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1 Introduction

Let M be an oriented real hypersurface of class CfJ in C" t i.e. M = {z E 8 : e(z) = O} t

where 8 is an open subset of C" and f! is a reaJ (!J function on 8 with de(z) I 0 for
all z E 8. For z E M and { E Cn

t we denote by 6({t z) the Euclidean distance between
{ and the complex tangent plane of M at z. The &im of this paper is to prove the
following theorem:

Theorem 1.1 Suppose, /or some Zo E M, the restriction 0/ the Levi form 0/ e al Zo to
the eomplex tangent plane 0/ M at Zo has ot least one poMtive and at least one negative
eigenvalue. Then there exist an open neighbourhood Mo ~ M 0/ Zo and a continuous
differential form K(z,{) defined and contin1JOtU /or all (z,{) E Mo x Mo with z -:F e
$uch that:

(i) K(z,{) i.J 0/ degree zero in z and 0/ bidegree (n,n - 2) in {.

(ii). deK(z,€) = 0 tor all (z,€) E Mo x Mo Ufith z :1= €.

(iii) There is 0 camtont C > 0 such thai

1 + IIn I~ - zll
IIK(z, {)II ~ c (6({, z) + j{ _ zI2)1{ _ z12n-3 (1)

tor all {, z E Mo with { ~ z.

(iv) Far each 0 < a < 1, the coefficientJ 0/ K(z,~) are 0/ da.!.! C::~1/2 /or all (Z,{) E

Mo x Mo with z 1= { (for the definition 0/ c;~1/2 cf. the end 0/ Section 11).

(v) Let n ce Mo be a domain with piecewi"e Cl boundary. If / i..! a continuous
funetion on nweh that df({) A ~1 " ... A den is also eontinuous on Ö then

tor oll zEn.

j(z) = f f({)K(z,{) - f d/({) " K(z,{)
{EbO {EO
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Remark 1.2 From estimate (1) it follows that IIK(z,~)11 is integrable with respect
to ~ and z. More precisely, it is easy to see that the following estim&tes hold: Denote
by d~ the Euclidean volume form on M. Then there is a constant C > 0 such that

f IIK(z, ~)II d~(e) ~ CE(l + IlnEI2
) .

(EMo
1(-..1<"

for an z E Mo and E > 0, and

f II K(z,{)lIdA(z} ~ CE(! + IlnEI2
)

'EIIO
16-(1<"

(3)

(4)

(5)

for all ~ E Mo and E > O.
To obtain the kernel K(z,e) in Theorem 1.1 we proceed aB follows: Consider the

Marlinelli-Bochner keme!

( ) ._ (n - I)! ~( };+1 {j - Zj ~/ ~/ JI" Jt'
B z,( .- (211'i}n f;i -1 I( _ ZI2nU\l" .•J"" tM,n" \a\1 " ... " Uo\n

and a sufficiently small open ball U ~ cn centered at Zo. Set U+ := {( EU: O(() < O}
and U_ := {( EU: e(() > O}. Then, in view of the hypothesis on the Levi form of u,
it follows from the Andreotti-Grauert theory that, for fixed z E M, one can solve the
equations

and
lJK _(z, .) = - B (z, .) on U_.

We prove that this can be done with appropriate uniform estimates so that K+(z,{) and
K_(z,{) extend to (U n M)\{z} and K(z,e) := K+(z,{} - K_(z,e) has the required
properties. For that we use aversion of the cl888ica1 integral operators constructed
by GRAUERT/LIEB (G/L], HENKIN (H 1] and W. FISCHER/LIEB (WF/L].

Formula (2) is an analogon of the Marlinelli-Bochner formula in en
• At the end

of this paper (Section 6) we want to show that this analogy extends also to some
of the applications of the Marlinelli-Bochner formula: using the kerne! K(z, e), we
prove strengthened. versions of some of the results on the tangential Cauchy-Riemann
equation obtained by HENKIN in (H 2] and (R 3] (see the regularity theorems 6.6
and 6.8, the solvability theorem 6.10 for (O,I)-currents with small support, and the
Hartogs-Bochner extension theorem 6.11).

2 Preliminaries

Let K ce cn be a compact set. Then CO(K) is the Banach space of a1l continuous
complex functions on K. For 0 < a < 1, CO(K) is the Bansch space of al1 complex
functions whirh ace Hölder continuous with exponent a on K. The norm in CO(K), 0 ~
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er < 1 will be denoted by 11·lla,K. That mea.ns 11·llo.x is the max-norm and for 0 < er < 1,
11· lIo,K is the Bölder norm with exponent er.

Let D ce cn be a domain and 0 ~ er < 1. Then C:(D) is the Bana.ch space
of differential forms whose coefficients belong to CO(D). Tbe norm in G:(D) will be
denoted by 1I'llaJ)' By C~,,.)(D) we denote the subspace of forms in C:(D) whicll &re

of bidegree (8, r). By L~(D) we denote the Banach space of a1l differential farms wJ:u)8e
coeflicients are integrable on D. Tbe norm in L~(D) will be denoted by 1I·IIL1(D) and
Lt.,r)(D) ia the subspace of all forms in L~(D) whidl are of bidegree (s,r).

Proposition 2.1 lf A,B ce er- are two compact .get.!, f(z,~) u a complex function
defined for (z,{) E A x B and 0 ~ er, ß < 1 then it i.s ea.5!/ to see that the following
two conditiom are equivalent:

(i) f(z,·) E Cß(B) for oll z E A and the assignment A 3 z -+ f(z,·) u H.ölder
continuoU.9 with exponent er os a map with volue" in CfJ(B).

(ii) f("~) E CO(A) for all eE Band the assignment B 3 ~ -+ /(.,{) i" Hölder
continuoU.9 with exponent ß Q3 a map with valuu in CO(A).

Let Z be an arbitra.ry subset of cn x Cn
, f (z, e) a complex function defined for

(z,{) E Z and let 0 ~ a,ß < 1. Then we say that f(z,{) is of cl888 c:f on Z if for
each pair of compact sets A, B ~ C" V?ith A x B ~ Z the both equivalent conditions
(i) and (ü) in Proposition 2.1 &re fulfilled.

3 Local q-coovex C 2 domaios

H cp is a real Cfl function in some neighbourhood of a point z E C" then we denote by
LIp(z} the Levi form and by HIp(z) the Hessian form of cp at z. That means

n B2cp(z) _
LIp(z)t:= E 8 8 tit. for t E C"

j,Jr=l Zj Z,

and
1 2n 82ff'( z)

HIp{z)t := - E 8 8 x&,(t)xp(t) for t E C"
2 v,p=1 XII xI'

where Xl, ... , X2n are the real coordinates on Cn with Zj = Xj(z) + iXj+n(z) if z =
(Zh ... , Zn) E C".

Deflniiion. Let 0 ~ q ~ n -1 be an integer.

(i) HG ce er- is a Cfl domain then we say that G is strictly convex with respect
to the real coordinates of Z1, ••• , Zq+1 if there exists a. real [J2 function (l in a
neighbourhood Uä of (; sucl1 that G = {z E U(j : e(z) < O} and de(z) :F 0 for
Z E bG and eis strictly convex with respect to the real coordinates of Zl, ... , Zq+l,

l.e.
HI}«()t > 0

for all ( E U(; and t E C" with tq+2 = ... = t n = O.

3
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(ü) A local q-convex C2 domain is a C2 domaln D cc cn for which there exists a
biholomorphic map h from a neighbourhood of D onto an open set in eR such
that h(D) is strictly convex with respect to the real coordinates of %h ••• , %9+1•

Lemma 3.1 Let 0 ~ q :5 n - 1 be an integer. Further let 8 ~ C" be an open set, e a
real C2 function on 8 with de(z) ~ 0 /or z E 8 and let M = {z E 8 : e(z) = O}. Set
8+ = {z E 8 : e(z) < O} and mppose that /or same Zo E M the re!tnction 0/ L,(Zo)
to the complex tangent plane 0/ M at Zo ha" at least q positiv eigenvalu~. Then there
exi"t a local q-convex C 2 domain D and a neighbourhood U 0/ Zo such that

(7)

Proof. Choose a. real C' function t.p on 8 with tLp(z) 1:. 0 for z E 8 and 8+ = {z E
8 : cp(z) < O} such that LIp(Zo) haB a.t least q + 1 positive eigenvalues (see Proposition
5.8 in (H/Le 2]). Then the restriction of t.p to a certain (q + l)-dimensional complex
submanifold through Zo is strict1y plurisubhannonic and non-eritica1. Tberefore in view
of the Narasimhan lemma (see Theorem 1.4.14 in (H/Le 1]) we may assume that t.p is
strictly convex with respect to the real coordinates of ZI, ••• , Zq+1. Fix r > 0 so small
that for the ball Br(Zo) := {z E C" : Iz - Zol < r} we have Br(Zo) ~ 8, d<p(z) '1= 0 for
aJ.l Z E nr(Zo} and the intersection of bBr(Zo) and the surface {tp = O} iB transversal.

Now let ß > 0, r(z) := ma.xtJ(t.p(z), Iz - %01 2
- r2 ) and D := {z E 8 : r(z) < O}

where ma.xß(·,·) iB the smoothing of the function max(·,·) from Definition 4.12 in
(R/Le 2]. By Lemma 4.13 in (H/Le 2] ma.x,g(.,.) is convex and has non negative first
order derivatives at least one of which iB positive. Therefore r is strictly convex with
respect to the real coordinates of Z1, ••. , Zq+1 for any ß > O. Moreover by Lemma 4.13
in (H/Le 2]

and
max(tlJ t 2) = maxß(tlJ t2) for Itl - t21~ ß.

Therefore it is clear that for ea.ch neighbourhood U ce Br(Zo) of Zo (7) will be satisfied
if ß iB sufficiently small.

It rema.ins to prove that dr(z) I- 0 for all z E bD if ß is sufliciently small. For that
first we observe that dr is a. non-trivial linear combination of cLp(z) and dlz - Zol2 (see
the proof of Lemma 4.13 in (H/Le 2]). Since the intersection of bBr(Zo) and {cp = O} is
transversal this implies that for some neighbourhood V of this intersection dr(z) 1:. 0
for all Z E. V. Finally we observe that amce max,8(tl' t2 ) = max(tl' t2 ) if It1- t212: ßwe
can choose ß80 small th&t for all z in sorne neighbourhood of bD\V either r(z) = cp(Z )

or r(z) = Iz - Zol2 - r2 • •

Lemma 3.2 Let G ce C" be a CfJ domain which U 6trictly convez with re3pect to the
real coordinates 0/ ZlJ ... , Zq+l' Let 0 ~ q ~ n - 1 and let e : U(} --+ IR. be a.9 in part (i)
0/ the Definition. Further let 6 > 0 be 60 small that the neighbourhood

Va := {z E UG : e(z) < 6}

4
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+ .,:

01 (; is relatively compact in U(}. Then there exist con.5tants 0', A > 0 such that

n 8e«) n
2R.e }:-«; - z;) + A }:. 1(; - z;12 ~ e«) - e(z) + al( - zl2 (8)

;=1 B(; ;=9+1

lor all z, ( EVa.

Proof. Set f = (tl, "', tq+l, 0, ''', 0) and f' = (0, ... ,0, tq+2, ... , t n ) if t E cn. Then by
(6) there ia a consta.nt ß > 0 such that

(9)

for all (E Va and tEen. Using the inequality 2ab = 2(ea)(b/e) :5 e2a2 +b2/c2 we can
choose a constant C > 0 such that

IH,«}t - H,«)t'1 :5 ßIt'12 + (C - 2ß)It"12

for ( E V(} and t E C". Since by Taylor's theorem

2Re~ 8;~~) (; - z;) = e() - e(z) + H.()( - z) + 0(1< - Z12)

(10)

it follows from (9) and (10) that for 80me e > 0 we have the estimate

2Re~ 8~~~) (; _ z;) + CI(I/ - z"12~ e() - e(z) + PI< - Zl2 (11)

if z,( E Vc with I( - %1 ~ e.
Now let z, ( E Va with I( - zl ~ e and (" = z". Set

z< = (1 - I< ~ zl)( + I< ~ z(

Since eis strictly convex with respect to the real coordinates of %1, ••• , Z9 we get r E V(}
and

e(z<) :5 (1 - I< ~ zl)e() + I< ~ zle(z)

and since I( - .rI= e i t follows from (11) that

2Re t Be«) «; - z;)
;=1 8(;

Hence we can find 6 > 0 so small that

> I( - zl(e«) _ e(ZC) + ße2)
e

~ e«) - e(z) + ßel( - zl·

n Be(') ße
2Re ~ ---a-,.«j - Zj) 2: e«) - e(z) + 21( - zl

J=1 J
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for all z, ( E 9'0 with I( - zl ~ e and 1(" - zl' I ~ 6. Clearly this implies that for
sufficiently large constants B > 0 we have

2Re t aB«) «; - z;) + BI(" - z"12 ~ B() - e(z) + ße I( - zl (12)
;=1 a(; 2

for aJl z,( E Vä with I( - zl ~ €. (8) now follows from (12) and (11) if we set
A = max(C,B) and a = min 21'~ I" •

• ,(EPa •
1(-.12:-

4 Certain new estimates for [)

l~j~q+l

q + 2 ~ j ~ n,

w({,()
4'({, ()

In this section q is an integer with 0 ~ q ~ n - 1 and D ce cn is a Iocal q-convex
c2 domam. Then we have by definition a (fl domain G ce cn whidl is strietly
convex with respect to the real coordinates of Z1, ••. , Zq+ 1 and & biholomorphic map h
from a neighbourhood Un of tJ onto a neighbourhood. Ua of G such that h(D) = G.
After shrinkiDg these neighbourhoods we may also 8BSUD1e that there is a (fl function
fl : Ua -+ R 88 in the first part of the Definition in Section 3. Further let Va, A, er be
&8 in Lemma 3.2. Before we come to the announced estimates we construct an integral
operator which gives a homotopy formula for (n, r )-forms with n - q ~ r ~ n.

For aIl (~, () E C" x Ua we set

!
2

8u«) for

:= a~fb
2 8{J + A«(; - (;) for

.- (Wt (~, (), ... , wn ({, (»,
:= (w({,(),( -~) - 2e«).

Then by (8)
Re IJ({, () 2: -(J«) - l!(~) +er" - ~12 (13)

for &1l {, ( E Va. In particular (»({, () =F 0 if {, ( E G and for alI (e, C, A) E Va x Va x [0, 1]
with €:/: ( we can define

. w(e,() (-{
'1({,(,A):= (1- A)~({,,) +A

1
( _ €12

and
~ n!

fIG({, C, A) := (271'i)n d'1t({,',..\) 1\ ... 1\ d'7n({, C, A) 1\ d{t 1\ ... 1\ d{n

where '1t, ... , '1n are the componentB of'7 and disthe exterior differential operator with
respect to ~", A. For ( =F €, fIG ({, , , ).) is of cI8BB CCO in {,). and all derivatives
with respect to ~, A a.re continuo~ in ~,<,).. Moreover if we consider only the part of
fIG(~,(,~) which is of degree 1 in ). then we see that the singularity at ~ = , of this
form is of order ~ 2n - 1.

6
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Hence for each 9 E L~(G) n~(G) the integrals

Jrlg({):= J g«)AfIGe{,(,A) for ~ E G
«( ,~)EGx[0,1]

converge (for the definition of such integrals see for instance Section 0.2 in (H/Le 2))
and in this way we obtain a form lfG9 E ~ (G). Denote by iI(e, (,;\) the puD back
of the form iJG(e,(,A) to UlJ x UlJ x (0,1) with respect to the biholomorphic map h.
That means

Further let

H({, (, A) = (he x h,)fIG({, (, ;\). (14)

H/({) = J j«) A H({,<, A) for {E D.
«().)ED x [0,1]

H=h·oJrlo(h-1y

be the pull back of the operator JIG to the doma.in D with respect to h. Then H iB
a linear operator from L~(D) n ~(D) to ~(D) and for each I E L~(D) n ~(D) we
have

Note that for r = 1, ... , n

(15)

(16)

Theorem 4.1 It n - q $ r $ n and if / E L(n,r)(D) n C(n,r)(D) such that d/ also
belong8 to L~(D) nC2(D) then

{
dHI for r=n

f= dH/+Hdf lor n-q~r~n-l.

Theorem 4.2 There is a corutant C < 0 such that tor roch bounded f E ~(D), HI
is Hölder continuow on D and

IIHflh/2J) $ C sup IIf«) 11·
(ED

Essentially these theOrems are contained already in the works of GRAUERTfLIEB

(GIL], HENKIN (H 1] and W-.FISCHER/LIEB (WF/L] where certain versions of the
operator H with boundary integra.ls are used. To obtain proofs precisely for the state­
ments formulated here one can use many different 80urces in the literature. We restrict
ourselves to the following remarks: Tbe idea to use operators without boundary inte­
grals is due to HENKIN, LIEB and RANGE (see (L/R) or [HfLe 1]); Theorem 4.1 ca.n
be proved by the same arguments -as Theorem 4.11 in [LafLe); Theorem 4.2 can be
proved by the same arguments as Theorem 3.1 in (BF].

Theorem 4.2 admits generalisatioDS to forms sati.sfying different uniform growth
conditions ([LfR), (HF)). For exam.ple in (BF] the case is studied where for a smooth
submanifold N of bD

IIf«)1I ~ (dist«(,N)]-.s for (E D

7



where 0 ~ ß < 2n - dima N. In the present paper we need the following improvement
oE this result for the case when N consiBts only of one point and ß= 2n - 1: Set

n 8e oh(z)
r(~,z):= E 8. (~; - z;)

;=1 z,
(17)

for z E UD and ~ E cn. Note that for z E bD, r ({, z) iB proportional to the Euclidea.n
distance 8({, z) between { and the complex tangent plane of bD at z.

Theorem 4.3 There i" a constant C > 0 MJ.ch that the following holds: I/ z E Ub\D
(in particular z E bD is admitted) and I E ~(D) satisfie! the 'estimate

1
1I/«)1I ~ I( - zl2n-l

for all ( E D then HI belangs to cl/2(D\{z}) and moreover

IIHf({)1I ~ c (T({,z)l:I~~I~I~I;I~ z12n-3

for oll € E D\{z}.

(18)

(19)

Proof. We may 888UID.e that D =G a.nd h iB the identical map. Let z E UD\D and

f E ~(D) with (18) be given. That HI belongs to C!/2(D\{z}) then folloWB from
Theorem 4.2 and the fad that for , t= ~ the derivatives of H (€,( , ~) with respect to €
are continuoUB in {, ( , ~. .

Now we a.re going to prove estimate (19). During this proof by C, Cl, O2 we denote
positive constants which are independent of / and z. The constant 0 used in different
places may have different values there. Observe that 88 usual (see for instance Section
3.2.7 in [R/Le 1]) we obtain that

(20)

where

I,({) :=,L IC)({,()I'I( - {~-I-'I( - zl2n-1

and da is the Lebesgue measure. We omit the elementary arguments which show that

C
11a(e)I ~ le _ z12n-2 for {E D. (21)

To estim&te 11({) and 12(e) we first give same auxiliary estima.tes. From the definition
of ~ it is clear that

Iw(~, z)1 ~ 2r(€, z) - Ale - zl2 for z E D

and
I'I({, z) - '1({, ()I ~ CI( - zl for {,( E D.
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Hence
I~({,()I ~ 2r({,z} - C1(1( - zl + I{ - z12) (22)

for all {,( E ll. FUrther we introduce the abbreviation t{{,() := Im c1t({,() and rec&ll
the fa.ct that dct({,(~( = { A de(() 1= 0 if , E bD. Choose a neighbourhood UbD of bD

and a number € > 0 so small that

det({,() " de«) 1= 0

for all { E UbD and ( E en with IC - €I ~ E. Note also that by (13)

14»({, ()I ~ It({, ()! + le«)1 + le(~)1 + 0'1( - {12

for all (,e E D. It follows from (24) and (21) that

C
I.({) ~ Clo({) ~ I{ _ z12n-2 for ~ E D\UbD

and

for all { E D\{z} and k = 1,2. Set

! 002n
I,.•({):= {ED \4>({,()"" - {12n-I-'" _ z\2n-I

1(-(1<'

for { E (D n U6D )\{Z}. Since

(23)

(24)

(25)

(26)

. r({, z) $; C21{ - zl (27)

for all { E fJ now by (20), (21), (25) and (26) it remains to prove that

I (l:) < Cl + Iln I~ - %11 (28).,r:" - le _ zl2n-l

and
1 + IIn I{ - zll

IAI,c({) :5 C r({, z)l{ _ z12n-3 (29)

for all ( E (tJ n U6D)\ { z} and k = 1, 2. In doing 80 we UBe the following notation: H
{E (Dn UbD)\{Z}, W(e) ~ D and k E {1,2} then

I,.•(W({»:= ! 14>({ ()I'I( - ~:I-'" _ zl2n-I .
(EW(U '
1(-(1<1

Proof 0/ (~8). For { E (D n U6D)\{Z} we set

W J
({) = {( E D: I( - zl < I{ - zl/2}

9



and
W"({) = {( E D: I( - zl > I{ - zl/2}.

Then
III,e({) = llI,e(W'({» + III,e(W"(t)) (30)

for a1l {E (DnU6D )\{Z} and k E {1,2}. Since I( -€I > I{ - zl/2 if( E W'({) and by
(24) we have

IIr,.(W'(O) :S I~ _ zf2n-l-1r ! (It(~ ()I + je(<)1 ~{n_ z12)1r1( _ zl2n-l
(EW'«() ,
1(-(1<1'

for an { E (l> n UbD)\{Z} and k E {1,2}. By (23) e and t(€,·) may be considered aB

local coordinates. Hence

dx l 1\ ... 1\ dx2n- 1I

Ixl2n- l!
_Ea2,.-.
I·I>I(-·I~

~ C 1 + IInI{-zll (31)
I{ - zl2n-l

for all { E (lJ n U6D)\ {z} and 1c E {I, 2}. Hy similar acguments we obtain that

111 ,(W"({» ~ C ! dzl A ... A dx2n

,.. I{ - zl2n-l (lxII + IX21 + IxI2)lIlxI2"-I-11
~ER2"

C ! (1 + IIn lxi I)dx l A ... " dx2n- 1I
~ I{ - zl2n-l IxI2"-I-'

zER2tl-"

C
~ I{ - ZI2n-l (32)

for aJ.l { E (D n U6D)\{Z} and k E {1,2}. Estimate (28) now follows from (30)-(32).
Prool 01 (~9). Let C3 = 2(Cl + ~) where Cl and C2 a.re the same constants 88 in

(22) and (27), and set

WO({) - {( E D: K- zl < T({,Z)/C3 },

W1
({) - {( E D: I( - zl > T({,Z)/C3 },

W IO
({) - {( E W I

({) : K- zl < le - zl/2},
W ll

({) - {( E W l
({) : I< - zl > I{ - zl/2},

WllO(e) - {( E Wll ({) : I( '- el < le - zl},
W1ll(e) - {( E W ll

({) : I' - {I > le - zl}.

10



dx] 1\ ... A dx2n

Then

IIc,e({) = III,c(W'({» + III,c(W10({» + IIc,e(WllO (€» + IIc,l;(Wl11(~n . (33)

for all ~ E (Dn UhD)\{Z} and k E {1,2}. Since K- el ~ I{ - zl/2 if (E WIO(e) Md
by (24) and (23) we obtain that

III,c(W10(e» ~ Cle - ZI2n-I-1I

< C (1 + IIn le - z11)
le - zl2n-I-1c J

_Ea2",-l
r«(,-l/Cs <lei<I(- -112

dxl 1\ ... A dx2n-'
Ixl2n- 1

for all { E CD n U6D ) \ { z} and k E {I, 2}. Hence

I1•e(W10c{n :$
C(l + IIn te - zll) J dzl 1\ ... 1\ dx2n- 1

r(e, z)le - z12n-2 Ix12n- 2
_E~"'-l

I-I<I€-_1/2

~
C(l + IIn le - zll) (34)
r(e, z)l€ - ZI2n-3

and

12,e(W10({» ~
C(l + IIn Je - zll) J dxl 1\ ... 1\ dx2n- 2

le - zl2n-3 Ix12n- 1
_EIP,,-2

T«(,-)/Cs<I-1

~
C{1+ IIn le - z11) (35)
T(e, z)le - z12n-3

for &1l eE (D n U6D)\{Z}. Further it follows from (24), (23) and (27) that

I (W110(C» C J dx] 1\ ... 1\ d%2n

.,E ~ ~ le - ZI2n-1 {lxII + IX21 + IxI2)lIlxl2n- 1- 11
_ea'·

1-1<1(--1

C J (1 + Iln IzIl)dx1 1\ ... A dx2n-.
:$ le - zl2n-l 'xI2n- 1- 11

_EP.-l
1-1<1(--1

:$ cel + IIn le - zl D< C(l +IIn le - %1 D (36)
le - ZI2n-2 - T(e, z) le - ZI2n-3

for alI { E (D n UhD)\{Z} and k E {I, 2}. Since K- zl ~ le - zl/2 and K- {I ~ le - zi
imply K- el ~ (1/2)1( - zi we get

llo..{Wl11 ({» ~ C J dn2n

(ew
ll1

(E) I~{e, ()IIII( - eI2n
-

3 1( - zI2n+l-1:

11
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C
:5 It - z12n-3

dx 1 A ... A dx2n

:s; C(1 + IIn It - zID
It - z12n-3

dx1 1\ ... 1\ dx2n-"

IxI2n+1
-"

~ C(l + IInI~ - zl D (37)
T(~, z)l~ - z12n-3

for a.ll { E (DnUbD)\{Z} and k E {l, 2}. Finally we consider the integrals I",f:(WO(~».

It folloWB from estimate (28) which is already proved that

I (WO(~)) < CCs(l + IIn I~ - zll) (38)
,,~ - r({, z)l{ - z12n-3

for a1l €E (DnU6D)\{Z} with T({,Z) ~ C3({ -z12 and k E {1,2}. Therefore it remains
to estima.te I"..(WO(~)) for aJ.l ~ E (D n U6D )\{Z} with

r({, z) ~ C3 1€ - z12. (39)

It follow8 from (27) that I( - zl :s; le - zl/2 and therefore I( - €I ~ I~ - zl/2 for al1
{ E ([)nuhD )\ {z} and' E WO(€). Moreover it follows from (22) that leb({, ()I~ T({, z)
for al1 { E (!J n UhD) \ {z} sa.tisfying (39) and , E WO({). Hence

I",~(WO({» :s; C J dx1 A ... A dx2n

(T({, z»"I{ - zl2n-l-a Ix12n- 1
_ea'''

1-I<r((.,6)/Ca

C:s;
(r({, z»"-ll€ - zI2n-l-"

C
~ (T(€, z})le _ zl2n-S (4O)

for an € E (D n UhD)\{Z} sa.tisfying (39) and ( E WO(€) (for k = 1 we used (27».
Estimate (29) now follows from (33)-(38) and (40). •

5 Construction of the kernel

We start this section with a coro1l&ry to Section 4.

Corollary 5.1 Let D ce C" be a locall-COflVex ()2 domain and let H be the operator
con.structed in Section 4 for D. Set

KD(z,{) := [H(B(z,.»]({)

lor oll z E C"\D and € E D where B(z, €) is the Martinelli-Bochner kernel (5). By
Theorem 4.9, KD(z,€) i" defined and continuo"" euen for oll z E C"\D and ~ E /)
with z # {. Moreouer this form ha.s the following propertie.!:

12
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(i) KD(Z,~) is 0/ bidegree (n, n - 2) in € and 0/ degree zero in z.

(ii) d{KD(Z,~) = B(z,{) for all z E ~\D and { E D with z 1= {.

(iii) There is a constant C > 0 such that

1 + lInie - zll
IIKD(z,{)1I ~ C (T(Z,~) + I~ _ zI2)1~ _ z12n-3

/or all Z E UlJ\D and eE !J with z -:F { where T(Z,~) U defined by (17).

(iv) For each z E Cn\D, the form Kn(z,.) belong8 to ct~~_2)(D) and the aMignement
z ~ Kn(z,.) i" 0/ cla.s.s COO cu a map from C"\D with values in the Banach .!pace

1/2 -
C(n,n-2) (D).

(v) For 'any 0 < a < 1, Kn(z,{) is 0/ dass C:~]/2 for all Z E C"\D and { E fJ with
z 1= (.

Proof. (i) follows from (15), (ü) follow8 from Theorem 4.1 and (ili) follows from
Theorem 4.3. Since the Mactinelli-Bochner kerne! is of cl8B8 Coo outside the diagonal
and, by Theorem 4.2, H acts continuoUBly from C1n,n-1)(D) to ct~~-2)(D), (iv) is also
clear.

It remains to prove (v). Fix 0 < a < 1, Zo E C"\D and {o E lJ with Zu #= {o. Set
"( = IZo - {oi/S and

B(Zo) = {z E C"\D: Iz - Zul < 'Y},
B((o) = {{ E D : le - {oI< 'Y}'

It is sufficient to prove that Kn(z,{) is of dass C:~1/2 for (z,{) E B(zo) x B({o). For
that we moose a real COO function X on cn with x(() = 1 if I( - {ol < 2"( and x(() = 0
if I( - {al > 3-y. Set

Ka(z,{) = [H(XB(z, ·»](e),
K1-X(z,{) = (R«1 - X)B(z,.»]({)

for z E C"\D and ~ E fJ with z :f: {. Since X(C)B(z, () is of cI8B8 Coo for (z, C) E

B(Zo} x er' and H acts continuowdy and linearly from C1n.n-1)(D) to Cl~~-2)(D), we

see that the map z -+ K~(z,.) is Coo from B(Zo) to C(~~_2)(D). Bence in particn1ar,

KB(z,{) is of dass C:i/2 for (z, {) E B(z:o) x B({o). It remains to prove that K1-X(z, {)
iB of d8B8 C::i/2 for (z,{) E B(z:o) x B({o). For that we consider the form

lee, ():= / (1 - x«(»H({, C, A)
AE{O.t)

13



- f [}Mf(~)" K(z,~) -
(EO

rl ... 1t [

(see (14) for the definition of iJ(~,(,A)). Since 1 - X«) = 0 if , E B(~o) the map
e-. !<{,.) is Coo from B(~o) to ~(lJ). Since

K1-X(z,~) = ± f !({, () " B(z, ()
(ED

for z E CR\D and ~ E B({o) and since the Martinell-Bochner integral induces a
continuoUB linear operator from C2(D) to C:(B(.zo» this implies that the map ( --+

K1-X(.,€) is Coo from B({o) to C:(B(.zo». This completes the proof. •

Proof of Theorem 1.1. Choose an open ball B ce cn centered at Zo so small that
B\M consists of precisely two connected components and B nM is relatively compact
in M. The two connected components of B\M we denote by B+ and B_ so that on
B n M the orienta.tioDB of M and bB+ coincide. In view of Lemma. 3.1 we ca.n find
loe&1 1-convex [;2 domains D+ and D_ and open balls Bo ce BI ee B centered a.t
.zo such that BI n B:f: ~ D± ~ B±. Set Mo := Mn Bo and denote by H+ and H_ the
operators defined in Section 4 for D+ and D_ respectively. Set

for all z E cn\D± and { E D:f: with z I: (. By (15) K±(z,{) is defined and continuoUB
for all z E C"\D± and eE D± with z:/= e. Therefore by setting

K(z,~) := K+(.z'{~Mo x Mo - K_(z'~~Mo x Mo

we obtain a differential. form defined and continuoUB for all (z,{) E Mo x Mo with
z I: (. It follows immediately from the statements (i), (ii), (ili) and (v) in Corollary
5.1 that K(z,{) has the properties (i)-(iv) formulated in Theorem LI.

Now we prove part (v). Let 0 ce Mo be a. domain with piecewise Cl boundary.
An approximation a.rgument shows that we may restrict ourselves to Cl functions f.

First we consider a. Cl function / on n with compact support. Then there is & Cl
function j on er' with j({) = f({) if ~ E 0 and

suppj ce D+ UD_ UO =: D

and since, by Corollary 5.1 (ii), deK±(z,{) = B(z,e), it follows from Stokes theorem
and the Martinelli-Bochner formula that

f 8j(e) A t4K+(z,e) + f 8i(e} A t4K _(z,e}
(ED+ _ (ED_

- - f 8!<{) " B(z,{) = ;(z) = /(z)
(ED

for an z E O. That is (2) is proved in the case when f has compact support.
Now let! be an arbitrary Cl function on O. Fix zEn and choose a Cl function X:r

on Mo with SUPPX:r ce 0 and X:r =1 in BOme neighbourhoodof z.Then (I-X.)!K(z,·)

14



f f A K(z,') =f 8MI A K(z,') - f äM(~./)" K(z, .).
60 11 n .'

--------------------------'------------"""-----_..--._-

is & continuoUB form on n.w~ch is identically zero in a neighbourhood of z and since
~K (z, {) = 0 for e'I z we have the relation

d[(1 - x.)IK(z, .)] = dl(1 - x.)fl A K(z,.)
= 8M ! A K(z,.) -8M (x./) A K(z,.)

on O. Therefore d(l- X.)!K(z,')] is also continuoUB on Ö and Stokes theorem implies .
tha.t

Since formula. (2) is alreaOy proved for x.1 and therefore

- f lJM(x.f) A K(z,.) = x.(z)f(z) = fez)
o

this completes the proof of (2). •
6 Further prope~ies of the kernel K(z, e) and ap­

. plicatioDS

In this section we assume that I1t M, Zo, Mo and K (z, e) are 88 in Theorem 1.1 and
Bo, B, B+, B_, K+(z,e) and K_{z,e) are 8B in Section 5. Moreover we shall 8B8UID.e
~at the ball 130 is chosen sufficiently small so th~t the following two propositions hold:

Proposition 6.1 Any continuow CR-func~ondefined on an oPen !et 0 ~ Mo eztend.s
to a holomorphic function· in .,ome ca -neighbourhood 0/ O..

Proposition 6.2 I/ B(z) ~ ,Ba i.!I an open ball centered at !ome point z E Mo, then
any continuow and clo&ed ß, n - 2 -form on B+ n B z rupectively B_ n B(z) ron be
apprcn;imated uniJormly on B+ n B(% re&peCtively B_ n B z by b-exact 0(:,"-2) -/OrTTU
on C".

Tliat this is possible folloWB from "the hypothesis on the Levi form of 11: Proposition
6.1 is & consequence of the Levi extension theorem (see, e.g., Theorem 1.3.8 in (H/Le
2]), since, in the sense of distributions, any continuoUB CR-function on a hypersurfa.ce

. is the jump of two holomorphic functions (the latter assertion can be proved by means
of the Martinelli-Bochner-Kop~m8nDformula). Since B±nB(z) is starshaped if Bo
iB ~ciently small, Proposition 6.2,follows from the Andreotti-Grauert-Hörmander
approximation theorem (see, e.g., Theorem 8.1 in [H/Le 2]).

Further for each open 0 ~ Mo we use the fol1owing notations:

Spaces of forms. ctn,r)(O) (0 ~ r ~ n - 1, k = 0,1,2) is the space of ctn,rrforms
on 0 endowed with the topology of uniform convergence together with all derivatives
of order < k on the compact subeets of O. By Dtn,r)(O) we denote the space of aJ.I
/ E ctn,;')(O) with compact support endowed With the test-function-topology of order _

15
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k: a sequence Iv converges in Dtn.r)({}) if it converges in ctn,r)(O) a.nd moreover there
is a compaet set w ce 0 with supp Iv ~ w for all v. By L~,r)(n) (0 ~ r ~ n - 1)
we denote the Banach space of (nt r )-forms with bounded measurable coefficients on n
endowed with the sup-norm..

Spaces of corrente. ctn,r) (0)' and Dtn.r)(O)' are the 8p8Ce8 of continuoUB linear
forms on ctn,r)(O) and Dtn.r)(O) respectively, Le. the elements in Dtn,r)(O)' are the
(0, n-r-1)-currents of order k on {}, and the elements in ctn.r)(O)' are the (0, n-r-1)­
currents of order k with compact support on O.

H 1 is a differential form. with locaJ.ly integrable coefficients and of degree 8 on n
then we denote by (f) the cu.rrent in Dfn.n-.-l)(S1)' defined by

(/)(<p) := f f 1\ <p for <p E D(n,n-.-I)(O).
o

The operator c30; For 0 ~ r ~ n -1 and Je =0,1 we denote by 8n the operator

8n : Dtn.r+l)(OY -+ Dt:!)(O)'

defined by (c90T)<p := (_1)n-r-lT(~)for T E Dtn,r+l)(O)' and cp E Dt:::)(O).

Detlnition. Let {} ~ Mo be an open set. Set

Knf(~):= f fez) 1\ K(z,€)
..en

for f E L(:,n-I)(Cl) and eE n. It follow8 from estimate (4) that in this way a continuoUB
linear operator

Ko : L~,n_I)(n) -+ C(n,n-2)(O)

is defined. Denote by Kö the operator from C(n,n-2)(O)' to Dfn,n-l)(O)' defined by

K~T(cp) = T(Kocp)

for T E C(n,n-2)(n)' and cp E Dfn,n-I)(O). Denote by LI(n) the Banach space of
integrable functionB on {} and set (LI(n») := {(f) : I E LI(n)}. Then it follow8 from
estima.te (4) and the fad that K(z,e) is continuoUB far z :f:. € that the values of Kö
belang to (LI(n») and the map

KO :C(n.n-2)(n)' -+ (L I (O»)

is continuoUB if we identify (L1(n») with L1(O).

Theorem 6.3 Let 0 ~ Mo be an open set and f E L~,n_l)(n). Then

dKol = f·

16



-_.- ._-~---.... _.- - ....---_.-...---~---------"""""""----~

Proof. H tp is a Cl function with compact support on {} then, by fonnula (2), it is

Jcpf = J Jd<p({) " K(z,~)" f(z) = - Jdtp" Kot·
o .eO(eO 0

•
Lemma 6.4 (i) Let tp E Dln,n-2)(Mo). Then the form cp - KModtp can be approxi­

mated in C(n,n-2)(Mo) by 8-exact C(:,n_2)-jorms on cn.

(ii) Let z E Mo and B' ce Bo an open ball such that z fI. B'. Then the fonn K(z,.)
can be approximated uniformly on Mo n B' by ä-exact C~,n_2)-forms on er'.

Both aBSeItiona of this lemma are special cases of an approximation theorem of
HENKlN for arbitrary continuoUB 8-elosed (n, n - 2)-fonns (see the arguments proving
relation (6) in [H 2]). Since the proof of thiB general theorem is not so easy let UB give
direct proofs:

ProoC oC Lemma 6.4 (i). Set

K].od<p({):= J dtp(z) A K±(z,{) for eE Bon B±.
• eMo

Then it follows from estimate (41) that the forms K;,o dv> admit continuoUB extensions
onto (.80 n B:r) U Mo. Further we set .

tp±(~):= J tp(z) 1\ BI(z,€) for eE Bon B±,
.ENo

where BI(Z,~) is the part of the M&rtinelli-Bochner-Koppelman kerne! which is of
bidegree (0,1) in z. Since tp is Hölder continuoUB (it is even Cl) it is weIl known that
also the fonns tp± admit continuous extensions onto (Bo n B±) U Mo. Moreover it
followB from the M&rtinelli-Bochner-Koppelman formula that <P = CP+I - CP-j

Mo Mo
and therefore

cp - KModvJ = (cp+ - KL-odcp)IM
o

- (tp- - KModcp~Mo'

Using the relations ~Bt(z,{) = -8.B(z,~) and ~K].o(Z'{)= -B(z,{) we see that the
fonns <fJ± - K].o d<p are 8-closed on 110 n B±. The required a.ssertion on approximation
now follows from Proposition 6.2. •

Proof of LeIiima 6.4 (ü). 8ince B' is pseudoconvex and z tt B' we can solve
the equa.ti.on dG = B(z, .) with same continuoUB (n, n - 2)-form G on B. 8ince
dK±(z,.) = -B(z,.) the forms K±(z,.) + G are closed on B' n B± and the 888eItion
folloWB from Proposition 6.2 and the representation

•
17
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De8niiion. Let n ~ Mo be an open set and let f be So continuous 1-form with
compact support on O. Then we define

K~!(z):= f f(~) /\ K(z,{) for zEn.
eeo

It follows from estimate (3) that Kof is So continuous function on n.

Remark 6.5 Let n ~ Mo be an open set and let! be a continuous I-form with
compact support on O. Then it follows from Fubini's theorem that Kö(!} = (K~f).

Theorem 6.6 Let n ~ Mo be an open !et and let T E C(n,n-l)(O)'. 1f BoT E

C(n,n-2)(O)', that moons if BoT is also 0/ order 0, ihen

T=-~80T.

In particular thm T i" tkfined by an LI funenon on O.

Proof. H rp E Dln,n-l)«(}) then by Theorem 6.3

T(rp) =T(dKorp) = -EJoT(Kocp) = -KoänT(rp).

Since Dln,n- 1)(O) is dense in Dfn,n-l)(O) this implies the aBSeItion.

Remark 6.7 Let n ~ Mo be an open set and let T E C(n,n-2)(O)'. Then it is easy
to see that

fez) := T(K(z,·», z E O\suppT,

is a continuoUB funetion and, on Ö\suppT, KöT is defined by f. Bence for each
T e G1n,n-2)(0)', KoT is defined by an LI funetion on n which is continuoUB on
Ö\suppT.

Theorem 6.8 Let () ~ Mo be an open .set and let T E Dfn,n-l)(O)'. If är,T is definetl.
by a continuow l-form on n IMn T i.s defined by a continuow functior& on O.

Proof. Let w ce 0 be an open 8lld relatively compact snbset of n. It is sufficient
to find a continuoUB function 9 on w with

T(rp) =f grp for all cp E Dfn,n-I)(W).
o

Cboose a Cl funetion X with compact support on 0 such that X = 1 in aneighbourhood
of w. Then by Theorem 6.6 we have

T(cp) = xT(rp) = -K~(8n(xT»(tp) = -K~(x80T)(cp) - K~(dX /\ T)(tp)

for all tp E Dfn,n-l)(W), In view of Remacks 6.5 and 6.7 this implies (42) if we set

g(z) = -(K~(xf»)(z) - T(dX /\ K(z, .») for z E w,

where fisthe continuoUB I-form defining lJoT. •
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Corollary 6.9 Let {} ~ Mo be open and T E 0'n,n-l)({})' such that BoT = O. Then
T u holomorphic in a cn-neighbourhood 0/0, that meaw there exi.s~ a holomorphic
function h in .some C" -neighbourhood 0/ {} $U,ch that

T(cp) = Jhcp lor all cp E !>fn,n-l)({}).
o

Proof. This follows from Theorem 6.8 and Proposition 6.1. •
Corollary 6.9 was obtained by HENKIN (see Theorem 3 in [H 3]). Note that Theorem

6.8 does not follow from Corollacy 6.9 (as the corresponding sta.tement for 8) because
under the given hypothesis on the Levi form of e the tangential Cauchy-Riemann
equation for (O,l)-currents on Mo cannot be solved locally (see (A/F/NJ).

Theorem 6.10 Let T E G1n,n-2)(Mo)' such that 8Mo T = O. Denote by WT the CDn­

nected component 0/ MO\8UppT who.se boundary contains the boundary 0/ Mo. Then

and

suppKMoT ~ Mo\WT.

(43)

(44)

That under the hypothesis of Theorem 6.10 there exists aLl function u on () with
8Mo {u) = T and suppu ~ Mo\w-r was proved by HENKIN (see Theorem l' in [H 2]).
Tbe new information contained in Theorem 6.10 consists in the representation

(45)

Although the validity of this representation follows immediately from Theorem 6.6 let
UB give also a proof of Theorem 6.10 which is independent of HENKINs tesult:

Proof of Theorem 6.10. Since 8MoT = 0 it follows from Lemma 6.4 (i) that for
each cp E Dln,n-2)(Mo), T("" - KModcp) = 0 and therefore

-lJNoK;"oT(cp) = T(KMo(/.{p) =T(<p).

Since Dln,n-2)(Mo) is dense in Dfn.n-2)(Mo) this proves (43).
From (43) and Corollazy 6.9 it follows that on Mo\suppT, KoT is defined by BOrne

holomorphic function h. Choose an open ball B' ce Bo centered at Zo such that
suppT ~ If. Then, by Lemma 6.4 (ü), for each <p E Dfn,n-l)(Mo\B'), the form KMo<p
can be approximated uniformly on Mo n ß' by 8-exact C~,n_2rforms on er-. Since
lJMo T = 0 and suppT ~ B' this implies that

Jhcp = KöT(<p) = T(KMo<p) = 0
Mo

for all such 'P. Hence h = 0 on Mo\fJ' and, by uniqueness of holomorphic functions,
h =0 on WT, that means (44) is also proved. •
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It was ohserved by HENKIN (see Theorem 1 in [H 2]) that in the case of sufficiently
smooth functions Theorem 6.10 leads to an Hartogs-Bochner extension theorem on Mo
UBing the same arguments as in EHRENPREIS' proof of the cl888ical Ha.rtogs extension
theorem (see the proof of Theorem 2.3.2 in [Hö]). We want to show that using repre­
sentation (45) and estimate (1) one C8ll prove this theorem also in the case of Hölder
continuoUB functions. Let 0 ce Mo be & domain with C2-bounday. A continuoUB
function f on bO will be called a CR-function if

for all C~,n_3fforms V' on cn.

Jfdtp = 0
60

(46)

Theorem 6.11 SUPfXJ5e Mo\Ö i.J connected and let / be a Hölder continuous CR­
Junction on bO. Then there eri"ts a (unique) continuOtlS Junction F on nwhich extend.!
holomorphically to same cn-neighbourhood 0/0 !uch that F(z) = fez) tor oll z E bO.
For zEn thi" function ia given by

F(z) = J j({)K(z,{).
(EbO

(47)

z -+ J l(t)K(z,~)
. (EbO

this implies that

Proof. (All positive constants will be denoted by tbe same letter C.) First we note
that

JK(z ~) - {1 for z E Cl (48)
,,- - 0 for z E Mo\n.

(E~ .

H zEn this follows from (2) and for z E Mo\fi this follows from Stokes' theorem and
the fad that deK(z,{) =0.. Denote by T E Cfn,n-2)(Mo)' the current defined by

T(~) = JIV' for V' E C!n,n-2)(Mo).
60

Then by (46), 8Mo T = 0 ~d it follows from Theorem 6.10 that 8uppKMo T ~ Ö (Mo\O
is connected) and T = -8Jt1o K MoT. Since by Remark 6.7 on Mo\bCl, KMoT is defined
by the function

J j({)K(z,{) = 0 for Z E Mo\Ö (49)
(EllCl

and, by Corollary 6.9, the function F defined by (47) extends holomorphicaJ.ly to same
C"-neighbourhood of O.

It rema.ins to prove that

Um F(z) = !({o) for all {o E bO.
O:l.-{o
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For z E Mo denote by ~. a. point in bO with Iz - ~.I = dist(z, bO) ({. is uniquely
determined if z is close to bO). Then !(e1l) -+ !(eo) if z -+ eo. Therefore it is sufficient
to prove that

lim (F(z) - f(~1I» = 0 for all {o E bO.
0311-(0

To prove (50) we fix some {o E bO. Denote by Br({o), r > 0 the open ball ofradius
r centered at ~o. Set

Ir(z) := J I!(€) - !({.)IIIK(z,qbolld~({)
(E6OnB,.«o)

for r > 0 Md z E Mo\(bO n Br(€o», where d~(€) is the Euclidea.n volume fonn of bO.
Since I€ - {.I :5 21€ - zl and f is Bälder continuous there exists 0 < ao < 1 with

If(€) - f(€1I)1 :5 eie - zloo

for al1 € E bO and z E Mo. Fix 0 < a< 0'0 and prove that then

(51)

(52)

for al1 r > 0 and z E Mo\(bO n Br({o».
Proof of estimate (5B): Since K( z, €) is of maximal holomorphic degree in € one

has

IIK(z,e~bnll~ CIIK(z,€)1I118e(€~bOIl

for al1 eE bO and z E Mo with z =I: {. ~t

n 8e({)
u(z,{) := Im E ~({i - Zi)'

;=1 \.t

Then

and

(53)

(54)

lIae({~bOIl ~ C(lIdetL(z'{~bnll + I€ - zl) (55)

for all { E bO and z E Mo. Set e = (cro - a)/2. Then it follows from (51)-(55) and (1)
tha.t

Ir(z) ~

(56)

for all r > 0 a.nd z E Mo\(bO n Br({o». It is clear that the second integral in (56) is
bounded by Cro. To esti.ma.te the first integral we use the trick of RANGE and SIU
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(see the proof of Proposition (3.7) in fR/SD, which allows UB to consider u(z,·) 88 a.
locaJ. coordinate. So we obtain that this integral is bounded by

C / dx] " ... " dx2n- 2

(lxII + IxI2)lxI2n-3-a-e· .
• EP--2

I-I<r

Integrating first with respect to X] we see that the last integral is also bounded by Cra.
Hence estimate (52) ja proved.

End 0/ proof 0/ (50): For r > 0 we set

H,.{z) = / (!(€) - IC~.»K{z,~)
ee6OnBr (eo)

if z E Mo\{bO n B,.{~o» and

G,.{z) = / (/Ce) - 1{~.»KCz,e)
ee60\Br(eo)

if z E Mo\(bO\B,.({o». Then by (52) it is _

IH,.{z)1 ~ Cra (57)

for all r > 0 and z E Mo\(bO n B,.({o». Since by (48) and (49), H,.(z) + G,.(z) = 0 if
z E Mo\Ö and G,. ia continuoUB on Mo n Br{{o) this implies that

In~oGr(z)I= IGr(eo)1 ~ er" (58)

for all r > o. Moreover it followB from (48) that

H,.{z) + Gr(z) = F(z) - f(e.)
if z E O. In voew of (57) and (58) this implies that for all r > 0 we have

limsup IF(z) - l(e.)1 ~ Cra.
{)3'.-(o

•
Remarks to Theorem 6.11.

(i) It followB from thiB theorem (by standard 8l'gUDlents) that

IF(z)1 ~ ~~ If(e)1 for all z E o.
Bence the 888erlion of the theorem holds for each continuoUB CR-function I on
bO whicll can be approximated uniformly by Hölder continuous CR-functiollB. It·
is not clear if this is possible for an continuoUB CR-functiollB on bO.

(il) We do not a.ssume that the boundary 60 is a CR-manifold. Note however that,
by the hypothesis on the Levi form of U, the set of points in 60 with complex
tangent spa.ce is nowhere dense in 60.

(ili) The hypothesiB that 60 is of class C2 is necessary for the Range-Siu trick in tbe
proof.
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