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General introduction

Here we roughly summarize the contents, and comment on the

methods and exposition,of this book. For more precise statemenu:)

and a more detailed discussion of the contents, we refer to the

subsequent separate introductions to chapters 1 resp. 2 - 4 resp.

5.

0.1 Summary

Let G be a complex semisimple Lie group. We study

(1) the ge~metry of nilpotent orbits in the Lie algebra ~ of

G, and

(2) the classification of primitive ideals in the enveloping alge
\

bra Y(!J).

A"primitive ideal ll is a kernel of an irreducible infinitesimal

representation .(for simplicity, assume with trivial central cha

racter in this summary). Our principal object is to gain insight

into (1) and (2) simultaneously, and to understand their relation.

Originally, both topics appeared fairly unrelated, and evolved for

some time quite independently into highly cultivated research areas,

wi t h rem ar kablet he0 r i es. F0 r an excel 1entex pos i t ion 0 f (2) see f 0 r

instance [JaJ. However, both (1) and (2) have been related to irre-

ducible representations of the Weyl group W, by fundamental work

of T.A. Springer resp. A. Joseph, with some superficial similarities

on one hand indicating same d~ep rel~tions· (as was suggested'from

the outset by conjectures of Borho resp. Jantzen [B2J), but with in

triguing discrepancies on the other hand, which remained a mystery
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for several years.

As an illustration'for the non-expert reader, let G = SL(n,[),

where W is the symmetrie group of n letters (in fact, of the

n eigenvalues of a matrix). Then

(1) a"nilpotent orbit '! is a eonjugaey elass of nilpotent n by

n matriees, and is speeified by a partition of n (theory of Jor

dan n·0-r mal f 0 r m), wher eas

(2)' a primitive ideal is specified by a Young standard tableau

(theory of Josephls Goldie rank polynomials [JaJ).

Here both Springerls resp. Joseph's W representations are equi

valent to the one speeified by. the eorresponding Young diagram

(Frobenius l theory of representationsof the symmetrie group).

We give a reformulation of both Springerls and Josephls irredu

eible representations in a uniform fashion, in terms of charaeter

istic elasses of cone bundles on the flag variety X of G.

(1) To a nilpotent orbit, we attaeh a bunch of eone bundles in the

cotangent bundle T*X as foliows: Take the preimage under the

(Kostant-Souriau) momentum map T*X ~~, and deeompose its clo

sure into irreducible components.

(2) For a primitive ideal J, we obtain a eone bundle by loeali

zing the left module U(~)/J as a V-module on X (Beilinson-Bern

stein loealization), and taking its eharaeteristic variety in T*X.

Dur "eharaeteristie classes '! are then given in both cases by the (Fulton

MaePherson) Segre elasses of these eone bundles, as lowest degree

term of the product with the ehern elass of T*X. The eharacteristic

elass of a primitive ideal, when interpreted as a harmonie polynomial
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(Borelts picture of the cohomology of X), turns out to be pro

portional to Josephls Goldie rank polynomial, while the bunch of

characteristic classes attached to a nilpotent orbit identify with

the canonical basis of Springerls representation; so Joseph's re

presentation becomes conceptually identified with a "special" [L]

one of Springera

We only recall here [Ja] that this representation is finally open

to explicit computation (recently extended to rank ~ 5 by Borho

Steins:)in terms of integer matrices, as a consequence of the

Kazhdan-Lusztig conjecture, proved by Beilinson-Bernstein and Bry

1inski-Kashiwara.*)

Oa2 Methods

"

Dur treatement is based on three relatively new methods:
\

We use the intersection homology approach to (1) as developed in

joint work of the first and third author [BM1], [8M2] (in chapter

1), resp. the V-module approach to (2) as developed in joint work

of the first and second author [BB1], [BB3] (in chapter 5) " and. we

furthermore introduce here (in chapters 2 - 4) eguivariant K-theory

on T*X as a unifying concept, which provides an elegant common

frame work for the simultaneous investigation of nilpotent orbits

and primitive ideals in terms of characteristic classes, and makes

their relations appear quite natural. This new perspective was out

lined in [BBM2], and is presented in full detail herea Let us men-

tion that there is some minor overlap with parallel work of Viotor

Ginsburg [Gi].

*) See the notes addad in proof at the end of chapter five.
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0.3 Exposition

5ince this book is a research report in the first place, we

do not make a systematic attempt to be self-contained here; in

particular we make free use of [BM1], [BM2] resp. [BB1J, [BB3J

in the proofs of chapters resp. 5. More explicitly speaking,

the work of the first and third author on nilpotent orbits and

Weyl group representations, resp. the work of the first and the

second author on primitive ideals and their characteristic va

rieties, are taken for granted, as a kind of basement for the

ideas we build up here. It also goes without saying that we always

have to build on some (back-)ground, in algebraic groups (chapters

1,4), in topology (chapter 1), in algebraic geometry (chapters 2,

4), in representation theory (chapter 5), or non-commutative ring

theory (5.10-12), although we do spend some care on keeping the

necessary prerequisites, down to aminimum. We give full statements

or at least references for material used from other sources; we

spend some effort to make our fundamental definitions and the state

ment of main results easily accessable, and to make the logical de

pendencies between different chapters explicit, where they exist;

the core material of the individual chapters can then be studied

independently.

So our presentation does not lack ambitions towards independent

readability: To return to our above picture, the reader is in

vited into the building, or into his favourite chambre, without

having to worry too much about those parts of the basement, or

buildung ground, or other chambres, he might be unfamiliar with.
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In fact, aur purpose is not so much presentation of individual items

of new res eare h (t hat d0 0 ccurat vario us p1ace s ), but pr i msr i l'Y 0 ur

unified perspective or understanding of certain known results, which

we therefore wish to reprove here in full detail. This includes e.g.

(i) a very concrete canstruction (due to Joseph-Hotta) of Spri~ger~s

irreducible W representation in terms of integer matrices

(due to Hotta-Lusztig) (4.14),

(ii) the irreducibility of Joseph's W representation (5.13),

(iii) the irreducibility of the associated variety of a primitive

ideal (5.14) (alias the relation between nilpotent orbits and

primitive ideals suggested in [82J),

(iv) the equivalence (due to Barbash-Vogan) of Joseph's with

Springer's representation (5.'4),

(v) Josephts computation of Goldie ranks of primitive ideals (5.18).

While (i), (iii), (iv) have appeared only in research articles so

far, (ii) and (v) have already been central themes in Jantzenls

book [JaJ (following Joseph), so let us explain the point of our new

exposition here. In [JaJ, (ii) depends on (v), which in turn de

pends on several chapters of hard non-commutative algebra in that

book. Dur point is to totally avoid this care part of [JaJ, and

to logically separate (ii) from (v), that is to treat the classi

fication of primitive ideals, and the analysis of their Goldie

ranks, as two separate purposes. Another point is ta show all of



-9-

the five above mentioned results (along with others) arise in a

elosely related way in our geometrie approaehe
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INTROOUCTION to CHAPTER 1

Summary.

A nilpotent orbit 6 u in a complex semisimple Lie algebra gives rise

to a collection of cone bundles on the flag variety, by taking the closed compo-

nents of its preimage under Springerls resolution of singularities. Using the

generalization of inverse Chern classes of vector bundles to Segre classes of cone

bundles due to Fulton and the third author,we attach to each such cone bundle a

characteristic class in the cohomology of the flag variety, which is interpreted:

as a harmonie polynomial on the Cartan subalgebra. Using the intersection homology

approach to the study of nilpotent varieties as in [BM1], [BM2] we show that this

collection of polynomials transforms under the action of the Weyl group according

to Springerls irreducible representation

ffu by quite different means.

Introduetion.

Pu whieh is usually eonstrueted from

Consider the set N of all nilpotent eomplex n by n matriees (n ~2).

With respeet to the action of the group G ~ SL(n,~) by eonjugation, N de

eomposes into finitely many eonjugacy elasses. 8y the theory of Jordan normal

form, these elasses (or "nilpotent orbits") are in bijeetive correspondenee to

the partitions of n. On the other hand, the elassieal theory of representations

of the symmetrie group due to Frobenius and Young classifies the irredueible com-

plex linear representations of Sn by the same set of eombinatorial objeets,

i.e. the partitions of n. Here we realize the symmetrie group ~n as the group

of permutations of the eigenvaluesof the diagonal matriees, to identify it with

the Weyl group W of G ~ SL(n,t). In eonelusion, this may be used to set up a

bijective eorrespondenee between the set of nilpotent orbits of G in its Lie

algebra ~, and the set of classes of irreducible representations of its Weyl

group W.
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The more recent (1976) theory of T.A. Springer [51] gives a very elegant,

deep geometrical explanation for this correspondence,.and simultaneously gene

ralizes it to the case of an arbitrary complex semisimple Lie group G as fol

lows. Given a nilpotent element u € N, we denote ~u its Gorbit (conjugacy

class), and XU the variety of all flags (maximal chains of linear subspaces in

ln) which are preserved by u. Then Springer constructs a linear W action on the

cohomology H*(Xu) of this variety. This action commutes with the obvious action
G

of the isotropy group G, and is irreducible on its invariants H2d (Xu) u in the
u to/Y'<

highest nonzero cohomology grotPY(of degree 2d =di~Xu). The resulting irreducible

representation of W will be refered to as Springerls representation Pu corres

ponding to the nilpotent orbit ffu. In our example G ~ SL(n,t), Springerls

correspondence ~u ~ Pu gives an intrinsic description of the bijection des

criberl above in completely classical, but more superficial (combinatorial) terms.

For an arbitrary semisimple group G, this correspondence turns out to be injective,

that is to say different nilpotent orbits ~u f ~v correspond to non-equivalent

representations pu$ Pv; but it is no longer surjective in general, and Springerls

theory explains more precisely why this is so, by relating the Ilmissing it irreducible

W representations to non-trivial local systems on some of the nilpotent orbits.

After Springerls original version [Sl], this remarkable theory has been

further investigated and improved in several respects. We can only mention here

some of the many research contributions by various authors. Various alternative

constructions of Springerls W action on H*(Xu) have been given by Springer

himself [S2], by Kazhdan-Lusztig [KLJ, Slodowy [SlJ, and Lusztig [LuJ; for a

detailed account of why all these very different approaches yield essentially

the same W action, we may refe~ to Hotta [Ho], appendix, and Spaltenstein [Sp],

§ 2. An explicit calculation of the correspondence ~u ~ Pu was carried out

by Shoji (G classical [Sh1], type F4 [Sh2]), Springer(type G2 [S1J), resp. Alvis
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and Lusztig (types E6,E7,ES [AL]). This latter calculation1and even the complete

tabulation of the W action on the full cohomology groups H*(Xu) (in all de

grees) by Beynon and Spaltenstein [BS], had to make use of certain new formulae

for the multiplicities in Springerls representations on H*(Xu) obtained by two

of us in [BM1], [BM2].

In these last mentioned papers, a reformulation of Springerls theory of

Weyl group representations was given in terms of intersection homology theory.

It seems to us that this new approach, which will also provide essential methods

of proof for our present paper, offers a more satisfactory, most natural conceptual

frame-work to understand Springerls theory. One of its key points is to relate the

multiplicities of Springerls W representation on H*(Xu) to the local Betti

numbers of the intersection homology groups .of closurl~of nilpotent orbits. This

means that Springerls representation is - up to equivalence - completely des

cribed by certain numerical topological invariants of the singularities of the

closures of nilpotent orbits. The precise formula [BM1] relates two a

priori unknown sets of numbers; however, its structure offers an opportunity for

recursive calculation, which eventually yields complete knowledge of both sets

of numbers.

As a consequence of [SM1], we may say that we totally know Springerls re

presentations - but only up to equivalence. Let us suggest now an even more am

bitious goal: To refine our geometrical analysis to an internal description of

the representations themselves, in terms of matrices with respect to a suitable

fixed vector-space basis; all items in this description should be defined or

interpreted in geometrical terms. We do not know at present how to achieve this

for the full W representation on H*(Xu), but we do know such a description

at least for Springerls irreducible representation Pu' and the purpose of our
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present paper is to explain this in some detail.

. "' ......

Dur description of the representation Pu is in terms of characteristic

classes of cone bundles on the flag variety X, which are constructed from the

nilpotent orbit ffu as foliows: Take the preimage of ifu in the cotangent bundle

T*X (which maps onto the nilpotent cone Nunder the so-called momentum map),

and then decompose its closure into irreducible components K
1

, ••• ,Kr. These are

cone bundles on X (i.e. locally trivially fibred over X by conical sets of
~O

covectors) of'dimension d = dirn Xu. Using the nation of Segre class s(K) of

a cone bundle K in the sense of Fulton and the third author [Fu], which coin

cides with the inverse Chern class c(K)-l in the special case of a vector

bundle K, we may define our characteristic class Q(K) as the lowest degree

homogeneous term in H*(X) of c(T*X)s(K). Then Q(K1), ... ,Q(Kr ) are cohomology

classes in H2d (X), whieh we may interpret as weIl as degree d homogeneous

harmonie polynomials on the Cartan subalgebra (llBorel pieture ll of H*(X)). Using

the methods of [SM1], we show that we may pass from Springerls original repre-

sentation space for Pu to the veetor-spaee spanned by these r polynomials

by eomposition of various eanonieal, W equivariant isomorphisms. The elasses

Q(K 1), ... ,Q(Kr ) turn out to be linearly independent, and hence provide a basis

for our representation space. Now the representation Pu ean be deseribed

with respeet to this basis in terms ef eertain integer matrices, whieh have non

zero entries only for those indices i, j for whieh Ki interseets Kj in

codimension < 1.

More precise formulae for this matrix representation (cf. 1.15 below) were

previously found by R. Hetta [Ho2] in a somewhat different geometrieal setting

and were later used in [Ho] to identify certain W representations eonstrueted

by A. Joseph [J1] with Springerls Pu'
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Hotta I S formulae hold for our characteristic ·cJass'.basis without change; , ~,

Moreover, as we shall explain in detail. in a subsequent paper, our new approach

may be used to reprove these formulae, independently of Hottals work, and even

in such a way, that the above mentioned identification with Josephls construction

becomes simultaneously apparent.
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Introduction to chapters 2-4.

Our object here 1S to suggest, as apart of our general program

outlined in [BBM2], that equivariant K-theory provides a very appropriate

frame-work for the simultaneous study of nilpotent orbits in a semisimple Lie

algebra, and primitive ideals in the enveloping algebra.

To make this slightly more precise, let uS first sketch very briefly

same of the crucial techniques from equivariant K-theory which are frequently
I

chaptera
used throughout these 'y . We investigate here primarily the equivariant

K-theory of a semisimple Lie group G , acting on the flag variety X = GIB

and on its cotangent bundle T*x . This means, 1n other words, that we work

*1n and with the Grothendieck ring KG(X) (resp. KG(T X)) of the category

of G -equivariant vector bundles (or equivalently, of coherent sheaves) on

X (resp. on *T X) . On the other hand, let E be a"single cotangent space

of X at some point fixed by the maximal torus T c G , so that T acts

linearlyon the vector space E. Then our key technique,frequently employed

in this paper,consists in switching from G-equivariant K-theory on X to

T-equivariant K-theory on E. This is performed as follows : Starting from

*equivariant sheaves on T X we restrict them to the zero section on one hand,

and to a single fibre on the other hand, which gives isomorphisms

The point of this manipulation is now that for a linear action of a torus on

a vector space, equivariant K-theory can be carried out very conveniently

in terms of calculations with formal characters. On the other hand, the link

to purely geometrical considerations as in our §l (in terms of characteristic

classes in the cohomology of the flag variety) is made simply by the hbmomor-

phisms
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KG(X) -+ K(X) *-+ H (x)

where the first arrow forgets the G action, and the second maps a vector

bundle to its ehern class. In conclusion, this shows how we can translate

statements from a context most convenient for computations (formal characters)

into a context most convenient for geometrical interpretation (cohomology of

the flag variety), and vice versa.

Let us next summarize very roughly the contents of individual chapters.

In chapter 2, we have collected a few genera1ities about equivariant K-theory,

which are basic for the subsequent chapters; this chapter is very short, and

is mainly meant to help the reader unfamiliar with this theory to read the

other chapters. - In chapter" 3" we offer a somewhat systematic treatment of

the equivariant K-theory of linear torus actions. We assume that the torus

acts with positive weights (as in the case of T acting on E as above),

to make sure that formal characters exist. Let us note here that chapter 3

may also be viewed - to some extent - as a systematic study of mu1tigraded

modules over multigraded rings. For same readers, it could therefore be of interest

independently of any applications to semisimple Lie theory. Specific topics

treated in §3 include for examp1e the characterization of Grothendieck's

y-fi1tration in terms of codimensions of supports (theorem 3.10), or also in

terms of order of growth of "Hilbert functions" of graded modules (3.18).

App1ications of the general formalism as exposed in chapters 2 and 3

to nilpotent orbits in the Lie algebra ~ = Lie G resp. to primitive ideals

in the enve10ping algebra U(~) are elaborated in chapters 4 resp. ,5,

As the reader will realize, some of the formal results

stated and proved in chapter 3, turn into significant items of nilpotent orbit

or primi~ive ideal theory, if oue 1eams to translate thern appropriate1y into
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these fie1ds of app1ications. For examp1e, the dimension formu1a in theorem 3.10

trans1ates into the (we11-known) formu1a expressing the Ge1fand-Kiri1lov

dUnension of a prUnitive ideal as a function of the degree of its Goldie rank

polynomial (cf. [BBM2], proposition 3). A similar example gives Joseph's

well-known formula saying how to compute his Goldie rank polynomials from multi-

plicities of Verma modules, and hence from the Kazhdan-Lusztig polynomials

(see e.g. [BI], 6.9, or [Ja]), an embryonie, formal version of which is propo-

Let uS now explain the applications to nilpotent orbits contained

in chapter 4. As usual, we cons ider the G- equivariant roap TT of the cotangent

*bundle T X into the Lie algebra ~ known as Springer's resolution or the

Kostant-Souriau moment map (cf. [BB]I). For the co11ection of ("orbital l1
)

cone bundles K1, ... ,Kr attached to a nilpotent orbit ~ in ..& (that is
u

the irreducible of -1 ) we have already defined in chapter 1eomponents TI 8- ,u

eertain characteristie elasses Q(K. ) 1.n H2d (X) , where d is the common1.

* is equivariant,codimension of these bundles in T X . Since TT G these eone

bundles are even G-equivariant, and so they determine elasses in K~(X)

(the degree > d part of KG(X) with respect to y-filtration). Therefore,

l1 equivariant characteristic classes"

group H~d(X) , whieh is isomorphie to

our notion of characteristie classes Q(Ki ) can be refined inta that of

QG(Ki ) 1.n the equivariant cohomology

Kd(X)/Kd+1(X) • By means of the Borel
G G

pieture of the (resp. equivariant) eahomology of the flag variety, an adapted

version of whieh is reviewed right at the beginning of chapter 4, we may

interpret both Q(K. )1. resp. as polynomials on the Cartan subalgebra,

and then the former can be considered just as the harmonie part of the latter.

Actually, this is only a fact about general G-stable eone bundles ·(4.6);

but the "orbital cone bundles" Kl, ... ,Kr have the following remarkable

property in addition : Their equivariant characteristie classes turn out to
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be harmonie ·(4. 7), and so to actua1ly coincide with the "pure1y geometrical1y ll

defined characteristic classes of chapter 1.

This fact is estab1ished 'in chapter 4 on1y as a by-product of a much

stronger resu1t : We prove directly, by an argument partially following Joseph

[JI], that the classes QG (K
I

) , ... ,QG(K
r

) transfotm üuder a simple reflection in

the Weyl group according to a certain formula, which was first given by Botta

for the canonica1 basis of Springer's representations (see 4.14). In combination

with our previous work on the llpure1y geometrica1 t1 level in chapter 1, this

provides a new approach to the results of Botta and Joseph [Ho], [J1], and

even to Hotta's original transformation formu1a [Ho2], if one likes. Thus we

reprove in a quite natural fashion the coincidence of Weyl group representations

constructed by Joseph resp. Springer, which Hotta had established [Ho] only

in a rather indirect manner.

Since Hotta's transformation formulae are fairly sophisticated (see

4.14), one has to accept a fair amount of effort for proving them, as we do

here. Howeve!, we wonder whether there is a simple elegant argument proving

the harmonicity of QG(Kt) triare directly, without reproving Hotta's resu1ts.

For the case G = 8L
n

or more generally for (9- a "special" orbit (in the
u

sense of Lusztig [L]) an easy proof is obtained by arguing via the equivariant

characteristic classes (of the characteristic cycles) of primitive ideals,

for which we, curiously enough, do have an easy direct proof of harmonicity

(see chapter 5).

:h
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Introduction to chapter 5

The systematic study of primitive ideals of the universal en

veloping algebra U(~) of a complex Lie algebra ~ was initiated

by J. Dixmier. Obviously, one of the motivations he had in mind was

to support our understanding of irreducible Lie group representations,

which was greatly advanced under the influence of Harish-Chandra

and I.Mw Gelfand and their schools, by contributing an additional,

purely algebraic new tool. It was clear from the outset that the

primitive ideal, the kernel of an irreducible infinitesimal repre

sentation of the corresponding Lie group, could carry only rela

tively rough information about the representation. But as it turned

out soon, that amount of information was already sufficiently so

phisticated to be of high interest, and in the sequel, the evo-

lution of theoretical insight into the primitive spectra turned in-

to a dramatic series of research developments, heavily interacting

with representation theory and several other fields in mathematics.

As a result of these events, non-commutative algebra was dramati

cally advanced, and was more seriously interrelated in a variety of

- often unexpected - ways with various other important developments

in mathematics.

To be slightly more specific, one has ·to distinguish the three cases

~ solvable resp. semisimple, resp. general, which showed remarkably

different developmentsin both respects, history and result. Remark

ably enough, the original initiative is due to Dixmier in each case,

roughly 20, resp. 15, resp. 10 years ago. In the solvable case, a

fairly satisfactory theory was achieved by the early seventies, with
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contributions, due to Conze, Duflo, Rentschler, Vergne, and others:

The so-called Dixmier map established a continuous (and conjecturally

bi-continuous) bijection of the primitive spectrum Prim U(~) with

the coadjoint orbit space ~*/G, see [Di] or [BGRJ for detailed

accounts. The general case, after Dixmierts initial werk in the

late seventies, was theoretically penetrated by work of Duflo, Moeg

lin,and Rentschler,which essentially achieved (by the mid eighties)

a reduction to the semisimple case, see [MRJ and [02J .. 8B8 also [RB].

There is not (yet?) such an easy way of summarizing the history and

main achievements in the semisimple case, to which the present book

is intended to make another contribution. So we do not attempt to

systematically review the complicated history, nor the present situa

tion, of this subject as a whole. Let us try, however, to sketch some

very rough features of it, which may help to put our present contri

bution into an appropriate perspective. For this purpose, let us

roughly split the development of the subject over the past 15 years

inta three 5 year periods. The first one was a phase of first explo

rations of the subject, and its link up with the theories of highest

weight an Harish-Chandra modules. Dufla's characterization of the

primitive ideals [0] established the intimate relation of the sub

ject with work of Verma, Bernstein-Gelfand-Gelfand, Jantzen, and

others on highest weight representations, and early papers of Jo

seph, [BJJ, and others exploited the achievements of this link up.

On the other hand, the Dixmier-Kirillov orbit method, which had been

so succesful in the solvable case, was realized te be inadequate

for dealing with the semisimple case for various reasons, in the

first place because of the phenomenon of non-trivial Goldie ranks.

The Goldie rank of a primitive ideal J in U(~) is the rank
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of the matrix ring (over a skew field) obtained from U(~)/J by

appropriate loealization (in the sense of Ore). A Dixmier map

~*/G ~ Prim U(~) was defined for ~ ~ ~n in [84J and was pro

yen to be injeetive in [BJJ. It was elear apriori that it eould

surjeet at most onto the "eompletely primeIl (i.e. Goldie rank one)

part of Prim U(~); that it actually does was only reeently

established by Moeglin [M1J.However, this approach fails for simple

Lie algebras other then ~n' and misses the ideals of Goldie rank

> 1, so seemed (and still seems) hopelessly inadequate, although

optimistie experts may still hope an appropriate modifieation to

extend the orbit method may ultimately be found. For a summary

of this exploration phase of the subjeet, and the emerging problems,

see [B2J.

The second 5 year period saw most dramatie transformations of the

subjeet. In the first plaee, the problem of elassifieation of all

primitive ideals was redueed to the problem of computing multipli

eities in Jordan-Hölder series of highest weight modules (by work

of Jantzen, Joseph, Vogan and others), whieh in turn were conjee

turally interpreted by Kazhdan-Lusztig [KLJ in terms of topology·

(in faet, interseetion homology) of Sehubert varieties. And this

conjeeture was soon proved by Beilinson-Bernstein [BeBeJ, and

Brylinski-Kashiwara [BK] by means of the Riemann-Hilbert eorres

pondenee to modules of differential operators (V-modules) on the

flag variety. Sinee Kazhdan-Lusztig had simultaneously provided

a combinatorial recipe to eompute those multiplicities, the set

theoretie classifieation of primitive ideals eould thus be con

sidered to be done - at least in prineiple - as a result of this
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sequence of events. On the other hand the combinatorics involved

(for a major Lie group like ES' say) is so prohibitively compli

eated, that in praetiee the relation thus revealed was sometimes

even applied te prove combinatorial statements by means of primi

tive ideal theory, rather then the converse. So in the seeond

plaee, there was still the need for'.a more adequate classifieation

theory of primitive ideals. Sueh a theory emerged - completely

independent Iy of the deve Iopment ment i oned before - f rom exten si ve

work of A. Joseph culminating in [J3] in his beautiful bijective

eorrespondence between primitive ideals (of a specified eentral

eharaeter) and bases of eertain irreducible Weyl group represen

tations. Josephls method consisted in a complicated analysis of

Goldie ranks of primitive ideals, using very heavily very sophis

tieated ring and representation theory. For an exeellent exposition

of Josephls beautiful theory (along with much further material

from this llsecond 5 year periodli), we refer to [Ja]. For an ex

position of the proof of the Kazhdan-Lusztig conjeeture and related

material, we refer to [Mi].

The present book deals with, and eontributes to, the third of these

5 year periods. This one is eharacterized by·the purpose of gaining

geometrie insight into the elassifieation already achieved. The

(smooth) change from period 2 to this period 3 was marked e.g. by

sueh papers as Josephls [J1], which revealed a relation from Goldie

rank polynomials to nilpotent orbits, and Barbaseh-Voganls [SV1],

[BV2], which first indieated llexperimentallyll that Joseph's irre

ducible Weyl group representation must be deeply related to Springerls,

a relation whieh was theoretically understood first by Hotta-Kashi-

war a [H K]. A cru e i a 1 ach i evem e nt 0 f t his 11 t hi r d per iod 11 was t 0
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establish the simple relation between primitive ideals and nilpo

tent (eoadjoint) orbits that' had been suggested in [82J,or in other

words the irredueibility of the assoeiated variety of a primitive

ideal; this was done first for integral eentral eharaeters in

[881J, and in general by· Joseph [J2J. 'Simultaneously, the various

reformulations of Springerls Weyl group representations, diseussed

in the previous ehapters of this book, and appropriate for our pre

sent investigation of primitive ideals, were developed [8M1J, [J1J,

[Ho]. Also, the geometrie tool of assoeiated varieties (in ~*) was

refined to that of eharaeteristie varieties (in T*X) of the V

module eorrespopding to a primiti~e ideal, see [881J, [883J, and

V. Ginsburg [Gi]; ef. also Kashiwara-Tanizaki [KT].

Let us just mention the existenee of more recent intriguing work

of 8arbas h-Vogan on 1t un ipotent primitive ideals" in [8V3J, and
'-""

further new work of Joseph [J5J, ~otta-Kashiwara [H3J, whieh indi

eate further deep relations between nilpotent orbits and primitive

ideals, whieh remain to be fully integrated into a unifying theo-

retieal picture in the future. Let us also mention in this eontext,

that a lI reas tauration attempt" of the Dixmier-Kirillov orbit method

was made by Vogan [V2], but turned out [MG] to_he not yet fully

sueeessful.

The list of more recent developments, whieh we eomplement by pointing

out new interactions with ring and representation theory in [M2]

and [LSS], seems to promise that there might be yet another 5 year

period of further evolution of the subjeet to come. We hope that

our present eontribution, whieh aims at putting same essential aehieve-

ments of "periods 2 and 3" into a unified geometrie perspeetive,

might be helpful to prepare for it.
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Let us now summarize what we do in the present chapter 5. Roughly

speaking , it splits into three parts. In the f·irst part (5.1-5.9)

we introduce our nation of a characteristic class attached to a

primitive ideal J of U(~), and identify it as a character poly

nomial of a related h~ghest weight module. This ch~racteristic

class P(U(~)/J) is a cohomology class in H*(X)defined as folIows:

Take the characteristic cycle ~ on T*X. of the (Beilinson-Bern

stein) localization of the left module U(~)/J, and define

P(U(~)/J) := Q(~) to be the characteristic class of that cycle,

in the sense of chapter 1. The identification of P(U(~)/J) with

a character polynomial is a very crucial point, and so we offer

two alternative proofs. The first one (in 5.6) is very short now,

but depends heavily on the corresponding results about nilpotent

orbits proved in chapter 4. The second one (in 5.9) ,requires the

introduction of a G equivariant version of our characteristic

class concept (see 5.8), but seems more satisfactory and more

natural then.

In the second part of the chapter (5.10-5.14), we reprove the irre

ducibility of Josephls Weyl group representations (5.13) and of

associated varieties (5.14) in our picture. Let us state here our

version of the classification theorem for primitive ideals:

Theorem: Let J be a primitive ideal (with trivial central charac

ter) of U(~). Let ~ be the nilpotent orbit which is dense in the

associated variety of J. Let

tive ideals corresponding to

for i = 1, ... ,r. Then:

J 1, ... , J r be the set of all primi

~ in this way. Let p. := p(U(n)/J.)
1 ~ 1

a) Those characteristic classes P1, ... ,P r are linearly independent.

b) They span a W submodule in H2d(X). (Note 2d = codim ~.)
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c) This W representation is equivalent to Springerls Pcr.

Moreover,our Pi is proportional to Joseph's Goldie rank poly

nomial attached to J i , hence the equivalence of our version of

stating the classification theory with Joseph's [J3J, [JaJ. The

above version summarizes the more detailed statement of theorems

in 5.13 and 5.14. The reader interested in more details will also

realize that the above version differs from the statements actually

given in 5.13,5.~4 by the choice of scale factors (the equiva

lence of both versions following from corollary 5.11), which we

arrange in the text in a certain new, more natural C'translation

invarianti') fashion by definition 5.11. Let us also draw attention

to the point that we minimize efforts in non-commutative algebra

(which is implemented essentially in 5.10).

In the third and final part of this chapter (5.15-5.18), our pur

pose is to reprove also Joseph's beautiful results about the com

putation of Goldie ranks of ,primitive ideals. In doing this, we

draw attention to a crucial factorization of polynomials (5.17)

due to Joseph and D. King [KiJ, [J1J. Finally,we simultaneously

obtain formulas for the behaviour of characteristic cycles 'arid

oure hara cte r ist i c c1ass es 0 f Pr i mit i ve i deals und e r Ilc0 her ent

t ra ns 1at ion 11 •

For the expert readers, let us briefly comment on our choice of

attitude as to allowance for central charact'ers. While [881J,

[BB3J and also these introductions are formulated only for trivial

central characters, it is necessary for our purposes in the second

and third part of the present chapter, that we allow for arbitrary

regular integral central characters. We do not consider non-inte-
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~ central characters here, because that would require a lot of

additional basic preparations in V-modules (which will anyway be

provided by Milicic's book [Mi]). Nor do we consider non-regular

central characters, because it is clear from [Ja] for the experts,

how to extend all results to the "walisII. One essential reason for

this choice was not to obscure the essential points of our new

perspective by a lot of additional technicalities and notational

machinery. We hope that this choice might help to invite, and en-

courage newcomers in the subject,and that the experts will accept

this as an excuse.

w. Borho, MPI für Mathematik, Bonn,

December 1987

Note addad in Praaf (January 18, 188):

Wa just racalved a thesis by Anna Melnikav, Waizman Institute (Rahavat),

which amang ether things overlap with computations of Andreas Steins,

8UGH (Wuppertal), in aBses 8 , 8 ,end A, end also disproves stimulating
345

recent conjectur88 by Anthony Joaeph end Colette Moeglin.

We also wish to add that the proof ef the Kazhdan-Lusztig conjecture,

a quantum leap in the evolution cf the field, was based on a so-called

Riemann-Hilbert correspondenae revealed by Ksshiware-Mebkhout.
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§1. A deseription of Springer's Wey1 group representations in terms of eharaete-

ristie elasses of eone bundles.

Gur "a1gebraic varieties" are reduced, and defined over an a1gebraical1y

closed base field k of characteristie G . We restriet attention to the ease

k = ~ whenever we find it eonvenient for topo1ogical interpretations. Tf not

otherwise stated, we consider (co) homo1ogy etc. with coefficients in k .

1.1. Segre c1asses of cone bundles [FM), [Fu].

A cone 1n a veetor-space is a union of lines through the origin. Let

Y be a non-singular algebraic variety. A cone bundle over Y is an algebraic

variety K equipped with 1. an action of the mu1tiplicative group *k (or

t ) , and 2. a morphism K ~ Y making K a fibre bund1e over Y, which admits
m

a closed embedding into a vector bund1e E over Y, respecting both data 1.

and 2.. (In particu1ar, each fibre of K is embedded into the corresponding fibre

of E as a c10sed cone.)

Each cone bundle K over Y determines a certain "characteristic c1ass"

s(K) * *in the cohomology ring H (Y) (c H (Y,k)) , called its Segre class.

It can be axiomatically defined by the following two properties :

(1) The Segre 'class of a vector-bund1e E over Y is the inverse of its total

ehern class c(E) , i.e.

s(E) = c(E)-l .

(2) The S'~gre class is compatible with proper pushforwards in the fol1owing

sense Given a commutative square of two cone bundles

K' r
),K with f proper and f proper birational, the functoria1

1 1 * *ring homomorphism f*:H (Y') ~ H (Y) maps s (K') to s(K) .
fY' /Y
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We refer to Fulton-MacPherson [FM], or Fulton [Fu] chapter 4, for the

proof of existence and uniqueness of such classes s(K) (even on singular base

spaces y) , as weIl as for more properties and historical back-ground.

1.Z Characteristic class of a subvariety of a veetor-bundle.

Let E be a vector-bundle over the non-singular equidimensional variety

Y . Then each subvariety V of codimension d in E determines a cohomology

elass of degree Zd on the base spaee Y, denoted Q(V) E HZd(y) , and defined

as foliows. We start here with a geometrie definition for the case k t,

and postpone the statement of a more general, formal algebraic definition to

the next seetion (1.3). If m resp. n are the dimension of the fibre resp.

base of E, the real dimension of V is Zm+Zn-Zd. It therefore defines a

eanonieal homology class [V] 1n the Borel-Moore (elosed support) homology group

ce
HZm+Zn-Zd(E) . Homology with c10sed supports is sometimes ca11ed Borel-Moore

homology. It is the homology of the complex of loea1ly finite singular chains.

A representative for [V] can be obtained by triangulating V (with infinitely

many simplices). Since E is nonsingular, Poincare duality gives a canonical

Hel with the cohomology group HZd(E) . Since the
Zm+Zn-Zd

zero-section 0 : Y + E 1S a homotopy equivalence- - ---~----~-------;:~~:-:=:=-:-=-=====-----==---=--::~~===

we have an induced graded r1ng isomorphism * * *o : H (E) + H (Y) , which we eall

"homological intersection with the zero section". Then, by definition, the

characteristic elass Q(V) 1S obtained from the canonical class [V] by Poincare

duality fo11owed by homologica1 intersection with the zero section.

For the ease of a cone bundle V = K ,there 1S the fo11owing nice

formu1a for this charaeteristic class Q(K) 1n terms of Chern- and Segre elasses,

due to Fulton-MacPherson [FM], see also [Fu],p.73, 4.1.8.

Proposition : 1.6 :the lJubva.Jtie.:ty V c E A...6 a c.on.e. bwtdte. K V OVeA Y 06

c.odimen6ion d ~ E

Q(K)

:then.

Zd[c(E).s(K)]
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Here [ ... ]1 means homogeneous part in degree i.

1.3. Characteristic c1ass determined by a sheaf on a bund1e.

The f0110wing definition, genera1izing 1.2, will not be used until

chapter" 3. It may serve as an algebraic alternative to 1.2, but its main purpose

is to link up the results of the present chapter with our work in later chapters.

For general background, we refer to [SGA6], [~], [Fu), [FL], [BFM].

With notations as in 1.2, we consider now an arbitrary coherent sheaf

F of 0E-modules whose support supp(~) has codimension cl in E , and we

define a characteristic class Q(~) determined by F in H2d
(y) as follows.

We consider the Grothendieck ring K(E) of (the category of) all coherent

OE-modules, filtered by the subgroups Kj(E) (j E zzJ generated by coherent

OE-modules of codimension" ~ j . The r1ng structure on K(E) comes from its

identification with the Grothendieck ring of locally free 0E-modules (cf. -1.4).

We note that this filtration coincides with Grothendieck's y-filtration at

least after tensoring with ~ , see [FL], p.182, Proposition 5.5; but note here

and in the sequel our convention that our coefficients are tacitly extended

*to k, for convenience. We next apply the ehern character ch:K(E) ~ H (E) ,

which 1S a functorial homomorphism of the Grothendieck ring into the cohomology

ring [Fu], [FL], [Hi] . Finally, we intersect homologically with the zero-section

o:Y ~ E (as in 1.2), and take the degree 2d homogeneous part. In summary,

we define

(2) * 2d
Q(~) :1:[0 ch[~]]

We may sometimes also consider the "total" class attached to ~ by

'(3) *:= 0 ch[~]

Remarks. a) Note that we could reverse the order of *o and ch in this

definition, since functoriality of the ehern character provides a cammutative diagram
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*
K(E) a > K(Y)

eh 1 * eh1
H*(E)~ H*(Y)

b) Let us point out that Q (F)total = has degree ~ 2d , or in other words

Q(~) is either the lowest degree term of this class, or else zero. To see this,

recall that the ring K(E) is filtered by the Grothendieck subgroups Kj(E)

of coherent 0E-modules with support of codimension ~ j . Then the Chern

eharaeter respects this filtration upto a doubling of degrees, that is

cl -
ch K (E) c EE>

j~2d

which implies our claim.

The Chern eharaeter thus induces a homomorphism

*gr eh : gr K(E) ~ H (E)

of the associated graded"ring gr K(E) into cohomology, glven by

(4) gr.ch
J

gr.K(E)
J

J •

,I

\ 1.4. Comparison of the two definitions for Q.

In order to establish eompatibility of the topo1ogical definition for

Q(V) 1n 1.2 with the algebraie definition in 1".3, we have to check that in

case k = t , the c1ass Q(Ov) of 1.3 eoincides with Q(V) of 1.2. For the

comparison, the a1gebraic analogue of Barel-Moore homology of E is the

Grothendieek group K (E)
o of coherent 0Elmodu1es, whi1e the cohomology of E

corresponds to the Grothendieck ring of algebraic veetor-bundles (or locally free
'\

sheaves), denoted KO(E) . Since we are assuming Y (hence E) non-singular,

the canonical (IIPoincare dualityll) map is an isomorphism, which
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justified the notation K(E) for both groups; but for the present specific

purpose, the notational distinction will contribute to c1arity. We look at the

following diagram

can. *0

K (E) < KO(E) > KO(y)
o.

1ch ICh1T
can. *0"

H;t(E)
~ * ~ *<-- H (E) >- H (y)

where T is the lITodd character ll defined in [BFM] , which makes the 1eft hand

square commutative only upto mu1tiplication by an element in H;t(E) which is

the image under It can:. " of the Todd c lass Td (TE) of the tangent bund1e of

the smooth variety E. However, this mu1tiplication does never affect the top

degree te~, i.'e. in other words, the above diagram induces a commutative one

on the associated graded level

grdKo(E)
~ 0 ~ 0

I
( grdK (E) --> grdK (y)

d 1 ~ j 1
"~

H2d (y)H2m+2n-2d ~---- H (E) >

Now the desired equality fol1ows from the fact that the canonical class

" d
[Ov]mod Ko(E) determined by V ~n

canonical class [V] determined by

grdK (E) = Kd(E)/Kd+1(E)
000

V in ~+2n-2d(E) .

maps onto the

From the considerations above, we may draw a more general conclusion,

which will become significant in chapter 3 .. Recall that one may attach to each

irreducible component V of the support supp(~) of our coherent 0E-module

a we11-defined integer multiplicity mv(~) ~ 0 . Hence we may define an a1gebraic

cycle (supporting ~) as the formal linear combination
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Proposition: Q(E) = L mV(~)Q(V) .
codim V=d

In particular, the characteristic class Q(F) of a coherent OE-module F

is completely determined by its supporting cycle.

Let r # 0 . We claim that

has degree strictly larger than [~] . Then the proposition will be clear from

the preceding discussion. Let S denote the (reduced) support of F, and

V1, ... ,Vr its irreducible components. By an easy devissage, one may assume

that ~ is an OS-module, so we may speak of the class [~] in K (S) •
o

In each V. there exists an open subset U. # 0 such that the restriction
~ 1

of ~ to Ui is a free module of rank mV. (~) • This means that the element
1

[F]- E mV. (~)[OV.] of K (S) restriets to zero in K (U) , where
c l<i<r 1 1 0 0

U = U1u ... UUr • By the localization exact sequence for K , this element belongs
o

to the image of 1n K (S) . Since S ...... U has codimension > d+lo in

E , this implies our claim.

1.5. Homology of the flag variety [Bo], [Ht]

In the present paper, we shall apply the previously defined notions ~n

the special ease where Y = X is a flag variety and *E = T X its cotangent

bundle. So let us introduce now same of the fundamental notations and facts

for this particular situation. We consider a semisimple, connected, linear

algebraic group G defined over k, and fix a Bore! suhgroup B . Then we

may define the flag variety as X = GIB a camplete homogeneous space. Let

n = di~X . We also fix a maximal torus T c Band denote by W the Weyl

group W = NG(T)/T .. For each w E W , the Schubert cell x
w

is the locally
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elosed subvariety BwB/B, isomorphie to an affine spaee of dimension i(w) ,

the length of w with respeet to the system of simple refleetions determined

by B. Sinee the various Sehubert eells x
w

(w E W) form a paving of x

by affine spaees of even real dimensions (d~ Xw = 2 t(w)) , they provide a

veetor-spaee basis for the homo1ogy groups :

k[X ]
w

for j = O, ••• ,n

Let us point out that the existenee of such an affine paving eauses the ehern

eharacter to be an isomorphism ...., *K(X) ~ H (X) , so that the two diagrams in 1.4

eonsist entire1y of isomorphisms in the present situation, viz.

*
* KO(T*X)

a....,

>e:I;)K (T X) <

:l~ ehi~
*

H;t<T*X) * *
a

*~ H (T X) > H (X)

As another special feature of the f1ag variety case let us mention here as a

side-remark, that the multiplier Td(TT*X) = 1 is trivial in this particu1ar

case, so that even the left hand square of the above diagram is eammutative

(cf. the remark below).

Let U be the unipotent radiea1 of B. We denate ~,~,!, u the

Lie algebras of G,B,T,U. For eonvenience, we sametimes identify ~ with

its dual via the Ki11ing form. We also identify therefore u with the

catangent space of X = GIB at the base paint x = {B} *. Then T X identifies

with the assaciated fiberbund1e G xB~ (as usual, [BM1] , [BB] 1,111).

It splits inta 1ine bundles with fibre a +
~ , cx E $ • Here

+
$ c t* denotes

the system of positive roats relative B, and uCX = ~a is the raot spaee

belanging to +
a E $
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Remark : Let us prove that Td(TT*X) = 1 It suffices to prove that

* The filtration of B-invariant subspacesTd(TX)Td(Tx) l:t 1 .& by the

oc~cE.c~ induces a filtration of G
B by homogeneous sub-bundles.x .&

Since the whole bundle B
G x .a resp. the bundle subquotient G xB(b/u are

trivial vector bundles (the latter since B acts triviallyon b/u, the former

since the B-action extends to a G-a~~ion),we obtain
--~----~-----------

1

since u resp. identify with the cotangent resp. tangent space of

X at B. (This sort of phenomenon for the flag variety was first observed

1n [Mr].)

1.6 Cohomology of the flag variety.

There 1S a nice explicit description, due to Borei, of the full r1ng

* *structure of H (X) , in terms of polynomial functions on t

explain:~more detail in the adequate context in chapter 3

which we shall

. Let us state

the cohomology group

with the vector-space

here only basic facts relevant for the present chapter : First, the cohomology

of X is trivial in all odd degrees (by the remarks made in 1.5). Second,

H
2d

(X) in some even degree 2d identifies canonically

Shd (t*) of polynomial functions on t which are
arm -

W-harmonic, and homogeneous of degree d, for all d = 0,1, ... ,n . In particular,

this provides a linear W-action on H2d (X) . Third, the cup-product of cohomo-

logy classes is given by multip1ying polynomials modulo W-invariants without

eonstant term (cf. 3. or [Bo]~

Convention. From now on, we shall consider the characteristic classes Q(V)

*resp. Q(~) , defined by a subvariety V c T X or a coherent 0T*X-modu1e F

as 1n 1.3 resp. 1.4, as harmonie polynomials on the Cartan subalgebra !' if

this is convenient. Tf the difference between a characteristic eohomology elass

on X and the eorresponding harmonie polynomial on t should matter, then we
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may refer to the latter as a "eharaeteristie harmonie polynomial l1
•

inK

Example : Let us illustrate the eomputation of classes Q(K) for eone bundles

*T X , using the conventions above and the formula of 1.2. We take the

special ease where the eonieal fibre k c~ is aetually a vector-space, spanned

by root-spaces. Let ~ resp. ~' denote the set of positive roots Cl. such

that

k'

of

Cl.
U

($
a.€~'

K ~n

is

*T X

resp. is not eontained in

is a complement of k in

is given by d = dirn k' =

~ ,so k = G} Jk.o. ,and
o.€'ii

u . Then clearly, the codimension d

# ~, . The total ehern elasses are

g~ven by :

*e(T X) = e(K) <:: TI
oE'ii

(1+0.) <:: s(K)-l

Henee we may eompute the produet (cf. 1.2)

* *e(T X)s(K) = e(T X)/e(K) = TI (1+0.)
aE~'

whieh has highest term TIa, a € '±I' , of degree 2d (if each a is given

degree 2). Then the fonnula in 1.2 says that

Q(K) = TI Cl

oE'!"

Strietly speaking, by our convention above, one has always to take only the

harmonie parts of these produets. However, in the ease when e.g. '!" is a

positive sub-root-system, then the product (*) is already harmonie.

1.7. Orbital cone bundles on the flag variety ([BB] 111, Appendix B)

We denote by *n : T X + N the socalled Springer resolution, whieh is

a G-equivariant proper algebraie map of *T X onto the cone N of all nil-

potent elements in ~ . We obtain same partieularly n~ee eone hundles on X

by taking the preimage of a tlnilpotent-orbit". Ta be more precise, let u E N

denote a nilpotent element, and ~ = ~ c N the G-orbit generated by ,u under
u
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the adjoint action of G on its Lie algebra. Since a nilpotent orbit is

obviously stable under multiplication by a nonzero scalar, its closure ~ is

clearly a cone, and so ~s fr n u , by the same reason. Now consider the preimage

-1 I f b" * . * . d f' b b dlTI ~'o the or ~t ~n T X . Interpret~ng T X as the assoc~ate ~ re un e
/

I

J3G x u (notation 1.5), we have obviously

hence the description of its closure by

which exhibits its structure as a cone bundle on GIB = X with fibre & n u .

Moreover, if Cl' ... 'Cr denote the irreducible components of ~ n u , then

their associated fibre bundles

K.
~

BG x C.
~

for i = l, ... ,r

are the irreducible components of TI-
l & . We call these cones C. resp. cone

~

bundles K.
~

"orbital for (9-11; any cone in u resp. cone bundle in *T X is

called Itorbital" , if it is orbital for some nilpotent orbit (which is then
~

necessarily uniquely determined). By a result of Spaltenstein [Sp2], all C.
~

(1 < i < r) above have the same dimension, and hence all K.
1

(1 < i < r)

have the same dimension. From Steinberg [St], it follows that the common

codimension of these cone bundles K.
1

*in T X is given by

d = d
u

-1 1
:= dirn TI u - 2 cOdimJr&= codi~*xKi

1.8. Another realization of Springerls Weyl group rerpesentation

We are now ready to state the main result of this chapter.
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N (as in 1.7). Let

characteristic classes on X, as defined in 1.2. Then

a) These classes are linearly independent.

2d
b) They span an irreducible Weyl group submodule of H u(X) •

c) This irreducible representation is equivalent to Springer 1 s representation p' •
u

For the last statement, we have to recall that Springer [SI] constructs
2du -1 Guan irreducible representation of the Weyl group W on H (7f u) , the

G -invariants of the topcohomology group of the fibre of his resolution, where
u

G is the isotropy group in G of the nilpotent element u. We denote this
u

representation by Pu = P (u,l) , following our conventions in [BMl 1}2 and

[B~ 1,111, which diEfer from Springer 1 s by a sign-character (cf. 1.13).

Befare galng inta the praof (1.9 - 1.12), let us point out some immediate

useful consequences :

Coro1lary 1 : The set of c1asses Q(K) ,where K runs through all orbital

cone bundles (for all nilpotent orbits), is 1inearly independent.

Proof : This fol1ows from a), b), c) of the theorem in combination with the

fact that the Springer representations for different nilpotent orbits are pair-

wise non-equivalent. Q.e.d.

Remark : Note that in a general context, our topo1ogica1 invariant Q(V) defined

in 1.2 may often be zero, and hence not of much interest. But for the study of

nilpotent orbits, the theorem estab1ishes the usefulness of our concept. Here

is another illustration of its use.

Coro11ary 2 : Let V be the (left) characteristic variety of a primitive ideal

in the"enve1oping"a1gebra U(~) , or of-a"Harish-Chandra bimodule (cf." [BB] 111).

Then Q(V) .; 0 .
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Proof : By 10e.eit., V is a union of orbital cone bund1es. Let K1 , ... Kr

be those of maximal dimension. Then Q(V) = QCK1)+···+QCKr ) ~ 0 by coro11ary 1.

Q.e.d.

Let us also mention that the theorem will a110w us to understand and

reprove Hotta's resu1ts [Ho] in a more natural way, see §3.

1.9 Reformu1ation of the theorem using intersection homo1ogy.

To put the theorem ioto a more formal language, note that the fundamental

homo1ogy group of

c1asses [K
l

] , •. · , [Kr]

TI-le
u

of our orbital cone bundles form a basis of the top

, and that our charaeteristic elass construction (1.2)

provides a group-homomorphism

sending [K. ]
1

to Q(K.) . Now part a) of the theorem asserts that
1

o is

injeetive. We shal1 first reinterpret this map (see the proposition below) 1n

terms of the intersection homology approach to Springer's theory, as developed

by two of us in [BM] I, and then work in this alternative frame-work to estab1ish

the theorem.

In [BM] I, Springerls theory of Weyl group representations was derived

from the Beilinson-Bernstein-Gabber direet surn deeomposition theorem [BBD],

applied to Springerls resolution *1T : T X + N . The direct SUfi decomposition

theorem gives that the sheaf ~. := R1T*tT*X considered as an objeet in the

bounded derived category DbCN) deeomposes into direet summands where

x runs over a set of representatives of all nilpotent orbits, ~ runs over

the irreducible eharacters of 1T1C~x) , and

C*)
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in the notiGll of [B M] I. We reeall that V is a eertain veetorspaee,(x ,tP)

and the formula states that A· 1S a sum of dirn V eopies of thec(x,tP) (x ,tP)

direet image under the inelusion map .x
~c...N of the interseetion homologyJ : x

sheaf with eoeffieients in the loeal system L of monodromy
tP tP·

To simplify notation we shall drop <.P if (j)= 1 is trivial, so write

A· = A· ete. Now applieation of the hyper eohomology funetor Ei
=(x,l) =x

provides an isomorphism.

and the direct sum decomposition

provides an inclusion as a direct summand

in eaeh degree i , for eaeh nilpotent orbit <"x

Proposition

eommutative

There exists an isomorphism a which makes the following diagram

Hc..t (TI-1& ) 6 2d
)' H u(X)

4n-2d u

~~
u

2d ~~"
lli u(N A·) < J..I )lH u (N A·)

. '=u '=

Clearly, this implies part a) of the theorem. We shall next explain in

1.10, how also parts b) and e) about the W-aetion will follow. Then the construction

of the isomorphism a will be given in 1.11, 1.12, to complete the proof of

the theorem.
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1.10 The Weyl group action.

Let us now take inta aceount also Barel's W-aetion on *H (X) (1.7)

resp. Lusztig's [Lu] W-aetion on ~. , and reeall that these make the abave

isomorphism ß W-equivariant (cf. [BMl] , seetion 6, [Sp]). Furthermore, we

eonelude from the main theorem of [BMl], that the direct summands A'
=(x,q» are

stahle under this action, and that the W-aetion on eaeh A·
=(x,q» is given by

a linear representation of W on the veetor-spaee V( )' whieh isx,q>

irredueible and identifies with Springer's representation up to a sign eharaeter.

Application of the hyper eohomology funetor rn i to formula 1.9 (*) gives

i-2d
';;; IH x (& , L ). V( )

x l.!1' x ,q>

whieh deseribes the hypereohomology of eaeh direet summand A'
= (?C ,q»

as a

w-rnodule, which is isotypieal of type p( )' with multiplicity given 'by the
x,q>

interseetion homology group of & ,with eoeffieients in L in the appropriate----------.:.:..--::::---=-, x q>

degree (notations as in [BMl]). Taking x = u , q> cl, i = 2d this interseetion
u

homology group becomes

[&] , so tbat we find
u

IHo(~) , whieh is spanned by a single canonical elass
u

onto a single eopy of Springer's representation Pu • This shows

Or in other words, this says that the map
2d

rn u(N A')
':cu

y in proposition 1.9 maps

that the proposition will also imply parts b) and e) of our theorem.

1.11 Reduetion'to a erueial lemma.

We now turn to the eonstruetion of an isomorphism a as announeed

~n the proposition (1-.9). AB a preliminary, we shall replaee our eharaeteristie
\

elass map ö by a similar but more eonvenient map 8' , using the following
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commutative diagram

6 ' >

which will allow us to work entirely in cohomology of *T X . Here the map 6 '

is defined just by funct6riality of cohomology on pairs of topological spaces,

and 1S Lefschetz duality, which is an isomorphism since *T X is nonsingular.

In view of this diagram, proposition 1.9 is equiva1ent to the following :

Proposition There is an isomorphism a' mäking this diagram commutative

6' 2d *
" RolU(T X)

*;;: ßI = ßa*

2d
---Y--")!lH u(N,~·)o.

0'-

We prefer to prove this equivalent version. The construction of a'

will be accomplished by a discussion of the following diagram, where we denote

21& = ~ -.....(9- the topological boundary of &- ,and d = d ,to simplify
u u u u u

notation.
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In this diagram, all horizontal maps, and also the top triangles, are

1nduced by inclusions of pairs of topological spaces. The midd1e row of vertical

isomorphisms are examples of the sheaf theoretic isomorphism

which holds for any map TI of aspace with a complex of sheaves S· to a

space with a pair of subspaces A ~ B . Final1y, the bottom vertical arrows are

induced by coefficient inc1usions ~~ ~~. ; they are inclusions, since ~~

is a direct summand of ~. . Each of the small squares and triangles in the

diagram clear1y commutes, so the diagram'is'commutative.

Lemma. The maps ~, n , s w in this diagram are isomorphisms.

Given the lemma, we may define the desired isomorphism ,
cx by tracing

around the outside edge of the diagram

commutativity of the whole diagram gives

proposition.

-1 -1'
(al ~ ~n ~ uw) , and then the

ya' = B'6', , which estab1ishes our
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1.12 Completion of the proof of theorem 1.8.

It is left to prove the lemma. To prove that ~ is an isomorphism,

it suffices to check that for all direct summands other than A·
=u '

the group III 2d (N ...... da- , N......~ ; A(· » vanishes. We may interpret this group asu u Cl x,c.o

the global sections rL of the Iocal system L on &- whose
(u,(x,<.p» (u,(x,lP» u

fiber at u E &- 1S g1ven by JH4n-2d(N N...... {u}.A· ) . Now if 6- 16-,u ' '=(x,<.p) x u

then this fibre is zero by a dimension count, using the support conditions for

intersection homology (axioms (AX2) in [GM2]). If f:} = e- , but
x u

c.oo# I,

then the Iocal system has no invariants. It follows that indeed

and hence ~ is an isomorphism.

To see that n is an isomorphism, look at the case (x,<.p) = (u,l) of

the previous discussion, and interpret the target of

with L = L(u,(u,l») , notation as above. Similarly, the source of n may be

interpreted as Iff(~ ,L) , so we have a commutative diagram of canonical maps
u

11

__ 2d -.
llf (N ,N...... Go ; A )

u =u

11

Now it is a general fact in intersection homology theory, that the bottom

canonical map is an isomorphism : In the language of tGMl],· codimension zero

cycles are always a11owable.

Finally, the map n 1S an isomorphism since is supported on &-.
u

And the map w is an isomorphism because its source and target are both

vector-spaces with basis the irreducib1e components of -=r-
1T e-

u-
and w identifies
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them V1a these bases. This completes the proof of the lemma, and hence of the

theorem. Q.e.d.

1.13 Comparison with Springer's original construction.

W-action on

ci. -1
embeds H4n- 2d - (TI &u)

*u
W-action on H (X) , and we even know already that the

We have seen in theorem 1.8 that our characteristic class map 0
2d

into H u(X) as a subspace invariant for

Borel's

K -r Q(K)

this subspace is equivalent to Pu' that is to the Springer representation of
2d G

W on H u(TI-lu) u (cf. 1.8). It remains to show how this equivalence can be

realized by some geometric~lly defined map between the two representation spaces.

This is the purpose of the theorem be10w, which comp1ements theorem 1.'8.

We sha11 use here the construction of the W action on * -1H (TI u)

as in [B~M] 1, due to Lusztig [Lu], and which differs from Springerls origina11y

defined representations by a multiplication with the sign character (cf. 1öc.

cit., and also [Ho], Appendix, [Sp], §2 for more details).' We shall actually

prefer to work with the contragredient representation on the top homo10gy space

-1 2du -1 -1
H2d (TI u) , dual to H (TI u) 0 This space, and simi1ar1y H

4n
- 2d (TI &u) ,

u u
are equipped with canonical bases, given by the (canonica1 c1asses [Cl resp.

[K] of) the irreducible components C resp. K of
-1

TI U resp.
-1

TI Öu

So the linear maps linking these vector-spaces as exp1ained be10w can be

exp1icitly described by referring to these bases. Note that G acts via the
u

finite group C(u) := G leo of its connected components on (co)homo1ogy, since
u u

G~ acts trivia11y. Since C(u) acts on H2d (TI-lu) by permuting the canonica1
u

basis, we get also a canonical basis of the subspace of G -invariants, c
u

corresponding to the C(u)-orbits of components C 0 We even get a canonical

-1 1 e
projection p of H

Zd
(TI u) onto H

2d
(TI - u) U defined by

u u

(1) p[ e] L [aC]
aEC(u)

n ([e ]+00 o+[C ])
C 1 r
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where Cl,ooo,Cr are the different C(u)-conjugates of C, and nC is the

number of a € C(u) fixing C 0 Starting from K

of TI-l~ , we recall from [BB] 111, Bo2 that
u

an irreducib1e component

-1K nTI u G C = C U000 UC
u 1 r

is the union of one fu11 C(u)-orbit of components of TI-lu· (notation as

before). We conc1ude that the Gysin homomorphism

is given by

(2) j[K] CI [G C]
u

= [C ]+.0 o+[C ]
1 r

In particular, it ~s a linear isomorphism onto the G -invariants of the target
(

u

spaceo We also reca11 from 10cocito that the G-saturation GC , that is the

union of all gC(g E G) is an irreducib1e of -1 its, component TI &' , so
u

closure is an orbital cone bundle GC = K and we have a linear map q in

the reverse direction of J by

(3)

where the sca1e factor is added to make the triangle p,j,q connnute.

Let us summarize this discussion as fol1ows.

Proposition We have a cammutative diagrarn of linear maps

2d
<5 >H u(X)
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described in (1), (2), (3) resp. 1.8 above.

1.14 Theorem: The maps in the above diagram are W-equivariant.

In particu1ar, the Wey1 group representation on characteristic c1asses

of orbital cone bundles is equivalent to Springerls representation Pu via the

the Gysin map j.

Proof : Note that the "inc1usion" ö is W-equivariant by definition, and the

projection p is W-equivariant since the actions of G and W commute
u

[SI], [BM1]. It is therefore sufficient to prove that the linear isomorphism

j is W-equivariant.

To do this, chose a tranversal slice A in ß to 5- at
u

u , and

denote D = A n N its intersection with the nilpotent cone. (For instanc~, A

may be chosen as an affine subspace of codimension 2d = dirn 6-
u u

~n .~ meeting

the tangent space of & on1y in the point 'u)~ Consider the fo11owing
u

commutative diagram :

..2du -1 -1 -1
H (TI D,n D-n u)

l~
2d

III u (D ,D' {u} ,~ • )

r~
2d * * 1

~ H u (T X T X-1f- 9-)
I ' U
I

.....
Hel (-rr-10 ) ~<-------

4n-2d ut: U

u * -1 * -1H (T X-TI ao ,T X-1f 0)
u u

2d
rn u(N-aO N-9- ~_.)

u' u'<

<
-1(TI u)

Our map J occurs ~n this diagram as the composition of the two Gysin homomor-

phisms in the first row. The other horizontal arrows come from inc1usions'of

pairs of topologica1 spaces. The upper row of vertica1 arrows are Lefschetz
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dua1ity isomorphisms, whi1e the 10wer ones are again examp1es of the isomorphism

1.11 (*). Let us point out that the dotted arrow, ana10gous to v, wou1d

TI-preimage. This is the reason why

generally not be an isomorphism, because

-~TI ~ in general and is therefore not a
u

-1
TI &

u
will be strict1y sma11er than

we are inserting the midd1e co1umn in the diagram.

Now observe that Springerls W

obtained from Lusztig's W action on

-1
representation on HZd (TI u) is

u
~. by transport of structure up the

-1
1eft co1umn of this diagram. On the other hand, our W action on H4n- 2d (TI &u)

Zd u
is induced fram Bore1's on H u(X) , which is again obtained from the same

W action on ~. by transport of structure up the right co1umn in the big

diagram of 1.11. This shows that j is in fact W equivariant. Q.e.d.
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1.15. Hotta's transformation formulas.

We may now describe quite explicit1y 1n terms of integer matrices, how

the characteristic c1asses Q(K
1
), ••. ,Q(K

r
) transform under the action of W

(notations as in 1.8).

Theorem (cf. [Ho], Theorem 1 [Ho2]) : For each simple reflection s 1n W

and each 1 ~ l, ... ,r , we have either

sQ(K.) = -Q(K.) ,
1. 1. .

or else

sQ(K.)
1

= Q(K.) + ~ n~. Q(K.)
1 j 1J J

for certain non-negative integer coefficients

K. intersects K. in codimension 1 .
J 1.

sn .. , which are zero un1ess
1J

Moreover, the coefficients s
n ..

1.J
can be described more precise1y in

geometrica1 terms, see Hotta's formu1a [Ho],1.5, definition 2 (cf. also 4.13 of

the present paper).

The fact that our classes Q(K1), ... ,Q(Kr ) satisfy Hotta's transformation

formulas may now be viewed as a corollary of theorem 1.14. However, another

proof of this theorem (which does not assume Hotta's work),will also follow

from chapter 4 of our present paper (see 4.~3).
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§2. Generalities on equivariant K-theory

.For the convenienee of those readers not familiar with equivariant

K-theory, we have colleeted here in some detail the general facts needed from

this theory as prerequisites for subsequent ehapters. In the present chapter,

G may be an arbitrary linear algebraic group over k.

2.1. Algebraic notion of fibre bundles [Sr2), [We).

By a G-variety, we mean an algebraic variety Y over k, equipped

with an algebraic action of G on Y . A G-morphism ~ : Y ~ X is a map

of a G-variety Y into a G-variety X which is a morphism of algebraic

varietie?, and respeets the G-action. A surjective G-morphism is called a

principal G-fibration, if G acts simply transitivelyon each fibre. The

projection of X x G onto the left factor, with G acting only on the right

factor, provides an examplej refered to as trivial. A principal fibre bundle

with structure group G base X and total space Y, is then defined as a

principal G-fibration ~: Y ~ X which is locally trivial, meaning that eaeh

point in X has a neighbourhood U such that ~-lU ~ U is trivial (up to

isomorphism). Note that so far, the definitions are only a word byword trans

lation from a topological or analytical context. In the algebraic context,

however, there is a subtle point to be clarified here : The "loeal triviality"

1n the definition may refer to either the Zariski or the etale topology, that

is U above is a- (Zariski-) open affine neighbourhood in the first case, resp.

any etale covering of such in the second case. For example, the principal

fibration of G by an algebraic subgroup H need not be a bundle in the first,

narrow sense (used by Weil [We)), but it is always a bundle in the second,

wider sense (introduced by Serre [Sr2)). However, it fortunately turns out,

for a lot of groups G, called II spec ial" in [Sr2), that this subtle difference

does not matter at all, that is to say local triviality in the weak (Iletale")
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sense implies local triviality in the strong ("Z ar iski") sense for principal

fibrations with this structure group. "Special" groups in this sense include all

connected solvable linear groups [Ro], and also G = GL [Sr2]. Now let
n

F be

any G-variety, and Y a principal G-bundle over X in either sense. Then the

associated fibre bundle

with fibre F is defined as usual (see e.g. [Sr2]), and is locally trivial in

the corresponding sense. So again, for the " spec ial" groups above, the two

notions of local triviality coincide for the associated fibre bundle as weIl.

For example, taking F c kn aud Y a principal GL -bundle 00 X
GL n

we get Y x n F , an (algebraic)vector-bundle over X. Since each vector-

bundle 1S obtained 1n this fashion (up to isamorphism), we conclude from the

precediog remarks that a vectoPbundle is loeally trivial with respect to Zariski

topology, if and only if it is loeally trivial with respect to etale topology.

- As a eonsequenee of this discussion, we will not have to eare anymore about

the differenee in this paper •

. 2.2. Equivariant veetor-buridlesand' def inition of K
G

(X) [SGA6.], [Al].

Now we assume that G aets on both the base X and the total spaee

Y of a veetor bundle, and that the bundle map ~: Y ~ X 1S a G-morphism

(2.1). Moreover, we assume that G preserves the linear structure, in the sense

that each group element g E G maps the fihre
-1

Y c ~ (x)
x

(at x E X)

linearly into Y . Then Y, equipped with this additional strueture, isgx

called a G-equivariant vector-bundle, or just a G-veetor-bundle. Morphisms

of G-vector-bundles are defined as veetor-bundle homomorphisms whieh are

simultaneously G-morphisms.
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We denote by KG(X) ~ the Grothendieck group of the category of

G-vector-bundles on X. We write

according to Dur general conventions on coefficients (cf. §l). The formation

of direct sums resp. tensor products on G-vector-bundles induces the structure

of a commutative ring on

augmentation homomorphism

KG(X) . The rank of a vector-bundle gives rise to an

E : KG(X) ~ k of this ring, and the formation of

exterior powers of G-veetor-bundles defines the so-called A-operations

this equips KG(X) with the structure of an "augmented

Remarks. 1) If G = 1

K(X) of t10rdinaryll

or [Al].

A-ring ll in the sense of Grothendieck, as defined and studied fram an axiomatic

point of view in [SGA6], expose V, or also in the first chapters of [Kn), [FL].

Dur terminology here is completely analogous to Atiyah's, who considers

topological vector-bundles equivariant under a finite or compaet group G

in [Al], §§ 1.6, 2.3.

1S the trivial group, then KG(X) reduce~ to the ring

K-theory (as considered already in §l), see e.g. [Ma],[FL],

2) If X is a single point, then a G-vector-bundle on X is just aG-module,

that is a finite-dimensional linear representation of G on a k-vector-spaee.

Hence in this ease, KG(X) is nothing else but the representation ring R(G)

(cf. [Al]).

So equivariant K-theory is a common generalization of these two

important extreme eases.
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2.3. Equivariant homogeneous veetor-bundles.

as an important non-trivial example, let us eonsider equivariant

veetor-bund1es on a homogeneous spaee, say X = GIB, with isotropy group B

any e10sed subgroup of G. Starting from an arbitrary B-module F (of finite

dimension over k) , let us form the assoeiated fibre bund1e Y = G xB F

whieh is a veetor-bund1e on X (cf. the remark on loea1 triviality in 2.1).

We make it into a G-equivariant veetor-bundle, by making G aet on G by

1eft mu1tip1ieation (whereas for the bund1e eonstruction, B acted on G by

right mu1tiplication).

Proposition : The construction of associated fibre bundles as

exp1ained above induces an isomorphism of augmented A-rings :

R(B)

has the form

Obvious1y, the construction induces a A-ring homomorphism and preserves

the augmentation. It is not difficu1t to see that every G-vector-bund1e on X

G xB F up to isomorphism (cf. e.g. [SeI], p.130), which means

that the homomorphism is surjective. An inverse homomorphism will be provided

by restriction (to the isotropy group and the base point of X), cf. 2.9~.

below.

2.4. Functoriality ~n the group G.

Tf ~: B + G ~s a morphism of algebraic groups, then our G-variety

X becomes also a B-variety, and each G-equivariant vector-bundle on X is

also B-equivariant. This provides a functorial homomorphism

which we refer to as restriction from G to B. This is a homomorphism of

augmented A-rings.
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If for instance B ~ 1 , then this is a canonica1 homomorphism

KG(X) -+- K(X) , refered to as the forgetfu1 homomorphism, since it 1S given by

"forgettingll the G-action on a G-vector-bund1e. In case X c {xl 1S a single

point for example, this forgetful homomorphism KG(X) -+- K(X) ~ k is just the

augmentation homomorphism t : R(G) ~ k (cf. 2.2).

2.5. Funct6riality 1n the space X.

Let X X'
" ' be two G-varieties, and f : X + X' a G-morphism. Then

*for each G-vector-bund1e E over X' , the pu1l-back f E to a vector-bundle

over X is again G-equivariant, and this induces a homomorphism

which also preserves the structures of augmented A-rings. In the case G = {I}

this is the so-called Gysin homomorphism *f K(X') -+- K(X) in ordinary

K-theory (cf. [Al], and [Fu], Examp1e 15.1.8, or [SGA6], 111.4.1, IV.2.7). The

G-equivariant ana10gue *f G induces the ordinary Gysin homomorphism, in the

sense that we have a commutative diagram

KG(X')
f~

> KG(X)

1 * 1
K(X' ) f > K(X)

of Ilforgetful ll and Gysin homomorphisms.

2.6. The sheaf-theoretic point of view.

It will be convenient for us to work with G-equivariant"coherent

sheaves of ~X-modules on our (irreducible) G-variety X, as we did in [BB] 111.
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Let KG(X)o denote the Grothendieck group of the category of all such sheaves.

(This notational convention fol10ws Fulton [Fu), p.281). Since we can identify

a vector-bund1e over X with the locally free ~x-module of its germs of

sections, and since G-equivariance of the vector-bund1e means the same as

G-equivariance of the corresponding 10cally free m
X

-modu1e, we obtain a

canonical homomorphism KG(X) ~ KG(X)o . In the cases of interest for our

present paper, this turns out to be an isomorphism by the fo110wing proposition.

Proposition : If X is a smooth G-variety which (*) admits a G-equivariant

ample 1ine bund1e. , then KG(xi';: KG(X)o by the canonical homomorphism.

Remarks. 1) Note that the existence of an ample line bundle means exactly that

the variety under consideration is quasi-projective. Therefore, J in the case

Gel , hypothesis (*) means X quasi-projective, and so the proposition

coincides with Borel-Serre's Theoreme 2 in [BS) for the non-equivariant case.

2) For example, the hypothesis (*) of this proposition is always satisfied

for X proj ective,- and G semi-simple. In fact, according to Mumford [Mu] , Chapter

1.3, Corollary 1.6, any normal projective G-varlety admits a G-equivariant ample

line bundle. More generally, it easily follows that Mumford's result extends

to any G-variety X for which there exists a G-equivariant affine morphism X + Y

to anormal projective G-variety. Hence the proposition ilnp1ies as a special

case the fo11owing criterion, which will suffice for our purposes in this

paper :

Coro11ary : Let E be the total space of a G-vector-bund1e over a smooth

projective G-variety. Then KG(E)' ~ KG(E)o ' if G is semi-simple.

3) In the sequel, we shall always'--assume that X satisfies the
f.

..~ ~.

assum~~r~ns of proposition 2.6, and we shall use this proposition to identify
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2.7. Existence of equivariant locally free resolutions.

For the proof of the equivariant Borel-Serre theorem (proposition 2.6

ahove), one may proceed by imitating the original proof in [BSJ, pp.l05-l0B.

The only step in their argument which requires a new proof in our present,

equivariant version is Lemma 10 in loe. eit., whieh assures that coherent

sheaves admit loeally free resolutions. So let us just state and prove the

"equivariant version" of this leII!Ila here.

Lemma : Every G-equivariant coherent sheaf F on X
I::

is a quotient of a

G-equivariant locally free sheaf ~ of finite type on X.

Note that repeated application of this lemma will imply the following

(with assumptions as in proposition 2.6) :

Proposition : Every G-equivariant coherent sheaf F on X admits a finite

resolution by G-equivariant locally free sheaves of finite type.

Proof of the'lemma : Let ~ denote a G-equivariant ample line bundle on X,

which exists by assumption. Then the tensor product ~ @ 1n
over ~X of ~

with a Bufficiently big number n of copies of ~ will be generated by its

global sections, cf. [Ha], p.153. Then the natural morphism

is surjective, and we can even find a finite-dimensional k-subspace

such that the restrietion map n
E @ k (!)X -+ ~. @ ~ is still

surjective. So we have represented as a quotient of a loeally free
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sheaf E ® k ~X' arid it on1y remains to observe that this can be done equi

variant1y. Since ~ and gare G-equivariant, so is ~ 0 gn . Hence G acts

on f(X,F ~Ln) a1gebraical1y, by locally finite linear endomorphisms. By
"" ""

en1arging the subspace E if necessary, we may assume that E is a G-submodule.

Now we have G-actions on E and on ~X' hence on the tensor product

E x k "X . It is c1ear that. the above surjective morphism E @ k ()X + ~~ !;n

is G-equivariant. Tensoring this morphism with the inverse L-n of the

invertible sheaf gn ,we obtain a surjective G-equivariant morphism of the

10ca11y free coherent sheaf

-p-

F @ Ln (f!) I!!-n ~ F
c = _ =

Q.e.d.

Remark : For results of the same type, but with different hypothesis, we refer

to Thomason [Tl], Corollary 5.2 ("Seshadri's conjecture.", see also [Sh]).

2.8. Remarks on Gysin homomorphisms in terms of coherent sheaves.

a) In order to define the ("equivariant" resp. "ordinary") Gysin

homomorphisms (cf~ 2.5)

resp. *f K(X') -+ K(X)
o

for a (G)-morphism f : X -+ X' in working with coherent ~x-modules, one

has to aSStmle f to be a "perfect" morphism in the sense of tSGA6] , Defini-

tion 111.4.1, and IV.2.7, see also [Fu], Example 15.1.8. For example,

if f: X -+ X' is a c10sed embedding, s~ch that f*~x has a finite resolution

by a complex E,.of locally free ~X,-modules, then f is perfeet, and the

*Gysin homomorphism f (also called "homo10gical intersection with X") is

given by the formula



-60-

*f [F] x'= r (-1) 1. [ Tor. (~X ' F) ]
i 1. ~

for any locally free mX,-module. Here x'
Tor. (~X,F)

1. = is the
.th
1. cohomology

group of the complex E. ~ f*(~) (cf. loc.cit.). If the morphism fand

the camplex E. are G-equivariant, then the same formula holds for the

are on1yand E.fequivariant Gysin-homamorphism *f G · More generally, if

B-equivariant, for a c10sed subgroup BeG, then by restricting first the

group trom G to B , then the space trom X' to X , we obtain a composed

*restriction homomorphism f B : KG(X') ~ ~(X) satisfying a simi1ar formu1a.

b) The above assumptions on F are satisfied e.g. for f the inc1usion

of a comp1ete iotersection, or tor f a regular embedding (cf. [SGA6] ,

Examp1e 111, 4.1.1, or [Fu], chapter 6.2, for a detai1ed treatment of this

case 00 the level of Chow groups).

-2.9. Equivariant K-theory on a vector-bund1e : Basic restriction techniques.

A crucia1 technique frequent1y app1ied in this paper, will be the inves-

tigation of equivariant K-theory on the total space of a homogeneous vector-

bund1e, via its restrietion to a fibre, or a1ternative1y to the zero-section,

and fina11y to a point. Since the morphisms invo1ved are all regular embeddings,

the preceding remarks (2.8) app1y to the corresponding restriction homomorphisms (and

these are the on1y three, very special, cases of 2.8 relevant for our present

work) .

Because of the fundamental significance of this restrietion technique

for the who1e paper, let us exp1ain it in more detail on a general level here.

We assume that X is an irreducib1e G-variety satisfying the assumptions of

proposition 2.6.
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(1) Restrietion to a point. Consider the inclusion roap i: {x} + X of a

point x in X. Let B g G be the isotropy group at x. Then we obtain
x

*a restrietion homomorphism' i B : KG(X) + R(B) by the remarks 2.8 a),b). For

X a homogeneous G-spaee, that is X = GIB , this turns out (easily) to be an

inverse of the homomorphism R(B) + KG(X) eoming fram the formation of associated

*fibre bundles (see 2.3), and so i B ~s an isomorphism KG(X) ~ R(B) in this

ease.

(2) Restrietion to the zero section. Now let E be the total spaee of a

G-veetor-bundle over X, and let

the restrietion homomorphism

a : X ~ E denote the zero-section. Then

*° K(E) ~ K(X) ,

known as "homological intersection with the zero seetion", has an equivariant

analogue

*by 2.8. It is well-known to algebraic geometers, that ° is always an

isomorphism (see [SGA6], Expose IX, Proposition 1.6, or on the level of Chow

groups [Fu], Theorem J.3). According to recent work of Thomason, this generalizes

*to the equivariant situation, that is to say 0G is an isomorphism quite

generally [Tl], Theorem 4.1. In the cases of interest for our present paper,

we shall see· more explieit reasons why this map is an isomorphism (see 3.7

and 4.3), independently of [Tl].

(3) Restrietion to a fibre. With E a G-vector-bundle on X as before, let

.j E ,.~ E denote the inclus ion of the fibre E at x E Xx . x Then we obtairi

a restrietion homomorphism
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where B = G as before.x

(4) Cornbining examples (1), (2) (twice), and '(3) into the following diagram

of inclusions

E ""'( ..J-, X

J i

1

E ~(-------~, X
X

we obtain a cammutative diagram of restrietion homomorphisms

*cr
KG(E)

G
) KG(X)

* *jB i
B

*
~(Ex)

I
B

) R(B)

Summarizing our present discussion, we may now state

Proposition This is a cornmutative diagram of isomorphisms of A-rings.

2.10. Filtrations on KG(X) •

) h · , f·1· a () a+1 ( ) . f·a Grot end~eck S y- 1 trat~on ... ~ KG X ~ KG X ~ ... , ~s de ~ned

as fol1ows (cf. [SGA6], V.3.l0, or [A2], §12) : Let I G z::r Ker t denote the

augmentation ideal, and i
y (i = 0,1,2, ..• ) the operators given by the formula
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for all ring elements Z, where E resp. the Ai,S

Then K~(X) is the ideal generated by all monomials

are defi~ed ,in 2.2.

i
r(Z )y r with i +i +"'+i > a ,

1 2 r

Then K~(X) = K~{X) , K~(X) = I G , and

for .all a,b EID , i.e. KG(X) becomes a filtered ring. This filtration

has the advantage of being obviously fu~ctorial (i.e. preserved by the various

restrietion or Gysin homomorphisms introduced above), since its definition

refers only to the structure of KG(X) as an abstract "augmented A-ring",

which is indeed functorial. - In particular, the various functorial homomor-

phisms considered induce also homomorphisms on the associated graded rings,

for which we shall use a notation generalizing that introduced in 1.4, that 1S

b) Topological filtration. Alternatively, we may filter the ring KG(X) by

co-dimension of supports. More precisely, let denote the Grothendieek

group of G-equivariant coherent ~x-modules with support of codimension

Th a ( )' a+1 ( )' . h . f' 1 .> a. en ~ KG X ~ KG X ~ .•. 1S anot er deseend1ng 1 trat10n

of KG(X) as a ring. Its comparison to the y-filtration is a delicate

problem in general. In the non-equivariant situation (special ease G = 1) ,

it 1S known that the r:~filtration coincides with the topological filtration,

as we already mentioned in 1.3. in general, the two filtrations will be

obviously very different, see the next example.
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2.11. Representation rings for examp1e.

The y-fi1tration on R(G> for a commutative reductive group G, is

given by the powers of the augmentation ideal I G = Ker E

for all a E:IN

(This fo1lows from the fact that all irreducib1e representations are one-

dimensional, cf. [A2], Coro11ary 12.4.) In general, we have only

from the definition, but the topo10gy defined by the y-fi1tration on R(G)

still coincides with the IG-adic topology. The comp1eted representation ring

R(G) is defined as the completion of R(G) with respect to this topo10gy.

2.12. App1ication of equivariant K-theory to V-modules.

In this chapter, Y is a smooth algebraic variety over k, equipped

with an action q : G x Y ~ Y of an a1gebraic group G. It will be eonvenient

to introduee a weaker not ion for t1 equivariant Vy-modules ll than was eonsidered

in [BB] 111, 2.2. First, the sheaf of algebras V
GxY

on G x Y , whieh is

isomorphie to the externa1 tensor produet VGW Vy (notation [Gd]) eontains

0G ~ Vy as a subsheaf of algebras.

Definition : A weakly G-equivariant Vy-module is a Vy-module M equipped

* *with an isomorphism a : q M~ p M of 0G ~ Vy-modules, whieh satisfies

a eertain cocyc1e condition which ensures that a induces a group action

of G on M (see [M1} for more details).

* *Notice that both p M and q Mare VGxy-modu1es,. hence are

°G IBJ Vy-modules.

A good filtration (M) '77 of a weakly G-equivariant vy-module M 1S
n nE ~
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*p M
n

(so that each M
n
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. *,.... *the isamorphism a : q M~ p M maps

is a H-equivariant $ub Oy-~odule of- U).

*q M, n to

A weak1y G-equivariant Vy-modu1e M ,which is coherent (as a

V
y
-modu1e), a1ways admits a G-equivariant good filtration. Indeed, let

(Mn)nE ~ be any good filtration of M; then the intersection M~ of

* *of p*q M = p*p M ,is 0y-coherent and (M~)nE~ is a G-equivariant

good filtration of M ,.

M
n

and

Now for (M ) a G-equivariant good filtration of M , the associatedn

graded module gr(M) =$ (M IM 1) is a G-equivariant coherent °T*y~-modu1e,n, n-
n

*and therefore determines a c1ass [gr M] in KG(T y) ~. The lemma below

asserts that this c1ass does not depend on the choice of (M ) . Hence a
n

weak1y G-equivariant Vy-modu1e M determines a we11-defined class in

* ,,....
KG(T y) = KG(Y) , which we ca1l the

~ KG(Y).

. class of M

'Lemma : Let (Mn) n EZl. and (M~)nE 7l be two G-equivariant good filtrations

of M . Then the corresponding associated graded modules gr M resp.

gr'M determine the same c1ass in

Proof : By changing the numbering of the second filtration (if necessary),

we may assume without lass of genera1ity that M c M'n n
for all n . It is

known that for a suitab1e integer d > 0 , we have M' eMd for all
n n+ n •

Our proof proceeds by induction on d. Assume first d = 1 . Then we have,

for all n EZZ , exact sequences of G-equivariant coherent ~y-modu1es

. .

o + Mn+1/M~ + M~+l/M~ + M~+1/Mn+1 + 0.\
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Hence we get exact sequences of G-equivariant coherent graded 0T*y-modules,

o ...... A ...... gr M ...... B ... 0

o ... B ...... gr'M ... A ... 0

where we put

A := EBM' IM
n n

n
and B :=Q1Mn+l/M~

n

*So in the group KG(T y) , we get the equality

[gr M] = [A] + [B] = [gr'M]

Now the induction step : Assume for some d > 1 that M c.M' cM
n n n+d

for all n . We consider the further filtration of M given hy

M" := M +M' • It is again G-equivariant. It is also a good filtration,
n n n-l

because for n big enough, we have

M+M'
n n-l

We observe that this new filtration satisfies M C Mll C M
n n n+d-l . Hence

[gr M] = [grV~ by the induction hypothesis. On the other hand,

.M' c MI! c.M' for all n. So we know by the d = 1 case of the proof that
n-l n n

also [gr .M'] I::: [gr Mit] • This completes the proof of the lemma. Q.e.d.
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§3. Equivariant K-theory o~ torus actions and formal characters.

In this paragraph, we consider a torus T, that is a cammutative

connected reductive group over k, and a linear action of T on a vector space

E of finite dimension r over k. We sha11 assume that all weights of T in E

are positive with respeet to some partial ordering. For examp1e, T might be

the group of homotheties of E. In the app1ieations in subsequent ehapters, T

will be the maximal torus in a semisimp1e group, E will be the ni1radiea1

of a Bore1 subalgebra, and the weights of T ~n E will be the set of positive

roots.

3.1. The eomp1eted representation ring of a torus.

The eharaeters X: T + t of Dur torus T form a free abe1ian
m

*group X (T) , and the representation ring of T is isomorphie to the group

ring of this eharacter group, that is

...... *R(T~ = 7l [X (T)] and

...... * ......R(T) c k[X (T)] = O(T) •

*The differential of X E X (T) is a linear form dX : t + k.. on the Lie algebra

t of T, ca11ed an integral weight. Let A c A(T) *denote the 1attice in t

of all integral weights. For each A E A , we define the formal power series

considered as an element ~n
.... *
S(! ) , the comp1etion of the ring *S(t ) of

po1ynomia1 functions on ! (with respect to the 1*S(1*)-adic topology.) We

'"define a homomorphism ~: R(T) -+ S(t*) by putting

dX:= e
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*for all X E X (T) , and we observe (cf. e.g. [AR], proposition 4.3) that this

extends to an isomorphism (notation 2.11)

R(T) ,.. *
-+ s(! )

This isomorphism will a110w uS to interpret the elements of the comp1eted

representation ring R(T) as formal power series functions on the Lie algebra.

Note that this lS an isomorphism of fi1tered rings. Let us make this slight1y

*more exp1icit. Given apower series P E Set ) , we sha11 use the notation

[p]l for its degree i homogeneous term, that is the unique homogeneous

po1ynomia1 of degree 1 on t such that

Reca11ing that the y-fi1tration on R(T) is given by the Ir-adic filtration,

where Ir is the augmentation ideal (2.11), we get the fo110wing

Lemma : If an element Q E R(r) corresponds to the power series ,.. *
P = lP(Q) E S(! )

then its degree with respect to the y-fi1tration is equa1 to the sma11est

number a such that [p]a # 0 .

Remark. We sha11 then refer to [p]a

and denate it also

gr P ._ [p]a

3.2. Formal characters of T-modu1es

as the 10west order term of the series,

Let M be aT-module, that is to say a k-vector-space equipped with

a linear a1gebraic action of T. Far each character *X E X (T) with differential

dX = A E A , we denote by M
X

or the corresponding "weight space"
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{v E M\ tv x(t)v,t E T}

Since T is a reductive group, M = ~ M). is a direct SUfi of weight spaces.
).EA

Tf the weight multiplicities dim M are all -finite, then we call M admissible
X

(or we say that M admits a formal character), and we define the formal character

of M as the formal sum

ch(M) := l: (dirn M) [xJ.
, X X

We note that this definition coincides with the one used e.g. in [OiJ, 7.5, and
---

[JaJ~ __

Let us call ch(M) bounded (by xö),if its nonzero coefficients occur only at

characters X ~ xo' for same xo~ X(T). Then the multiplication in R(T) ex

tends to a multiplication of bounded formal characters, defined formally by

c [xJ,
X

where

C := l: a~bs for all x ~ X(T),
x 'r;=x

and Xo = ~o~o. This makes the group of all bounded formal characters into an

extension ring of R(T), which is denoted R_m(T). This ring may be described

as apower series field R_~(T); kr[X1' ... 'Xe~]' where x1, ••• ,xe are the ne

gative fundamental weights . (In particular, R_~(T) should not be confused

"with the completed representation ring R(T).) Note that R_m(T) contains the

field of fractions of R(T),
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3. 3. Exampfe.

We eonsider here a finite dimensional T-modu1e E whose weights are

all positive with respeet to some partial ordering. Then the symmetrie algebra

M = S(E) admits a formal charaeter, which is bounded '__ and (wi th respect to

multiplication in R_w(T)) given by the forrnula

( 1) ch(S(E)) = 6(E)-1,

where we define

(2) ~(E)

>.. dirn E A
:z::: n (l-e )

A

the product being extended over all weights of E. In fact, for the special

case where E = E
A

1S onedimensiona1, one gets immediate1y the geometrie series

A 2 A
= 1 + e + e +.•. =

and then the general ease fo11ows by repeated app1ication of the formu1a

eh(S(E ~ F)) ch(S(E) 0 S(F)) = eh(S(E))·ch(S(F)) ,

which ho1ds for any E,F satisfying the above positivity assumption.

As a corol1ary, we note that

(3)
* -1 -A -dirn,E

ch(O(E)) = ß(E) = n(1-e) A,
A

product over all weights A of E.
~ * .This is because O(E) = S(E) and the weights of the contragred1ent T-module

*E have opposite signs, that is *dirn EA z::: dirn E_>.. for all

._-----

A E A
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3.4. T-equivariant modules with highest weight.

*Let M be a finitely generated SeE )-module, which lS equipped with

a linear, locally finite T-action, such that

t(sm) = (ts)(tm) for all *t E T , m E M , s E SeE )

For short, we say that M is a T-equivariant finitely generated *SeE )-module.

It is easy to see that such M admits a formal character. Let us be slightly

more specific.

Consider a cyclic * *SeE )-submodule M' = S(E)v generated by some

weight vector 0 '# v E M , of weight A ,say. Then M' = kv + M" , where

*M" = E M' has only weights strictly smaller than A , because of our positivity

assumption on the weights of E. Therefore A is called the highest weight

of M' ,and v resp .. M' lS called a cyclic highest weight vector resp.

(sub-)module of highest weight A . Now let I be the ideal of elements in

*S(E) annihilating v .. Then obviously I is a T-submodule, and

ch(M') = eA ch(SjI)

Here and in the 'sequel, we sometimes write *S = SeE ) , for short.

Lennna : a) A finitely generated T-equivariant *S(E,)-~odule M admits a

cOmposition series

--~---~-------



-:I 2 -

of T-equivariant *SeE )-submodu1es M. , such that the composition factors
1

Mi /Mi - 1 are cyc1ic highest weight modules.

b) Then M admits the formal character

A.
e 1 ch(S/I.)

1

where A.
1

is the highest weight of M./M. 1
1 1-

and I.
1

the annihi1ator of the

corresponding cyc1ic highest weight vector.

c) The composition series can be chosen in such a way, that I1, ... ,I~ are

prime ideals.

Proof : Chose M = M'1
as in the preceding discussion, then repeat the same

discussion for M/M1 etc. Since M is noetherian, this process will terminate

after a finite number of steps, proving a). Now b) fo110ws from (*). Assuming

M ~ 0 , let P be a minimal associated prime ideal of the *SeE )-module M.

since T is connected and acts by automorphisms on M, it stabi1izes P. By

equivariance, T ·stabi1izes also the submodule of M annihi1ated by P, which

is therefore a T-equivariant 8ubmodu1e N ~ 0 . By choosing the weight vector

o , v EMin the discussion preceding the lemma even in N, we can achieve

there I = P prime. Repetition of this procedure proves part c) of the lemma.

Q:e.rl.

3.5. Projective and free cyc1ic highest weight modules.

Proposition. Each projective finite1y generated T-equivariant *SeE )-modu1e

M admits a finite composition series with all composition factors free cyc1ic

highest weight modules.
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Here the terms "free" resp. "pro jective" refer to the *SeE )-module

structure. The proposition follows by repeated application of the following lemma.

Lemma : A maximal weight space M
A

generates a free highest weight submodule

* ...... *N = SeE )MA = SeE ) a9 k MA ' and the quotient M/N 1S again projective.

Proof * *Let m = E S(E) denote the maximal ideal corresponding to the zero-point

*o E E • Consider the canonical linear map of N: = S.(E ) ® M
A

into M, which

maps N onto N. The \eight space'; ~ injects into M/!!!'1; because the veights in ~ are a11

smaller than A. Hence the map:from' S(E*) ~'k MA' to M induces 'an injection
. '.- ...

. ~ .. ,J -..., . .... ~. _ ~

on· the modu Ies tenso"red wi th" S(, E*) /~S (E*). Because both· mod ules are proj ect i ve

over S{E*),- it ·follows that- N = S(E*) ~ l~~' 'is' a submodule of j~, 'and' that'"lthe

qiJot-iefit is locally--free at m. Hence tlj/l~' isr-loca'ily ffee in a neighbourhbod

U c 'E of the- zero~point. But then the T-saturation Is TU = E (since we assume

A$O E).. = E), and since M/N is T-equivariant, it is locally free ,everywhere

on-: E. This 'means that . r~/N . is projective.

Corollary: The formal character of M is given by
* -1 Xl AR.ch(M) c ~(E) (e +... +e )

Q.e.d.

where Al, ... ,A
f

are the highest weights of the free cyclic compositi,onf~ctors.

mentioned in the proposition.

In fact, for a free cyclic highest weight module

A. we clearly have
1

hy combining 3.4(*) and 3.3(1).

N. of highest weight
1

Remark : The proposition states that, in the frame-work of lemma 3.4, the case

"M projective" means that the prime ideals 11 , .•. ,1
2

there are all zero; hence

the corollary is also a special case of 3.4b).
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3.6. Formal characters of equivariant'coherent sheaves.

Now let MOdTcOh'(E) d t th t f T . . t heno e e ca egory 0 -equ~var~an co erent

sheaves of 0E-nlodu1es, and Mod~g·(S(E*)) the category of T-equivariant

*finite1y generated S(E )-modu1es. ,Then the functor ~~ r(E,~) c M estab1ishes

an equiva1ence of these categories; because E is affine; Moreover, a loca11y

free ~ corresponds to a projective M, and since eaeh ~ admits a fi'nite locally

free resolution in Mod~Oh'(E) by 2.7), we have simu1taneous1y that eaeh M

admits a projective resolution in MOdi·gO(S(E*)) . In parti'cular, the (isomorphie)

Grothendieck K-groups of these categories are generated (over ~), by loea11y

free resp~ projective objects, and so it fo11ows from the preeeding proposition

3.5 that they are even generated by the free cyc1ic highest weight modules.

-By abuse of 1anguage, the formal charaeter of M = r(E,~) is also ca11ed the

formal eharacter of ~ notation ch(~) :c eh(M) Now it fo110ws from the

preceding discussion and from eoro11ary 3.5 that

linear cambination of exponentia1s.

is an integer

Coro11ary : For an arbitrary T-equivariant'coherent o -module F
E---

(resp.

*f.g. S(E }-modu1e M = r(E,~)) the formal charaeter is of the form

ch(~) = ch(M) ~ ~(E*)-l L aAeA

"AEA

where

nonzero.

are integer coeffieients, on1y finite1y many of them being

Obvious1y, these integers a
A

are unique1y determined by ~ resp. M °

Fo11owing traditiona1 termino1ogies (ef. [Ja]), we refer to a
A

as the (integer)

multiplicity of the free eyc1ie highest weight module of highest weight A ~n

the module M, notation
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In the sequel, we consider ch(~) as an element of the fraction field

Fract(R(T)) of the domain R(T) .

3.7. Restrietion to the zero point.

Since our T-action on E is linear, it fixes the zero point, and so

the inclusion t: {O} + E gives rise to a restriction homomorphism

*t T : ~(E) + R(T)

Proposition a) t; is an isomorphism of A-rings ~(E) ~ R(T)

b) This isomorphism can be computed within Fract(R(T)) by the

following formula :

which holds for any T-equivariant coherent sheaf ~ on ,E •

Proof : a) Since

Comments. 1) We note that a) may be viewed as a very special case of a theorem

of Thomason [Tl], Theorem 4.1 on arbitrary equivariant vector-bundles E,

cf. 2.·9(2). But it is convenient to prove the whole proposition here more

directly below.

2) The proposition holds even with coefficients in ~.

*t
T

preserves the A-ring-structure hy funct6riality, it

suffices to prove that it is bijective. In fact, let us exhibit the inverse rnap.

Start~from an arbitrary finite-dimensional T-module F, we form the locally

free coherent 0E-module

(1) F

and make T act diagonallyon it. Then 1f! :. [F} + [~] defines a homomorphism

of R(T) into ~(E). It is clear that ~ has fibre F at the zero-point, so
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In particular, ~ is injective. We may even conclude from (2) that ~ is an

*inverse of t T , provided that we know ~ is surjective.

To see this, it suffices to show that the she~ves of the particularly

nice form (1) are'sufficient to generate the'whole Grothendieck'group ~(E) •

Observe that each loca1ly free ~ of the form (1) gives rise to a projective

module M:= r(E,~)
"-J *of the form M = S(E ) @k F , (under the equivalence

discussed in 3.6), and conversely. But the free cyclic highest weight modules

are of this form, and we have observed in' 3.6, that even these suffice to generate

the full Grothendieck group under consideration. A fortiori, the sheaves of the

form (1) generate ~(E) as a group.

b) Since both sides of the formula claimed in b) are additive in [~] ,

it suffices to verify the formula only on a nice set of generators of ~(E)

for examp1e just for those sheaves

we get

F of the form (1). Assuming F
::::f

of this form,

M :1:: r(E,~) r(E,OE) 0 k F *= S (E ) @ k F ,

and so by' 3.3

ch(~) D ch(M) * *ch(S(E ) @ kF) = ch(S(E ))ch(F) ,

*ö(E )ch(E) I:: ch(F)

On the other hand, as pointed out in (2), we have

ch(F)
*.= [F] ::::f t - [~]

which completes the proof of our proposition. Q.e.d.

(
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3.8. Computation of y-degree.

Proposition 3.7a) says in particular, that the isomorphism

*lT ~(E) ~ R(T) preserves degrees with respect to the y-filtrations, and

then formula b) of the proposition teIls US, how we may compute the y-degree

of ~,as an element in ~(E) , from the formal character ch(~) , considered

as a formal power series on t (cf. 3.1) :

Corollary : For any T-equivariant coherent sheaf ~ on E, the y-degree

of [~]

series

in K.r(E)

*Ö(E )ch(~)

is equal to the degree of the :.lowest order term of the power

*in § (E.. )

Using our notation for lowest order term as introduced in 3.1, we may

write this statement as a formula :

y-deg[~] *deg gr(6(E )ch(~))

We shall determine the right hand side more explicitly below (3.10). Before

doing this, let us first look more systematically at the lowest order term of

*Ö(E )ch(~) .

3.9. Character polynomials.

Let ~ be a T-equivariant coherent sheaf on E, and let

a ~ y-deg[~] denote its y-degree. By the filtered isomorphisms K.r(E) ~ R(T)

.... ......... *
(3)) and R(T) ~ S(!) (3.1), we may identify the associated graded ring of

K.r(E) ,

*~ SC! )

with the graded ring of polynomial functions on t , by identifying for each

degree -J the vector spaces
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.... *.... *
5.(t )/5. let )

J - J+

In this manner, the class [~] modulo ~+l(E) determined by the sheaf F- is

identified witb a bomogeneous polynomial, ~f degree a on t

Definition : We call tbis polynomial the character polynomial of ~,and denote

it by T
qF . For a module M c r(E,~) , we use the similar notation and termino-

logy, calling T T
qM = qp the character polYfiomial of M . Normally, we drop the

superscript T, if the torus of reference is clear enough from the context.

The term t1 character polynomial" refers to the fact that this polynomial

is computable from the formal character by means of formula 3.7b) as the lowest

*degree term of the series Ö(E )ch(~)

Corollary

Let us illustrate the use of this formula by a few immediate applications.

Proposition

where the integer at..(M) is the "multiplicity" of the free cyclic highest weight

module of highest weight t.. 1U M (notation 3.6). Moreover, the number

a = y-deg[M] may be computed from these integers aA(M) as the smallest positive

integer a for which the righthand side of (*) becomes a nonzero polynomial.

Proof : This 1S now an immediate consequence of 3.5, by writing out the SUffi of

exponentials given there as apower series, and taking the lowest order term.

Q.e.d.

Example : Let us compute the character polynomial for M 1:'1 k the trivial,

oue-dimensional module. In this case,

degree term of

ch(M) = 1 , and so is the lowest



* *ö(E )ch(M) = ö(E ) ~

- 7:9 -

r -A.
n (l-e ~) =

i=l

r 1 2 r
.n (l-l-A i - ~ Ai - ... ) c n (·A.) + •••
~=l i=l ~

where A1, .•• ,Ar are the weights of T in E , and dots are terms of higher degree •

Hence
. .~

is equal to the product of all weights of T in E~ , and in particular

deg qM c r:= dirn E is the vector-space dimension of E in this case. - Similar1y,

one obtains for an arbitrary M of finite'vector~space'dimensionthe formu1a

q = dim M
M

r
II ( A.)

icl ~

dim E c: r

3.10. Degree'of-character palyriomial'equals'codimension af'support.

Theorem

(1)

Let ~ be a T-equivariant coherent sheaf on E . Then

deg qF = codi~ supp ~

Comments : Note that, by definition of the character polynomial

qF ' its degree is also the y-degree of [~] . - Let us also restate the

theorem in terms of the corresponding T-equivariant module M = r(E,~)

(2) r-d (M) ,

where r: c dim E , and deM) denotes Krull- (or Gelfand-Kirillov-) dimension.

We refer to Joseph [Jl], 2.4 (ii) for a similar result; the precise relationship

is explained later in our present paper ·(4.8).

Dur proof of this theorem, given in 3.12-3.13, proceeds by induction

on d(M)., Ta make the induction argument work, however, we first have to sharpen

the theorem by·the following technical complement.
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3.11. Positivity property of character polynomials

Let us call a polynomial q on !* positive, if it takes only positive

values on all regular dominant integral weights. In ·more detail, let w
1

, ••• ,we

denote the fundamental weights corresponding to our choice of partial ordering

on 1*, and p = w1+ ... +we. Then n:= ~w1+ ... ~Wt. resp. p + n denote the

semigroups of (resp. regular) dominant integral weights, and llq positiveIl means

q(X) > 0, for all AE p + n.

In particular, q(p) > O.

Complement of Theorem 3.10: The polynomial QF is positive.

Our induction argument, which will prove the theorem and its com

plement simultaneously, is based on the followi'ng key lemma.

3.12. Division by a non-zero-divisor.

Lemma: Let M # 0 be a finitely generated .T-eguivariant S(E*)-module, and let

o ~ f E S(E*) be a weight vector of weight -~ # 0, which acts as a nonzero

divisor on M. Then we have

(1)

and

(2)
.

d(M/fM) = d(M)-1.

Proof: In fact, the assumptions on f imply that multiplication by f maps

each weight space Mx injectively into M, , so that
~-~

ch(fM) = ch(M)e-~,

hence

ch(M/fM) = ch(M)-ch(fM) = (1-e-~)ch(M).
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Since 1-e-~ = ~- i ~2+ e •• , it follows that the lowest order term of

~(E*)ch(M/fM) is obtained from that of ~(E*)ch(M) by multiplication with

~. This proves (1). The last equation (2) is a weIl known property of Krull

dimension. Q.e.d.

As a consequence of (1), we can conclude that qM will be posi

tive~.tf qM/fM is.

3.13. Proof of theorem 3.10 and 3.11.

Let us proceed by induction on d(M). The case d(M) = 0 is

settled by example 3.9. So assume d(M) > O. We choose prime ideals I1' ... '~

as in 3.4c), so that by 3.4b):

By -3.9, qM is the lowest order term of the series

, A.

ch(M)~(E*) = ~ e lCh(S/Ii)~(E*).
1

(*)

Let J c {1, ••• ,i} denote the set of indices i for which deg qS/I. assumes
1

its minimum value, m say. Observing that multiplication by an exponential
A.

series eldoes not affect the lowest order term of apower series, we see

that the power series (*) has its degree m term equal to L QS/I 1 and
iEJ i'

:.has o:~ly zero terms in smaller degree. ,So we may conclude from (* ) that

deg qM = m, and

(**)

unless this sum vanishes. But suppose for a moment we knew already that theorem

3.10 and its complement hold for the modules M= S/I i involved in the sumo

Then the polynomials QS/I. are all positive 1 and so their sum (**)
1

obviously cannot vanish, but must be positive as weIl.
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Hence

deg QM = m := mi n deg QSI I. :
1~i.::t 1

On the other hand we have

r-d(M) = min (r-d(S/I.)).
1<i<i 1

Therefore, we conclude that theorem 3.10 and 3.11 hold for M, provided that

we can prove that they hold for all modules of the form 5/1, where I is a

T-stable prime ideal in 5 = 5(E*), and d(S/I) ~ d(M).

In other words, by the preceding argument we have reduced the proof to the

particular case M= 5/1, with I a T-stable prime .. ideal~ Ta prove-the tteoran for this

case, pick same weight vector 0 # f E M of strictly negative weight -~; this
-~

is possible: in fact, we can take any weight vector in 5/1 except the scalars.
-1Then QM = ~ QM/fM by the lemma (3.12), and d(M/fM) < d(M), so QM will be

positive, since QM/fM is by induction hypothesis. Moreover, since

deg QM/fM = r-d(M/fM)

by induction, the lemma gives also

deg QM = (deg QM/fM) -1 = r-d(M/fM)-1 = r-d(M).

This completes our inductive proof.of theorem 3.10 and 3.11. Q.e.d.
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3.14. Determination of character polynomials by supports.

If V c E is a T-stab1e closed subvariety, then the structure sheaf

~ = O(V) 1S T-equivariant, and so has a character polynomial, which we also

denote qv = qO(V) , for short. If ~ is an arbitrary T-equivariant coherent

sheaf on E, then its support in E is clearly a T-stab1e closed subvariety.

Reca11 our notation for the supporting cyc1e of ~: This is the formal linear

combination

supp(~) L mV(~) [V]
V -

extended over the irreducible components V of the support (notation 1.4).

Proposition : Let g be a T-equivariant coherent sheaf on E , let d

denote the codimension of its support in E, 'and'let (*) 'be'its'supporting

cyc1e. Then

q~ =

In particu1ar, the character polynomia1 of F 1S comp1ete1y determined by its

supporting cyc1e.

Proof : We let M = r(E,~) and chose prime ideals Il, .•. ,r
t

as 1n lemma 3.4.

insir.
J

denote the support ofV.
J

Ethen q"s/r. = q V. • We a1ready knew that
J J

To introduce our new notation, we let

-------- - -- --
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where ~I is summation over those j for which qS/I. has minimal degree
J

(cf. 3 ... ). But from theorem '3.10, we now know in addition that

for j ~ 1, ... ,~ , where

d

d.
J

deg qV. = d.
J J

denotes the codimension of V.
J

in E • We

conclude that

(**) q~ = ~ q
d .=d Vj

J

On the other hand, it is clear that the

irreducible components of the support of

V.
J

~

of codimension d. c d are the
J

of minimal codimension. Now (**)

gives the proposition. Q.e.d.

Corollary : "Let °~ MI ~ M ~ M2 ~ ° be'a short exact sequence'of T~equivariant

*finitely generated SeE )~modules. If d(Ml ) = d(M2) , then

if d(M.) < d(M.)
~ J

(i, j, 1,2) , then

ideal

3.15. The·theory'öf·Hilbert~Samuelpolynomials as'a'special'case '[AC],. [AM].

Let us now look more carefully at the particular case of a onedimensional

* the multiplicative group. representationtorus, that is T = t = k is Then the
m

* .....,ring R(T) is the group ring of an infinite cyclic group X (T) = 7l , or ~n

other words' R(T) identifies with the ring k'[t,t- l ] of Laurent pölynomials

in one variable t (~orres~irg to t.h3 characte(' .a~ ä1 of l),,). The al.K]TEfltation .

11 is t.te1 t.h3 principal ideal generat€d by t-1)' and so the 1
1

-adic r1egr'2e of a Laurent

p;Jlyronial f(t)
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is given by the order of vanishing of f(t) at t = 1 . More generally, this

extends to infinite Laurent series as weIl. Recalling 3.1, let us summarize :

Lemma : The completed representation r~ng of the multiplieative group is the

ring of formal power series in the variable t-l

R(<<; ) = k[[t-l]]
m

the y-degree 'of' a' power" series "'being" its' order" öf 'vanishing at. " t ..=. 1 .

AT-action on a module M is now just a 7l-grading M J::: c.+.> M. ,
iE 7l ~,

and M will admit a formal character iff the homogeneous subspaces M. are
~

finite-dimensional, the formal charaeter being known as the'Pöincare'series

i
ch(M) = I: (dim M.).t i

~

in this ease. - Now let dl , ... ,dr E ~ denote the weights of our linear action

of T = t in the r-dimensiona1 veetorspaee E. By our assumption, they
m

are all positive. Reea11ing 3.3, we find that now

!:I(E)
-d

1
-d

(l-t ) ••.• (l-t r)

so

*eh(S(E )) * -1 d1 -1
= ~(E) c (l-t ) .... (l-t

dr -1
)

Now let ~ be a T-equivariant coherent 0E-module, and M = r(E,~) the

corresponding graded *SeE )-module. Then our result in proposition 3.7 and

theorem 3.10, specialized to this ease, yieldsin particular the following

facts about Poineare series.

Corollary : "rhe Poincare series of"the ~~graded'module M' (as'above) "takes

the form of a'tational'function
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p(t)
d

1
d r

(1- t ) •••• (l-t )

where P(t) is a Laurent polynomial, whose order of vanishing at t 1

equa1s r-d(M) , the codimension of the support of M 1n E .

For examp1e, let T be the group of· homotheties on E. Then

d
1

= d
2

=... =d
r

= 1 , so the Poincare series equa1s

ch(M) = = (l_t)-d(M) Q(t) ,

where Q(t) is a po1ynomia1 with Q(l) # 0 .

Remark : These are essentia11y c1assica1 resu1ts of Hi1bert and Samue1 in

commutative algebra, for expositions of which we refer to e.g; Bourbaki, [AC]

VIII, §4, n03, Theoreme 2, and n04, Theoreme 3, or also [AM], theorems 11.1

and 11.14, or [Sr], under the headlines of Ildegree of the Hi1bert-Samue1

functions", resp. "Hilbert functions" and IIdimension theory".

3.16. Restrietion to one-parameter subgroups.

Let be free generators of the 1attice of integral

weights, ca11ed the "fundamental weights". Their choice corresponds to the

choice of the partial ordering of weights. Then n:~lliwl+ •• ·+mwtis the

semi-lattice of IIpositive integral weights ll
, so our positivity assumption on

the T-modu1e E means that its weights belang to n and furthermore for

any T-equivariant *SeE )-module M, there exists some A f. A such that

ch(M) = L (dirn M )e~

-~EA+n ~
(*)

for each T-equivariant *SeE )-module.
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-W
1We note that the exponent ials t 1 := e , ... ,

-Wttt := e are algebraically inde-

pendent. So we may consider the formal character as a formal Laurent power series

in t 1, ... ,te, as mentioned in 3.2, that is

, m1 m2 me
eh (M) =F (t1' • • • , tt) = m .Lm-' > -k am m t 1 t 2 t D1' ••• , t- 1' ••• , 't (,..

with m1, ••• , me integers bounded below by some -k •

. Now we consider a one parameter subgroup ~: ~m ---+ T. We may describe ~

in terms of the perfeet pairing X*(T) x x*(l} ---+ 71. of the (rank e free

abelian) groups of all one parameter subgroups resp. characters of T (see e.g.

[52], 2.5.12) as folIows: For a character xE X*(T), we define <x,~> as the

integer n describing the restricted character ~*(x) of ~m as a~ an

(a ~ Ern). We denote x1' ••• , X.e. the lIfundarnenta I cha racters LI of T (that i s
. w. 1

[Xi] = e 1 = ti ). Then ~ is uniquely determined by the .e. integers

Definition: ~ is called positive, if all n1, ••• ,nt are positive.

Lemma: The ~m-module obtained from M by restrietion to a positjye one para

meter subgrouD ~ admits a formal character ~*ch(M). -lf ch(M) = F(t1, .•• ,t.e.}

as above, then

(*)

Here

n1 n.e.
~* ch(M} = F(t , ... ,t ).

t = e-w denotes the character a~ a- 1

The lemma is obvious for a one dimensional module M= k of character
Xm1 mich(M} = [x] = t 1 t.e. ' since then

n m
(t 1) 1

1

and it extends linearly to arbitrary modules M of finite dimension, i.e. to

polynomials F. For the extension to arbitrary bounded formal characters ch(M),
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i.e. to Laurent power series F, we need the positivity assumption on ~. This

will guarantee the existence and boundedness of the formal character of M,

considered as a Em-module by restriction, and then formula (*) follows as in the

finite dimensional case.

Proposition: Let ~ be a positive one parameter subgroup of T.

Let ~*: KT(E) ~KE (E) denote restriction. Let [M] € KT(E) denote the
m

class determined by some T-equivariant S(E*)-module M, and d its r-degree.

Then

module

,1.* T If
'l' qM' we

then

"restricted"
Em

qM =

TqM = f(w 1 ,····,wt ) as a polynomial in the fundamental weights,

~*q~ = f(n 1, ... ,nt ) w
d

write

a) r-deg ~*[M] ~ d = r-deg [M].

b) r-deg ~*[M] = d if and only if

q~ (y) 10, at y := d~(1) f.!.

c) If such is the case, then the character polynomial of the

is obtained by restriction of the character polynomial, i.e.

Proof: Refering to 3.7 and the lemma above, we may describe the restriction map

~* explicitely by means of the following commutative diagram,

*

where the vertical arrows will alll:€ denoted ~*, but the last one is. explicitely

described as a specialization map of Laurent polynomials as foliows:
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n, nt
~ P(t , ... ,t ).

Hence if [M] is represented by the multi-variable Laurent polynomial P(t" ... ,tt),
n, ntthen ~*[MJ is represented by the one-variable Laurent polynomial P(t , ... ,t )

-w,
( )

l-w
~: pi t . Now reealling t i ~ e , and t ~ e , we may develop these polynomials

into power series in the fundamental weights w" ... ,wt resp. w.

Ir we write

P(t 1,··.,tt) = L Qj (w1, ••• ,wt '"
j~d

with Qj a homogeneous polynomial of degree j in w1 ' ... ,wi ' and Qd # 0, then

the eharacter polynomial of M with respeet to T is
T(') qM = Qd(w" ... ,wt ),

whereas that of M with respect to ~ (i.e. q:m) is the lowestterm of the

power series

(2)

Now

pi (T)

pi (t)
n, nt -n,w -ntw

= P(t ,. .. ,t ) = P(e , ... ,e ) =

(3) = L q. (n,w, ... ,nt W ) ~ L Q. (n, '.... ,ni ) wj
'>d J '>d J

,
J_ J-

and the statements of the proposition are then obvious by eomparing coefficients

in (3) and (2), in particular

6m d
~ ~ qd(n 1, ... ,nt ) w,

if this is non-zero. Q.e.d.

Corollary: For a given T-eguivariant module M, restrietion preserves ~-degree,

that is eguality holds in a) above, for lIalmost all" positive one parameter sub

groups ~, in the sense that the exceptional set is contained in a Zariski

elosed subset of X*(T) ~ k.

~all that X*(T) denotes the group (isomorphie to zl) of all one parameter sub

groups ~ of T.



tends to infinity. (For example, the order of growth

Remarks: 1) Equality holds in a) above even for ~ positive one parameter

subgroups ~ by theorem 3.10. In fact, theorem 3.10 says that the r-degree

of M equals the codimension of its support, and hence is completely inde-

pendent of the torus action under consideration, provided, that this action

has only positive weights on E, which is guaranteed in the present situation

for our one parameter subgroup ~ since it is assumed positive.

2)The reason for stating the proposition in the weaker form above

which we have easily prov .ed directly (independent of 3.10), is that it
'--'"

provides an alternative method of proof for theorem 3.10: In fact, the

corollary above reduces the proof of the theorem to the special case

T = ~m of a one-dimensional torus. It seems to us that even this case

is not fully covered by the existing literature (cf. e.g. [Bo], [AM], [Sr],

[Sm], theorem 5.5). Let us give therefore another full proof in 3.18, which

is essentially based on a lemma about real power series (3.17), and which

might have some independent interest.

3.17. A lemma on (he growth of coefficients of apower series.

Let (Hj)jE 'll be a sequence of non-negative real nmnbers, with a

"minimal positive term H. (that is H. = 0 for j < . ) . Let us define its
J o J

J o

order of growth as the infimum of all real numbers )' > 0 such that

L H. = nO(n)') as n
j<n J
oI a polynomial function is its degree). Now we assume that the Laurent power

series

~s a rational function of the form

r m.
H(t) = p(t)/ TI (l-t ~) ,

i=l

(1)

(2)

where P(t) is a Laurent polynomial, and r,m1, ... ,mr are positive integers.
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Lemma: The order of growth of

vanishing of P(t) at t = 1.

(H . )
J

is r-d-1 where d is the order of

Proof : We first note that with H(t) also (1+t+t2+... +t S- 1)H(t)

has non-negative coefficients and satisfies all assumptions of the lemma (for

a11 s~o); moreover, si nce all its coeff ieients are the sums of s success ive

coefficients H. 1 + + H. of H(t), it is obvious that the order of growth
J -s+ J

of the coefficients is not changed by multiplication with such a polynomial

( 2 s-ll+t+t-+ ...+t ). By applying this observation r· times, we conclude that

the power series

U(t) = H(t) ~ (1+t+t2 ..~
i =1

m· -1
't 1 )

has also non-negative coefficients of the the same g~owth as H(t). On the

other hand, equation (2) gives now

U(t) = P(t) / (l-t)r.

'Consequently, we have reduced the proof of the lemma to the special case where

all degrees are one, m1 =m2 = ... =mr = 1. In this case, the proof of the

lemma is easy by use of the binomial series

CD

~

i=Q
(r+ i -1) t, 1,

r-1 l'

see [BoJ. Q.e.d.

3.18. An alternative proof of theorem 3.10.

As mentioned before, in view of Corollari 3.16, it suffices to prove

the theorem for the special ease T = ~ ,aeting on E with positive weights
m

. Let Fand M = r(E,~) as 1n 3.10, and eonsider the formal

character or Poineare series of M, denoted

ch(M) c ~ H.t J = H(t)
J J

(H. c dirn M .) . We know fram 3.7, 3.15 (independently of theorem 3.10) that
J -J
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this series is a rational function of the form considered above, in 3. 17 (2).

Hence by lemma 3.17, we know the order of growth of (H.) to be r-d-l , where
J

r c dün E , and d = y-deg[M] (use lemma 3.15). Now the proof is comp1eted

by the fo11owing

Lennna The order of growth of (H. )
J

is equal to dün supp ~-1

This lemma is easily proven via an analogue, for orders of growth,

of lemma 3.11.

Q.e.d.

3.19. Character polynomials of suba1gebras.

The following genera1ization of the notion of character polynomials

will be usefu1 in chapter 4. Let Y c E be an irreducib1e c10sed T-equivariant

subvariety. We have defined the character polynamia1 qy(= qB = q~) , for

B ~ o(y) , as the 10west degree term of *6(E )ch(B) , considered as apower

series on ~. Simi1ar1y, we define for any T-stable subalgebra A c B

h h 1 · 1 q (- qT,B) b h 1 d ft e c aracter po ynom~a A - A to e t e owest egree term 0

*6(E )ch(A) . This is a homogeneous polynomia1 of degree deg qA ~ deg qB .

This notation 1S extended also to· finitely generated T-equivariant A-modu1es.

- Now let A be finitely generated, say A = o(Z) the coordinate ring of the

affine T-variety z . Then we also write <.p:Y-+z denote

the T-equivariant dominant map corresponding to the inclusion A c B .

Lemma If <.p y -+ Z is birational ., then qz = qy

Proof : There exists a dense, open, T-stable subset Z' c Z , such that the

restriction of <.p to Y' = <'p-1z' is an isomorphism Y' ~ Z' . Let az' c Z-Z'

ay' = y-J(' be their complements, and let I resp. J. be the ideal in A
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resp. B of functions vanishing on az l resp. ay'

Obviously, all

these sets and ideals are T-stable, so that we may argue in terms of formal

characters. Since AI = BI ' the difference between A and B can be calcu-

lated over I:

ch(B)-ch(A) c ch(B/A) = ch«B/IB)/(A/A n IB))

= ch(B/IB)-ch(A/A nI8)

We may assume 0 # I (the other case being easily settled separa~ely).

*Then by lemma 3.11, the lowest degree term of 6(E )ch(B/IB) has degree

strictly bigger than 6(E*)ch(B).SincEI- ch(P/A ,ris,) 2. ch(B/IB) coefficient W1se,

we conc1ude that also Ö(E*)ch(A/AnLB)cannot contribute to terms in degree

2. deg PB · (Here we use the characterization of y-degrees by order of growth,

3.18). It follows then on the left hand side of the equation

* * '* *6(E )ch(B)~6(E )ch(A) = 6(E )ch(B/IB)~6(E )ch(A! An 18)

the lowest degree terms must cance1 each other, that 1S to say qB = qA

Q.e.d.

Proposition: If ~: Y ~ Z is dominant:, and dirn Y

qy c mqz for some integer m > 0 .

dirn Z , then

More precisely, m is the generic degree of the map ~ or also

m = [L:K] ,where K,L denote the fields of rational functions on 2 resp. Y •

'Proof : The equality of dimensions implies that K and L have the same

transcendence degree, so that m ~ [L:K] 1S finite. Let A denote the integral

closure of A = 0(2) 1n B = O(Y) . Then we have q = q' by the lemma.
B A
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We may chose m weight vectors vl, .•. ,vm E A , which are independent

over K ~ Fract A , so that M:= Avl+ ... +Av
m

is a free A-submodule of

rank m in A. Then we have

ch(A)
~l ~m

= ch(A)(e +···+e ) + ch(A!M)

where ~.
1

is the weight of v .• Now AlM
1

is a finitely generated (!) torsion

module over A. Therefore, it follows by an obvious generalization of lemma

3.11, that q has strictly larger degree than
AlM

(*), that up to terms of higher degree

q~ . Hence it fol10ws fram
A

* * ~l ~m *6(E )ch(A) - 6(E )ch(A)(e +···+e ) - m6(E )ch(A) (mod higher degree terms) .

It fo110ws that q- ~ mqA ' which completes the proof.
-A

Q.e.d.
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§4. Equivariant characteristic classes of orbital cone bund1es.

In this chapter, G is a connected semisimple a1gebraic group over

k ,and T a maximal torus in G. We use the notations introduced 1n 1.5.

So in particu1ar, U is a maximal unipotent subgroup norma1ized by T , and

B ~ TU = UT is a fixed Bore1 subgroup; ~,~,!,~ are the Lie a1gebras of

G,B,T,U etc.

4.1. Borel picture of the cohomo10gy of a flag variety [Bo], [H1] .

The purpose of the theorem below is to reca1l, and simu1taneously

to rephrase in an equivariant K-theory 1anguage convenient for our present

*paper, the Borel picture of the cohamology ring H (x) of the flag variety

*X = GIB • This picture describes H (X) as a quotient of the representation

ring R(T) by a certain ideal defined as follows. Note that the Weyl group W

of G relative to T acts on R(T) , stabilizing the augmentation ~deal IT

(notation 2.11); so let IW
= I n R(T)W denote the subspace of W-invariants.T T

Then the ideal mentioned above is the one generated by

Theorem (Borel picture)

homomorphisms

We have a commutative diagram of canonica1 ring

KG(X) .. R(B) . .. R(T)

~ ~/
K(X)

= R(T)/I~R(T)

~~ ""'-'
eh =

H (X)

Here the map from KG(X) onto K(X) forgets the G action (2.1),

and the isomorphism of KG(X) onto R(B) is given by restriction to the base
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point (2.4(1)). The link from K(X) *to H (X) is of course made by the

ehern character eh (an isomorphism, cf. 1.5), and that from R(B) to R(T)

is given by restriction from B to T (2.1). Observing that U aets trivially

on eaeh finite dimensional irreducible (henee one-dimensional) B-module, we

conclude that this restrietion homomorphism R(B) ~ R(T) is also an isomorphism.

- For further information and more elassical formulations of the Barel picture,

we refer to e.g. Borel [Ba], or Hiller [Hl] 111, theorem 4.1.

4.2. Description in terms of harmonie polynomials on a Cartan subalgebra.

The isomorphism lP of the completed representation ring R(T) with

~ * (cf. W-equivariant;the formal power series ring S(t ) 3.1) is canonical, henee

it maps the ideal generated by IW anta the ideal generated byT

that is the W-invariant polynomial functions on t vanishing at o. Therefore

lP induces a diagram of isomorphisms

R(T) > R(T)/I:)I~ <

R(T:l:T):~ W

J~
,.....

* ~ * * W ='S(! ) ) s(! ) /S (~ )J T < S (~ ) / s (~ )JT

* * WFurthermore, we reeall that the residue elass map of S(! )/S(! )JT admits a

* M' *natural section, given by the graded subspaee S(!) c S(!') of all

*W harmonie polynomials. In eonclusion, Borel's deseription of H (X) as

formulated in 4.1 also says that

. .

*,..... w,..... * * WroJ * Lf
H (X) = R(T ) / R (T ) I

T
= S(! ) / S (! )JT :::I S (! )"
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canonically. These isomorphisms clearly respect gradings and W-actions. Thus

we reobtain the following formulation of the Borel picture, which is perhaps

more familiar to sorne readers :

Corollary (loe. eit.) For all degrees d > 0 , we have eanonically

Here the right-hmd side denotes the spaee of harmonie polynomials

whieh are homogeneous of degree d. If we add that the eohornology of X

vanishes in all odd degrees, then the above statement eornpletes the description

*of H (X) as a graded ring with W action.

Remark : Let us reeall our eonve~tion, already made in 1.6, that whenever

eonvenient, we identify a eohornology elass on X with a harmonie polynomial

on t , by means of the above isornorphism.

*4.3. Equivariant K-theory on T X .

We shall now return to the study of eertain eonieal subvarieties in 

*resp. sheaves on - the cotangent bundle T X of the flag variety X, which

*has been our main objeet in §l already. We now observe that T X is

G-equivariant as a veetor-bundle over X, and that the subvarieties and

sheaves in question are also G-equivariant. This will allow us to study them

*by means of calculations in the ring KG(T X) . This study will amount in a

certain sense to "lifting ll the geometrieal investigations of our §l to the

more refined level of equivariant K-theory in the present ehapter, and will

finally lead to improvements of the results in §l.

The purpose of the following proposition is to provide a fairly

*explicit deseription of the ring KG(T X) , as weIl as a method for performing



- 98 -

actual calculations. We recall that the cotangent space of X at the· base

point x = {B} is identified with the "co-isotropy space" at x, that is to

say (T*X) m b~ = u
x

bundle T*X c G x
B u

*, and then T X is identified with the associated fibre-

(notations 1.5). Consider the following diagram of

inclusion maps :

* JT X < u-

uI
i I'X ~ {xl

*Here 0 resp. J denote the inclusion of X resp. u into T X as the

zero-section resp. the fibre at x.

Proposition We have a commutative diagram of canonical isomorphisms of ).. -rings

Here all maps are given by restriction to a smaller group

subvariety.

and/or to a

Proof : All these restrietion homamorphisrns are clearly )..-ring hamomorphisms,

so it suffices to check bijectivity. For the two horizontal arrows .* *
J B ' i B '

this is a consequence of the G-homogeneity of X (cf. 2.4(1)). Also, the

horizontal arrow p is an isomorphism, as observed already in 4.1, and the

vertical arrow is an isomorphism by proposition 3.7. Identifying R(B)
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with R(T) t we may repeat the proof of proposition 3.7 almost word by word

to eonstruet an inverse map of *1B from R{T) = R{B) to ~ (~) . Now the

bijeetivity of the remaining two arrows follows by eommutativity of the diagram.

Q.e.d.

Remark. AlternativelYt one may invoke Thomason's general result [Tl], Theorem 4.1

(cf. 2.9(2»to eone1ude directly that all three vertiea1 arrows

are isomorphisms. However, for the convenience of the reader t we are avoiding

this here.

*4.4. Restrietion to a fibre of T X •

Let us now exp1ain in more detail the use of the proposition above

*for computationa1 purposes. Let us compute for instance the c1ass in KG{T X)

determined by same G-equivariant coherent sheaf F *on T X .. To identify

this class [~] as an element in R{T) by means cf the proposition, we proceed

*as follows : We restriet F to a sheaf . F on the fibre u (which isJ "'" -
affine!) *t then take its module of global sections M = r{utj F) and the

- =

formal character ch{M) 1.n R{T) . (3.2). Then the desired element in R{T)

*is given by the explicit fermu1a for the map 1T given in 3',7 t that is te

say :

Coro11ary I

*Here 8{~) is the product
-0:

IT{l-e ) , expanded over all positive

reots 0: (relative band t ').

Coro11ary 2 : Let denote a G-equivariant coherent sheaf on *T X

Then Yidegree of its class equals the codimension of the
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*support of ~ in T X

Proof This fo11ows fram theorem 3.10 by means of proposition 4.3. Q.e.d.

4.5. Definition of equivariant characteristic c1asses.

*Let ~ be a G-equivariant coherent sheaf on T X , whose support

*has codimension d in T X . Then its equivariant characteristic c1ass QG(~)

is a hamogeneous po1ynomia1 of degree d on !' which is defined as fo11ows.

First of all, F determines a class [~] *in KG(T X) . By "homo10gica1 inter-

*'section with the zero section ll
, it determines a c1ass 0G[~] in KG(X) ,

whic:h we;. may consider:-as apower series on t, by means of the

ider..tifications·

,.. ......... *
KG(X) ~ R(T) c R(T) = SC! )

exp1ained in 4.3 resp. 3.1. Then we define QG(~) as the lowest degree term

of this power series :

Proposition : The po1ynamia1 QG(~) may be computed from a formal character

by means of the fonnula

~(u~ch *QG(~) = gr r(~,j ~)

In particular, it is homogeneous of degree d .

Proof : The first statement follows fram corollary 4.4.1 - in view of the

cammutativity of the diagram in proposition 4.3. The second statement follows

fram corollary 4.4.2, so is a consequence of theorem 3.10. Q.e.d.
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Remark. Using the termino10gy and notations of eharaeter polynomials as defined

in 3.9, we may also state the proposition this way : As a po1ynamia1 on t

the equivariant eharaeteristie e1ass of F
='

eoincides with the character

po1ynamia1 of its restriction to a fibre of

T
= q *

j ~

* .T X , that lS to say

4.6. Comparison to the eharacteristic'c1asses"defined in'§l.

Retaining the notations of 4.5, let us reca11 that we a1ready defined

a eharaeteristic c1ass Q(F) in ehapter 1, as an element in

(see 1.3 and 4.2). Let us denote I*""t pk:1 the projection

of a po1ynomia1 p on t onto i ts unique1y determined harmonic part p" •

Proposition: The eharaeteristic"c1ass "Q(E)" may"be camputed'from the

.equivariant one QG(~) by·taking the harmonic part,

Proof : Fram the "Bore1 picture ll (theorem 4.1, 4.2) we obtain the fo11owing

commutative diagram by passing to the associated graded level (termino10gy

and notations as in 1.), 1.4) :

grdKG(X) > grdR(T) ) Sd(.!:.*)

1 1 w d 1: -
grdK(X) ) grdR(T)/R(T)Lf > S (.!. ) ~

Here the 1eft vertiea1 arrow is given by forgetting the G-action, whi1e the

right one is taking harmonie parts. So the diagram says that forgetting the
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G-aetion in graded K-groups eorresponds to taking harmonie parts of the

eorresponding polynomials on t. Now note that Q(~) was defined as an element

in

t'-.J 2d t'-.J d * 1A
grdK(X) = H (X) S (! ) J1

and QG(~) is an element 1n

t'-.J

gr KG(X) =gr R(T) *Set )

by definition. The only delieate point is that both QG(~) and Q(~) shou1d

oeeur in the same degre~, that is in degree d. But this was made sure by

theorem 3.10 (cf. 4.4.2). Now it is elear that Q(~) is obtained from QG(~)

by forgetting the G-aetion, and so the proposition fo11ows from the above

cammutative diagram.

Comp1ementary remarks.

*1) If K C T X is a G-stab1e e10sed subvariety, then we define its equivariant

eharaeteristic e1ass by

Since we may define Q(K) analogously as Q(OK)' (see '1.4), we see that also

'---

~~) Let us recall that it was a delicate question in §l, whether or not the

characteristic class Q(V) *of a given subvariety V c T X vanishes. So let

us point out here for the ease of a G-stable subvariety V, 0 that QG(V)

is always nonzero by definition, and that the delicate question is,whether or



not the eorresponding polynomial has nonzero harmonie part. In our ease of

main interest, that is for V an orbital eone bundle, it aetually turns out

that even the equivariant elass itself is already harmonie, so that Q(V) c QG(V)

in this ease (so in partieular Q(V) 1 0) .

3) Let us point out that the equivariant eharaeteristie elass QG(~) may be

deseribed as a elass in the"equivatiant cohomology group H~d(X) . We use the

the standard definition of equivariant eohomology, that is

* * GHG(X) ; H (x-x EG) (see [B02], ehapter 4 ). It LS also easy to define a

purely algebraic equivariant de Rham cohomology, by viewing X ~G EG as a

simplicial algebraic variety over k , and taking the hypereohomölogy of the

de Rham eomplex (whieh is a simplieial eomplex of sheaves) (see [Dl] or

[Fr] for general notions about simplieial varieties and simplieial sheaves).

In our ease, where X; GIB , we have H~d(X) ~ Sd(~*) (and H~(X) = 0 for

k odd). Also, the restrietion to the zero-section induces an isomorphism ~

* * ..... *HG(T X) ~ HG(X) . There is a general equivariant ehern eharaeter

h h () even() h Heven (_). h d f 11 2i()C G ; e : KG - : HG - w ere G LS t e pro uet 0 a HG -

For the flag variety X, we have a eommutative diagram.

R(T)

where the lower line is defined in 3.1. It follows that eh maps KG(X)d

2·
to TI HGL(X) . So we may give an alternative geometrie definition of

i>d
QG(~)- as follows. Take F as in 4.5, then QG(~) is the eomponent of

eh([~]) Ln H~d(X) . Remembering the isomorphism H~d(X) ~ Sd(~*) we get

the same elass as in 4.5. The eommutative diagram used Ln the above proof of

Proposition 4.6 may be eompleted as follows
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grdKe(X) > H2d (X) > Sd(t*)
e

1 1 1
g~dK(X) H2d (X)

,....,
Sd(t*) h> >

We will not try to give a purely homological definition of QG(V) ,

1n the style of 1.3, because of the lack of references concerning equivariant

Borel-Moore homology.

4) The cotangent bundle *TX may be viewed as a e-equivariant vector bundle

on X. Since the equivariant ehern classes * 2ici (Tx) E He (X) are def ined, we

may, by the usual procedure [HiJ , .§ 10.1, introduee the~~

... *,Set ) , as in the previous

henee

withHeven(X)
G

TI (l+ax)
a>o

(this is an equality in the fraction field of

n
L

i=l

TI ( a ) =
-a

a>o l-e
*Td(T
X

) =

§(t*»

remark. We have

To compute it, we freely identify

Now let ~ be a e-equivariant coherent sheaf on *T X , let

.*M = r(~,J ~) • Then the formula for eh(M) in 4.4 may be rewritten as

eh(M) =
*Td(Tx)·QG(~)

*en(Tx)

4.7. Equivariant characteristic classes of orbital cone bundles.

We are now ready to state some of the key results of the present ehapter.

Theorem 1 : Let K be an orbital cone bundle in *T X (terminology 1.7).

Then its equivariant charaeteristic c1ass QCCK) is a harmonie polynomial.

In other words, we have QGCK) Q(K) in this ease.
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Theorem 2 : Let Kl, ... ,Kr be the orbital eone bundles for some nilpotent orbit

~u (notations as in theorem 1.8). Then the elasses QG(Kl), ... ,QG(Kr ) span

a Weyl group submodule.

Theorem 3 : The eorresponding representation of W is isomorphie to Springer's

irredueib1e representation P~ (notation as ~n theorem 1.8).

We note that theorems 2 and 3 above would be immediate eonsequenees

of theorem l.~, if we wou1d assume theorem 1. However, our proof proeeeds in a

different 10gieal order: Logieal1y, the proof of theorem 2 comes first; it will

be eompleted in 4.13. But let us show here first how to derive theorems land

3 from theorem 2.

Theorem 2 imp1ies'theorem 3: Let M resp. N denote the linear span

mapped onto N by the projection onto harmonie parts, whieh is a W module

homomorphism. Its restrietion to M rnust be a linear isomorphism by 1.8a).

So assuming that M is a W submodu1e, we eonelude that it earries the same

W representation as N whieh is Pu by theorem "1.8e).

Theorems 2 and' 3 imp 1)7 "theorem 1

harmonie. With notations as before, this means M ~ N , and so M,N are
d "

two different eopies of the irredueible representation Pu 1n S u(t)

(notation 1.8). However, it is known that Springer's representation Pu oeeurs

only~ in (the lowest possib1e) degree d ,see [BMlJ, Coro11aiie 4. Hence
u

we must have M = N . Q.e.d.

The proof of"theorem 2 will eonsist in verifying directly the following

mueh more preeise statement
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Theorem 2' : Even"the equivariant'eharaeteristie elasses QG(Kl ),·· .,QG(Kr )

satisfy the Hotta transformation farmulas (cf. 1.15).

This is our version of a result essentially due to Joseph [Jl], 3.1,

and reinterpreted by Hotta [Ho], 3.4. In addition to proving theorem 2, this

stronger theorem 2' will simu1taneously prove theorem 1.15 (see 4.14 below),

and hence reprove also the main results of Hotta's work [Ho], [H02]. The proof

will be given in seetions 4.8 ta 4.13. The erucial final part of the proof

(cf. 4.13) is essentially Joseph's so that we eould refer partially to [Jl].

However, for eonvenienee of the reade~, we prefer to give here an essentially

self-contained, full proof.

4.8. Comparison with Joseph's nation of "charaeteristic polYnomial ll

The purpose of this section is to link up terminology and notations

of Joseph [JI] with our present language. The main point to be made is that

our nation of "equivariant eharacteristic elasses" essentially coineides with

Joseph's notion of "eharaeteristie polynomial", providing a more conceptual

geometrie reinterpretation for it. Let us give a few more explanations, which

should help the reader to verify the coincidenee.

We sha11 identify here polynomials on *t with polynomials on t

by means of the Killing form, that is by the isomorphism t"oJ * *t = !. , tt-+ t

characterized by *J.! ( t) = (i-J, t ) . Le t C cu' be a B-stable closed cone, and let

K ~ G x
B e c T*X denote the corresponding G-stable closed cone-bundle.

Proposition : Considered as a polynomial on *t = t our equivariant characteristic

class QG(K) (e q~ by. 4.5) coincides with Joseph's "characteristic polynomial"

Pe ' as defined in [JI], 2.4.
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1) Let us first reeall JosepD's definition (loe.eit). Let M denote

the T-equivariant * *S(u )-module M = O(e) . Let v E t denote an integral

weight, whieh is assumed dominant and regular, that is (a,v) > 0 for all

positive roots a ,which will eventually be considered a variable. Now Joseph

eonsiders the "Poineare series ll

~(t,v) := (dim M )t(jJ,v)
jJ

(notation as in [Jl]), whieh is a formal power series in one variable t , and

whieh depends on v as a parameter. Next he studies the leading eoeffieient

of the Hilbert-Samuel polynomial of ~(t,v) , eonsidered as a funetion of v

denoted rM(v)/d(M)! , and he finds that the funetion

:= rM(v). TI a(v)
cx>o

(1)

is given by a polynomial on *t ,.homogeneous of degree d := eodim e = n~d(M)
u

This polynomial is denoted Pe:= PM ' and is ealled the "eharaeteristie

polynomialof e 11 in loe.eit ..

2) Next let us rewrite Joseph's proeedure in our present language.

We eonsider the restrietions of the T-aetion on our T-equivariant module

to the various oue parameter subgroups ~:«; -TT.
m

On a weight-veetor v E M of weight jJ, such a subgroup aets by

*(t E k ) ,

where V is the integral weight eorresponding to (that is v

cf. 3.16). This shows that in our notation,

*~(t, v) c ~ (ch(M))



-108 -

that is Joseph's one variable Poincare series 1S just the restrietion of the

formal cnaracter of M to a one parameter subgroup. As discussed in detail

. This speciali-

by "specializing" the variables
(w. , v)

t via t.~ t 1.
1

in 3.16, this one variable series is obtained from the multi-variable power
w.

1.
t. = e

1.
series ch(M) = E (dirn M )e~

JJ ~

(i = l, ... ,~) all to a single variable

zation mayaIso be interpreted as an "evaluation" of ch(M) considered as

a function on *t c t : In fact, evaluation on TV for a variable scalar

T E k gives

t. (TV)
1.

w. 1
= e 1. (-rv) c E 

m'm .

mIm
w. (TV) = E -, (w., TV)

1. m. 1.
m

(w. , TV)
l.

e
T(W.,V)

1.
e

(w. , v)
= t 1.

putting T
e t . So we consider

*1lJ (ch(M)) ch(M)(TV) = ~(t,v) (3)

as the (formal) evaluation of ch(M) on the Lie algebra of our one parameter

suhgroup. Similarly, we get

1lJ*(6(~ch(M)) c rr (l-t(a'V))~(t,V)
cx>o

(4)

which we denote by PM(t".v) . We know from §], that this is a Laurent

polynomial PM(t,v)
-1

in fact, it is the class determined byE k[t,t ]; the

restrietion of M (with respect to W) in the equivariant K-group

Now let us assume again that.v is regular (all (a,v) > 0 for .all a > 0) .

Then we know that the order of vanishing of ~M(t,v) at tel is

d = codim C (cf. 3.18), so let us write
u
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where now PM(t,V) is a Laurent polynomial such that PM(l,v) # 0 . From the

resulting expression

II (l_t(a,v))
a>o

(5)

for Joseph's Poincare series, one may now deduce some information about its

Hi1bert-Samuel function (hy the methods used in [AC] VIII, §4, cf. also

[Sm], or [J1], or our 3.17) : It has degree n-d = dirn e (cf.- 3.18), and

leading coefficient PM(l,v)/(n-d)! . Comparing this with Joseph's notation

(see 1), we get

Combining this with (5) and (4), we obtain that

dp (v)(t-l) +•••e

up to higher terms ln t-1 resp. in T ,so the homogeneous term of degree

d must roap to

-(6)

*On the other hand, ~ means evaluation at TV by (3) above, and

[~(!>ch(M)]d is our Tlcharacter polynomial ll q~ by corol1ary 3.9 (which has

degree d
T d

by theorem 3.10). Hence equation (6) reads as foliows: qM(TV)=PC(V)T .

But T T d . 1qM(TV) c qM(V)T by homogeneity, and so we conc1ude that our polynomla

TqM coincides with Joseph's Pe· - Finally, we have also

was already explained in 4.5.
, . .. ~
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4.9. Generalization to the ease of sheaves.

Let~ ,; 0 onG-equivariant eonical coherent sheaf

Let us extend the considerations of the prev~ous seetion to the ease

*T X .of an arbitrary

*~ = j ~ denote the eorresponding B-equivariant eoherent sheaf on the fibre

u- of T*X, obtained by restrietion. As before, we let M denote the

*T-equivariant S(u )-module M = r(~,~) Generalizing proposition

4.8, we may now state :

*Proposition 1 : Considered as polynomials on t = t ,our equivariant eharae-

T(= qF) , and Joseph's "characteristie polynomial ll

PS(M) , as defined in [31], 5.5, coincide.

Let us denote the supporting cycles for ~ resp. F (cf. 1.4) by

E m. (E) [U. ]
i 1 = 1

resp.

= L m~(F)[V.]
i 1 >:: 1

Then the irredueible eomponents U. resp.
1

V. are clearly G-resp. B-stable
1

e10sed cone bundles resp. cones, and by ehosing the eorrect numbering, each
:- .............

U. will be a hamogeneous cone bundle with fibre
1

V. , that is
1

BU. = G x V.
1 ~

for all i. Moreover, the multiplieities and codimensions will coincide

m. (E)
1 = m. (F)

1 = for all i

and codim * supp(~)
T X

eodim supp(I) =: d
.1!." -

Proposition 2 With notations as above,

a) QG(~) L m. (E )QG (U . )
codim U.=d 1 CI 1

1

b) T T
qF L IDi (~)qV.

codim U.Cld 1
~
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Proof of proposition 2 : As exp1ained in 4.5, we have , and

TQG(Ui ) = qV. ' that is statements a) and b) eoincide term by term. In the
1

Grothendieck group ~(~) , we have up to higher degree terms :

[f] = ~ mi(!)[Ov .. ]
1 1

By theorem 3.10, we know (since ~ and hence ~ and M are ~ 0) that the

y-degree of [~]

we get

is d, and that of [V. ]
1

[~] -

By definition of our character polynomials, this means e}:actly

T
L m. (~)qv

eodim V.=d 1 - i
1

Q.e.d.

Coro1lary : The equivariant characteristie elass of E is eomp1e~e1y determined

by its (G-equivariant!) charaeteristic cyc1e.

So far, we have estab1ished an equivariant version of proposition 1.4.

Let us now make the link to Joseph 1 s work, i.e. let us prove proposition 1

above. Joseph's definition of a character polynomial PM' as recal1ed in 4.8,

generalizes in an obvious way to our present module M = r(~,~) = r(~',~) ,

and then we get the coincidence T
QG(~) = qF C PM by the same proof as before.

c

Note, however, that Joseph in loc.cit. does not explicitly use this obvious

extension of his notation. Instead, he introduces the new notation PS(M)

(see loc.cit., 5.5). In our terminology, his SeM) is the top-dimens~onal

part o~ the supporting cycle of M (that is of f)

SeM) C L m.(F)[V.]
codim V.=d 1 = 1

1
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Then he defines

L m. (~)PV
codim V.cd 1 - i

1

But now it suffices to observe that PV. q~. by 4.8, and so PS(M)
1 1

by proposition 2b) above. This completes the proof of proposition 1. Q.e.d.

/ Remark : From now on, we shall normally no longer care rnuch about notational

distinctions between Joseph's characteristic polynomials p and our character

polynomials q.

4.10. Equivariance under a Levi subgroup.

Now let GI be a connected reductive closed subgroup of G containing

T . We denote W' c W its Weyl group, and U' any maximal unipotent subgroup

(e.g. u' = G' n U ). Let us now assume that our coherent sheaf ~ on ~,

viewed as a coherent sheaf on ~, is not only T-, but even G'-equivariant.

Then M = r(~,~) is a direct SUffi of finite-dimensional simple G'-modules,

and so its formal character is of the form

ch(M) = L mtp(L' (A),M)ch(L'(A))
AEA

,(1)

where L'(A) denotes the simple G'-module of highest weight A . The

A-weight-space of L'(A) equals the U'-invariants,

L'(A) = L'(A)U '
A

and since it is aue-dimensional, we mayaiso write

mtp(L'(A),M) dirn ~' (2)



for the multiplicity of L'(A) in M.

is the

V'
Mand

u'

u'

Here
p' V'

det(w)w)e ch(M ) .e-p' ([

wEW'
is half the sum of roots occurring in

* -1c h (M) = ß ( u' )

Lie algebra of V' , p'

Lenma :

is the space of U'-invariants in M.

Proof By Weyl's character formula ([Ru], 24.3),

ch(L'(A») = ([ det(w)eW(A+P'»)/( [ det(w)eWP ')
wEW' wEw'

(3)

By the denorninator formula (cf. loc.cit.), we have

[

wEW'

Wp'
det(w)e TI (eo./ 2_e-o./ 2)

0.>0

* p'l'1(u' )e (4)

(notation 3.3). Inserting (3), (4), (2) into (1) above, we,obtain

ch(M)

Further cornputation gives then

p' * V' A+ 'e ß(u' )ch(M) ~ E [(dirn M
A

)det(w)w(e p)
wEW' A

v' A 'E det(w)w E(dirn MA )e eP

wEW' A

p' U'
= (E det(w)w)e ch(M )

wEW'

which is the formula claimed in the lemma. Q.e.d.

Proposition If F is G'-equivariant, then its character polynomial

isq~ = qM

s 1n W' ).

W'-anti-invariant (i.e. sqM = -qM for each simple reflection
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Proof : since qM is the lowest degree term of *6(~ )ch(M) , and since the

*lowest degree term of 6(u) equals TI n, which is clearly anti-invariant,
n>o

it is enough to show that ch(M) itself is W'-invariant. This follows from

the formula in the above lemma, or more directly from (1) and the W'-invarianee

of ch(L' (A)) • Q.e.d.

4.11. Multiple cross section 6f'a unipotent action.

With assumptions and notations as in 4.10, let us now study furt her

the ease ~ °v , where VCu 1S a G'-stable elosed irreducible subvariety.

The ring of U'-invariants A := O(V)V' 1S known to be finitely generated

by a theorem of Had~iev ([Ha], cf. also [Kr]) , and so we can define an affine

variety V/V' := Spee A , called the quotient of V by Vi • It is equipped

with the eanonieal morphism n : V + V/V' provided by the inelusion A c O(V) .

Generically, this morphism is a II good quotient map" for the group action,

that is an (affine) fibration with a single V'-orbit as a fibre, see e.g.

[BGR) , Satz ~6.6; more precisely, for a suitable weight vector 0 # a E A ,

the localization O(V)
a

is a polynomial ring over A ,and
a

O(V) = A @ o[v]
a a

with V an affine homogeneous U-space, V aeting V1a its action on the

second factor (cf~ loc.eit".). In particular, dirn V/V' = dCA) = dirn V-dirn V ,

that is the GK-dimension of the V'-invariants is given by the dimension of

the variety, minus the IIgeneric orbit dimension".

Let us now make the assumption, for simplicity, that this latter

dimension is as big as possible, that is that V contains a free V'-orbit

(hence a generic subset of them, cf. loc.cit., or [BK]). Following [Jl], 2.6,

and using our notation ~,v from 4.8 for a oue parameter group, we consider

the Poincare series
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~ (dirn A )t(~'V) =
~EA ~

*1JJ (ch(A))

and define a function and a polynomial on *t (= t)- -

in a manner completely analogous to the procedure of 4.8, which defined

~(t,V) * rM(v) PM(v) M = 0 (V)= 1J! (eh(M)) , , and for . We sha11 also use

the notations p ::::I PV/U' and PM = Pv We note that these polynomialsA

eoincide with qA I::: q tru' as defined in 3.19.

Lemma A: If U' aets generieally freely on the G~-stab1e subvariety

v c ~ as above, then :

where the product extends over all roots ß oeeurring in u' .

Proof

where

By restrietion to a one parameter subgroup, lemma 4.10 gives

= n'(l-t-(ß,v))-l ~ det(w)w RA(t,v) +•••
ß wEW'

are power series of higher 10west degree teDm , whieh may be

neg1ected in computing r
V

and r
V

/ U' • Now by taking lowest order terms,

as in the special ease eonsidered in [Jl], 2.6, we get

rM(v) ::::I IT'(ß,v)-l ~ det(w)w rA(v) ,
ß wEW'
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and so mu1tip1ication by the product of all positive roots, which 1S W'

anti-invariant, gives the lemma. Q.e.d.

Now we consider a T-stab1e "mu1tip1e cross section" C for the

U'-action on V . By this, we mean a c10sed (T-stab1e) irreducib1e subvariety

C c V of dimension dirn C = dimV/U' = dimV-dim U' , such that U'C = V•
By the last assumption, the restriction of functions on

V to C embeds A c O(V)U' inta O(C) as a subring, and by the first

assumption, d(A) = d(O(C» , so that the restriction of the quotient map

V ~ V/U' gives a generica11y finite map C ~ V/U' . We denote d(C,V/U')

the degree of this rnap, or in other words the degree of the :fie1d extension.

d(C,V/U') [Fract(O(C» Fract A] •

Note that this is the number of times that a generic orbit 1n V meets C.

Lennna B

A proof of this lemma was provided by 3.19.

4.12. For examp1e SL -equivariance.
2

Let us specia1ize the previous di-scuss fons to the case where G' 1S

of type Al ' and U' = U
-Cl

for a simple root a. of G • (Here we denote

U
ß

the root subgroup of G, for any ß). If C c u 1S any c10sed irreducible

subvariety which is stable under B = TU ,but not under G = G' then
Cl Cl a.

its G -saturation V:= G C will be a c10sed (l) G -subvariety (use [StZ],
a. Cl Cl

p.68, lemma 2) satisfying our assumptions in 4.11, 'provided that

end WB obtain as special cassa of 4.10, 4.11:

G Ce u, .
rJ. -



*)Lemma (cf. [Jl], 2.5-2.7) : Let C be an irreducible closed B -stable
a

subvariety of u ern1. G Ce u. Then
(I(. ---

where z = 0 if C is G -stab1e, and z >= d(C,V/U ) > 0 otheiwise.
a -a

4.13. Completing the proof of theorem 4.7.2.

We are now ready to camplete the proof of our main resu1ts annonced

in 4.7. The argument be10w is due to Joseph [JI], 3.1, aud is repeated for

convenience of the reader in our present frame*work.

G .and

Let s E W be a simple reflection, a the corresponding simple roat

-1'
P c B U sBs the corresponding minimal parabolic subgroup of

s

For all orbital cone bundles Ki = G x
B

Ci ' we wish to compute sQc(K i ) as

a linear combination of QG(Kj)'s ,where i,j = 1, ... ,r • By 4.6 resp. 4.8,

we may equivalently work in terms of the cones C.
J

and their character

polynomials qT(C j )

be P -stable, then
s

resp. characteristic polynomials PC .. If
J

sPC. c -PC. by 4.12, and we are done.
1. 1.

C.
1.

should

So let us assume from now on that C. 1.S not P -stable. Let u
1. s -s

denate the hyperplane in u orthogonal to the root space for -0 • This

hyperplane is also the nilradical of the Lie algebra of P . In particular,
s

u is P -stable. We conclude that our cone C. is not contained in this
-s s 1.

hyperplane, because otherwise also p·C. 1 c. would be contained in u C u
S 1. 1. -s

and in GC. = ~ ,contradicting the fact that C. is a maximal irreducible
1. u 1.

*) In comparing with [Jl], note that there are sign errors in propositions 2.6,

and 2.7, and in lemma 2.9 of [Jl], which happen to cancel each other in the

calculation in [Jl], 3.1.



subset of & n u
u

-118 -

. Therefore u intersects C. in codimension one; more
-s 1

precisely, by lemma' 3.11, the corresponding character (istic) polYnomials are

related by

(1)

where the module M describes the intersection (including rnultiplicities),

M := f(C i n ~s,OC.) = O(Ci)/x_aO(Ci )
1

where x 1S a root vector for -a . Let us denote its supporting cycle
-0.

as in 1.4, 1.e.

supp(M) = L mV(M) [V]
V

(2)

Here the irreducible components V of C. n u = supp(M)
1 -s

are all of codimension

oue in C. , by Krull's Hauptidealsatz. Now we claim that for each such
1

component V the P -saturation P V is either V or else one"of the others s

C ~ I S , for same J = j(s,V) -; 1 . In fact, since each V is B-stable, it
J

follows that it is either even P -stable, or else has dimension
s

dirn P V = l+dim V = dirn C.s 1

(;...f!J~ Wo g.~)

But S1nce P V is irreducible and contained in 0- n uYwhich is equidimensional,
s u -

it follows that then P V must he one of the other (p -stahle!) irreducible
s s

components of 0- n uu -
, that is PVc C.

s J
for same j = j(s,V) -; i . Now

we apply 4.12 to conclude that

1
a (l+s) Pv =

for J a j(~,V) and same integer

(3)



Z c Z (s, V)

~ 1J 9 -

= d ( V, c . /u ).
J -a

(4)

Note that '(3) ho1ds for all

(use 4.11).

Now we have

v , if we just put Z(s,V) = 0 1n case P V :::l V
S

Pe.
1

-1
= Cl

by (1), (2), and 4.9, and so we compute, using (3)

(s-l)Pc.
1

=

Q.e.d.

4.14. Reproving Hotta's transformation formu1a.

The proof yie1ds the fo110wing more precise formu1a. A subset of

*T X is ca11ed s-vertica1 (cf. Hottats termino1ogy [Ho]), if it is a union

of projective 1ines of type s , i.e. projecting onto a conjugate of the 1ine

P IB 1n X ~ GIB •s

Coro11ary

(4)

where n~. = 0 un1ess K. is s-vertica1 and meets K. in codimension 1,
1J J 1

in which case

s
n.. ::::I E zw· ID

W
;>.. 0

1J W
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W of K. n K.
~ J

(necessarily of codimension one), mw is the intersection multiplicity of

K. and K. at W , and Zw
~ J

z(s, Wt'l.:!J defined in 4.13•.

is the non-negative integer

Remark : By applying the canonical map KG(X): K(X) ~ H*(X) , which forgets

the G-action, to (4), we reobtain Hotta's formula in the version of our

theorem 1.15.

4.15. On explicit computations of our characteristic c1asses.

Let us conclude this chapter with a few remarks and examples concerning

the exp1icit computation of our characteristic classes Q(K.)
~

*in H (X)

introduced in chapter 1. The first point to be made here is that it is more

convenient to perform the computation on the level of equivariant K-theory,

using the fact that the cone bundle under consideration is a G-equivariant

oue. Of course, to know Q(K. ) , or to know QG(Ki ) , amounts to the same,
~

~n v~ew of 4.6 and 4.7 (theorem 1). However,actual computations tend to be

much more pleasant in KG(X) ';: R(T) , a unique factorization domain, than in

*H (X) , which has lots of nilpotent elements.

The second point is that the interpretation of QC(K i ) as a

by 4.5 is helpful for calculations. (Here c.
~

denotes the fibre of K.. ) Let Us give an example.
~

Proposition : Suppose C. is a complete intersection of codimension d in
a~~i{.

~ , defined by~quations f 1 , ... ,fd E O(C i ) which are T-sem~invariant, of

weights -~l' ... '-~d. Then
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This follows by repeated application of lemma 3.l}! Q.e.d.

For example, if f l , ... ,fd are root vectors x x, then
-(lI'· .. , -ud

QG(Ki ) = (l1(l2 •.. ud and we recover the example treated in 1.6. In this

example, all equations are linear, and the cone bundle K.
1

is actually a

vector-bundle, so all computations are very easy. Let us therefore conclude

with a less trivial case, where K.
1

is not a vector-bund1e, and which is also

covered by the proposition above.

4.16. Example.

Take G = 5L
n

• For n ~ 3 , all orbital cone bundles are vector

bundle~, and the computation of their characteristic classes are covered by

1.6. For n = 4 , there occurs the following orbital cone C, which 1S not

linear, but quadratic : It consists of all block triangular matrices of rank< 1

of the form

where

This cone C is a complete intersection given by the three equations

o

these equations are semi-invariant under the group T of diagonal matrices

10 5L ; their weights are
n

respectively. Bere we denote U ••
1J

the root with root vector the matrix unit

e ij ,and (li .- ui,i+l the simple roots (1 < i < j < n) .

\



Now we conclude from 4.15 that the character polynomial of C is

given by

This example may be generalized as foliows. Let n c p+q with

q ~ p ~ 2 . Let C(r,p,q) denote the set of all block triangular matrices

of the form

[: :] ,. -where [
:l'P+l ... ~l,n]

A = . :

a a. p,p+l p,n

is a p by q matrix of rank< r • Then C(O,p,q) c C(l,p,q)c .•. e C(p,p,q)

is a chain of orbital cones, and these are all the orbital cones which are

contained in the vector space of all matrices of this form (*). Now we take

the particular case p = q , and r = q-l : The cone C(p-l,p,p) is again

a comp1ete intersection, given by the linear equations a .. c 0
1J

(1 2. i,j < P ,

or p 2. 1,J < n) and the single non-linear equation det A = 0 , of

weight

i(u.+o. .)
1 n-1

pa +
p

~ c o.1+2o.2+3o.3+ •••. +pup+(p-l)o.p+1+ .... +o.n

p-l
E

i c 1

So again by 4.14, we conc1ude that
I

p ( ) c: (0. +0 2 +. • • +0 1) II o. . n o.· .
C p-1,p,p 1,n ,n-1 p,p+ 12.i <j2.p 1J p~i<j2.n 1J

For other values r,p,q , the cone C(r,p,q) need nQ :Ionger be a compiete

intersection, and the computation of characteristic classes becomes more delicate.
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4.17. Remark. A possible geometrie generalizatian of proposition 4.15

We eanjeeture (along with W. Fulton) the following generalization

of the Whitney sum formula for ehern classes of veetor bundles ([Fu], p.51)

to Segre elasses of eone bundles. Suppose we have a diagram of eone bundles

K '-c-~? E
$ f.

1 >
m
~ i.

i=l 1

where the veetar bundle E is mapped by a fibre preserving algebraie but not

necessarily linear map to a direet SUffi of line bundles, and the loeal eamplete

interseetion eone bundle K of eodimension m in E is defined scheme

theoretieally by the vanishing of (;B f. . Then
1

s(E):::Is(K) s(EDi.),
1

or equivalently, the Segre class of K may be eomputed from the ehern classes

of E,il , ••. ,im' as

Notice that a special case of this is implied by proposition 4.~'. This

illustrates the power of the methods of equivariant K-theory in algebraie

geometry.
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S5. Characteristic classes and primitive ideals

In this chapter, G is again a semisimple graup with Lie

algebra .9., and we use the notations introduced in 1.5. As' in

chapter 3 and 4, we denote by A the lattice in t* of in

tegral weights (3.1) of aur maximal torus T c G, by n C A

the lldominant integral weights ll (3.16) with respect to the

ordering fixed by our choice of a Borel subgroup B ~ T, and

by p E n half the sum of weights in b. We furthermore de

note by U(.9.) the enveloping algebra of ~, that is the ring

of differential operators on Ginvariant under rigth trans

lations. Dur purpose is - to study .9.-modules, that is to say

U(~) modules. In particular, we are interested in the annihi

lators in U(~) of simple ~-modules, called primitive ideals.

We denote by L(A) the simple .9.-module of highest weight A

(which is defined as the uniQue simple Quotient of the univer~

sal (or Verma-)module M(A) = U(.9.) ~(Q)kA' where kA is a one

dimensional b-module of weight A). Then the center of U(~)~ a

polynomial ring in dirn T variables (Harish-Chandra, Chevalley),

acts by a character on L(A) which is denoted x~; we note that

by Harish-Chandra's theorem, x A = x~ if and only if ~ = w. A,

far some Weyl group element w E W, where the Il shifted Weyl group

action ll W.A:= W(A+p)-p occurs. Finally, it will be convenient

to identify ~* with ~,and t* with' t by means of the Killing

form. We apply analogous notations to the group GxG, so 'for in

stance (A,~) = t* x t* defines a central character X(A,~) of

11(.9. x.9.) etc ..
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5.1 Charaeteristie elass attaehed to a ~-module

Let M be a finitely generated ~-module, with eentral eha

raeter xx' given by the dominant integral weight x. Let
x x

M = VX 0 U{.9.) M den 0 t e i t s I 0 ea I i zat ion as a e0 here nt VX- m0 du1e

on X [BeBe], where V~ is the sheaf of differential operators

on X with eoeffieients in the line bundle L{X) given by X.

Chose a good filtration on M,. and eorisider the assoeiated graded

sheaf grM as a eoherent sheaf on T*X. Then we define the eha

raeteristie variety of M by

eh (M) := eh (M) = supp gr M,

the eharaeteristie eyele of M by (notation 1.4)

eh (M) :.: eh (M) := supp (gr M),

and the eharaeteristic class associated to M by (notation 1.3)

P{M) := Q{gr M).

This is a eohomology class in H2d {X), where d is the codimen

sion of Ch{M) in T*X; if eonvenient, we also consider P{M)

as a harmonie polynornial, homogeneous of degree d on t (eon

vention 1.6). Let us point out that the above notions are well-

defined , i.e. independent of the choiee of a good filtration.

For P(M), this is proved the same way as for eh(M) (or a spe-
===

eial case, G = 1, of Lemma 2.12). In faet, even more is true:

I ~ " { r -. J: ! ("- :..~ ~ ~ , '", I'

:' I .;' ( , t 1 ~ ~, ''': t ~ ~, ~ " ;".J r \:.' ::", I .';:': :. .'. j; .,1 .
,l
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Proposition: The characteristic class of a module is entirely de

termined by its characteristic cycle. More precisely, if V1 , ••• ,V r

are the irreducible components of

with multiplicities m1, ... ,m r in

Ch(M) of mimimal codimension (d),

Ch(M), then (notation 1.4)
-==-

P( M) = m1 Q( V1) ,+ ••• + mr Q( Vr ) •

This is true by proposition 1.4.

5.2 Translation invariance

Let A,~ be dominant integral weights. Let E(~-A) denote

the finite dimensional simple ~-module with extremal weight ~-A.

Let M be a ~-module with central character T~ M
A i s

defined as the direct summand of central character X~ of M<X>E(~-A).

The"translation functor" is then an equivalence of the catego-

ries of finitely generated ~-modules with central character xA
resp. x ([BeGe], [Ja]).

~

Lemma: ~(T~ M) = Ch(M), and
===

P(T~M) = P(M).

Proof: The second statement follows from the first one by propo-

sition 5.1. Let M resp.

corresponding to M resp.

~ A ~TA M denote the Vx- resp. Vx-module

T~ M. Then the functor T~ thus de-

fined is equivalent to the "geometry~ translation functor"

M~ O(~-A) ~O M, where O(~-A) denotes the invertible sheaf
X

corresponding to the line bundle L(~-A). Since O(~-A) is 10-

cally isomorphie to 0x' it follows that this functor does not

change the characteristic cycle. Q.e.d.

, :. ,:',; ,", ~. ~ I ) - .-, '~ , r " ~ tl I L ~ (~L..J '. P ,~ \ , ~ l: .~', I ~J " :. :1 ;-~

:..xtc·,', '_. , .t ....... '
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Remark: By the lemma, all of our results stated in [BB3] for the

trivial central character (case A = 0) only, extend to the case

of an arbitrary central character xA with A € n without change.

5.3 Characteristic variety of a Harish-Chandra bimodule

By a Harish-Chandra bimodule , we mean a (~ x ~,K)-module

with finite K-multiplicities, where K is the diagonal copy of

G in G x G. (Here we use the terminology of [BB3]; so the mo

dule is K-equivariant in the strong sense that the differential

of the K-action coincides with the action of the diagonal subalge

bra k of ~ x ~.) For any finitely generated Harish-Chandra bi-

module H with integral central character X(X,lI) given by a

pair ( A, 1I ) of dominant integral weights we define modules LI

resp. Lr of central character x x resp. XlI by

L 1 , - M(lI)v cz>U(~r)H resp. Lr , - M(A) V ®u(.9.:1)H,' - .-

where e . 9 . .9..
r

= o x .9. denotes the right copy of .9- in ~ x ~,

and M(lI)V is the universal (Verma-)module of highest weight 1I ,

considered as a right .9.-module via the principal anti-automorphism

of U(~). Then H~ LI resp. H~ lr are equivalences of

the category of Harish-Chandra bimodules with central character

X(X,lI) with the category of all finitely generated (.9.,B)-modules

with central eharaeter Xx resp. XlI' ~

For a geometrie interpretation (and proof) of this well-known re

sult of Bernstein-Gelfand [BeGe], Joseph [J4], and Enright [E],

see [BB3],ef. also 5.9 below. In partieular, this establishes bi

jeetions of the si~ple objeets (up to isomorphism); we shall de-
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note by H~A,~) for any We W the simple Harish-Chandra bi-

1 () r (-1)'module corresponding to L = L W.A resp. to L = L w .~

(f. [BB3], 3.4). We denote Hl the ~ = ~l-module obtained

from H by forgetting the ~r-action.

Theorem ([BB3], 5.8, [Gi]): ,Let H be any finitely generated Ha

rish-Chandra module of central character X(A,~)' and let Lr be

the corresponding (~,B)-module of central character X~ as above.

Then

Here V(L r ) denotes the associated variety of Lr , that is the

support of gr Lr in ~* = ~ with respect to some good filtration.

Of course we obtain an analogous result Ch(H r ) = G xB V(L l ) by

interchanging left and right.

Corollary: Ch(H 1) is a union of orbital cone bundles (termino-

logy 1.7).

In fact, it is enough to show that V(L r ) is a union of orbital

cones C1, ... ,C r , because then Ch(H l ) is the union of the orbi

tal cone bundles Ki = G xB Ci by the theorem. Let us briefly re

call the reason: The localization of Lr on X is a holonomic

V-module and its characteristic variety is a union of closures of

conormal bundles of Schubert cells, which project onto orbital

cones under Springer's map n: T*X ~~. On the other hand, n

maps Ch(L r ) onto V(L r ) by [BB3J, 1.9.
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5.4 Homogeneous Harish-Chandra bimodules

We denote d(M) = dirn V(M) the Gelfand Kirillov dimension of

a .9.-module M. for a Harish-Chandra bimodule H as in 5.3 it i s

obvious, that d(H I ) = d(H) = d(H r ). We call H (left) homoge-

neous, if d(M) = d(H) for each left submodule 0 :f Mc Ha It i s

easy to see that the following are examples:

a) Each simple Harish-Chandra bimodule H = H~A,~) is homogeneous

(cfa lemma 5.10).

b) Für each primitive ideal J, H = U(~)/J is a homogeneous Harish

Chandra bimodule. The ~ x ~ action is defined by

(x,y)u := xu - uy for x,y € ~, u € H, .

see [BB3], § 3a

Corollary:.1 (notation 5.3): If H is homogeneous, then Ch(H 1)

is a union of orbital cone bundles K1, ••• ,Kr , all of the same di

mension

dirn Ch(H I ) = dim X + d(L r ) = dim X + ~ d(H).

Proof: By theorem 5.3, it suffic;es to show that V(L r ) is equidi

mensional of dimension d(L r ) = i d(H). This follows from the fol

lowing lemma by a general theorem of Gabber-Kashiwara [Le]a Q.ead.

Lemma: Lr Is homogeneous of dimension

Proof: The equivalence of categories, sending H to Lr , described

in 5.3, induces an isomorphism of the lattices of submodules. Let

. . 1.· :, I'
,., ,
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II lObe a submodule of lr; and let H' c H be the correspon

ding bisubrnodule H' + 0 in H. Then V(H ' ) = K(Ch(H-,1 )) ='

lI:(G xB V(ll)) = GV(ll) = GC 1V •• auGC r for some orbital cones

C1,aaa,C r by S.3a But dirn GC i = 2 dirn Ci for each orbital cone

Ci by well-known results of Steinberg and Spaltenstein (see 1a7)a

Hence d(H ' ) = dirn V (H",l)= dirn GV(ll) = m~x dirn GC i = 2 rnax dirn Ci
r I

= 2 d( l I ) a Si nce His horn 0 gen e0 uso f d im ens ion d-( H), i t f 0 I I 0 ws

now that d(l') = ~ d(H') = i d(H)a Q.eada

Frorn the above proof, we rnake the following

Observat ion: Each irreduc i bl e component Ki of Ch (H I ) maps (under

.) onto an irreducible component of V(H l ).

In fact, u(K i ) = n(G xB Ci) = GC i has dimension dirn GC i = 2 dirn Ci'

while dirn Ki = dirn X + dirn Cia Since the last dimension is inde-

pendent of by the corollary above, the first one is also, hence

dirn lt(K.) = dirn V(H l ) = d(H), so n(K.) rnust be an irreducible corn-
I I

ponent of V(Hl)a

Note that in particular this says that V(H 1) is also equidimensio-

nal, which is of course a direct consequence of the equidimension-

ality theorem of Gabber-Kashiwara Quoted above.

Corollary 2: l! Mc MI are left submodules * 0 of a hornogeneous ~

Harish-Chandra bimodule H, then

a) Ch(M) is equidimensional of dimension dirn Ch(H 1), and

b) d(M'/M) .< d(H) implies Ch(M) = Ch(M I
)._ ==::a
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Proof:

a) Let H' be the bimodule generated by M. Then H' is finitely

generated as a left module, hence is a finite sum of homomorphic

images

hence

M, of M. It follows that Ch(H
ll

) = ~ Ch(M
J
,) C Ch(M),

J J
Ch(H

ll
) = Ch(M). Now a) follows from Corollary 1.

b) If M'/M would contribute to the characteristic cycle of MI,

then Ch(W/M) would contain an irreducible component of Ch(M ' ),

hence V(M'/M) = n(Ch(M'/M)' would contain an irreducible compo

" -~ I~' C0mpo nent I 6f ',V( M,I, ') bY" t he;. abo ve" 0bse r vat ion I _ he nce, d (MI/.M)

, ! ~ I d (M~ ) I) ::" d-(. H,) , ' C 0 nt r: adie tin 9 , t he ass umpt ion. Q. e • d •

5.5 Characteristic cycle and class of a Harish-Chandra bimodule

With notations as in 5.3, we have the even stronger result:

In more detail, this means that if the associated cycle of Lr is

with C1 , ••• ,Cr the different irreducible components of V(L r ),

then the characteristic cycle of HI is

where Ki = G x B Ci' and the positive integers

(i = 1,.., r ) .

m,
1

are as in (2)
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Corollary 1: li H is homegeneous, then P(H I ) = m1Q(K 1)+ ... +m r Q(Kr ),

and deg P(H I ) = dirn X - t d(H).

This fellows from 5.1 and Corollary 5.4.1.

C0 r 0 I 1ar y '2: .I f H i s horn egen e 0 us, t hen Ch ( HI ) i sen t ire 1y det e r 

mined by P(H I ) (and conversely).
In fact, the polynomials Q(K 1 ), ••• ,(K r ) are linearly independent

by corollary 1.8.1. Hence P(H 1) determines the multiplicities

m1 , ••• ,m r uniquely.

Corollary 3: If H l 0, then P(H I ) ~ o.

5.6 Identification with a character polynomial

Recall that we defined in 3.9 a character polynomial qM for

any finitely generated ~-equivariant S(~)~module M. Now we con

sider a finitely generated (~,B)-module L as in 5.3, and we de

fine its character polynomial PL or p{L) by

( 1 )

where grL denotes the associated graded module with re~pect to

some T-equivariant good filtration of L. It is obvious that such

a filtration exists, and that grL is a T-equivariant finitely

generated S(Q)-module, so

racters of Land grL

qgrL is defined. Since the formal cha

are the same, Corollary 3.9 gives

PL = gr 6(~*) ch(L). ( 2 )

We take this formula as an alternative definition of PL, in terms

., ,

, : t ~ ~ '.., • I I"...t ".. ~ l ~ J I
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of the formal character pf L, which exhibits the independence of the

choice of a filtration.

Theorem.(notations 5.3): P(H I ) = p(L r ) ( 3 )

Proof: Let C1 , ••• ,C r denote the irreducible components of V(L r )

of minimal codimension d, and let m1 , ••• ,m r denote their multi

plicities in ~(Lr), so that by (1) and proposition 4.9.2:

P(L r ) = Q = L m. QC ..grL i 1 1
( 4 )

BBy theorem 5.4, Ki := G x Ci' for i = 1, ••• r, are t~e irreducible

components of Ch(H I ) of minimal codimension d in T*X, so

P(H I ) = L mi Q(K i )
i

( 5 )

by 5.1 and theorem 5.5. Now we have by 4.6, resp. theorem 4.7.1,

resp. 4.5

for each i = 1, ... ,r. So the sums in (4) and (5) are equal term

by term, and (3) foliows. Q.e.d.

Remark: This proof of the theorem is based on the harmonicity of the

character polynomials QC. (theorem 4.7.1). We shall give in 5.9 an'
1

alternative proof, based more directly on the harmonicity of the cha-

racter polynornial p(L r ), which seems more satisfactory.

.--
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Corollary: For a simple Harish-Chandra bimodule, we have (notation

5 . 3 )

P( H( A , 1.I ),1) = P( L ( w- 1 • 1.I ) ) ,
w

5.7 Harmonicity of eharaeter polynomials

Let L be any finitely generated (~,B)-module of eentral eha

raeter Xl.I. Let us reeall from the theory of highest weight modules

[Oi], [Ja] that within an appropriate Grothendieek group, L is ex

pressible as an integer linear eombination of Verma-modules M(v")

of highest weight \) = W.l.I, W €. W, say

[L] = L aw(L) [M(w.l.I)],
wEW

( 1 )

where the integer eoeffieients aw(L) are uniquely determined. We

list same properties,of the charaeter polynomial p(L), which are

well-known, but briefly reproved here for convenienee of the reader.

Proposition:

a) p(L) is homogeneous of degree a':= dirn u - d(L).

b) p(L) = 1 1 L aw(L) (w.l.I)a (2)
a . W€, W

e) a is also eharaeterized as the srnalle~ integer ~O that makes

"the right hand side of ( 2 ) nonzero".

d ) Let ~ (L) denote the group ring element L aw(L)w.
1 (l.I+p)j

w€W
Then ~ (L) ""T"I i s zero for j<a, and i s p( L) for j = a .

J .
e) P( L) i s harmonie.
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Proof:

a) By theorem 3.10, the degree of the character polynomial equals to

the codimension of the support of grL in ~*, hence a) follows

from d(L) = dirn V(L) = d(grL).

b),c) Since the formal character of a Verma-module is obviously given

by c.h(M(v)) = A(y*)- 1e'J [OiJ, equation (1) gives

A(.!:!.*)c.h(L) = L
WG: W

( 3 )

Writing out the exponentiaI.s as power series, we obtain

for the homogeneous term of degree j of (3), for all j > O.

Now b) and c) follow from a).

d) f 0 110 Ws f rom a),b), c) by bin 0 mi a 1 de ve 10 pm e nt 0 f (w• II ) j = (w ( II +P ) - P ) j ,

using induction on j.

e) Let Q be a constant coefficient differential operator on t

which is W invariant, say Q homogenous of degree d > O. We

have to prove Qp(L) = 0. This is clear for deg Q > deg p(L).

So let d 5 a. By Leibniz' rule, we have QA a = C.Q(A)A a- d for

some scalar c independent on A ~ t*, where we consider Q as

a polynomial function on t*. Using the formula for p(L) given

in d), we obtain

Qp(L) 1 a
~ (L) Q a! (lJ+p)

= ~! Q(JJ+p) ~ (L) (J.l+p)a-d = 0,

where the second equation comes from W 'invariance of Q, and

the last comes from d), since a-d ist strictly smaller than a.

Q.e.d.
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5.8 Equivariant characteristie elass for a Harish-Chandra bimodule

Let .H be a finitely generated Harish-Chandra bimodule with

eentral eharacter X(A,~) as in 5.3. Then H has a localization

H on the flag variety Z = X x X of the group G x G. By defini

tion (cf. [BeBe], [BB3]), H is the coheren~ (~iA,~), K)-module

where V(A,~) denotes the sheaf of rings of differential operators
=Z

with eoefficients in the line bundle ~ (A,~) on Z given by (A,~).

Now let pI: Z =·X x X --+ X denote projeetion onto the left eopy
1 Aof X. Then the direct image sheaf p* H is a ~x-module, which still

carries a G action, G aeting via K. Note, however, that while H

is K~equivariant in the strong sense of [BB3], 2.2, the module pl~

is only II wea kly G-equivariant" in the sense of 2.12. The following

is easy to see (cf. [BB3], 5.10a) resp. 5.5a)):

Lemma:

a) H admits ~ K-equivaria~t good filtration (~n)nEl.

I 1b) This induces a ~-equivariant good filtration (P*~n)n~l on p*~.

With respect to such a filtration, the assoeiated graded module

gr pl~ is a G-equivariant 0T*X-module, and henee defines a class

in KG(T*X), which iso independent of the choice of filtration by

lemma 2.12. Under the composition~m the maps KG(T*X) ~ KG(X)

~ R(T) c S(!*), this elass determines apower series on t, of

lowest degree homogeneous term QG(grpl~) (see definition 4.5).
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Now we define

Proposition: P(H 1) is the harmonie part of PG(H).

Proof: One has to observe that pl~ is isomorphie to the 10ealiza

tion of H1 on X (ef. [BB3J t proposi t·ion 5.4). Then

follows from proposition 4.6. Q.e.d.

5.9 Alternative proof of identifieation with eharaeter polyno

mials (5.6).

With notations as in 5.8, let us eompute PG(H), using the

funetor H~ Lr deseribed in 5.3. Let us first reeall the

geometrie interpretation of this funetor (ef. [B83J, 3.6): The in

elu~ion of X into Z = X x X as the righ,t eopy Xr = {BI x X

is denoted ire The restrietion Lr := i*H of the V(A'~)-moduler= =Z

~ to xr
= X is a B-equivariant ~~-module, whieh is eanonieally

isomorphie to the loealization of Lr on X, and the funetor

I;: ~t-t- ...... Lr establishes an equivalenee of the eategory of eo

herent (ViA,~) K)-modules with the eategory of eoherent (R~,B)-

modules. We note that Lr ~ f(X,L r ) (ef. 10e.cit.).
=l
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Lemma'(cf. [BB3], 5.10): A K-equivariant good filtration on H in --
* Lr .duces a B-equivariant good filtration on . H = With respect toI r =

such filtrations, we have a 8-equivariant isomorphism of graded 8-

equivariant

rgr L .

Here j: u~ T*X denotes the inclusion of the cotangent space

at the base point; also we notationally do not distinguish between

the O(~)-module gr Lr and the corresponding sheaf of 0u-modules,

since u is affine.

Theorem (notation 5.3): PG(H) = p{L r ).

Proof: By definition, PG{H) = QG{gr pl~), with notations as in 5.9.

8y proposition 4.5, QG(gr pl~) is the character polynomial of

j*{gr pl~). 8y the lemma, this coincides with the character poly

nomialof gr Lr , hence with p{L r ) ,by definition 5.6(1). Q.e.d.

As a corollary, we obtain the following alternative proof of theo

rem 5.6:

by propositon 5.8, the theorem above, and proposition 5.7 e).

Q.e.d.

Remark: In all preceding considerations, we may obviously inter-

change left and right sides to obtain analogous results. Für in-

stance, we define the "right" equivariant characteristic class of

.' ....; . ~ I l ~ , ',..
~ ~ .... __ .. .-t ........... -\ ...... l~"'.'-
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H by PG(H r ) := QG (gr p~~), where pr: X x X ----'I' X denotes pro

jection onto the right copy, in complete analogy to the !lleft ll one,

PG(H l ) = PG(H) in SeS, and then we' obtain

in analogy to the theorem and corollary abovee In the sequel, we

have the statement of right analogues to the reader, and consider

only left characteristic cycles and classes P(H l ); we shall even

tually even give up to write the 111 11 , in order to avoid too clum-

sy notation in our formulase

5.10 Some non-commutative algebra

The Goldie rank of a module M, denoted rk M, is the maxi-

mal number r such that M contains a direct sum of r sub-

modules ~ O. A module t 0 is called uniform, if any two sub

modules ~ 0 have intersection f 0,' i .e. if rk M = 1e If M

is noetherian, then clearly rk M < m, and M contains a direct

sum of rk Muniform submodules; moreover, as a matter of fact

from general ring theory, any direct sum within M of uniform

submodules (necessarily of < rk M terms) can be extended to a

direct sum within M of rk M uniform terms (see e.g. [Go],

Theorem 1.07).

Proposition: Let H be a simple Harish-Chandra bimodule. Let

U be a uniform submodule of Hle Then

a) Hl contains a direct sum M of rk Hl copies of u.

b) d(Hl/M) < d(H).
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C0 r 0 11ar y: .a) E1; (H 1) = r k H1 .eh ( U)

b) eh (U) is independent of the choice of U.
o::o:=:a

Note that corollary a) is immediate from the proposition by

corollary 5.4.2, and b) follows from a) on dividing by the

pos i t i ve integer r k HI .

Lemma:

a) HI is homogeneous of GK-dimension d(H) = d(A), where

A = U(!J)/Ann H1•

b) Every proper homomorphic image of U has smaller GK-dimension.

Proof of the proposition: Here we write H as a left-right U(~)

bimodule. Let 0 * E c H be a finite dimensional K-submodule;

then H = U(~)EU(~) = U(~)E, so HI is finitely generated (hence

noetherian). 8y simplicity of H, UU(~) = H, hence UF = H for

some finite dimensional subspace F c U(~) by noetherianness of

HI . For each f € F, Uf i s a homomorphic image of U. If Uf :t: 0,

then d(Uf) = d (H) ;;;: d ( U) by homogeneity (lemma a ) ) , so Uf '; U

by lemma b) . We have proved that H = UF i s a finite sum of copies

of U. Let M- Uf 1+···+Uf r be a maximal sub-sum (f 1 ' • • • , f r E> F)

such that the sum i s direct. It remains to prove that d(H/M) < d (H) ,

and that r = rk HI . Suppose d(H/M) = d(H). Then since HI i s a

finite sum of Uf1s (f € F), d(H/M) is the maximum of d (ur) , where

-denotes the quotient map H ---+ H/M. Hence d(H/M) = d(H) implies

d(Uf) = d(H) for some 0 f f € F, so Uf maps isomorphically onto

Uf by lemma b), so Uf ~ M = 0, contradicting the maximality of M.

Hence d(H/M) < d(H) is proved. Clearly r ~ rk HI . If r < rk HI ,

then by the remark preceding the proposition, there exists a sub-
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module 0 ~ UI c. H1 such that UI " M = O. Since this implies

d(H/M) > d(U ' ) = d(H) by homogeneity of HI , this contradicts

d(H/M) < d(H). Hence we must have r = rk HI • Q.e.d.

Proof of the lemma:

a) If Ne HI has d(N) < d(H), then d(NU(,g)).s. d(N) < d(H), so

NU(Q) would be a proper bisubmodule of H, hence N = 0 by sim

plicity of H. The inequality d(H) < d(A) is trivial, and the

opposite inequality follows e.g. from the fact that Al embeds

into a finite direct sum of copies of HI (cf.e.g. [BB3], 4.10).

b) Let U~ U be a homomorphism with kernel N * O. Let

u € U, and L = {a E AI-au = O}. We claim that this is an essen-

tial left ideal of A, i.e. that every left ideal LI t 0 meets

L non - tri via I 1y. I n f act, s uPpos e LI. U " L = O. The n LI --lt LIU

is injective, so LI ~ L'u is injective, and LI ~ N = 0, con-

tradicting uniformicity of U. Now it follows from [BGRJ, 2.7

that L contains a nonzerodivisor 5 of A, since A is a prime

noetherian ring. Now we conclude that d(Au) = d(A/L) .s.

d(A/As) .s. d(A) - by the argument given in [BK2], 3.4 er by [B3],

1.3. By a) this preves d(U) < .d(A) = d(U). Q.e.d.
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5.11 Definition of the polynomials Pw

Lemma: Let U 'be a uniform left submodule of H(o,o) for somew

w E: w. Then for every pair A, IJ E: Cl ; the module TA U (notation
0

5 . 2 ) i s isomorphie to a uniform submodule of H(A,IJ)
w

Proof: We have TA H(o,o),l = (T(A,o) H(O,O))! = H (>-,a),"! so U' := TOAU
o W (0,0) W W ' _

is a left submodule of H(X,o). sinee TA is an equivalenee ofw' 0

eategories, it preserves the lattiee of submodules up to isomorphism,

so U uniform implies U' uniform.

is a direet summand of

p: H(X,o) IX) E(O,IJ) ~ H(X,IJ)
w w

be the projeetion map. As a left module, H~A,o) ~ E(O,IJ) is a

finite direet sum of eopies of H~X,O); henee a finite sum of eopies

of U' (by the first part of the argument in 5.10). So p(U"):t 0

for at least one of these eopies , Ull say. But then d(p(U lI
)) =

d(H(X,IJ)) = d(H(X,o)) = d(U 1 ) by homogeneity (lemma 5.10a)), hence
w w

p(U ll
) ~ Ull

'; U· by lemma 5.10 b). Q.e.d.

Theorem: Let w E: w. Take any two pairs (x,lJ) , (X';ll') of domi-

nant integral weights. Let U resp. U1 be uniform left submodules

of H(X,IJ)
~.

H(x', IJ') Then Ch(U) = CH (U • ) , and P( U) = P(U').w w •

Proof: The characteristic cycle Ch (U) is independent of the-
choice of U by eorollary 5.10.b). Making a choice as in the lemma,

we see that this cycle is independent of ll, and also of x by 5.2.

The second claim follows by 5.1. Q.e.d.
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Definition: For eaeh w~ W, we denote Pw := P(U) the polyno

mial uniquely determined by the theoreme

This follows from eorollary 5a10 a) by Se1a In partieular, we note

that Pw is a homogeneous harmonie polynomial of degree a = a(w)a

5.12e Relation to primitive ideals

Let J be a primitive ideal of U(.9) , and A:= UCg)/Je We

note that the left respa right modules have the same Goldie rank,

denoted rk A, also eal·led the Goldie rank of J. This number

has the following well-known alternative interpretation: Let S

denote the set of nonzero-divisors of A; by Goldie's theorem, A

admits a ring of fraetions S-1 A, whieh is simple artinian, and

henee isomorphie to the ring of n by n matriees over some skew

f i eId (W edder bur n- Art i n t he 0 rem') ; t hen n = r k A.

Now assume J of integral eentral eharacter xA• We recall that

J = I(we A) := Ann L(w.X) ( 1 )

for some w f W (Duflo's theorem [0]), and that a simple Harish

Chandra module H~A,~) has left resp. right annihilator

resp. ( 2 )

(No~e that we are still considering left-right U(~)-modulesa)

The last result (due to Joseph [JS],is easily dedueed fram the
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equivalences stated in 5.3 (cf. also [Ja], 7.9).

Theorem: Let A:= U(,g)/I(w.>..), where w ~ W,>" E: O. Let U be a

uniform left ideal of A. Then

a) P(A) - rkA P(U)

b) P(U) = Pw (definiton 5.11).

Corollary 1: Pw = Py for w,y ~ W' in the same left cell.

Here two Weyl group elements w,y are said to be in the same left

cell, if I(w.>..) = I(y.>..) for one (and hence for all) >.. €: o. Note

that the corollary follows from the theorem because P(A)/rkA de

pends only on the ideal I(w.>..).

Notation: The corollary justifies the notation PJ = Pw if w is

any element in W s~ch that J = I(w.>..).

Proof:

a) Considered as a Harish-Chandra bimodule, A has finite length,

and hence asoeIe H ~ 0, which obviously must be simple by

primality of A (ßs a ring), so

socle(A) ( 3 )

for some v € W. Also d(A/H) < d(A) by [BK2], Satz 3.4, and

hence P(A) = P(H) by corollary 5.4.2 and 5.1. Now let

ur: = U " H; t hen als 0 d ( U/ UI) .:: d(A/ H) .< . d(A) " ' so t hat _we :aga in

conclude P(U) = P( UI ) by 1oe. ci t .. We also must have

rk A = rk H1, because otherwise rk Hl < rk A, and then we

could find a uniform submodule of Al injecting into A/H

" '
'" 't l'.. • ~ IL'...;'"

\ .
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by the remark preceding proposition 5a10, which would contradict

d (A/ H) < d (A) (u sj. n9 horn 0 gen e i t y 0 f Al) a ApP1Yi n9 co r 0 11ar y

5.10a) (plus 5a1) to Hand Ul (which is of course uniform), we

may now conlude

P(A) ~ P(H) ~ rk Hl P(U I
) ~ rk A P(U)a

b) Note that ( 3 ) gives us P( U) = P(U 1
) = Pv ' but only for a par-

ttcular element v in the left cell of w, so this i s not enough

to prove b ) . Instead, we proce ed as followsa We embed Al into

a finite direct sum of copies of H(A,O) (using ( 2 ) and [883J;
W

lemma 4a10)a Projecting onto a suitable one of these copies, we

ge t a ho mo mo r phi sm 0 f UI i nt 0 H( x, 0 ),1 wi t h non zer 0 i mag e a
W

Since H(X,o), 1 is homogeneous 'of dimension d(A) (use (2) andw

lemma 5a10a)) we have d(pU ' ) = d(A), so pUl - U1 by lemma

5.10b)a We have proved that H(A,o),1 contains a copy of U1
,

W

so (by definition Sa11)

Remark.1: We have also seen in the proof that:

Corollary 2: There exists v € W such that I(wa A)

P(U(~)/I(waA) = p(H~A,A)),

and

Qaeada

I(Va A ),

( 4 )

r k,. ,U (.9) / I ( W a A ) = rk H(A,X),l
v a

( 5 )
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Remark 2: The ehoice of y above in the left cell of w is uniquely

determined by (3). We further note that v2 = 1 (Ouflo [0], Propo

sition 9). Sinee H(A,A) = T(A,A) H(o,o) is the simple soele of
v (0,0) v

U(~)/I(w.A) = T~~:~l (U(~)/I(w.O)), it can be concluded that y is

uniquely determined by w, i.e. independent of A (cf. [Ja], 7.11).

Logieally, we shall not have to use this fact here, beeause we any

way know by corollary 1 that Py is'independent of A.

Remark 3: We note that in general (4) does not hold with w in place

of v. Although we do have (even for arbitrary ~ ( 0)

Ch(U(.9)/I (W.A))

the corresponding equation for charaeteristic cycles (or equality

for eharaeteristic elasses, Cor. 5.5.2) is only true up to a pro

portionality factor, as is seen by combining theorems 5.11 and 5.12.

In fact, the factor is the ratio of two Goldie-ranks and is a func-

tion of A,~, and w in the left cell. We shall analyze the IIGoldie

rank funetions ll in the last seeti'öns of this ehapter (5.15-5.18).

But before doing this, let us first make some remarkable applieations

of theorems 5.11 resp. 5.12.

5.13 Irredueibility of Joseph's Weyl group representations

Theorem 1: Eaeh polynomial Pw (w ~ W) generates an irreducible W

submodule of 5(1).

We shall see (in 5.17) that our polynomial Pw is proportional to

Pw in Josephts notation [J3], [J1J, so this theorem 1 and 'also



-147 -

theorem 2 below are just reformulations of:theorems of Joseph [J3].

Our point to make here is that theorem 1 is an easy consequence of

the result (5.11) underlying our definition of Pw• The argument is

the same as in [Ja], 14.10, but we make it explicit here for con~

venience of the reader:

Proof: We consider the group ring element a : = _a (L ( w- 1 • ~ )) €. k [ WJ_ '-w
and the degree a = a(w) as defined in 5.7. Then we have

1 a
~w a! ~. = P(L(W-1.(~_p)) = P(H( A , ~ - p )) €. IN P c kP

w w w

pro-

is an

sum cf

by 5.7d), theorem 5.6, and corollary 5.11, for all ~ € n +p. Using

~athat n + p i s Zariski dense i n t *. = 1, and that the powers-
(~€.:~) span Sa (~) , we conclude that the linear operator ~w

jects all of Sa (1) onto the line kP w• ( In particular, Pw
eigenvector.) On the other hand, S8 C~) splits into a direct

irreducible W submodules, each of which is projected into itself by

~w. So ~w must kill all but one irreducible summand, E say. Then

pw € ~w E E: E, s 0 Pw gen erat esE. Q. e . d .

Remark: The argument shows·simultaneously that E has multiplicity

one in Sa(!) resp. zero in sj(!) for j < a.

Although we·do not use it in the sequel, let us restate here - for

the sake of completeness - also Joseph's result about the cla5sifi

cation of primitive ideals [J3J.

Theorem: If J 1, ... ,J r are all primitive ideals of a given central

character xA (A E n) corresponding to a given irreducible W mo-
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PJ , ... ,P J (notation 5.12) form a
.1 r

This is now derived from Voganls characterization of the order re

lation of primitive ideals [V1], as exposed e.g. in chapters 7

and 14 of Jantzenls book [Ja]

5.14 Irreducibility of associated varieties of primitive ideals

Theorem 1 [BB1]: Each primitive ideal J with integral c~ntral

character has an irreducible associated variety V(U(~)/J).

Since this variety is obviously Ginvariant, and contained in

the cone N of nilpotent elements, it is then necessarily the

closure of a single nilpotent orbit, say 0x.

Proof [B8M2], [Gi]: Let J = I (W.A) with w ~ W, A E: O. Then

the (left) characteristic class P(U(~)/J) is proportional to

P by theorem 5.12, hence generates an irreducibl~ W modulew
by theorem 5.14. On the other hand, we have

(* )

as in 5.5.1, where K.
1

is an orbital cone bundle of codimension

in T*X, and O:t m.€ IN
1

is also the multi-

plicity of Ki in the characteristic cycle ~(U(..9.)/J) (by 5.5.2),

for each i = 1, ... ,r. By theorem 1.8, each Q(K i ) generates an

irreducible W submodule of 5a (!) equivalent to Springerls re-
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presentation pu.' if ~U. is the nilpotent orbit determined by
1 1

K· (n 0 tat ion 1. 8), i. e. i f n ( K ") = 0' . Suppos e O'u I" ~ rfu1 f 0 r
1 1 U i

some i. Then the corresponding Springer representations P
ui

, PUl

would be inequivalent by Springerls theory (cf. [BM1J), so they

both occur in the cyclic W module generated by(*), contradicting

the irreducibility of this module (5.16). Hence the nilpotent or

bits O'u" are all the same t1x. Now by [8B3J, 1.9,
1

v(U(.9.) / J) = J[ eh ( U(.9. ) / J ) I = n (,U K. i) = 0"x •
i

Q.e.d.

Note that we have proved simultaneously:

Theorem 2 (Barbasch-Vogan)[BV1J,[BV2J): Josephls Weyl group re

presentation generated by P(U(~)/J) is equivalent to Springerls

Weyl group representation Px corresponding to the dense nilpo

tent orbit in V(U(.9.)/J).

Remark Theorems 1 resp. 2 had first been verfified by the first

two authors [BB1] resp. Barbasch-Vogan [BV1], [BV2J using case by

case arguments; conceptual proofs were then given by Joseph [J2J,

Kashiwara-Tanizaki [KT], the first two authors [BB3], resp. by

Hotta-Kashiwara [HK]. The argument given in the present subsection

appeared independently in GinsburgIs [Gi] and in [BBM2J.
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5.15 Evaluation of character polynomials

In the notation of 5~7, we define a W x W matrix of integers

by

a(w,y) := ay(L(w.X)) for all w,y E: W.

By a weIl known lltranslation principle" (due to Jantzen), these

integers are independent of x ~ 0, as is the degree

a := a(w) := dirn u - d(L(w. X))

in 5.7.

Remark: Let us mention that in the notation of Ka~hdan-Lusztig [KLJ,

a(w,y) = (_1)I(w)-I(y) P
y

,w(1),

where the Kazhdan-Lusztig polynomials

( 1 )

P are defined by a pure-y,w
ly combinatorial recursion formula. We recall that (1) was conjec

tured by Kazhdan~Lusztig, and proved by Beilinson-Bernstein [BeBeJ

and Brylinski-Kashiwara [BKaJ. As a consequence, these numbers can

be effectively calculated on a computer.

Definition: Für each w ~ W, we define polynomial functions Pw
~

resp. pw on t x t* resp. t by

L a (w, y) <y ( f; +P ), T) +i> a
yeW

( 2 )
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respe

rJ

Pw(f;) = Pw(f;,O); ( 3 )

in this context, we shall identify t with t* by the usual scalar

producte Then our
.....

Pw'Pw coincide with those considered in [J1J,

5e1, up to a shift by Pe

Lemma: For f;,n € t = 1*, and each w € W we have

pw(f;,n) = p -1 (ni F;) e

W

Proof: This follows from (2) by W invariance and symmetrx of the

scalar product, using the following property of the coefficients

a(w,y) :.

( ) ( -1 - 1 )a w,y = a w ,y for all w,ye: We

rh i 5 pro per t y f 0 110 ws e eg. b,y compos i n9 t he equi val enc e fun ctor s

LI ~ H~ Lr (notation 5.3), sending L(w.x) to L(W-1eA),

and M(WeA) to M(W- 1eA), hence identifying a(w,y) with

( -1 - 1 )a w ,y e Qee.de

Proposition: For all w E W, A,ll e: n, \) € t* = t, we have

Proof: The first equation is corollary 5.6, the second is proposi

tion 5e7d), in combination with the lemmae Q.e.de

.- Q9 -
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Corollary: PW(A,l.t} is a positive integer for all A,Jl ( O.

Proof: They are integers by definition. They are positive, because

the character polynomial P(L(w- 1
.Jl)) takes only strictly positive

values on the set o+p of regular dominant integral weights, by

3.11. Q.e.d.

5.16 Computation of Goldie-ranks

From corollary 5.11 we obtain that for all A,Jl ~ 0

(From n0 W 0 n, 1et r k den 0 t e a 1ways 1ef t GoI die r ank, tos 1i 9ht 1Y

simplify notation.) By proposition 5.15, we get from this equality

of polynomials an equality of values, so

( 1)

f 0 r all v E: t *. Us i n9 c0 r 0 11ar y '5. 15 t wegeta t 1east f 0 r all

v€."

(2 )

Taking v = 0, this gives:
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Theorem: The left Goldie-rank of a simple Harish-Chandra bimodule

i s given by

rk H(A,JJ) ('J

( JJ ) ( 3 )= cw p
- 1w w

for a 11 A,JJ € n , w f: W, where cw i s a positive rational con-

stant.

In fact, Cw = rk H~O,O)/Pw(O,o). Note that the polynomial thus des-

cribing the left Goldie ranks by (3 ) for given w i s uniquely de-

termined by ( 3 ) , since n i s Zariski dense in t*.

Remark. It follows now from corollary 5.12.2, that also the Goldie

ranks of primitive ideals are given by polynomial functions. More

precisely,

rk U(,g)/I (w.;\.) = C v • P -1 (JJ),
v

where v(= v- 1) is chosen as in 5.12.2. This is a famous result of

Joseph [J3], of which we shall obtain a more complete version in 5.18

below.

5.17 Joseph-King factorization of polynomials Pw

From 5.16 (1) we get more generally

( 1 )

for any \l E: 0, whereo c (\l )
W 0

is a positive constant
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(= rk H~o,o)/pw(vo~o)), independent of A,~. Now we use 5.16 (1) for

a second choice of ~,say ~l e. 0, to get

( 2 )

for all v,~,~' €. O. Going with (1) into (2) twice, and cancelling

the nonzero factor cw(v o) on both sides, we obtain

fo r all v,v0 .~ , ~ I e:. o. Us i n9 Zar i ski den s i t y °f 0 i n t *, we der i ve

the following remarkable polynomial identity:

Taking the special case ~' = n l = 0, we obtain the following fac-

torization

Corollary 1 (Joseph-King, cf. [J1J, 5.1 [KiJ):

pw( ',ll) = PW(A,O). pw(o,~) = C ~p (A) -p (11)
~ ~ . w w-1 ~.

pw(o,o)

This factorization, up to the constant factor c = pw(o.o)-1,

was given in [J1J, 5.1. a direct proof by combinatorics of the
I

Kazhdan-Lusztig polynomials seems to be not known. - Now we may

rewrite proposition 5.15 as folIows:
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p _1 ( ~) IP w( v ) •
w

Corollary 3: The polynomial Pw (5.11) coincides with Pw' upto

a positive ,integer constant factor, and a shift by p; more pre

cisely:

This formula follows from corollary 2, using corollary 5.11, and

theorem 5.16.

Remark: At this point, it becomes clear that our formulation of

Josephls irreducibility theorem (5.13) is equivalent to Joseph's.

Corollary 4:

Corollary 5 (Joseph): For w,ye. W

proportional to

N

in the ~ame left cell, Pw i s

In fact, P = Pyw

so
,.., pw(o)
pw =

Py(o)

by corollary 3 •

by corollary 5.11.1, and of course a(w) = a(y),

Remark: The converse of this statement is also true cf.[JaJ, but

we do not reprove this here.
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5.18 Goldie-ranks of primitive ideals

We may now use corollary 5.17.3 to reformulate theorem 5.16 as

foliows:

Proposition: rk H(A,~) / rk H(o,o) = a!
w w

for all A,~ € 0, W ~ W.

The significance of this alternative formulation is that P -1 de-
w

pends only on the left cell of w- 1 (by cor. 5.12.1), so only on the

primitive ideal J:= I(w- 1,X), which is the right annihilator of

H~X,~). Since the same is true for

a = a(w) = a(w- 1) = dirn X -t d (U(~)/J),

let us point out the

Corollary 1: The ratio of left Goldie-ranks of two simple Harish

Chandra bimodules as in the proposition is a function of the right

annihilators.

Let us mention that this ratio is also the ratio of the corres-

ponding left characteristic classes (by corollary 5.11), i.e.

( 1 )
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Theorem (Joseph [J3]): For all w(W there is a positive rational

constant Cw such that

f or a 11 A € n.

Proof: We take v E W in the left cell of w as in 5.12, remarks

1, 2, so H~A,A) is isomorphie to the soele of U(Q)/I(w.X), and

2 - 1 ('v = 1. The right annihilators of these modules are I(v .X)=I w.x)

(by 5.12(2))), so

P = P -1 = Pvw v

by corollary 5.12.1 and v- 1 = v. Hence 5.12(5) gives us

( 2 )

rk U(~)/I(w.A)/rk U(~)/I(w.o)

= a! P -1 (A+p) = a! PW(A+p),
v

= rk H(X,A) / rk H(o,o)
v v

( 3 )

using a(v) = a(w) = a, and the above proposition. Now the theorem

follows by using again cor. 5.17.3. Q.e.d.

Corollaries: P(U(.9.) / I(w.A)) = CWPW(A) Pw' ( 4 )

eh ( U( 9 ) / I(w.A)) = C' P (A) [G xB ~(L(w-1.0))](5)- w w

eil [G x B
~ (L(w -1 . A) ) ] ( 6 )= w

with positive rational factors c C 1 C I1

w' W' w independent of A.
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CORRIGENDA:

p.6, footnote: "of the introduetion to ehapter 5"

p.125, 1.6: after " given by ,," add "(note that our notation is alightly

different from loe. eit.)"

p.127,1.-5: dalate Ifwhieh are loeally E,-finite"

p.128, bottam: add

cl Remark: The
(.l,J.4.)

o I -module
= X

, with global seetions

H( A,)' )
mey be deeeribed simply as the midd1e extension ofw

dw ( ~ ,1' )
z' (~Z') to Z, where d 1s the

l:!zw ( k z '(Cl Z )),' from
w w

bJ

codimension of the K-orbit Z in Z (see 88 3, §2.7 for the

~ =1 =Ej. ~
111

ease

p.129, after 1.1: Insert "All the Harish-Chandra bimodules we eonsider admit

integral eentral eharaeter, BS in § 5.3."

p.129, 1.6: "the fo1lowing i8 true:"

p.135, 1.5: "Verma module of highest weight V U

p.135, 1.-3: "seeond equalitt l

p.136, 1.8: "with coefficients in the K-eguivariant line bundle"

p.142, 1.9: replace "ia an by "; it is a"

p.144, 1.-8: after "obviously muet be simple" continue

"eince for H
1

, H2 two sub-bimodules of A wi th H1(l HZ =0,

the H
i

are two-sided ideals of A such that H
1

H
Z

=0, hanee

ane af them 1s 0 because A 1s prime. So "

p.145, 1.-4: Replace tlThere exists" by

"Far any wE W a8 in tha theorem, there exists"


