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GENERIC PROPERTIES OF THE ADJUNCTION

MAPPING FOR SINGULAR SURFACES AND APPLICATIONS

by

Marco Andreatta, Mauro Beltrametti and Andrew John Sommese

INTRODUCTION. Let }: be an irreducible surface embedded in

some comple~ projective space IP r and let Tl . S ~}: be the.
normalization of }: with L the pullback to S under Tl of

0[pr(l). Let 1T 5' ~ S be the minimal desin9ularization of

5 and let ~s = ~*KS be the Grauert-Riemenschneider canoni­

cal sheaf of S. In [A-Sl] the first and last authors showed

that Ks , @ L', L' = ~*L, is nef and big except when (5' ,L')

and (5, L) are of a very restricted type. In the case when

K Ri L'S' 1()1'
(see (0. 7) )

and it makes sense to look at the meromorphic map ~ : S ~ [pN

associated to r(~S 0 L). We call this the small adjunction

map (for the reason behind this name see §l). The meromorphic

or the adjunction map, for short.

map associated to is called the big adjunction map

\

In §1 we use Reider's theorem ([B],[R]) to show that ~

is birational if is nef with or

C 1 (L)2 ~ 9 and L' ~ 3D for some effective divisor D such

that D· D = 1. The analogue of this for a smooth S goes

back to Van de Ven [V].
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In §2 we prove a number of inequalities that are standard

,tools in the srnoot~ theory [SlJ. E.g., if the Kodaira dimen-

sion of s' i5 non-negative and 2
cl (L) ~ 10" the n ( see 2. 1)

2
C 1 (Ks ,) + 2g(L) ~ d + 2(Pg (S') - q(S'»

q(S') = hI,o(S')andwhere P (5') = h 2 ,o(S')
9

metric genus and the irregularity ol

sectional genus of L.

S' and

are the geo-

g (L) is the

In §3 we give some simple applications. For the main one

we derive a result, on when contains even one smooth

hyperelliptic curve, that generalizes results of Sommese (SI]

and Van de Ven [V]. The result is the following (see (3.1».

THEOREM. Assume cl (L) 2 ~ 10 m: Cl (oL) 2 :::r 9 B.ill! L' "* 3D

for some effective divisor D with D· D = 1 whet"e (S,!.) anJ .

a.5
(S:t.') .).yeA1.n.lli &il Pi.f" i 9l"'a.r h .d this ii'1tt'"oJ~,tAon. Then if there

15 a srnooth hyperelliptic curve C € ILI II follows that

h 2 ,o(S') = 0, d ~ :g(L) -+- 2 and either

ii) (S, L) 1s a cone or ascroll; ~

iii) (5' ,L' ) i5 a eonie bundle ovar a smooth curve.

o
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We would note that in [A-S2] the first and last authors

give very precise results on the set where KS 0 L is spanned

by its global sections.

We would like to express our thanks to the Max-Planck­

Institut für Mathematik for making this joint work possible.

The third author would also like to thank the University of

Notre.Dame and the National Science Foundation (DMS 8420315)

for their support.
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§o. Background material

We work over the cornplex number field C. By variety we

mean an irreducible and reduced projective scheme X of di-

mension n. We denote its structure sheaf by 0X. For any co-

herent sheaf ~ on denotes the complex dimension

of

If X 15 normal, the canonical sheaf KX is defined to

·be j*~eg(X) where ] : Reg(X) ~ X i5 the inclusion of the

srnooth points of X and KReg(X) i5 the canonical sheaf of

the holomorphic n-forms. Note that KX is a line bundle if X

is Gorenstein.

Let ~ be a line bundle on X. ~ is said to be nurneri-

cally effective, nef for short, if ~. c l 0 for each irre-

ducible curve C on S, and in this case ~ is said to be

big if C1(~)n > 0, where cl(~) is the first ehern class of

~. We shall denote by I~I the complete linear system asso-

ciated to ~ and by r(~) the space of its global sections.

We say that ~ is spanned if it is 5panned by r(~).

(0.1) We fix some more notation.

- (resp.~) the numerical (resp. linear) equivalence of divi-

sors;

x(~) = ~(_1)ihi(~), the Euler characteristic of a line bundle

~;
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K(X), the Kodaira dimension of X, that is the Koctaira dimen-

sion of a'nonsingular model of x.

Abuses. Line bundles and divisors are used with little or no

distinetion. Hence we shall freely switch from the multiplica-

tive to the.additive notation and viceversa.

(0.2) Throughout the paper, S always denotes an irreducible

proj eet!ve normal _surface. 'Let Tr: S' --+ S be the minimal

desingularization of S, i.e. sr is the unique desingulari-

zation of S wh~ch is minimal in the sense that the fibres of

Tr contain no srnooth rational curves C satisfying
2'

C = -1.

If L is a line bundle on S we will denote by L' the in-

verse image, v*L. We shall briefly say that (5' ,L') i5 the

minimal desingularization of the pair (S,L). If D is a

(Weil) divisor we will denote by D' the proper trans form of

D. For every Weil "divisor 0 and line -bundle L on S the

intersection L • 0S(D) = L • D = L' • D' is weIl defined.

(0.3) Le t rr: 5" -+ S
the m;,..j",oill

ba A resoruticn cf the singularities

cf S and let A = ~-l(Irr(S», where Irr(S) denotes the

irrational locus" of s. We say that

there are no smooth rational curves

(S, L)

E on

is a-minimal if

S I - A, with

*E • E = -1 and" rr L • E = o. Note that the pair (5' ,L') in
,I f L is a"",f'.'~

(0.2) is clearly a-minirnal~ th1S allows us to apply to (5' ,L')

the results of [A-Sl).
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(0.4) The genus formula. Let L be a nef and big line bundle

on anormal surface S. Then the sectional genus, g(L),of L

i8 defined by the equality 2g(L) - 2 = (K
S

+ L) • L.

It can be easily seen that geL) i5 an integer. Further­

more if there exists an irreducible redueed eurve C in ILI,

g (L) is simply... the arithmetie genus

C. Note also that geL) = geL'), where

mal de5ingularization of (S,L).

Pa(C) = 1 - ~(Oc) of

(S' , L' ) i5 the mini-

(0.5) Let S be anormal surface and let L be a nef and

big line bundle on S. We say that the (generically) polarized

pair (S, L) is geornetrically ruled if S i5 a IP 1-bundle,

p : S ~ R, over a nonsingular curve Rand the restrietion

Lf of L to a fibre f of P i5 0f(1). We say that (S,L)

is a seroll (resp. a conie bundle) over a non5ingular eurve R

if there is a surjeetive morphism with connected fibres

p : S ---. R, with the property that L 15 relatively arnple

with respeet to p and there exist some k > 0 and some very

ample line bundle M on R such that (KS 0 L2 ) k ::::: p *M

(resp. (KS ~ L)k,::::: P*M); here K~ = (K:k )**.

o

The following result will be used several times through

the paper.
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(0.6) LEMMA. Let S be a nonsingular surface and let L be a

nef and big line bundle on S. Assurne (S,L) iä a-minimal.

Then the following are eguivalent

(0.6.1) hO(K~ + L) # 0;

(0.6.2) h O ( (KS + L) N) # 0 for some N > 0;

(0.6.3) KS + L i5 nef;

(0.6.4) g (L) ~ 1 and (KS + L)2 ~ O.

Proof. The equivalence between (0.6.2) and (0.6.3) i5 proved

in [A-S1], (2.5), while (0.6.1) ~ (0.6.2) and (0.6.3) ~

(0.6.4) are clear. So let us prove that (0.6.4) implies

(0.6.1). Now we have

Hence if (0.6.1) would be false, then

and the Hodge index

> 1

geL) = 1. Therefore (KS + L) • L = 0

theorem cornbined with (K
S

+ L)2 ~ 0

~(OS) > 0, a contradiction. So geL)

gives

and

K ..... -L
S

whence

thU5 follows that S is ruled; further we claim that

geL) = q(S). Indeed, since Pg(S) = 0, we have

Let d = L • L. Then the assumption (KS + L)2 ~ 0 and genus

formula (0.4) yield
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K~ + 4g(L) - 4 ~ d.

Therefore, s1nce S 1s ruled and geL) = q(S) > 1,

d ~ 8.(1. - q(S» + 4q(S) - 4 = 4 - 4q(S)

a contradiction.

o

(0.7) COROLLARY. Let S be anormal surface, L a nef and big

line bundle on S and let (S' ,L') be the minimal desingu-

larization of (S, L). Then KS ' + L' i5 nef if and only if

hO(KS + L) > length (KS/~S)' where ~s denotes the Grauert­

Riemenschneider canonical sheaf.

Proof. Look at the exact sequence

and note H1 (:I ~ L) = (0) by the Grauert-Riemenschneider
S

vanishing theorem and h O(~ ~ L) = length (KS/~S). Now the

statement is an immediate consequence of Lemma (0.6).

o

In section 1 we shall use Reider's result for separating

general points in the following form
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(0.8) THEOREM (Reider, [R] ). Let L be a nef and big line

bundle on a srnooth surface S. If L· L ~ 9 and the rnap as-

sociated to r (K
S

+ L) is not abirational rnorphisrn, then

there exists an effective divisor 0 Qll S such that

L • 0 = 0, 0 2 = -1;

L • 0 = 0, 0 2 = -1 or 0:

L • 0 = 2, 0 2 = 0; or

L 30, 0 2 = 1.

(0.9) Castelnuovo's bound. Let X be an-dimensional normal

variety and let L be a big and spanned line bundle on X.

Further assume that the map ~: X ~ wN associated to T(L)

is generically one to one. Let C be a smooth curve obtained

as transversal intersection of n - 1 general rnembers of ILI

and write d = Ln. Then

[d-2] [d-2] N-ng(C) ~ --- (d - N + n - 1 -( --- - 1)---).N-n N-n 2

Indeed C is nothing hut the norrnalization of C' = ~(C), so

deg C' = d and inequality above is a consequence of the usual

Castelnuovo's bound for the embeddings C' C ~(X) C ~N.

o

Finally, let us give the following general results we use

in the sequel.
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(0.10) LEMMA (Nef and big degree Lemma). L§t X be anormal

variety of dimension n and let ~ be a nef and big 1 ine

bundle on X. Denote by CI' the rational map associated to

I~I and let #s be the sheet number of the stein factoriza­

tion of ~ . Then

(0.10.1) c1(~)n ~ #s (deg ~ (X) ) ;

(0.10.2) n
~ 2(hO(~) - n) li K (X) ~ andcl(~) 0

dim cp (X) = n.

Proof. Look at aresolution of the fundamental locus of ~

where l = hO(~f. Then

X

X'

:I \~. l-l
-----~J IP

where is spanned

and CI" is the morphism associated to I~I. Further we can

assurne X' to be nonsingular. Take the Remrnert-stein factori-

zation s 0 r : X' ~ Y ~ ~l-l of cp' • Therefore *.M ~ r M

for some ample line bundle M on Y. Let #s be the degree

of sand m = dim Y. Then

*)

If m = n,
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and *), **) yield (0.10.1). If m < n,

***)

and (0.10.1) follows now from *), ***).

As a consequence' cf (0.10.1) we get

Whenever #s ~ 2, (0.10.2) is proved. If #s = 1, ~(X) has a

desingularizatio~ of non-negative Kodaira dimension. It thus

follows that the general surface section S C IP l+l-n has a

desingularization of non-negative Kodaira dimension. Now a

standard argument shows that deg (S) ~ 2(N - 1) = 2(hO(~) - n)

(see also [L-S], §O).

(0.11) LEMMA. ,Let ~,L be two line bundles on an irreducible

variety X. Assume that L is spanned.and big and hO(~) ~ 2.

Thgn, given a general element 0 € ILI, the restrietion

has an image of dimension ~ 2.
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Proof. Look at the exact sequence

-1o --+ ~ Cf L --+ ~ --+ ~D --+ o.

If the statement i8 not true, then there exists a non-zero

element t € r(~ Cf L-1 ). Consider the restrietion map

since L is spanned and big we can find non-trivial

°t 1 ,t2 € h (L) whose restrietions on D are not multiples of

multiples of one another on

one another. If. ö(t) 'F- 0, then t
1

0 t, t
2

0 t are not

D and we are done. Otherwise we

would have {j (t) 0 (tl - t 2 ) D = ° in r (~o) after possibly

multiplying the t i by non zero constants. Since (tl - t 2 )o'F-O

by the above, this leads to a contradictioni here we use that

o is irreducible since

zero-map and therefore

i t is general. Hence {j is the

r(~ Cf L-2 ) = r(~ Cf L-1 ) 'F- (0). By

repeating the same argument we

r(~ Cf L-m) # (O),m » 0, again a contradiction.

find

o

that

For any further background material we refer to [A-Sl]

and [A-52].
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§1. The birationality theorem

Let L be an ample and spanned line bundle on anormal

surface s. Let (S' ,L') denote the minimal desingularization

of (S,L) and let ~S = v*KS be the Grauert-Riemenschneider

canonical sheaf. Then the following can be proved

(1.1) THEOREM. Let (S,L), (S' ,L') be as above with KS ' + L'

nef and big. Further assurne that f(L) gives a generically

one to ooe map. I! gives a bira-

tional map unless possibly L' ~ 3D, for same effective divi-

sor D with D· D = 1.

Praof. From Lemma (0.6) we see that hOCKS' + L') =

= hO(~s + L) > O. Hence looking at the meromorphic maps ~,~

associated to ~ (:fs + L), f (KS·' + L')

the commutative diagram

respectively and from

we see that it suffices to work with ~ on S'. To go on as-

sume that ~ is not birational. Then given a general point x

of S'

morphism

there 15 a general point. y of S' such that the
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is not onto, where lL m lL is the skyscraper sheafx y

°S,/I1&X m QI . By Reider's theorem (0.8) there exists on S' any

effective divisor D passing through x,y such that.

L' . D = 0,1 or ·2 or L' . D = 3 and D - D = 1.

The case L' • D = 0 can be easily ruled out. Indeed, if

L' • D = 0, then v(D) is a finite set. Therefore x,y be-

long to some positive dimensional fibre of T, so that either

x nor y is a general point; a contradiction.

The case L' - D = 3 with D-D = 1 gives (L' - 3D)-D = O.

Hence L' - 3D or (L' - 3D)2 < 0 by the Hodge index theorem;

since

2 ·2(L' - 3D) = L' - 6L' - 0 + 90 - 0

it has to be L' - 3D.

= L,2 - 9 ~ 0

Finally, let L' - 0 = 2 or 1. Since L 15 ample and

spanned and f(L) gives a generically one to one map it thus 'I

follows that lr (0) i6 either a smooth line or a (possibly

singular) conic. Then the proper transform 0' of v(D) (or

of a reduced component of T(D» under v is a nonsingular

rational curve. ·s ince x, y ~re general points we find in' this

way an uncountable set of distinct nonsingular rational curves
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on S'. Now the general theory on the Hilbert scheme says that

Hilb(D' ,8') has countably many components. Therefore there is

an irreducible component T of the Hilbert scheme Hilb(D' ,S')

with a subset corresponding to uncountably many of these

singular rational curves. Fix a curve {, € T. Then (,2 ~ 0

on S' and hence H1 (S' ,Nt) = (0) where Ne i5 the normal

bundle of t in 8'. It thus follows that there exist

irreducible projective varieties ~ and 7 with ~ C S' x ~

and if p: 2 ~ ~ and q: 7 ~ S' denote the maps induced

by the product projections, then p i8 a flat 8urjeetion and

q identifies p-1 (e) with t for a general point c € ~.­

Therefore we have KS ' • t ~ -2 and henee (Ks , + L') • (, ~ o.

Sinee KS ' + L' is nef and big, this leads to a eontradiction

by the Hodge index theorem.

(1.2) REMARK. Note that KS + L could also be considered to

obtain an analogous result to that of the Theorem above. Ho-

wever, the exaet sequence

gives an inclusion r(~s ~ L) C r(Ks @ L), so that the bira­

tional results proved for ~s ~ L irnply birationality results

for the adjunction mapping associated to r(Ks + L).
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§2. Some inegualities

The first two theorems we prove below generalize some re-

sults contained in [54], §3.

The following is a consequence of Theorem 1.1.

(2.1) THEOREM. Let L be a nef and big line bundle on a nor-

mal surface S and let (5' ,L') be the minimal desingulari-

zation of (5, L). Suppose K + L'S' to be nei and big.

Further assume K(S) 2 0 and let

and L' ~ 3D, D effective divisor with D· D = 1. Then

(KS ' + L') 2 ~ 2 (g (L) - q (S ') + P 9 (S') - 2)

or, eguivalently,

+ 2g(L) ~ 2(p (S') - q(S')) + d.
9

Proof. Under the hypotheses made the map ~ associated to

is birational by Theorem (1.1). Then Lemma

(0.10.2) yields

Now
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so we are done.

(2.2) THEOREM. Let L be a nef and big line bundle on a DQK­

mal surface S and let (S' ,L') be the minimal desingulari-

zation of (S,L). Assume Ks ' + L' to be nef and big. Then

(2.2.1)

(2.2.2)

Proof.

(KS I + L') 2 ~ g (L) - q (S') + Pg (S') - 2;

(KS ' + L,)2 ~ geL) + q(S') - 2.

Look at the map ~ associated to f(K S ' + L'). Then

Lemma (0.10.1) gives us

(KS ' + L,)2 ~ cod ~(S') + 1 o= h (KS ' + L') - 2

o
and again h (RS ' + L') = ~(KS' + L') = geL) - q(S') + Pg(S'),

this leading to (2.2.1).

Tc prcve (2.2.2) note that there exists an effective rnern-

ber C' € IKS ' + L' I
sequence

in view cf Lemma (0.6). Then the exact

where denotes the dualizing sheaf of C' I gives a sur-

jective morphism
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since H
1

(S' I 2KS ' + L' ) = (0) by the Kawamata-Viehweg vani-

shing theorem. Now, h1(-L) = ° since L is nef and big, so

that ° = hO(Os) 1 and hence ° 1
h (OC') = h (w c ,) = h (0 C' ) =

= g(Ks' + L'). Therefore

g(KS' + L') ~ q(S')

so by the genus formula we find

2q(S') - 2 ~ 2g(KS ' + L') - 2 = (2KS ' + L')· (KS ' + L') =

= 2 (KS ' + L') 2 - L' • (KS ' + L'),

that is

(KS ' + L') 2 ~ 9 (L) + q (S') - 2.

(2.3) COROLLARY.· Let (S/L), (S' ,L') be as in Theorem (2.2)

and let d = L • L. Further assume that q(S') > °
P (5') = O. Then

9

geL) ~ d/3 + 3q(S') - 2.

Proof. From [51] (0.8.2) we know that

KS ' • KS '. ~ 8 (1 - q (S' ) ) and the genus formula reads
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(KS ' + L') 2 + d = KS ' • KS ' + 4g ( L) - 4.

Hence

8(1 - g(S'» l (KS ' + L,)2 + d - 4g(L) + 4.

By combining the inequality above with (2.2.2) we get the re­

sult.

(2.4) REMARK. Note that whenever S' is birationally ruled

and IL' I contains a smooth curve C which meets a general

fibre of the ruling S' --. R, R nonsingular curve, in t

points, then the Hurwitz theorem gives us

g (L) l 1 + t (q (S') - 1).

However, such an inequality is usually weaker than (2.3) for

taround 3.

(2.5) COROLLARY. Let (5, L) , (S' ,L') be as in Corollary

(2.3) . Further assume 9 (L) ~ 6. ~ q(S' ) ~ 2 . If

q (S' ) = 2 , then either g (L) = 5 Nith d ~ 3 m.: g (L) = 6

with d ~ 6. Furthermore if L is spanned and r (L) gives a

generically one to one map then q (S' ) = 2 implies that

hO (L) = 4, g (L) = 6 and d = 5 or 6.
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Proof. Indeed Il~(S') ~ 3 implies geL) >? b~ (2.3) above,

so that g(S') ~ 2. Again (2.3) and q(S') = 2 imply geL) ~ 5

or 6 with the stated bound for d.

If L is spanned and r (L) gives a generically one to

one map then Castelnuovo's bound (0.9) shows d ~ 4 if

9 (L) = 5. Therefore 9 (L) = 6. By combining (2.3) and (0.9) we

find d = 5 or 6 and hO(L') = hO (L) = 4.

D

Finally let us give an easy hut useful generalization of

some of Sommese's results contained in [53].

(2.6) THEOREM. Let X be an irreducible variety of dimension

n. Let L be a spanDed and big liDe bUDdle on X. Let 5 C X

be a general surface section obtained as transversal intersec-

tion of n - 2 general members cf ILI and let (5' ,L') be

the minimal desingularization of

one has

(2 • 6. 2) KS ' • L'S' • L'S'

more if either ineguality is an eguality then K(X) = O.
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Proof. By using Bertini's type theorems and the fact that S

is general one sees that,there exists a cornmutative diagram

where a,ß are desingularizations, a = ß 18....
and it factorizes through some morphisrn h since ~ is the

minimal desingularization of S. Note that by hypothesis K ....
X

is ~-effective. Note also that K(S') = 2 since K(X) ~ 0,

and hence KS ' + L' is nef and big by [A-Sl]. Let L.... = ß*L.

From the cornmutativity of the diagram it thus follows that

..... *LS..... ~ h LS,. Then we can cornpute:

O / h * (K L ') (K ~ • L ..... n - 2 ) --.::::. S' + S' • X'~

= KS I • KS ' - ( n - 2) LS' · LS' - (n - 3) KS ' • LSI

which leads to (2.6.1). Similarly one has
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, '_! ' 1~, ,
'j

that is (2.6.2). To prove the last part of the statement, note

that the equality. in (2.6.1) or (2.6.2) gives respectively

or

by Lemma (0.11). Therefere since

Now if for seme N ~ 1, then

and are

nef and big a straightforward check shows that the intersec-

tion numbers * '"
K "'I '" e h (KS ' + LS' ) and K "'I '" e L '" roust

X S X S S

be positive. It thus fellows that h O (KN",) ~ 1 for all N > 0,
X

whence K (X) = 0.

o

The following consequence of the Theorem above is a

slight generalization of (0.5.1) in [L-S].

(2.7) COROLLARY. Let (X,L)

d = L
eN

• Then

be as in Theorem (2.6) and let

d ~ 2(g(L)-1)
n-1

with eguality only if K(X) = 0.,
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Proof. From (2.6.2) and the genus formula we get
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§3 An application to hyperelliptic hyperplane sections

First of all note that it i8 equivalent to consider pairs

. (S, L) where S is anormal surface with L an ample and

spanned lioe bUDdle such that f(L) gives a geoerically one

to ODe map and pairs (5, L) where S is the normalization

of an irreducible surface I C Fr and *L ~ 11 0(1).

Indeed, *Tl 0(1) is ample and spanned and *r(Tl 0(1» gives a

generically one to one map.

Now let (S' ,L') be the minimal desingularization of a

pair (5, L) as above. The following is the analogue of a

t-esl"l! t of 50MMese~ working in the case when q (5') :::a 0 (see

[51], § 4) and of a t"&$IIl/t of V&.., Je Va n 's where L has to verify

the two extra conditions hO(L) ~ 7 and L· L ~ 10 (see [V],

Cor. IV).

(3.1) THEOREM. with the notation as above, let L be an ample

and spanned line bUDdle on anormal surface S. Further assurne

that r (L) gives generically to
. 2

~ 10a one ODe map and Cl (L)

.Q1: C
1

(L)2 ~ 9 gng L' 7- 3D, D effective divisor with

0 . o = 1. If there exists a srnooth hyperelliptic curve

C € ILI .t.h.!m Pg(S') = 0, d = C 1 (L)2 ~ geL) + 2 and either

(3.1.1) q(s') > 0, hO(L) = 4, geL) + 2 ~ Jq(S') + d/J



,"I ~. I ' ....., J "l • I. • • ~ ..

, ..... Ir; 1 I ~ .• t I j •

• \ I !. !

j ~ .. I _I .~ 4 I "

and there exist at most finitely many smooth curves'in ILI;
I I ~

(3.1.2)

(3.1.3)

(S,L) is a eone or aseroll; QX

(S' ,L') is a conic bundle over a smooth eurve.

Proof. Let C be a nonsingular hyperelliptic curve belonging

to ILI. It should'be noted that C' = ~-1(C) is a nonsingu-

lar hyperelliptic 'curve in IL' I since c does not pass

through the singular points of S; vieeversa, given any smeoth

hyperelliptie curve C' € IL' I, ~(C') = c is an hyperelliptic

curve in sinee *L' = ~ L.

From now on, we ean assurne that is nef and

big. otherwise in view of [A-Sl], (2.5), (2.7), (S' ,L') is

either a conic bundle er aserollover a nonsingular eurve or

the mininimal desingularization of a quadric eone. Now an easy

argument shows th~t if (S,L) i- (5' ,L') and (5' ,L') is a

seroll then " (5, L)

( 3 • 1. 2) or ( 3 • 1. 3) •

is a cone. Thus we fall in one of elasses

\

First, note the fact that there exist at most fini tely

many smooth hyperelliptie eurves C in' ILI is clear. Other­

wise, if C' = rr- 1 (c), Kc ' ~ (Ks ' + L') Ic' and hence the map

associated to r(KS ' + L') would be at least 2 to 1 on a

dense set of curves, this contradicting Theorem 1.1. To go on,

we need the following

,~ ,.
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CLAIM. Let, x E.. C ..be a ramification po:int for, the canoni9al
.' ,.. , . c . j , •

map associat~d to

C' EIL', - xl is tangent to C at x or~ if . q(S') > ° and
4 • • ~ • r ~ • - J ' .

a smooth C' € IL' - xl is tangent to C at x, of the 2
nd

order, then C' is hyperelliptic.

Proof of the Claim. Note that the proof in [82], (4.2) works

with almost no change to give,the q(S') > ° result. We give

here the proof of the stronger, statement when q(S') = 0. Take

an element A E IKS ' + L' - x I. Then the local intersection

mUltiplicity (A.C)x at x is nothing but the zero's order

r(KC)' thereforeof al-form belonging to (A • C) ~ 2. Itx

thus fellows that (A • C')x ~. 2 also. Indeed, if (A • C')x = 1

then A would be smooth at x. and transverse to C' at x

and hence to any smooth curve C tangent te C' at x. Thus,

since the map , I

is onto q(S') being zero, we see that any I-form w € r(Kc ')

which vanishes at x, vanishes to the 2 nd order at x. This

means that C' is hyperelliptic (see again [52]).

o

From the Claim we infer that if g(5') = 0 and

hO(L') = 4 or q(S') > 0 and hO(L ' ) ~ 5 there is a pencil

of smooth hyperelliptic curves C' EIL' I on 5'. Again,
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looking at the restrietion (KS ' + L') IC" ~ KC' the same ar­

gument as above leads to a contradiction in view of Theorem

1.1. Note hO(L) L 4 since hO(L) = 3 would imply

(S, L) "V (IP 2 ,0 (1) ), by Zariski ' s Main Theorem, contradicting

L • L L 9. Thus it has to be q(S') > ° and hO(L) = 4.

To prove that p (5') = 0 the same argument as in [SI],
g

(0.8.3) works. We recall it for reader's convenience. First,

h
1

(L'C') = hOCKe' - L'C') = 0 since C' is hyperelliptic.

otherwise, let s be a non-zero element in f(C' ,KC' - L'C').

Then s 0 r(L) is a subspace V of r(Kc ,) with the proper­

ty that the map associated to V is generically one to one on

{x € C' S (x) "/. O} , a contradiction. Thus easily it follows,

that h1(LC~) ° - tL' ) ° for all t L 1. Now, since= h (KC' =C'

clearly h 2 (L' t) ° - tL') 0 for t 0, the long= h (KS ' = »

exact cohomology sequence associated to

for t ~ 0, shows that p (S') =0.
9

Moreover, hO(Lc ) ~ 3

x(LC) = d - geL) + 1 L 3

d l geL) + 2.

because hO (L) ~ 4. Therefore

1since h (LC) = 0, which gives

Finally we apply Corollary (2.3) to get

geL) + 2 l d/3 + 3q(S')

completes the proof.

whenever g(S') > ° and this
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