \chi \wedge T)(\varphi)
$$

for all $\varphi \in D_{(n, n-1)}^{0}(\omega)$. In view of Remarks 6.5 and 6.7 this implies (42) if we set

$$
g(z)=-\left(K_{\Omega}^{\prime}(\chi f)\right)(z)-T(d \chi \wedge K(z, \cdot)) \text { for } z \in \omega,
$$

where f is the continuous 1 -form defining $\delta_{\ell} T$.

Corollary 6.9 Let $\Omega \subseteq M_{0}$ be open and $T \in D_{(n, n-1)}^{0}(\Omega)^{\prime}$ such that $\delta_{n} T=0$. Then T is holomorphic in a \mathbb{C}^{n}-neighbourhood of Ω, that means there exists a holomorphic function h in some \mathbb{C}^{n}-neighbourhood of Ω such that

$$
T(\varphi)=\int_{\Omega} h \varphi \text { for all } \varphi \in D_{(n, n-1)}^{0}(\Omega)
$$

Proof. This follows from Theorem 6.8 and Proposition 6.1.
Corollary 6.9 was obtained by Henkin (see Theorem 3 in [H 3]). Note that Theorem 6.8 does not follow from Corollary 6.9 (as the corresponding statement for $\bar{\delta}$) because under the given hypothesis on the Levi form of ϱ the tangential Cauchy-Riemann equation for (0,1)-currents on M_{0} cannot be solved locally (see [A/F/N]).

Theorem 6.10 Let $T \in C_{(n, n-2)}^{0}\left(M_{0}\right)^{\prime}$ such that $\delta_{M_{0}} T=0$. Denote by ω_{T} the connected component of $M_{0} \backslash \operatorname{supp} T$ whose boundary contains the boundary of M_{0}. Then

$$
\begin{equation*}
T=-\bar{\partial}_{M_{0}} K_{M_{0}}^{*} T \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp} K_{M_{0}}^{*} T \subseteq M_{0} \backslash \omega_{T} \tag{44}
\end{equation*}
$$

That under the hypothesis of Theorem 6.10 there exists a L^{1} function u on Ω with $\delta_{M_{0}}\langle u\rangle=T$ and supp $u \subseteq M_{0} \backslash \omega_{T}$ was proved by HENKIN (see Theorem 1^{\prime} in [H 2]). The new information contained in Theorem 6.10 consists in the representation

$$
\begin{equation*}
\langle u\rangle=-K_{M_{0}}^{*} T . \tag{45}
\end{equation*}
$$

Although the validity of this representation follows immediately from Theorem 6.6 let us give also a proof of Theorem 6.10 which is independent of Henkins result:

Proof of Theorem 6.10. Since $\bar{\partial}_{M_{0}} T=0$ it follows from Lemma 6.4 (i) that for each $\varphi \in D_{(n, n-2)}^{1}\left(M_{0}\right), T\left(\varphi-K_{M_{0}} d \varphi\right)=0$ and therefore

$$
-\partial_{M_{0}} K_{M_{0}}^{*} T(\varphi)=T\left(K_{N_{0}} d \varphi\right)=T(\varphi)
$$

Since $D_{(n, n-2)}^{1}\left(M_{0}\right)$ is dense in $D_{(n, n-2)}^{0}\left(M_{0}\right)$ this proves (43).
From (43) and Corollary 6.9 it follows that on $M_{0} \backslash$ supp $T, K_{\Omega}^{*} T$ is defined by some holomorphic function h. Choose an open ball $B^{\prime} \subset \subset B_{0}$ centered at z_{0} such that supp $T \subseteq B^{\prime}$. Then, by Lemma 6.4 (ii), for each $\varphi \in D_{(n, n-1)}^{0}\left(M_{0} \backslash B^{\prime}\right)$, the form $K_{M_{0}} \varphi$ can be approximated uniformly on $M_{0} \cap \bar{B}^{\prime}$ by $\bar{\delta}$-exact $C_{(n, n-2)}^{\infty}$-forms on \mathbb{C}^{n}. Since $\delta_{M_{0}} T=0$ and $\operatorname{supp} T \subseteq B^{\prime}$ this implies that

$$
\int_{M_{0}} h \varphi=K_{\Omega}^{*} T(\varphi)=T\left(K_{M_{0}} \varphi\right)=0
$$

for all such φ. Hence $h=0$ on $M_{0} \backslash B^{\prime}$ and, by uniqueness of holomorphic functions, $h=0$ on ω_{T}, that means (44) is also proved.

It was observed by Henkin (see Theorem 1 in [H 2]) that in the case of sufficiently smooth functions Theorem 6.10 leads to an Hartogs-Bochner extension theorem on M_{0} using the same arguments as in Ehrenpreis' proof of the classical Hartogs extension theorem (see the proof of Theorem 2.3.2 in [Hö]). We want to show that using representation (45) and estimate (1) one can prove this theorem also in the case of Hölder continuous functions. Let $\Omega \subset \subset M_{0}$ be a domain with C^{2}-bounday. A continuous function f on $b \Omega$ will be called a CR-function if

$$
\begin{equation*}
\int_{\Delta \Omega} f d \varphi=0 \tag{46}
\end{equation*}
$$

for all $C_{(n, n-3)}^{\infty}$-forms φ on \mathbb{C}^{n}.
Theorem 6.11 Suppose $M_{0} \backslash \bar{\Omega}$ is connected and let f be a Hölder continuous CRfunction on $b \Omega$. Then there exists a (unique) continuous function F on $\bar{\Omega}$ which extends holomorphically to some \mathbb{C}^{n}-neighbourhood of Ω such that $F(z)=f(z)$ for all $z \in b \Omega$. For $z \in \Omega$ this function is given by

$$
\begin{equation*}
F(z)=\int_{\xi \in \leftrightarrow \Omega} f(\xi) K(z, \xi) \tag{47}
\end{equation*}
$$

Proof. (All positive constants will be denoted by the same letter C.) First we note that

$$
\int_{\xi \in \in \Omega} K(z, \xi)=\left\{\begin{array}{lll}
1 & \text { for } & z \in \Omega \tag{48}\\
0 & \text { for } & z \in M_{0} \backslash \Omega
\end{array}\right.
$$

If $z \in \Omega$ this follows from (2) and for $z \in M_{0} \backslash \bar{\Omega}$ this follows from Stokes' theorem and the fact that $d_{\xi} K(z, \xi)=0$. Denote by $T \in C_{(n, n-2)}^{0}\left(M_{0}\right)^{\prime}$ the current defined by

$$
T(\varphi)=\int_{6 \Omega} f \varphi \text { for } \varphi \in C_{(n, n-2)}^{0}\left(M_{0}\right)
$$

Then by (46), $\delta_{M_{0}} T=0$ and it follows from Theorem 6.10 that supp $K_{M_{0}}^{*} T \subseteq \Omega\left(M_{0} \backslash \Omega\right.$ is connected) and $T=-\bar{\delta}_{\mathcal{N}_{0}} K_{\mathbf{N}_{0}} T$. Since by Remark 6.7 on $M_{0} \backslash b \Omega, K_{M_{0}}^{*} T$ is defined by the function

$$
z \rightarrow \int_{\xi \in \infty \Omega} f(\xi) K(z, \xi)
$$

this implies that

$$
\begin{equation*}
\int_{\xi \in b \Omega} f(\xi) K(z, \xi)=0 \quad \text { for } \quad z \in M_{0} \backslash \bar{\Omega} \tag{49}
\end{equation*}
$$

and, by Corollary 6.9, the function F defined by (47) extends holomorphically to some \mathbb{C}^{n}-neighbourhood of Ω.

It remains to prove that

$$
\lim _{\Omega \ni z \rightarrow \xi_{0}} F(z)=f\left(\xi_{0}\right) \text { for all } \xi_{0} \in b \Omega
$$

For $z \in M_{0}$ denote by ξ_{x} a point in $b \Omega$ with $\left|z-\xi_{x}\right|=\operatorname{dist}(z, b \Omega)\left(\xi_{x}\right.$ is uniquely determined if z is close to $b \Omega)$. Then $f\left(\xi_{x}\right) \rightarrow f\left(\xi_{0}\right)$ if $z \rightarrow \xi_{0}$. Therefore it is sufficient to prove that

$$
\begin{equation*}
\lim _{\Omega \exists x \rightarrow \xi_{0}}\left(F(z)-f\left(\xi_{x}\right)\right)=0 \quad \text { for all } \quad \xi_{0} \in b \Omega \tag{50}
\end{equation*}
$$

To prove (50) we fix some $\xi_{0} \in b \Omega$. Denote by $B_{r}\left(\xi_{0}\right), r>0$ the open ball of radius r centered at ξ_{0}. Set

$$
I_{\mathrm{r}}(z):=\int_{\xi \in \sigma \Omega \cap B_{r}\left(\xi_{0}\right)}\left|f(\xi)-f\left(\xi_{z}\right)\right|\left\|\left.K(z, \xi)\right|_{b \Omega}\right\| d \lambda(\xi)
$$

for $r>0$ and $z \in M_{0} \backslash\left(b \Omega \cap B_{r}\left(\xi_{0}\right)\right)$, where $d \lambda(\xi)$ is the Euclidean volume form of $b \Omega$. Since $\left|\xi-\xi_{\geq}\right| \leq 2|\xi-z|$ and f is Hölder continuous there exists $0<\alpha_{0}<1$ with

$$
\begin{equation*}
\left|f(\xi)-f\left(\xi_{z}\right)\right| \leq C|\xi-z|^{\alpha_{0}} \tag{51}
\end{equation*}
$$

for all $\xi \in b \Omega$ and $z \in M_{0}$. Fix $0<\alpha<\alpha_{0}$ and prove that then

$$
\begin{equation*}
I_{\mathrm{r}}(z) \leq C \tau^{\alpha} \tag{52}
\end{equation*}
$$

for all $r>0$ and $z \in M_{0} \backslash\left(b \Omega \cap B_{r}\left(\xi_{0}\right)\right)$.
Proof of estimate (52): Since $K(z, \xi)$ is of maximal holomorphic degree in ξ one has

$$
\begin{equation*}
\left\|K(z, \xi)_{b \Omega}\right\| \leq C\|K(z, \xi)\| \| \partial \varrho\left(\left.\xi\right|_{b \Omega} \|\right. \tag{53}
\end{equation*}
$$

for all $\xi \in b \Omega$ and $z \in M_{0}$ with $z \neq \xi$. Set

$$
u(z, \xi):=\operatorname{Im} \sum_{j=1}^{n} \frac{\partial \varrho(\xi)}{\partial \xi_{i}}\left(\xi_{i}-z_{i}\right) .
$$

Then

$$
\begin{equation*}
|u(z, \xi)| \leq C \delta(z, \xi) \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left.\partial \varrho(\xi)\right|_{b \Omega}\right\| \leq C\left(\left\|\left.d_{\xi} u(z, \xi)\right|_{b \Omega}\right\|+|\xi-z|\right) \tag{55}
\end{equation*}
$$

for all $\xi \in b \Omega$ and $z \in M_{0}$. Set $\varepsilon=\left(\alpha_{0}-\alpha\right) / 2$. Then it follows from (51)-(55) and (1) that

$$
\begin{align*}
I_{r}(z) \leq & C \int_{\xi \in \operatorname{GRO} B_{r}\left(\xi_{0}\right)} \frac{\left\|\left.d_{\xi} u(z, \xi)\right|_{b \Omega}\right\| d \lambda(\xi)}{\left(|u(z, \xi)|+|\xi-z|^{2}\right)|\xi-z|^{2 n-3-\alpha-\epsilon}} \\
& +C \int_{\xi \in \operatorname{BROB}_{B_{r}\left(\xi_{0}\right)}} \frac{d \lambda(\xi)}{|\xi-z|^{2 n-2-\alpha}} \tag{56}
\end{align*}
$$

for all $r>0$ and $z \in M_{0} \backslash\left(b \Omega \cap B_{r}\left(\xi_{0}\right)\right)$. It is clear that the second integral in (56) is bounded by $C r^{\alpha}$. To estimate the first integral we use the trick of Range and Siu
(see the proof of Proposition (3.7) in $[\mathrm{R} / \mathrm{S}]$), which allows us to consider $u(z, \cdot)$ as a local coordinate. So we obtain that this integral is bounded by

$$
C \int_{\substack{\pi \in \mathbb{E}^{2 n-2} \\ \mid=1<r}} \frac{d x_{1} \wedge \ldots \wedge d x_{2 n-2}}{\left(\left|x_{1}\right|+|x|^{2}\right)|x|^{2 n-3-\alpha-\varepsilon}}
$$

Integrating first with respect to x_{1} we see that the last integral is also bounded by Cr^{α}. Hence estimate (52) is proved.

End of proof of (50): For $r>0$ we set

$$
H_{\mathrm{r}}(z)=\int_{\xi \in \operatorname{arn}_{B_{r}\left(\xi_{0}\right)}}\left(f(\xi)-f\left(\xi_{z}\right)\right) K(z, \xi)
$$

if $z \in M_{0} \backslash\left(b \Omega \cap B_{r}\left(\xi_{0}\right)\right)$ and

$$
G_{r}(z)=\int_{\xi \in B \cap \backslash B_{r}\left(\xi_{0}\right)}\left(f(\xi)-f\left(\xi_{z}\right)\right) K(z, \xi)
$$

if $z \in M_{0} \backslash\left(b \Omega \backslash B_{r}\left(\xi_{0}\right)\right)$. Then by (52) it is

$$
\begin{equation*}
\left|H_{r}(z)\right| \leq C r^{\alpha} \tag{57}
\end{equation*}
$$

for all $r>0$ and $z \in M_{0} \backslash\left(b \Omega \cap B_{r}\left(\xi_{0}\right)\right)$. Since by (48) and (49), $H_{r}(z)+G_{r}(z)=0$ if $z \in M_{0} \backslash \Omega$ and G_{r} is continuous on $M_{0} \cap B_{r}\left(\xi_{0}\right)$ this implies that

$$
\begin{equation*}
\left|\lim _{\Omega \ni \pm \rightarrow \xi_{0}} G_{r}(z)\right|=\left|G_{r}\left(\xi_{0}\right)\right| \leq C r^{\alpha} \tag{58}
\end{equation*}
$$

for all $r>0$. Moreover it follows from (48) that

$$
H_{r}(z)+G_{r}(z)=F(z)-f\left(\xi_{s}\right)
$$

if $z \in \Omega$. In voew of (57) and (58) this implies that for all $r>0$ we have

$$
\limsup _{\Omega \ni x \rightarrow \xi_{0}}\left|F(z)-f\left(\xi_{x}\right)\right| \leq C r^{\alpha}
$$

Remarks to Theorem 6.11.

(i) It follows from this theorem (by standard arguments) that

$$
|F(z)| \leq \max _{\xi \in B_{2}}|f(\xi)| \quad \text { for all } \quad z \in \Omega .
$$

Hence the assertion of the theorem holds for each continuous CR-function f on $b \Omega$ which can be approximated uniformly by Hölder continuous CR-functions. It is not clear if this is possible for all continuous CR-functions on $b \Omega$.
(ii) We do not assume that the boundary $b \Omega$ is a CR-manifold. Note however that, by the hypothesis on the Levi form of ϱ, the set of points in $b \Omega$ with complex tangent space is nowhere dense in $b \Omega$.
(iii) The hypothesis that $b \Omega$ is of class C^{2} is necessary for the Range-Siu trick in the proof.

7 References

[A/F/N] A. Andreotti, G. Fredricks, M. Nacinovich:
On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes. Annali Scuola Normale Superiore 8, 3 (1981), 365-404.
[BF] B. Fischer:
Cauchy-Riemann equation in spaces with uniform weights. Math. Nachr. 156 (1992), 45-55.
[WF/L] W. Fischer, I. Lieb:
Lokale Kerne und beschränkte Lösungen für den む-Operator auf q-konvexen Ge bieten. Math. Ann. 208 (1974), 249-265.
[G/L] H. Grauert, I. Lieb:
 beschränkten Formen. Rice Univ. Studies 56, 2 (1970), 29-50.
[H1] G.M. Henkin:
Integral representation of functions in strongly pseudoconvex domains and appli-

[H 2] G.M. Henkin:
The Hartige-Bochner effect on CR manifolds. Soviet Math. Dokl. 29 (1984), 78-82.
[H 3] G.M. Henkin:
Solution des équation de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-concaves. C.R. Acad. Sc. Paris 292 (1981), 27-30.
[H/Le 1] G.M. Henkin, J. Leiterer:
Theory of functions on complex manifolds. Akademie-Verlag Berlin 1984 and Birkhäuser-Verlag Boston 1984.
[H/Le 2] G.M. Henkin, J. Leiterer:
Andreotti-Grauert theory by integral formulas. Akademie-Verlag Berlin 1988 and Birkhäuser-Verlag Boston (Progress in Math. 74) 1988.
[La/Le] C. Laurent-Thiébaut, J. Leiterer:
Uniform estimates for the Cauchy-Riemann equation on q-convex wedges. Pré publication de l'Institut Fourier no. 186, 1991.
[Hö] L. Hörmander:
An introduction to complex analysis in several variables. Princeton 1966.
[L/R] I. Lieb, R.M. Range:
Estimates for a class of integral operators and applications to the $\bar{\partial}$-Neumann problem. Invent. math. 85 (1986), 415-438.
[R/S] R.M. Range, Y.T. Siu:
Uniform estimates for the $\bar{\delta}$-equation on domains with piecewise smooth strictly pseudoconvex boundaries. Math. Ann. 206 (1973), 325-354.

Fachbereich Mathematik der
Humboldt-Universität
O-1086 Berlin

