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COISOTROPIC DISPLACEMENT AND SMALL
SUBSETS OF A SYMPLECTIC MANIFOLD

Jan Swoboda and Fabian Ziltener

We prove a coisotropic intersection result and deduce
the following:
• Lower bounds on the displacement energy of a subset

of a symplectic manifold, in particular a sharp stable
energy-Gromov-width inequality.

• A stable non-squeezing result for neighborhoods of
products of unit spheres.

• Existence of a “badly squeezable” set in R2n of Haus-
dorff dimension at most d, for every n ≥ 2 and d ≥ n.

• Existence of a stably exotic symplectic form on R2n,
for every n ≥ 2.

• Non-triviality of a new capacity, which is based on
the minimal symplectic area of a regular coisotropic
submanifold of dimension d.
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1. Motivation and main results

1.1. Questions. The theme of this article is the following.

Question 1. How much symplectic geometry can a small subset of a
symplectic manifold carry?

We approach this question from several points of view, interpreting
”small” as “of Hausdorff dimension bounded above by a given number”.
Our main tool is an intersection result for coisotropic submanifolds
(Theorem 1 below). Further results will appear in [SZ].

One instance of Question 1 is the following. Let (M,ω) be a sym-
plectic manifold. (For simplicity all manifolds in this paper are as-
sumed to have empty boundary.) For a subset X ⊆ M we denote
by e(X) := e(X,M) := e(X,M,ω) its displacement energy (see (29)
below).

Question 2. What lower bounds on e(X) can be detected by special
small subsets of X?

To make this more precise, let X be a collection of subsets of M and
f : X → [−∞,∞] a function. We define

f̂ :
{
subset of M

}
→ [−∞,∞], f̂(X) := sup

{
f(Y )

∣∣Y ∈ X , Y ⊆ X
}
.

Note that the estimate

e(X) ≥ f̂(X), ∀X ⊆M

holds, provided that the inequality

(1) e(X) ≥ f(X), ∀X ∈ X
is satisfied. Our goal is therefore to find a collection X containing a lot
of small subsets of M and a big function f : X → [−∞,∞] for which
the inequality (1) is satisfied. Our ansatz in this article is to define X
to be the set of all closed regular coisotropic submanifolds N ⊆M and
f(N) to be a refined version of the minimal symplectic area of N (see
(4) below). Inequality (1) is then a direct consequence of Theorem 1
below.

Another instance of Question 1 is the following. Let n ∈ N =

{1, 2 . . .} and a ∈ (0,∞). We denote by B2n(a) (B
2n

(a)) the open
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(closed) ball in R2n of radius
√
a/π, around 0. Furthermore, we de-

note by Z2n(a) := B2(a)× R2n−2 the open symplectic cylinder of area
a. (Note that B2n(a) and Z2n(a) both have Gromov-width a.) We
abbreviate B2n := B2n(π) and Z2n := Z2n(π).

Let (M,ω) and (M ′, ω′) be symplectic manifolds. We write (M,ω) ↪→
(M ′, ω′) iff there exists a symplectic embedding of M into M ′. Let n ∈
N. We denote by ω0 the standard symplectic form on R2n. Gromov’s
non-squeezing result [Gr, Corollary, p. 310] states that (B2n(a), ω0) 6↪→
(Z2n, ω0) if a > π. We may ask whether the boundary of the unit ball
(or more generally, a finite product of unit spheres) is already too big
to be squeezed into the unit cylinder. To make this more precise, let
k ∈ N and n1, . . . , nk ∈ N. We denote n :=

∑k
i=1 ni.

Question 3 (Skinny non-squeezing). If U ⊆ R2n is any open neigh-
borhood of ×k

i=1S
2ni−1 then is it true that

(2) (U, ω0) 6↪→ (Z2n, ω0)?

If ni = 1 for some i then an elementary argument shows that there
exists a U as above for which (U, ω0) ↪→ (Z2n, ω0). Hence assume that
ni ≥ 2, for every i. In this case Corollary 5 below provides a positive
answer to a stabilized version of Question 3 (and in particular to the
original question).

Generalizing Question 3, we may wonder how much small subsets
of a symplectic manifold can be squeezed. This leads to the following
definition. We denote the Hausdorff dimension of a metric space (X, d)
by dim(X). Let (M0, ω0) be a symplectic manifold of dimension 2n
and d ∈ [0,∞). We define the map

(3) embM0,ω0

d :
{
symplectic manifold (M,ω)

∣∣ dimM = 2n
}
→ [0,∞]

as follows. We define

X 2n :={
(M,ω,X)

∣∣ (M,ω) : symplectic manifold, dimM = 2n, X ⊆M
}
,

embM0,ω0 : X 2n → [0,∞]

embM0,ω0(M,ω,X) :=

inf
{
a > 0

∣∣ ∃U ⊆M open: X ⊆ U, (U, ω|U) ↪→
(
M0, aω0

)}
.

For d ∈ [0,∞) we now define the map (3) by

embM0,ω0

d (M,ω) :=
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sup
{

embM0,ω0(M,ω,X)
∣∣X ⊆M : compact, dim(X) ≤ d

}
.

Question 4 (Squeezing small sets). What is the value of embM0,ω0

d (M,ω)?

Theorem 6 below provides a lower bound on this number in the
case M0 := Z2n, equipped with the standard form ω0, and (M,ω) :=
(B2n, ω0). In particular, it shows that for every n ≥ 2 and d ≥ n

the number embZ2n,ω0

d (B2n, ω0) is positive, and therefore embZ2n,ω0

d is
an intrinsic symplectic capacity on (R2n, ω0) in the sense of [Schl1,
Definition C.1, p. 224].

Looking at Question 1 from yet another point of view, we may ask
the following.

Question 5 (Distinguishing symplectic structures). How can the
(non-)existence of certain subsets be used to distinguish symplectic struc-
tures?

Corollary 7 below is concerned with this question. It says that every
coisotropically infinite symplectic structure on R2n is stably exotic.
(For definitions see page 9.) It follows that there exists a stably exotic
symplectic form on R2n, if n ≥ 2.

1.2. Coisotropic Intersections and displacement energy.

Coisotropic intersections. The main results of this article are con-
sequences of the following key result. In order to state it, let (M,ω)
be a symplectic manifold. We call it (geometrically) bounded iff there
exist an almost complex structure J on M and a complete Riemannian
metric g such that the following conditions hold:

• The sectional curvature of g is bounded and infx∈M ιgx > 0, where
ιgx denotes the injectivity radius of g at the point x ∈M .

• There exists a constant C ∈ (0,∞) such that

|ω(v, w)| ≤ C|v| |w|, ω(v, Jv) ≥ C−1|v|2,

for all v, w ∈ TxM and x ∈M . Here |v| :=
√
g(v, v).

For examples see Section 1.6.
Let N ⊆M a coisotropic submanifold. We denote by A(N) its min-

imal symplectic action (see (32) below). We define the split minimal
symplectic action of N , A×(M,ω,N) as follows. We define a bounded
splitting of (M,ω,N) to be a tuple (Mi, ωi, Ni)i=1,...,k, where k ∈ N
and for every i = 1, . . . , k, (Mi, ωi) is a bounded symplectic mani-
fold and Ni ⊆ Mi a coisotropic submanifold, such that there exists
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a symplectomorphism ϕ from
(
×k

i=1Mi,⊕k
i=1ωi

)
to (M,ω), satisfying

ϕ
(
×k

i=1Ni

)
= N . We define

(4) A×(N) = A×(M,ω,N) :=

sup
{

min
i=1,...k

A(Mi, ωi, Ni)
∣∣ (Mi, ωi, Ni)i bounded splitting of (M,ω,N)

}
.

Here our convention is that sup ∅ = 0.
Remark. If (M,ω) is not bounded then (M,ω,N) does not admit any
bounded splitting, and therefore A×(N) = 0. This follows from the
facts that a finite product of bounded symplectic manifolds is bounded,
and boundedness is invariant under symplectomorphisms. 2

We call a coisotropic submanifold N ⊆ M regular iff its isotropy
relation (see (30) below) is a closed subset and a submanifold of N×N .
Equivalently, the symplectic quotient of N is well-defined.

We denote by Ham(M,ω) the group of Hamiltonian diffeomorphisms
on M and by ‖·‖ω the Hofer norm on Ham(M,ω). (See Section 2, page
14). The key result of this article is the following.

Theorem 1 (Coisotropic intersections). Let (M,ω) be a symplectic
manifold, ∅ 6= N ⊆ M a closed connected regular coisotropic submani-
fold, and ϕ : M →M a Hamiltonian diffeomorphism. If

(5) ‖ϕ‖ω < A×(N)

then

(6) N ∩ ϕ(N) 6= ∅.

In the case where N is a Lagrangian submanifold the statement
of this result is an immediate consequence of the Main Theorem in
Y. Chekanov’s paper [Ch]. Furthermore, Theorem 1 is related to the
main result, Theorem 1, in [Zi]. Namely, it has weaker hypotheses
and a weaker conclusion than that result. Its proof is an adaption
of the proof of [Zi, Theorem 1]. It is based on a certain Lagrangian
embedding of N and on the Main Theorem in [Ch].

Displacement energy. The next result provides an answer to Ques-
tion 2. To formulate it, we define the map

Acoiso
× :

{
(M,ω,X) | (M,ω) symplectic manifold,X ⊆M} → [0,∞],

by taking Acoiso
× (X) = Acoiso

× (M,ω,X) to be the supremum of all num-
bers A×(N), where N 6= ∅ is a closed regular coisotropic submanifold
of M that is contained in X (with the convention that sup ∅ = 0). Let
(M,ω) be a symplectic manifold and X ⊆M a subset.
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Corollary 2 (Displacement energy). If (M,ω) is bounded then

e(X) ≥ Acoiso
× (X).

This is an immediate consequence of Theorem 1. In an example on
page 11 below we will compute Acoiso

× (X) for certain products. As a
special case, let ω1 be an area form on S2 with total area at least π.
Then Corollary 2 and inequality (22) below imply that

e
(
(S3)2,R8, ω0

)
= π,

e
(
(S1)2 × S2,R4 × S2, ω0 ⊕ ω1

)
= π.

To our knowledge, these equalities are new.

Stable sharp energy-Gromov-width inequality. As a consequence
of Corollary 2, we obtain the following result. Let (M,ω) be a sym-
plectic manifold. We call it aspherical iff

∫
S2 u

∗ω = 0 for every u ∈
C∞(S2,M). We denote 2n := dimM and by

w(M) := w(M,ω) := sup
{
a

∣∣ (B2n(a), ω0) ↪→ (M,ω)
}

the Gromov-width of (M,ω). Let (M ′, ω′) be another symplectic man-
ifold.

Corollary 3 (Energy-Gromov-width inequality). Assume that (M,ω)
and (M ′, ω′) are aspherical, (M,ω) is bounded, and M ′ is closed. Then
for every open subset U ⊆M , we have

(7) e
(
U ×M ′,M ×M ′) ≥ w(U).

This inequality appears to be new. (There are previous results about
the case M ′ = {pt} or with a constant factor on the right hand side of
(7), see Section 1.6.)
Remark. Even in the case M ′ = {pt} the result is sometimes new.
As an example, let X be a closed manifold and σ a closed two-form
on X such that

∫
S2 u

∗σ = 0, for every u ∈ C∞(S2, X). We denote by
π : T ∗X → X and ωcan the canonical projection and two-form on T ∗X.
We define (M,ω) :=

(
T ∗X,ωcan + π∗σ

)
and M ′ := {pt}.

Then the hypotheses of Corollary 3 are satisfied, and therefore, ap-
plying the corollary, we have e(U) ≥ w(U), for every open subset
U ⊆ M . For X equal e.g. to the sphere S2 or the two-torus T2 this
result appears to be new. 2

The statement of the corollary is sharp in the sense that for every
pair of symplectic manifolds (M,ω) and (M ′, ω′) there exists an open
subset U ⊆ M for which equality holds in (7). Namely, denoting
2n := dimM , and by B2n

r ⊆ R2n the open ball of radius r around 0,
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we may choose r > 0 and an embedding ϕ : (B2n
3r , ω0) ↪→ (M,ω). We

define U := ϕ(B2n
r ). The opposite inequality in (7) then follows from

an elementary argument using Remarks 37 and 38 below.

1.3. The regular coisotropic capacity. Let d ∈ N. The minimal
coisotropic area gives rise to a map

Ad
coiso :

{
symplectic manifold

}
→ [0,∞].

Namely, we define Ad
coiso(M,ω) to be the supremum of all numbers

A(N), where N ⊆ M is a non-empty closed regular coisotropic sub-
manifold of dimension d, satisfying the following condition:

(8) ∀F isotropic leaf of N, ∀x ∈ C(S1, F ) : x is contractible in M.

Our next result involves the function

(9) k : N× N → N ∪ {∞},

which is defined as follows. Let (n, d) ∈ N × N. We define k(n, d) to

be the infimum of all integers
∑`

i=1 ki, where ` ∈ N and k1, . . . , k` ∈ N
are such that there exist ni ∈ N, for i = 1, . . . , `, satisfying

ni ≥ ki,(10) ∑
i kini = n,

∑
i ki(2ni − ki) = d.(11)

Here our convention is that the infimum of the empty set is ∞. Note
that k(n, d) = ∞, if d < n or d > 2n− 1. On the other hand,

k(n, d) ≤ 2n− d, if n ≤ d ≤ 2n− 1.

(See inequality (37) in Proposition 8 below). Let n, n′ ∈ N, d ∈
{n, . . . , 2n}, and (M,ω) and (M ′, ω′) be symplectic manifolds of di-
mensions 2n and 2n′, respectively.

Theorem 4 (Regular coisotropic capacity). The following statements
hold.

(i) If d < 2n then the restriction of Ad
coiso to the class of all aspherical

symplectic manifolds of dimension 2n is a symplectic capacity (as
defined on page 15). For d = 2n − 1 this capacity is normalized,
i.e., it takes on the value π on B2n and Z2n.

(ii) We have

Ad
coiso(B

2n, ω0) ≥ π
k(n,d)

,(12)

Ad
coiso(Z

2n, ω0) ≤ π.(13)
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(iii) If (M ′, ω′) is closed and aspherical then

(14) Ad+2n′

coiso

(
M ×M ′, ω ⊕ ω′

)
≥ Ad

coiso(M,ω).

For d ∈ {n, . . . , 2n − 1} we call the restriction of Ad
coiso to the

class of all aspherical symplectic manifolds of dimension 2n the reg-
ular coisotropic capacity . In the case d = n this is closely related to
the Lagrangian capacity introduced by K. Cieliebak and K. Mohnke
[CM]. Furthermore, in this case, the right hand side in (12) simplifies.
Namely, we have
(15)

k(n, n) = K(n) := inf
{ ∑̀

i=1

ki

∣∣ ` ∈ N, k1, . . . , k` ∈ N : n =
∑

i

k2
i

}
.

(See equality (35) in Proposition 8 below.) The first few values of K
are

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
K(n) = 1 2 3 2 3 4 5 4 3 4 5 6 5 6 7 4 5

The function K satisfies the upper bound

K(n) <
√
n+ 2

3
2 4
√
n.

(See inequality (36) in Proposition 8 below.)

1.4. Symplectic squeezing of small sets. Our next application of
Theorem 1 is the following. Let k ∈ N and n1, . . . , nk ∈ N. We denote
n :=

∑k
i=1 ni. Let (M,ω) be a symplectic manifold.

Corollary 5 (Skinny non-squeezing). Let U ⊆ R2n be an open neigh-
borhood of ×k

i=1S
2ni−1. Assume that ni ≥ 2, for every i = 1, . . . , k, M

is closed, and

(16)

∫
S2

u∗ω ∈ πZ, ∀u ∈ C∞(S2,M).

Then we have

(17)
(
U ×M,ω0 ⊕ ω

)
6↪→

(
Z2n ×M,ω0 ⊕ ω

)
.

Taking M = {pt}, this result provides a positive answer to Question
3 of Section 1.1 in the case ni ≥ 2, for every i. To our knowledge, this
fact is new. 1

1We are not aware of any other written proof. However, K. Cieliebak mentioned
to the second author that in the case M = {pt} the non-embedding (17) also follows
from a standard “neck stretching” argument similar to the proof of [CM, Theorem
1.1].
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In order to state our result about Question 4, recall the definition
(3) of the map embM0,ω0

d . We also need the following. We define the
map

(18) k≥ : N× [0,∞) → R
in the same way as the map k (see (9)), replacing (11) by the conditions

(19)
∑

i

kini ≥ n,
∑

i

ki(2ni − ki) ≤ d.

Note that

k≥(n, d) ≤ k(n, d), ∀(n, d) ∈ N× [0,∞).

We can now formulate the following result.

Theorem 6 (Badly squeezable small sets). For every n ∈ {2, 3, . . .}
and d ∈ [n,∞) we have

embZ2n,ω0

d (B2n, ω0) ≥
π

k≥(n, d)
.

The map k≥ satisfies some explicit upper bounds, see Proposition 8
below. As an example, inequalities (33,35,36) of that proposition imply
that for d ≥ n,

k≥(n, d) <
√
n+ 2

3
2 4
√
n.

In the proof of Theorem 6 we consider a certain product of Stiefel
manifolds. This is a regular coisotropic submanifold N of R2(n+n′) for
some n′ ∈ N. We also use the inequality

embZ2n,ω0

d (M,ω) ≥ Ad
coiso(M,ω),

see Proposition 21 below. The proof of this inequality is based on
Theorem 1. It also relies on an argument in which we glue disks to
a given regular coisotropic submanifold N , to make all loops in the
isotropic fibers of N contractible.

1.5. Stably exotic symplectic forms. To state our last application
of Theorem 1, let n ∈ N. We call a symplectic form ω on R2n stably
exotic iff the following holds. Let (X, σ, σ′) be a triple consisting of
a closed manifold X and symplectic forms σ and σ′ on X, with σ
aspherical, and let ϕ : M := X × R2n → X × R2n be an embedding.
Then

(20) ϕ∗(σ ⊕ ω0) 6= σ′ ⊕ ω.

Note that such an ω is exotic in the usual sense, i.e., if ϕ : R2n → R2n

is an embedding then ϕ∗ω0 6= ω.
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Our result is a sufficient criterion for stable exoticness. Namely,
we call a symplectic manifold (M,ω) (coisotropically) infinite iff there
exists a regular closed coisotropic submanifold N ⊆ M with A(N) =
∞. (This means that

∫
S2 u

∗ω = 0, for every u ∈ C∞(S2,M) such that
u(S1) is contained in some isotropic leaf of N .) We call (M,ω) strongly
(coisotropically) infinite iff there exists N as above, such that every
continuous loop in an isotropic leaf of N is contractible in M .

Corollary 7 (Stably exotic form). Let n ∈ N. Then every coisotropi-
cally infinite form on R2n is stably exotic.

It follows from Corollary 7 and the example on page 11 below that
for every n ≥ 2, there exists a stably exotic symplectic form on R2n.

1.6. Remarks, examples, related work etc.

Remarks. On geometric boundedness: In the article [Zi] the sec-
ond author used the term “geometrically bounded” in a slightly stronger
sense.
On Theorem 1: Assume that the hypotheses of Theorem 1 are sat-
isfied and the pair (N,ϕ) is non-degenerate in the sense of [Zi]. Then
the number of leafwise fixed points of ϕ is bounded below by the sum
of the Z2-Betti numbers of N . This follows by adapting the proof of
Theorem 1 along the lines of the proof of [Zi, Theorem 1]. 2

On Corollary 3: The assumption that (M ′, ω′) is aspherical can be
weakened as follows. For a symplectic manifold (M,ω) we define

(21) A(M,ω) := inf
({ ∫

S2

u∗ω
∣∣u ∈ C∞(S2,M)

}
∩ (0,∞)

)
∈ [0,∞].

Assume that (M,ω) is aspherical and bounded, and there exist closed
symplectic manifolds (Mi, ωi), for i = 1, . . . , k, such that M ′ =

∏
iMi,

ω′ = ⊕iωi, and A(Mi, ωi) ≥ w(U). Then inequality (7) still holds. This
follows from an argument using Corollary 2. 2

On the regular coisotropic capacity: One can define variants of
this capacity by imposing other conditions on the coisotropic subman-
ifold N (e.g., stability or a contact type condition). Note that in order
to obtain a capacity cd satisfying cd(Z2n, ω0) < ∞, one can neither
completely drop the condition that N is closed nor that it is regular.

Namely, there exists a regular (but not closed) coisotropic subman-
ifold N ⊆ Z2n such that A(Z2n, ω0, N) = ∞, and there exists a
closed (but not regular) coisotropic submanifold N ′ ⊆ Z2n such that
A(Z2n, ω0, N

′) = ∞.
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As an example, we may choose a coisotropic subspace W ⊆ R2n of
dimension d and define N := W ∩Z2n. Furthermore, we may choose N ′

to be a closed hypersurface in Z2n without any closed characteristic.
Such an N ′ exists by a construction due to V. Ginzburg, see [Gi],
Example 7.2 p. 158. (Such an N is not regular. We shrink Ginzburg’s
hypersurface homothetically, so that it fits into Z2n.) 2

Examples. Examples for geometric boundedness: (M,ω) is bounded
if it is closed (i.e., compact and with empty boundary), a symplec-
tic vector space, convex at infinity (see [CGK, Remark 2.3]), or the
twisted cotangent bundle

(
T ∗X,ωcan +π∗σ

)
, where X is a closed mani-

fold X, σ is a closed two-form on X, and π : T ∗X → X and ωcan denote
the canonical projection and two-form on T ∗X. (For the last example
see [CGK, Proposition 2.2].) Furthermore, by a straight-forward argu-
ment, the product of a two bounded symplectic manifolds is bounded.
2

Example for Acoiso
× (X) and Corollary 2: For n ∈ N and a ∈ (0,∞)

we denote by S2n−1(a) ⊆ R2n the sphere of radius
√
a/π around 0. Let

k ∈ N0 = {0, 1, . . .}, ` ∈ N, for i = 1, . . . , k let ni ∈ N, and ai ∈ (0,∞),
and for i = 1, . . . , ` let (Mi, ωi) be a closed symplectic manifold. We
define n :=

∑
i ni, and

M := R2n ××`
i=1Mi, ω := ω0 ⊕⊕`

i=1ωi,

X := ×k
i=1S

2ni−1(ai)××`
i=1Mi.

We claim that

(22) Acoiso
× (X) ≥ a := min

(
{ai}i ∪ {A(Mi, ωi)}i

)
,

where A(Mi, ωi) is defined as in (21). To see this, observe that N :=
X is a closed regular coisotropic submanifold of R2n × ×`

i=1Mi with
A×(N) ≥ a. (This inequality follows from a straight-forward argu-
ment involving the splitting M = ×iR2ni ××iMi, and Remark 31 and
Proposition 34 below.) The claimed inequality (22) follows.

Combining Corollary 2 with inequality (22) we obtain

(23) e(X) ≥ a.

Assume that miniA(Mi, ωi) ≥ mini ai. Then the estimate (23) is sharp.
To see this, let j ∈ {1, . . . , k} be such that aj = mini ai. Remarks 37
and 38 below imply that e(X) ≤ aj = a. 2

Examples of coisotropically infinite manifolds. Every closed
aspherical symplectic manifold and the cotangent bundle of a closed
simply-connected manifold are strongly infinite. (In the first example
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we may take N := M , and in the second example we may take N to be
the zero section of the bundle.) Furthermore, by a standard argument,
there exists a pair (ω,L), where ω is a symplectic form on R2n and
L ⊆ R2n is a closed Lagrangian submanifold such that

∫
D u

∗ω = 0, for
every u ∈ C∞(D,M) satisfying u(S1) ⊆ L. (See e.g. [ALP], p. 317.)
Such a form ω is strongly infinite. 2

Related work. Coisotropic intersections and displacement en-
ergy. In [Zi] the second author proved a result (Theorem 1) similar to
the key result (Theorem 1) of the present article.

Let (M,ω) be a symplectic manifold and U ⊆ M an open subset.
In the case M ′ = {pt} the energy-Gromov-width inequality (7) follows
from an elementary argument, whenever one can prove that a certain
symplectic capacity c satisfies

c(B2n, ω0) ≥ π,(24)

c(U, ω|U) ≤ e(U,M).(25)

In the following, we take “e” in inequality (25) to mean variants of the
displacement energy. Let (M,ω) := (R2n, ω0) and c be the Ekeland-
Hofer capacity. Then inequality (24) was proved by I. Ekeland and
H. Hofer in [EH, Theorem 1]. (They actually proved equality.) Fur-
thermore, H. Hofer [Ho1, Theorem 1.6(i)] proved inequality (25).

Let now c be the π1-sensitive Hofer-Zehnder capacity c◦HZ. Then
inequality (24) is an easy consequence of the definition. Furthermore,
H. Hofer [Ho2, Theorem 2] proved inequality (25) for (R2n, ω0). (See
also H. Hofer and E. Zehnder [HZ, Section 5.5].)

U. Frauenfelder, V. Ginzburg, and F. Schlenk [FGS, Corollary 1]
proved the inequality (25) (for c = c◦HZ) if an exhaustion of (M,ω)
admits an action selector. As an example, assume that (M,ω) is as-
pherical. If it is also closed or convex at infinity, then it admits such an
exhaustion. (It even admits an action selector itself. See the examples
in [FGS, pages 3,4]. See also inequality (2.9), p. 13, and Proposition
3.4 in [Gi].)

M. Usher [Us, Corollary 1.2] proved that (25) holds if (M,ω) is of
type (C) (see [Us, p. 3]). Examples of type (C) manifolds are Stein
manifolds, closed manifolds, and convex symplectic 4-manifolds. Non-
sharp versions of inequality (25) were proved by M. Schwarz [Schw,
Corollary 5.16] and F. Schlenk [Schl2, Theorem 1.1].

In [LM2] F. Lalonde and D. McDuff proved that e(U,M) ≥ 1
2
w(U),

for any symplectic manifold (M,ω) (and any open subset U ⊆ M).
(This inequality is a non-sharp version of (7) withM ′ = {pt}.) F. Lalonde
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and C. Pestieau [LP] proved the following stabilized version of this re-
sult: Let (M,ω) and (M ′, ω′) be symplectic manifolds, with M ′ closed,
and U ⊆M an open subset. Then Theorem 1.2 in [LP] states that

e
(
U ×M ′,M ×M ′) ≥ 1

2
w(U).

The regular coisotropic capacity. Let n ∈ N. We denote

M :=
{
(M,ω) symplectic manifold

∣∣
dimM = 2n, π1(M) ∼= π2(M) ∼= {e}

}
.

In [CM] K. Cieliebak and K. Mohnke defined the Lagrangian capacity
to be the map

cL : M→ [0,∞),

cL(M,ω) := sup
{
A(M,ω,L)

∣∣L ⊆M embedded Lagrangian torus
}
.

(See also [CHLS], Sec. 2.4, p. 11.) The authors proved that

(26) cL(B2n, ω0) =
π

n
.

The capacity cL is bounded above by the regular coisotropic capac-
ity An

coiso, since every Lagrangian submanifold is regular. Let d ∈
{n, . . . , 2n − 1} be an integer. If d = n then assume that n ≥ 4.
Then we have

(27) cL(B2n, ω0) < Ad
coiso(B

2n, ω0).

To see this, observe that n > k(n, d). (In the case d = n this follows
by taking ` := n− 3, k1 := 2, k2, . . . , kn−3 := 1, and in the case d > n
from inequality (37) below.) Combining this with the inequality (12)
of Theorem 4(ii) and the equality (26), inequality (27) follows.
Squeezing small sets. As mentioned on page 8, an argument by
K. Cieliebak and K. Mohnke as in [CM] yields the statement of Corol-
lary 5 in the case M = {pt}.
Exotic symplectic structures. In [Gr] M. Gromov proved that
there does not exist a closed exact ω0-Lagrangian submanifold of R2n.
It was folklore that this property of (R2n, ω0) implies the existence of
an exotic symplectic structure on R2n, and a proof of this appeared in
the paper [Vi] by C. Viterbo. Another reference is [ALP, p. 317].
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Organization of the article. In Section 2 we collect some definitions
that are used throughout this article. We also prove some useful proper-
ties of the functions K, k, and k≥, including upper bounds (Proposition
8). Section 3 is devoted to the proofs of the results of Section 1. Since
Theorem 4 is used in the proof of Corollary 3, we prove it before the
corollary. Appendix A contains some basic facts from (pre-)symplectic
geometry, topology, and manifold theory, which are used in the proofs
of the main results.

Acknowledgements. A considerable part of the work on this project
was done during the second author’s stay at the Max Planck Institute
for Mathematics, Bonn. He would like to express his gratitude to the
MPIM for the invitation and the generous fellowship.

2. Background and a further result

In this section some standard symplectic geometry is recalled which is
used in this article. For more details, see the book by D. McDuff and
D. A. Salamon [MS]. We also prove upper estimates on the functions
k and k≥.

Let (M,ω) be a symplectic manifold. We define the group Ham(M,ω)
of Hamiltonian diffeomorphisms of M , as follows. We define H(M,ω)
to be the set of all functions H ∈ C∞(

[0, 1]×M,R
)

whose Hamiltonian
time-t flow ϕt

H : M → M exists and is surjective, for every t ∈ [0, 1].
We define

Ham(M,ω) :=
{
ϕ1

H

∣∣H ∈ H(M,ω)
}
.

This is a subgroup of the group of diffeomorphisms ofM . (See for exam-
ple [SZ].) It contains the group Hamc(M,ω) of Hamiltonian diffeomor-
phisms generated by a compactly supported time-dependent function.
By definition, the Hofer norm on the space of functions is the map

‖ · ‖ : C∞([0, 1]×M,R) → [0,∞],

‖H‖ :=

∫ 1

0

(
sup
M

H t − inf
M
H t

)
dt,

where H t(x) := H(t, x). (It follows from Lemma 45 below that this
norm is well-defined.) We define the Hofer norm on Ham(M,ω) to be
the map

‖ · ‖ω : Ham(M,ω) → [0,∞],

(28) ‖ϕ‖ω := inf
{
‖H‖

∣∣H ∈ H(M,ω) : ϕ1
H = ϕ

}
.
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We define the displacement energy of a subset X ⊆M to be
(29)
e(X,M) := e(X,M,ω) := inf

{
‖H‖

∣∣H ∈ H(M,ω)
∣∣ϕ1

H(X) ∩X = ∅
}
.

Let (M,ω) be a symplectic manifold. The Gromov-width of (M,ω)
is defined to be the supremum of all numbers a ≥ 0 such that there
exists an embedding ϕ : B(a) →M satisfying ϕ∗ω = ω0.

Let (M,ω) be a symplectic manifold and N ⊆ M a submanifold.
Then N is called coisotropic iff for every x ∈ N the subspace

TxN
ω =

{
v ∈ TxM

∣∣ω(v, w) = 0, ∀w ∈ TxN
}

of TxM is contained in TxN . As an example, every hypersurface in M
is coisotropic.

Let N ⊆ M be a coisotropic submanifold. We define the isotropy
relation to be the set

RN,ω :=
{
(x(0), x(1))

∣∣ x ∈ C∞([0, 1], N) :(30)

ẋ(t) ∈ (Tx(t)N)ω, ∀t ∈ [0, 1], x(i) = xi, ∀i = 0, 1
}
.

This is an equivalence relation on N . For a point x0 ∈ N we call the
RN,ω-equivalence class of x0 the isotropic leaf through x0. We denote
this subset of N by Nω

x0
. Furthermore, we denote

Nω :=
{
isotropic leaf of N

}
.

We call N regular if RN,ω is a closed subset and a submanifold of
N × N . This holds if and only if there exists a manifold structure
on the set Nω such that the canonical projection πN : N → Nω is a
submersion, cf. [Zi, Lemma 15]. If N is closed then by C. Ehresmann’s
theorem this implies that πN is a smooth (locally trivial) fiber bundle.

We define the action (or area) spectrum and the minimal action of
N as

(31) S(N) = S(M,ω,N) :={∫
D
u∗ω

∣∣∣∣u ∈ C∞(D,M) : ∃F ∈ Nω : u(S1) ⊆ F

}
,

(32) A(N) = A(M,ω,N) := inf
(
S(N) ∩ (0,∞)

)
∈ [0,∞].

By a symplectic capacity we mean a pair (C, c), where C is a sub-
class of the class of all symplectic manifolds of dimension 2n, for some
n ∈ N, and c : C → [0,∞] is a map, such that the following conditions
are satisfied:
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(Monotonicity) c(M,ω) ≤ c(M ′, ω′), if (M,ω) ↪→ (M ′, ω′) (i.e., M
symplectically embeds into M ′),

(Conformality) c(M,aω) = |a|c(M,ω), for every a ∈ R \ {0},

(Nontriviality) 0 < c(B2n) and c(Z2n) <∞.

The next result summarizes some properties of the functions K, k,
k≥ (see (15,9,18)). In particular, it provides upper bounds on these
functions.

Proposition 8. Let n, n′, k ∈ N and d, d′ ∈ [0,∞). Then the following
(in-)equalities hold:

k≥(n, d) ≥ k≥(n, d′), if d ≤ d′,(33)

k(n, d) ≥ k≥(n, d),(34)

k(n, n) = k≥(n, n) = K(n),(35)

K(n) <
√
n+ 2

3
2 4
√
n,(36)

k(n, d) ≤ 2n− d, if n ≤ d ≤ 2n− 1(37)

k≥(n, d) <
√

2n− d+ 3, if n ≥ 9, n+ 6
√
n− 9 ≤ d ≤ 2n,(38)

k≥(n+ n′, d+ d′) ≤ k≥(n, d) + k≥(n′, d′),(39)

k(n, 2n− k2) ≤ k, if k divides n and k2 ≤ n.(40)

For the proof of Proposition 8, we need the following.

Remark 9. For every m ∈ N and a > 0 we have

max
{ m∑

i=1

xi

∣∣ xi ∈ R, ∀i = 1, . . . ,m,
∑

i

x2
i = a

}
=
√
ma.

(The maximum is attained at the point
√

a
m

(1, . . . , 1).) 2

Proof of Proposition 8. Inequalities (33,34) are direct consequences
of the definitions.

We show that the equalities (35) hold: We claim that

(41) k≥(n, n) ≥ K(n).

To see this, let ` ∈ N0 and k1, . . . , k` be as in the definition of k≥(n, d)
with d = n. Inequality (41) is a consequence of the next claim.
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Claim 1. We have

(42)
∑̀
i=1

k2
i = n.

Proof of Claim 1. We choose integers n1, . . . , n` such that the inequali-
ties (10,19) are satisfied. Subtracting the first from the second inequal-
ity in (19), we obtain

∑
i ki(ni−ki) ≤ d−n = 0. Using the inequalities

(10), it follows that ni = ki, for every i = 1, . . . , `. Combining this
with (19), the equality (42) follows. This proves Claim 1. �

We complete the proof of (35): In view of (41) and the inequality
(34) it suffices to show that

(43) k(n, n) ≤ K(n).

To see this, let ` ∈ N0 and k1, . . . , k` ∈ N be as in the definition of K(n).

This means that
∑`

i=1 k
2
i = n. We define ni := ki, for i = 1, . . . , `.

Then the conditions (10,11) in the definition of k(n, n) are satisfied
with d = n. Inequality (43) follows. This proves (35).

To prove inequality (36), let n ∈ N. We define ` := 5 and k1 to be
the biggest integer ≤

√
n. By the Four Squares Theorem there exist

integers k2, . . . , k5 ∈ N0 such that
∑5

i=2 k
2
i = n− k2

1. (See for example

Theorem 2.10 in the book [EW].) Since n =
∑5

i=1 k
2
i , by definition,

we have

(44) K(n) ≤
5∑

i=1

ki.

Furthermore, by Remark 9 with m := 4 and a := n − k2
1, we have∑5

i=2 ki ≤ 2
√
n− k2

1. Combining this with the inequality k1 >
√
n− 1,

we obtain
5∑

i=1

ki < k1 + 2

√
n− (

√
n− 1)2 <

√
n+ 2

3
2 4
√
n.

Combining this with (44), inequality (36) follows.
Inequality (37) follows by taking ` := 2n − d, ki := 1, for i =

1, . . . , `, ni := 1, for i = 1, . . . , `− 1, and n` := d− n+ 1.
To show (38), assume that n ≥ 9 and n + 6

√
n − 9 ≤ d ≤ 2n.

For every number x ∈ R we denote by dxe the smallest integer ≥ x.
We define ` := 1, k1 := d

√
2n− de + 2, and n1 := d n

k1
e. The claimed

inequality is now a consequence of the following claim.
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Claim 2. The conditions (10,11) are satisfied.

Proof of Claim 2. We prove that condition (10) holds. The assump-
tion d ≥ n+ 6

√
n− 9 implies that 2n− d ≤ n− 6

√
n+ 9 = (

√
n− 3)2.

Since n ≥ 9, we have
√
n− 3 ≥ 0. It follows that

(45) (
√

2n− d+ 3)2 ≤ n.

On the other hand, we have k1 <
√

2n− d + 3, and therefore n1 ≥
n
k1
> n√

2n−d+3
. Combining this with (45), it follows that n1 > k1. This

proves condition (10).
The first condition in (11), k1n1 ≥ n, follows from the definition

of n1.
To prove the second condition in (11), observe that 2n1 − k1 <

2n
k1

+ 2−
√

2n− d− 2, and therefore

k1(2n1 − k1) < 2n− k1

√
2n− d ≤ 2n− (2n− d) = d.

This proves the second condition in (11), and completes the proof of
Claim 2, and hence of (38). �

Inequality (39) follows from a straight-forward argument, and in-
equality (40) follows by choosing ` := 1, k1 := k, and n1 := n/k.

This completes the proof of Proposition 8. �

3. Proofs of the main results

3.1. Proof of Theorem 1 (Coisotropic intersections). A cen-
tral ingredient of the proof of Theorem 1 is the following result by
Y. Chekanov. Let (M,ω) be a symplectic manifold, Σ a Riemann sur-
face, and X ⊆ M a subset. For every almost complex structure J on
M , we define

(46) A
(
Σ,M, ω, J,X

)
:=

inf

({∫
Σ

u∗ω
∣∣u : Σ →M J-holomorphic, u(∂Σ) ⊆ X

}
∩ (0,∞)

)
.

Furthermore, we define the bounded minimal action of (M,ω) relative
to X to be

(47) Ab(X) = Ab(M,ω,X) :=

sup
{

min{A(S2,M, ω, J, ∅), A(D,M, ω, J,X)}
}
,
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where the supremum is taken over all pairs (g, J) that satisfy the
conditions of boundedness (see page 4). Here our convention is that
sup ∅ = 0. We define

Hamc(M,ω) :=
{
ϕ1

H

∣∣H ∈ C∞
c ([0, 1]×M,R)

}
,

‖ · ‖c
ω : Hamc(M,ω) → [0,∞),

‖ϕ‖c
ω := inf

{
‖H‖

∣∣H ∈ C∞
c ([0, 1]×M,R) : ϕ1

H = ϕ
}
,

where C∞
c ([0, 1]×M,R) denotes the space of all H ∈ C∞([0, 1]×M,R)

with compact support.

Theorem 10 ([Ch], Main Result). Let (M,ω) be a symplectic mani-
fold, L ⊆ M a closed Lagrangian submanifold, and ϕ ∈ Hamc(M,ω).
If

(48) ‖ϕ‖c
ω < Ab(M,ω,L)

then ϕ(L) ∩ L 6= ∅.

Remark 11. The statement of Theorem 10 remains true if ϕ lies in
the bigger group Ham(M,ω) and the condition (48) is replaced by the
weaker condition

(49) ‖ϕ‖ω < Ab(M,ω,L)

This follows from Theorem 10 and Lemma 35 below. 2

Remark. In Chekanov’s Main Result it is assumed that (M,ω) is
bounded. This is unnecessary, since in the unbounded case we have
Ab(M,ω,L) = 0, and hence the statement is void. 2

Remark. The definition of (geometric) boundedness in Y. Chekanov’s
article is slightly stronger, and the number Ab(M,ω,L) in the hypoth-
esis of the theorem is replaced by a corresponding quantity. However,
the proof of the main result in that article goes through with these
minor modifications. 2

The proof of Theorem 1 also relies on the following construction. Let
(M,ω) be a symplectic manifold, and N ⊆ M a coisotropic submani-
fold. For x ∈ N we denote by Nω

x the isotropic leaf of N through x.
Furthermore, we denote by Nω the set of isotropic leaves of N , and by
πN : N → Nω the canonical projection.

Assume that N is regular. Then there exists a unique manifold
structure on Nω such that πN is a smooth submersion. (This follows
for example from [Zi, Lemma 15, p. 20].) Furthermore, there exists
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a unique symplectic structure ωN on Nω such that π∗NωN = ω|N . We
define

M̃ := M ×Nω, ω̃ := ω ⊕ (−ωN),(50)

ιN : N → M̃, ιN(x) := (x,Nω
x ), Ñ := ιN(N).(51)

By a straight-forward argument the set Ñ is a Lagrangian submanifold

of M̃ . The next result is a crucial ingredient in the proof of Theorem
1. It is proved on page 21.

Proposition 12. If N is closed and regular then

(52) A×(M,ω,N) ≤ A×(M̃, ω̃, Ñ).

We also need the following. Let (M,ω) be a symplectic manifold and
L ⊆M a Lagrangian submanifold.

Proposition 13. If M is connected and L 6= ∅ then we have

A×(M,ω,L) ≤ Ab(M,ω,L).

This result will be proved on page 23. We are now ready fo the proof
of the key result.

Proof of Theorem 1. Let M,ω,N, ϕ be as in the hypothesis, such that
inequality (5) is satisfied. Without loss of generality, we may assume
that M is connected. Consider the symplectomorphism

ϕ̂ : M̃ → M̃, (x, x′) 7→ (ϕ(x), x′).

Claim 1. We have

(53) ‖ϕ̂‖eω < Ab(M̃, ω̃, Ñ).

Proof of Claim 1. By a straight-forward argument we have that

(54) ‖ϕ̂‖eω ≤ ‖ϕ‖ω.

Since by hypothesis N is regular and closed, we may apply Proposition
12. It follows that inequality (52) holds.

Furthermore, since by assumption M and N are connected, the man-

ifold M̃ is connected. Therefore, we may apply Proposition 13, to
conclude that

A×(M̃, ω̃, Ñ) ≤ Ab(M̃, ω̃, Ñ).

Combining this with inequalities (54,5,52), it follows that the inequality
(53) holds. This proves Claim 1. �
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Since N is closed, the manifold Ñ is, as well. It follows that all hy-

potheses of Theorem 10 are satisfied, with M,ω, ϕ replaced by M̃, ω̃, ϕ̂,

and L := Ñ , except for (48). Furthermore, by Claim 1, the inequality
(49) is satisfied. Therefore, using Remark 11, it follows that

(55) ϕ̂(Ñ) ∩ Ñ 6= ∅.

We denote by pr : M̃ → M the projection onto the first factor. Then
we have

pr
(
ϕ̂(Ñ) ∩ Ñ

)
⊆ ϕ(N) ∩N.

Combining this with (55), the statement (6) follows. This proves The-
orem 1. �

Next we will prove Proposition 12. We will use the following construc-

tion. Let (M,ω) and (M̂, ω̂) be symplectic manifolds, N ⊆ M and

N̂ ⊆ M̂ coisotropic submanifolds, and ϕ : M̂ → M a symplectomor-

phism satisfying ϕ(N̂) = N . We define

(56) ϕ′ : N̂bω → Nω, ϕ′(N̂ bωbx ) := Nω
ϕ(bx).

This map is well-defined. We also define

(57) ϕ̃ := ϕ× ϕ′ :
˜̂
M = M̂ × N̂bω → M̃ = M ×Nω.

Remark 14. Assume that one of the manifolds N̂ or N is regular.
Then the other one is, as well, and ϕ′ and hence ϕ̃ are symplectomor-
phisms. This follows from a straight-forward argument. 2

The proof of Proposition 12 also uses the following.

Lemma 15. Let (M,ω) be a symplectic manifold and N ⊆M a closed,
regular coisotropic submanifold. Then we have

A(M,ω,N) = A(M̃, ω̃, Ñ).

Proof of Lemma 15. This is Lemma 10 (Key Lemma) in [Zi]. �

Proof of Proposition 12. Assume that (Mi, ωi, Ni)i=1,...,k is a bounded

splitting of (M,ω,N). We define (M̃i, Ñi)i=1,...,k as in (50,51) with
M replaced by Mi etc. By the definition of a bounded splitting of
(M,ω,N), there exists a symplectomorphism ϕ : ×iMi →M such that
ϕ(×iNi) = N . We define ϕ′ and ϕ̃ as in (56,57), with

(M̂, ω̂, N̂) :=
(
×iMi,⊕iωi,×iNi

)
.
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By hypothesis N is regular. Hence by Remark 14, the product ×iNi is
regular. Applying Lemma 28 below, it follows that Ni is regular, for
every i. Since by hypothesis, N is closed, Remark 42 below implies

that Ni is closed. We define the symplectic form ω̃i on M̃i as in (51)
with M replaced by Mi etc.

Claim 1. The tuple
(
M̃i, ω̃i, Ñi

)
i
is a bounded splitting of (M̃, ω̃, Ñ).

Proof of Claim 1. Let i ∈ {1, . . . , k}. We show that (M̃i = Mi ×
(Ni)ωi

, ω̃i) is bounded: Since Ni is closed, it follows that (Ni)ωi
is

closed. Furthermore, by assumption, (Mi, ωi) is bounded. It follows

that (M̃i, ω̃i) is bounded.

We now show that there exists a map f̃ : ×iM̃i → M̃ as in the
definition of a bounded splitting: By Lemma 27 below the identity map
on ×iNi descends to a symplectomorphism

ψ′ : ×i(Ni)ωi
→ (×iNi)⊕iωi

.

We denote by

ψ̃ : ×iM̃i = ×i(Mi × (Ni)ωi
) → ×iMi × (×iNi)⊕iωi

the map induced by ψ′, and define

f̃ := ϕ̃ ◦ ψ̃ : ×iM̃i → M̃.

By Remark 14 the map ϕ̃ is a symplectomorphism. Since ψ′ is a sym-

plectomorphism, the same holds for ψ̃, and hence for f̃ . Furthermore,

we have f̃(×iÑi) = Ñ . Hence the map f̃ satisfies the conditions in the
definition of a bounded splitting. This proves Claim 1. �

Let i = 1, . . . , k. Since Ni is closed, we may apply Lemma 15, to con-

clude that A
(
M̃i, ω̃i, Ñi

)
= A(Mi, ωi, Ni). Combining this with Claim

1, the inequality (52) follows. This proves Proposition 12. �

For the proof of Proposition 13 we need the following. Recall the
definition (46).

Lemma 16. Let Σ be a Riemann surface, k ∈ N, and for i = 1, . . . , k
let (Mi, ωi) be a symplectic manifold, Xi ⊆ Mi a subset, and Ji an
ωi-tame almost complex structure on Mi. Then

(58) min
i=1,...,k

A
(
Σ,Mi, ωi, Ji, Xi

)
≤ A

(
Σ,×iMi,⊕iωi,⊕iJi,×iXi

)
.

In the proof of this lemma we will use the following.
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Remark 17. Let (M,ω) be a symplectic manifold, J an ω-tame al-
most complex structure, Σ a Riemann surface, and u : Σ → M a
J-holomorphic map. Then

∫
Σ
u∗ω ≥ 0. This follows from the fact that∫

Σ
u∗ω is the Dirichlet energy of u. 2

Proof of Lemma 16. Assume that u := (u1, . . . , uk) : Σ → M := ×iMi

is a J := ⊕iJi-holomorphic map satisfying u(∂Σ) ⊆ X := ×iXi and
E :=

∫
Σ
u∗ω > 0. Let i = 1, . . . , k. We denote Ei :=

∫
Σ
u∗iωi. Since by

assumption Ji is ωi-tame, and ui is Ji-holomorphic, by Remark 17 we
have Ei ≥ 0. Combining this with the fact E =

∑
iEi, it follows that

(59) Ei ≤ E, ∀i = 1, . . . , k.

Since E > 0, there exists i0 ∈ {1, . . . , k} such that Ei0 > 0. Combining
this with inequality (59) and using the fact ui(∂Σ) ⊆ Xi, the inequality
(58) follows. This proves Lemma 16. �

In the proof of Proposition 13 we will use the following remark. We
define the bounded minimal action as in (47).

Remark 18. Let (M,ω) be a symplectic manifold, N ⊆M a coisotropic
submanifold, M ′ a smooth manifold, and ϕ : M ′ → M a diffeomor-
phism. Then we have

Ab

(
M ′, ϕ∗ω, ϕ−1(N)

)
= Ab(M,ω,N).

Proof of Proposition 13. Let (Mi, ωi, Li)i=1,...,k be a bounded splitting
of (M,ω,L). The statement of the proposition is a consequence of the
following claim:

(60) min
i
A(Mi, ωi, Li) ≤ Ab(M,ω,L).

To see that this inequality holds, we choose a map ϕ as in the definition
of a bounded splitting. By Remark 18 we may assume without loss of
generality that (M,ω) = (×iMi,⊕iωi) and ϕ = id. For i = 1, . . . , k
we choose a pair (gi, Ji) as in the definition of boundedness of (Mi, ωi),
and we define

ai := min
{
A

(
D,Mi, ωi, Ji, Li

)
, A

(
S2,Mi, ωi, Ji, ∅

)}
.

Let i ∈ {1, . . . , k}. The submanifold Li ⊆ Mi is Lagrangian. Fur-
thermore, since by hypothesis M is connected, the manifold Mi is con-
nected. Hence it follows from Lemma 29 below that

(61) A(Mi, ωi, Li) ≤ ai.
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We define (g, J) :=
(
⊕i gi,⊕iJi

)
. This pair satisfies the conditions of

boundedness for (M,ω). Therefore, we have

(62) a := min
{
A

(
D,M, ω, J, L

)
, A

(
S2,M, ω, J, ∅

)}
≤ Ab(M,ω,L).

It follows from the definition of boundedness that Ji is ωi-tame, for
every i. Therefore, we may apply Lemma 16. It follows that mini ai ≤
a. Combining this with (62,61), inequality (60) follows. This completes
the proof of Proposition 13. �

3.2. Proofs of Theorem 4 (Regular coisotropic capacity), Corol-
lary 3 (Energy-Gromov-width inequality). We will first prove
Theorem 4, since it is used in the proof of Corollary 3. For the proofs
of both results we need the following lemma.

Lemma 19. Let (M,ω) be a bounded and aspherical symplectic man-
ifold of dimension 2n, U ⊆ M an open subset, and d ∈ {n, . . . , 2n}.
Then we have

(63) Acoiso
× (M,ω, U) ≥ Ad

coiso(U, ω|U).

Proof of Lemma 19. Let N ⊆ M be a regular closed coisotropic sub-
manifold of dimension d such that condition (8) is satisfied. Since by
hypothesis (M,ω) is aspherical, Lemma 33 below implies that

(64) A(M,ω,N) ≥ A(U, ω|U , N).

Since by hypothesis (M,ω) is bounded, we have Acoiso
× (M,ω,N) ≥

A(M,ω,N). Combining this with inequality (64), inequality (63) fol-
lows. This proves Lemma 19. �

The proof of statement (ii) of Theorem 4 involves a certain product
of rescaled Stiefel manifolds. These manifolds are given as follows. Let
k, n ∈ N be such that k ≤ n, and a > 0. We define the Stiefel manifold
of symplectic area a to be

V (k, n, a) :=
{
Θ ∈ Ck×n

∣∣ ΘΘ∗ =
a

π
1k

}
.

The proofs of statements (i,iii)) involve the spherical action (or area)
spectrum of a symplectic manifold (M,ω). It is given by

(65) S(M,ω) := inf
({ ∫

S2

u∗ω
∣∣u ∈ C∞(S2,M)

}
∩ (0,∞)

)
∈ [0,∞].

Proof of Theorem 4. We start by proving statement (ii). To see that
(12) holds, let ` ∈ N and ki, ni, i = 1, . . . , ` be as in the definition

of k(n, d) (see (9)). We define a0 := π/
∑`

i=1 ki. Let a ∈ (0, a0) be a
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number. We define N := ×`
i=1V (ki, ni, a). Then N is a closed regular

coisotropic submanifold of B2n ⊆ R2n = ×iCki×ni of dimension d.
Since R2n is simply connected, every loop in an isotropic leaf of N is
contractible in R2n.

Hence N satisfies the conditions in the definition of Ad
coiso(B

2n, ω0).
Furthermore, by Remark 31 and Proposition 34 below we have

Ad
coiso(B

2n, ω0) ≥ A(B2n, ω0, N) = a.

Since this holds for arbitrary a ∈ (0, a0), it follows thatAd
coiso(B

2n, ω0) ≥
a0. Inequality (12) follows.

To see that (13) holds, note that by Lemma 19, we have

Ad
coiso(Z

2n, ω0) ≤ Acoiso
× (R2n, ω0, Z

2n).

Combining this with Corollary 2 and Remark 38 below, the inequality
(13) follows.

We prove statement (i). Let n ∈ N and d ∈ {n, . . . , 2n − 1}. To
prove monotonicity of the restriction of Ad

coiso, let (M,ω) and (M ′, ω′)
be aspherical symplectic manifolds of dimension 2n, and ϕ : M ′ →M a
symplectic embedding. In order to prove the inequality Ad

coiso(M
′, ω′) ≤

Ad
coiso(M,ω), it suffices to show the following. If N ′ ⊆ M ′ is a regular

closed coisotropic submanifold satisfying (8), then we have

(66) A
(
M,ω, ϕ(N ′)

)
≥ A(M ′, ω′, N ′).

Let N ′ be such a submanifold. To prove inequality (66), note that by
asphericity of (M,ω), we have S(M,ω) = {0}. Hence Lemma 33 below
implies that

S
(
M,ω, ϕ(N ′)

)
⊆ S(M ′, ω′, N ′).

The inequality (66) follows. This proves (monotonicity).
Conformality follows immediately from the definitions.

Non-triviality follows from the inequalities (12,13). Furthermore,
inequality (37) in Proposition 8 implies that k(n, 2n− 1) = 1. Hence it
follows from inequalities (12,13) that A2n−1

coiso is normalized. This proves
statement (i).

To prove statement (iii), let N ⊆M be a closed regular coisotropic

submanifold of dimension d. We define Ñ := N ×M ′. This is a closed
and regular coisotropic submanifold of M̃ := M ×M ′, of dimension
d+ 2n′. By Lemma 30 below and asphericity of (M ′, ω′) we have

S(M ′, ω′,M ′) ⊆ S(M ′, ω′) = {0}.
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Hence Remark 31 below implies that A(Ñ) = A(N). The inequality
(14) follows. This proves statement (iii) and completes the proof of
Theorem 4. �

We are now ready to prove Corollary 3.

Proof of Corollary 3. By Corollary 2 we have

(67) e
(
U ×M ′,M ×M ′, ω ⊕ ω′

)
≥ Acoiso

×
(
M ×M ′, ω ⊕ ω′, U ×M ′).

We denote 2n := dimM and 2n′ := dimM ′. Since by hypothesis
(M,ω) and (M ′, ω′) are bounded and aspherical, the same holds for
their product. Hence applying Lemma 19, we obtain

(68) Acoiso
×

(
M ×M ′, ω⊕ω′, U ×M ′) ≥ A

2(n+n′)−1
coiso

(
U ×M ′, ω|U ⊕ω′

)
.

Using closedness and asphericity of (M ′, ω′), Theorem 4(iii) implies
that

(69) A
2(n+n′)−1
coiso

(
U ×M ′, ω|U ⊕ ω′

)
≥ A2n−1

coiso (U, ω|U).

Using asphericity of U , Theorem 4(i) implies that

A2n−1
coiso (U, ω|U) ≥ w(U, ω|U).

Combining this with inequalities (67,68,69), the inequality (7) follows.
This proves Corollary 3. �

3.3. Proof of Corollary 5 (Skinny non-squeezing).

Proof of Corollary 5. Without loss of generality we may assume that
M is connected. We denote

M̃ := R2n ×M, ω̃ := ω0 ⊕ ω.

Let ϕ : U ×M → M̃ be a symplectic embedding. It suffices to prove
the following. Assume that a0 > 0 is such that

(70) ϕ(U ×M) ⊆ Z2n(a0)×M.

Then we have

(71) a0 > π.

To see that this inequality holds, we define N := ×k
i=1S

2ni−1 ×M and
N ′ := ϕ(N).

Claim 1. Let a > 0 be such that N ′ ⊆ Z2n(a) ×M . Then we have
a ≥ π.
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Proof of Claim 1. The inclusion N ′ ⊆ Z2n(a)×M and Remarks 37 and
38 below imply that

e(N ′, M̃ , ω̃) ≤ a.

Therefore, the inequality a ≥ π is a consequence of the following claim.

Claim 2. We have

(72) e(N ′, M̃ , ω̃) ≥ π.

Proof of Claim 2: N is a closed and regular coisotropic submanifold
of U×M , and hence N ′ is a closed and regular coisotropic submanifold

of M̃ . We define n :=
∑k

i=1 ni. By Remark 31 below we have

S
(
U ×M, ω̃,N

)
⊆ S

(
R2n ×M, ω̃,N

)
=

( ∑
i

S
(
R2ni , ω0, S

2ni−1
))

+ S(M,ω,M).(73)

Proposition 34 below implies that S
(
R2ni , ω0, S

2ni−1
)

= πZ. Fur-
thermore, by Lemma 29(ii) below and the hypothesis (16), we have
S(M,ω,M) = S(M,ω) ⊆ πZ. Combining this with (73), it follows
that

(74) S
(
U ×M, ω̃,N

)
⊆ πZ.

By Lemma 26 below the isotropic leaves of N are the products of the
isotropic leaves of ×iS

2ni−1 andM (viewed as a coisotropic submanifold
of itself). The latter are single points. Furthermore, the hypothesis
ni ≥ 2, for every i, implies that ×iS

2ni−1 is simply-connected. It
follows that every loop in an isotropic leaf of N is contractible in N ,
and hence in U . Hence we may apply Lemma 33 below, and conclude
that

(75) S(M̃, ω̃, N ′) ⊆ S
(
U ×M, ω̃,N

)
+ S(M̃, ω̃).

The hypothesis (16) implies that S(M̃, ω̃) ⊆ πZ. Combining this with

(74,75), it follows that S(M̃, ω̃, N ′) ⊆ πZ, and therefore,

(76) A
(
M̃, ω̃, N ′) ≥ π.

Since by hypothesis M is closed, the symplectic manifold (M,ω) is

bounded. Hence the same holds for (M̃, ω̃). It follows that

A×(M̃, ω̃, N ′) ≥ A
(
M̃, ω̃, N ′).

Combining this with (76) and applying Theorem 1, inequality (72)
follows. This proves Claim 2 and hence Claim 1. �
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Using the assumption (70) and compactness of N ′, there exists a < a0

such that N ′ ⊆ Z2n(a) × M . By Claim 1, it follows that a ≥ π.
Inequality (71) follows. This proves Corollary 5. �
3.4. Proof of Theorem 6 (Badly squeezable small sets). For the
proof of this theorem, we need the following results. Let d ∈ [0,∞).
For every n ∈ N we abbreviate

embd := embZ2n,ω0

d .

Let (M,ω) be a symplectic manifold.

Proposition 20. For every n ∈ N, we have

(77) embd(M,ω) ≥ embd(M × R2n, ω ⊕ ω0).

We post-pone the proof of this result to page 29.

Proposition 21. If d ≥ 2 then we have

(78) embd(M,ω) ≥ Ad
coiso(M,ω).

We post-pone the proof of this result to page 30. For the proof of
Theorem 6 we also need the following.

Remark 22. Let n ∈ N, d ∈ [0,∞), r > 0, and U ⊆ R2n an open
subset. Then

embd(rU, ω0) = r2 embd(U, ω0).

This follows from a straight-forward argument. 2

For k, n ∈ N satisfying k ≤ n we denote by

V (k, n) :=
{
Θ ∈ Ck×n

∣∣ ΘΘ∗ = 1k

}
the Stiefel manifold of unitary k-frames in Cn.

Proof of Theorem 6. Let n ∈ {2, 3 . . .} and d ∈ [n,∞). By Remark 22
it suffices to prove that

(79) embd(B
2n(a), ω0) ≥ π, ∀a > π k≥(n, d).

To show that this condition holds, let a > π k≥(n, d). We choose ` ∈ N
and k1, . . . , k` ∈ N such that

∑`
i=1 ki = k≥(n, d). We also choose

n1, . . . , n` satisfying (10,19). We define n′ :=
∑

i kini − n. By the first
inequality in (19) we have n′ ≥ 0. Propositions 20 and 21 imply that

embd(B
2n(a), ω0) ≥ embd(B

2n(a)× R2n′
, ω0)

≥ Ad
coiso(B

2n(a)× R2n′
, ω0).(80)

By the inequalities (10) the Stiefel manifolds V (ki, ni) are well-defined.
We define N := V (k1, n1)× . . .× V (k`, n`).
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Claim 1. We have

(81) Ad
coiso(B

2n(a)× R2n′
, ω0) ≥ A(R2(n+n′), ω0, N).

Proof of Claim 1. Note that N is a regular closed coisotropic submani-
fold of B2n(a)×R2n′

of dimension
∑

i ki(2ni−ki). Hence by the second
inequality in (19) we have dimN ≤ d. Furthermore, since B2n(a)×R2n′

is contractible, condition (8) is satisfied. Therefore, by definition, we
have

Ad
coiso(B

2n(a)× R2n′
, ω0) ≥ A(B2n(a)× R2n′

, ω0, N).

The right hand side is bounded below by A(R2(n+n′), ω0, N). Inequality
(81) follows. This proves Claim 1. �

By Remark 31 and Proposition 34 below we have

A(R2(n+n′), ω0, N) = π.

Combining this with (80) and Claim 1, inequality (79) follows. This
proves Theorem 6. �

Proof of Proposition 20. Let X̃ ⊆ M × R2n be a compact subset of

Hausdorff dimension at most d. We denote 2m := dimM , M̃ :=

M × R2n, ω̃ := ω ⊕ ω0, by pr : M̃ → M the projection onto the first

component, and X := pr(X̃). Then X is a compact subset of M .
Furthermore, by standard results (cf. [Fed]), the Hausdorff dimension

of X does not exceed that of X̃, and thus is at most d.

Claim 1. We have

(82) embZ2m,ω0(M,ω,X) ≥ embZ2(m+n),ω0(M̃, ω̃, X̃).

Proof of Claim 1. Let a > 0. Assume that there exists a pair (U,ϕ),
where U ⊆ M is an open neighborhood of X and ϕ : U → Z2m(a) is

a symplectic embedding. We define Ũ := U ×R2n and ϕ̃ := ϕ× idR2n .

Then X̃ ⊆ Ũ and ϕ̃ is a symplectic embedding of Ũ into Z2(m+n)(a).
The inequality (82) follows. This proves Claim 1. �

Taking the supremum over all compact sets X̃ ⊆M×R2n of Hausdorff
dimension at most d, Claim 1 implies inequality (77). This completes
the proof of Proposition 20. �

The idea of proof of Proposition 21 is the following. Let N ⊆ M be
a d-dimensional closed regular coisotropic submanifold satisfying (8).
The idea is to glue finitely many disks in such a way that every loop
in an isotropic fiber of N is contractible in the resulting subset of M .
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This is possible because of (8) and regularity and closedness of N . The
statement of Proposition 21 will then be a consequence of Theorem 1,
Lemma 33, and Remark 38 below.

Proof of Proposition 21. Let N ⊆ M be a non-empty closed regular
coisotropic submanifold of dimension at most d, satisfying (8). In-
equality (78) is a consequence of the following claim.

Claim 1. We have

(83) embd(M,ω) ≥ A(N).

Proof of Claim 1: Without loss of generality, we may assume that
N is connected. We choose an isotropic leaf F ⊆ N and a point x0 ∈ F .
Regularity of N implies that F is a smooth submanifold of N . It is
closed, since N is closed. It follows that the fundamental group of F
with base point x0 is finitely generated. Therefore, there exists a finite
set S of smooth loops x : S1 ⊆ C → F satisfying x(1) = x0, whose
continuous homotopy classes with fixed base point generate π1(F, x0).

The assumption (8) implies that for every x ∈ S there exists a
smooth map ux : D → M satisfying ux|S1 = x. We choose such a
collection of maps (ux)x∈S and define

X := N ∪
⋃
x∈S

ux(D) ⊆M.

This set is compact. Furthermore, a standard result (cf. [Fed, p. 176])
implies that ux(D) has Hausdorff dimension at most 2. Since by hy-
pothesis d ≥ 2, it follows that X has Hausdorff dimension at most
d. We denote 2n := dimM . Assume that a > 0 is such that there
exists a pair (U,ϕ), where U ⊆ M is an open neighborhood of X
and ϕ : U ↪→ Z2n(a) is a symplectic embedding. Using the fact
A(N) = A(M,ω,N) ≤ A(U, ω|U , N), inequality (83) is a consequence
of the following claim.

Claim 2. We have

(84) a ≥ A(U, ω|U , N).

Proof of Claim 2: We choose a pair (U,ϕ) as above.

Claim 3. Every continuous loop in an isotropic leaf of N is contractible
in X.

In the proof of this claim we use the following notation. Let X be a
set and x : S1 → X a map. We define x−1 : S1 → X by x−1(z) := x(z).
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Proof of Claim 3. Let x be such a loop. Assume first that x(S1) ⊆
F . It follows from our choice of the set S that there exist ` ∈ N0,
x1, . . . , x` ∈ S, and ε1, . . . , ε` ∈ {1,−1}, such that x is continuously
homotopic inside F to xε1

1 · · ·x
ε`
` . Since X contains the images uxi

(D),
for i = 1, . . . , `, it follows that x is contractible in X.

Consider now the general situation. Since N is path-connected,
the same holds for Nω. Hence there exists a path y ∈ C([0, 1], Nω) such
that y(0) is the leaf through x0, and y(1) is the leaf containing x(S1).

By regularity of N there exists a unique manifold structure on the
set of isotropic leaves Nω of N , such that the canonical projection
πN : N → Nω is a smooth submersion. (See Lemma 15 in [Zi].) Since
N is closed, C. Ehresmann’s Theorem implies that πN is a smooth
(locally trivial) fiber bundle. (See the proposition on p. 31 in [Eh].) It
follows that πN has the continuous homotopy lifting property. Hence
there exists u ∈ C([0, 1] × S1, N) such that prN ◦u(t, z) = ȳ(t), for
every t ∈ [0, 1] and z ∈ S1, and u(1, ·) = x. By what we already
proved, the loop u(0, ·) is contractible in X. It follows that the same
holds for u(1, ·) = x. This proves Claim 3. �

Using Claim 3 and asphericity of (R2n, ω0), Lemma 33 implies that

(85) A(U, ω|U , N) ≤ A(R2n, ω0, ϕ(N)).

Furthermore, the coisotropic submanifold ϕ(N) ⊆ R2n is non-empty,
closed, and regular. Hence Theorem 1 implies that

(86) A(R2n, ω0, ϕ(N)) ≤ e
(
ϕ(N),R2n, ω0

)
.

By Remark 38, we have

e
(
ϕ(N),R2n, ω0

)
≤ e

(
Z2n(a), ω0,R2n, ω0

)
≤ a.

Combining this with (85,86), inequality (84) follows. This proves Claim
2 and hence Claim 1, and concludes the proof of Proposition 21. �

3.5. Proof of Corollary 7 (Stably exotic form). We need the fol-
lowing results, in which (M,ω) and (M ′, ω′) are symplectic manifolds.

Corollary 23. Assume that (M,ω) is (geometrically) bounded and ev-
ery compact subset of M is Hamiltonianly displaceable. Then (M,ω)
is not (coisotropically) infinite.

Proof. This is a direct consequence of Theorem 1 and Lemma 35. �

Proposition 24. The following statements hold.

(i) (Aspherical manifold) If (M,ω) is closed and aspherical then it is
strongly infinite.
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(ii) (Product) The product of two infinite/ strongly infinite symplectic
manifolds is infinite/ strongly infinite.

(iii) (Embedding) Assume that (M,ω) is aspherical and (M ′, ω′) is
strongly infinite and embeds into (M,ω). Then (M,ω) is strongly
infinite.

Proof of Proposition 24. Statement (i) follows from Lemma 29(ii) be-
low, using that N := M is a regular coisotropic submanifold of itself
and the fact that the isotropic leaves of M are single points. State-
ment (ii) follows from Remark 31 and Lemma 26 below. Statement
(iii) follows from Lemma 33 below. �

Proof of Corollary 7. Assume that ω is a (coisotropically) infinite form
on R2n. Since R2n is simply connected, it follows that ω is strongly
infinite. Let X, σ, σ′, ϕ be as in the definition of stable exoticness. We
show that condition (20) holds. Consider first the case in which σ′ is
not aspherical. Then (20) holds, since σ ⊕ ω0 is aspherical.

Consider now the case in which σ′ is aspherical. Then it follows

from Proposition 24(i,ii) that (M, Ω̃) :=
(
X × R2n, σ′ ⊕ ω

)
is strongly

infinite. We define Ω := σ ⊕ ω0. The symplectic manifold (M,Ω)
is bounded, since it is the product of two bounded symplectic mani-
folds. Furthermore, every compact subset of M is displaceable in an
Ω-Hamiltonian way, since (R2n, ω0) has this property. Therefore, by
Corollary 23, (M,Ω) is not infinite.

Since, by assumption, σ is aspherical, Ω is aspherical. Combining

these facts and using that (M, Ω̃) is strongly infinite, it follows from

Proposition 24(iii) that (M, Ω̃) does not embed into (M,Ω). Therefore,
Condition (20) holds. This completes the proof of Corollary 7. �

Appendix A. Auxiliary results

A.1. (Pre-)symplectic geometry. The next result is used in the
proofs of Lemmas 26 and 28 below.

Let V be a finite dimensional vector space and ω a skew-symmetric
2-form on V . We define

V ω :=
{
v ∈ V

∣∣ω(v, w) = 0, ∀w ∈ V
}
, corankω := dimV ω.

By a presymplectic structure on a manifold M we mean a closed two-
form ω on M such that corankωx does not depend on x ∈ M . Note
that if (M,ω) is a symplectic manifold and N ⊆ M is a coisotropic
submanifold then ω|N is a presymplectic structure on N of corank
equal to the codimension of N in M .
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For a presymplectic manifold (M,ω) we denote by RM,ω ⊆M×M its
isotropy relation. By definition, this is the set of all pairs (x(0), x(1)),
where x ∈ C∞([0, 1],M) is a path satisfying ẋ(t) ∈ Tx(t)M

ω, for every
t ∈ [0, 1]. For x ∈M we denote by Mω

x ⊆M the isotropic leaf through
x, i.e., the RM,ω-equivalence class of x.

We call (M,ω) regular if RM,ω is a closed subset and a submanifold
of M ×M . Equivalently, there exists a smooth structure on the set of
isotropic leaves Mω for which the canonical projection π : M → Mω

is a smooth submersion. In this case we define ωM to be the unique
two-form on Mω such that π∗ωM = ω. This is a symplectic form.

For i = 0, 1 let (Mi, ωi) be a presymplectic manifold. We define the
swap map

(87) S : M1 ×M1 ×M2 ×M2 →M1 ×M2 ×M1 ×M2

by S
(
x1, y1, x2, y2

)
:=

(
x1, x2, y1, y2

)
.

Lemma 25. We have that RM1×M2,ω1⊕ω2 = S
(
RM1,ω1 ×RM2,ω2

)
.

Proof of Lemma 25. This follows from a straight-forward argument.
�

The next result is an immediate consequence of Lemma 25. It is used in
the proofs of Corollary 5, Proposition 24, and Lemma 27 and Remark
31 below.

Lemma 26. For every pair (x1, x2) ∈M1 ×M2, we have

(M1 ×M2)
ω1⊕ω2

(x1,x2) = (M1)
ω1
x1
× (M2)

ω2
x2
.

The next two results are used in the proof of Proposition 12.

Lemma 27. The identity map on M1 ×M2 descends to a bijection

(M1)ω1 × (M2)ω2 → (M1 ×M2)ω1⊕ω2 .

If (Mi, ωi) is regular for i = 1, 2, then this map is a symplectomorphism
with respect to (ω1)M1 ⊕ (ω2)M2 and (ω1 ⊕ ω2)M1×M2.

Proof of Lemma 27. This follows from a straight-forward argument,
using Lemma 26 and the definitions of the smooth and symplectic
structures on the quotients. �

Lemma 28. If the presymplectic manifold
(
M1×M2, ω1⊕ω2

)
is regular

then (Mi, ωi) is also regular, for i = 1, 2.
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Proof of Lemma 28. It follows from Lemma 25 and Remark 43 below
that RNi,ωi is a closed subset of Ni × Ni, for i = 1, 2. Furthermore,
Lemmas 25 and 44 imply that RNi,ωi is a submanifold of Ni × Ni, for
i = 1, 2. It follows that (Mi, ωi) is regular, for i = 1, 2. This proves
Lemma 28. �

The next lemma is used in the proofs of Propositions 13 and 24. Let
(M,ω) be a symplectic manifold. Recall the definitions (31,65).

Lemma 29. Assume that M is connected. Then the following state-
ments hold:

(i) For every non-empty coisotropic submanifold N ⊆M we have

(88) S(M,ω,N)⊇S(M,ω).

(ii) We have

S(M,ω,M) = S(M,ω).

For the proof of this lemma, we need the following result, which was
also used in the proof of Theorem 4.

Lemma 30. We have

(89) S(M,ω,M) ⊆ S(M,ω).

Proof of Lemma 30. Let u ∈ C∞(D,M) be such that u(S1) is contained
in some leaf of M . This leaf consists of a single point x0 ∈ M . We
identify S2 ∼= R2∪{∞} and choose a map f ∈ C∞(D, S2) that restricts
to an orientation preserving diffeomorphism from B2 to R2. We also
choose a map ρ ∈ C∞([0, 1], [0, 1]) such that ρ ≡ 1 in a neighborhood
of 0 and ρ(r) = 1/r in a neighborhood of 1. We define

u′ : D →M, u′(z) := u
(
ρ(|z|)z

)
.

This map is constantly equal to x0 in a neighborhood of S1. Hence
there exists a unique smooth map v : S2 →M satisfying v ◦ f = u′|B2 .
We have ∫

S2

v∗ω =

∫
D
u′
∗
ω =

∫
D
u∗ω.

Here in the second equality we used the fact that u′ is homotopic to
u with fixed restriction to S1. The inclusion (89) follows. This proves
Lemma 30. �

Proof of Lemma 29. We prove statement (i): Let u ∈ C∞(S2,M) be
a map. We identify S2 with R2∪{∞}. By Lemma 39 below there exists
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a map v ∈ C∞(S2,M) that is smoothly homotopic to u and satisfies
v(∞) ∈ N .

We choose a smooth map f : D → S2 that maps the interior B1 ⊆ D
diffeomorphically and in an orientation preserving way onto R2. Then
the map v ◦ f : D →M satisfies v ◦ f(S1) ⊆ N . Furthermore,∫

S2

u∗ω =

∫
S2

v∗ω =

∫
D
(v ◦ f)∗ω.

The inclusion (88) follows. This proves (i).
Statement (ii) follows from statement (i) and Lemma 30. This

proves Lemma 29. �

The next remark is used in the proofs of most main results of this
paper.

Remark 31. Let (M,ω) and (M ′, ω′) be symplectic manifolds, and
N ⊆M and N ′ ⊆M ′ coisotropic submanifolds. Then

S
(
M ×M ′, ω ⊕ ω′, N ×N ′) = S(M,ω,N) + S(M ′, ω′, N ′).

This follows from a straight-forward argument, using Lemma 26. 2

Remark 32. Let (M,ω) and (M ′, ω′) be symplectic manifolds of the
same dimension, N ′ ⊆M ′ a coisotropic submanifold, and ϕ : M ′ →M
a symplectic embedding. The action spectrum S(M ′, ω′, N ′) is con-
tained in S(M,ω, ϕ(N ′)). This follows from a straight-forward argu-
ment. 2

The next lemma gives a condition under which the opposite inclusion
holds up to a correction term. It is used in the proofs of Theorem 4,
Corollary 5, and Propositions 24 and 21.

Lemma 33. If every continuous loop in a leaf of N ′ is contractible in
M ′ then we have

S(M,ω, ϕ(N ′)) ⊆ S(M ′, ω′, N ′) + S(M,ω),

where the action spectrum S(M,ω) is defined as in (65).

Proof of Lemma 33. Let u ∈ C∞(D,M) be a map such that u(S1) is
contained in some isotropic leaf of N := ϕ(N ′). It suffices to prove
that

(90)

∫
D
u∗ω ∈ S(M ′, ω′, N ′) + S(M,ω).

To see that this condition is satisfied, note that by our hypothesis the
loop x′ := ϕ−1 ◦ (u|S1) : S1 →M ′ is contractible in M ′. It follows that
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there exists a map u′ ∈ C∞(D,M ′) such that u′|S1 = x′. We denote
by D the disk with the reversed orientation and by D#D the smooth
oriented manifold obtained by concatenating the two disks along their
boundary. We define f : D#D → M to be the concatenation of u and
ϕ ◦ u′. It follows that

(91)

∫
D∪D

f ∗ω =

∫
D
u∗ω −

∫
D
(ϕ ◦ u′)∗ω =

∫
D
u∗ω −

∫
D
u′
∗
ω′.

Since D∪D is diffeomorphic to S2, we have
∫

D∪D f
∗ω ∈ S(M,ω). Com-

bining this with (91), the inclusion (90) follows. �

The next result is used in the example on page 11 and the proofs of
Corollaries 3 and 5, inequality (12) in Theorem 4, and Theorem 6. For
k, n ∈ N satisfying k ≤ n we denote by

V (k, n) :=
{
Θ ∈ Ck×n

∣∣ ΘΘ∗ = 1k

}
the Stiefel manifold of unitary k-frames in Cn.

Proposition 34. We have

A(Ck×n, ω0, V (k, n)) = π.

Proof. For a proof we refer to [Zi, Proposition 1.3]. �

The next lemma is used in Remark 11.

Lemma 35. Let (M,ω) be a symplectic manifold, K ⊆ M a compact
subset, ϕ ∈ Ham(M,ω), and ε > 0. Then there exists ψ ∈ Hamc(M,ω)
such that

(92) ψ|K = ϕ|K , ‖ψ‖c
ω ≤ ‖ϕ‖ω + ε.

(Here our convention is that ∞+ ε := ∞.)

For the proof of this lemma, we need the following.

Remark 36. Let (M,ω) be a symplectic manifold, H0, H ∈ C∞(M,R),
U ⊆M an open subset, and a > 0. Assume that ϕt

H0
(the Hamiltonian

time t-flow of H0) is well-defined on U for t ∈ [0, a], and that there
exists a function c ∈ C∞([0, 1],R) such that

H ◦ ϕt
H0

= H0 ◦ ϕt
H0

+ c(t)

on U . Then ϕt
H is well-defined on U and ϕt

H = ϕt
H0

on U , for t ∈ [0, a].
This follows from a straight-forward argument. 2
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Proof of Lemma 35. Without loss of generality we may assume that M
is connected. We choose a function H0 ∈ C∞([0, 1]×M,R) such that
ϕ1

H0
= ϕ and ‖H0‖ ≤ ‖ϕ‖ω + ε. Since the set K0 :=

⋃
t∈[0,1] ϕ

t
H0

(K) ⊆
M is compact, it has an open neighborhood U0 ⊆ M with compact
closure. We choose an open neighborhood U1 ⊆M of U0 with compact
closure.

We choose a function f ∈ C∞(M, [0, 1]) such that f |M\U1 ≡ 0 and
f |U0

≡ 1. We fix a point x0 ∈M and define

H : [0, 1]×M → R, H(t, x) := f(x)
(
H0(t, x)−H0(t, x0)

)
.

Then the support of H is contained in U1 and hence compact. Further-
more, for t ∈ [0, 1] and x ∈ U0 we have H(t, ϕt

H0
(x)) = H0(t, ϕ

t
H0

(x))−
H0(t, x0). Therefore, by Remark 36 we have ϕ1

H(x) = ϕ1
H0

(x), for every
x ∈ U0, and therefore the first condition in (92) holds.

Finally, observe that

max
x∈M

H(t, x) ≤ sup
x∈M

H0(t, x)−H0(t, x0).

Combining this with a similar inequality for minx∈M H(t, x), it follows
that ‖H‖ ≤ ‖H0‖. Since ‖H0‖ ≤ ‖ϕ‖ω + ε, the second condition in
(92) follows. This proves Lemma 35. �

The next two remarks were used in the example on page 11 and the
proofs of Theorem 4(ii), Proposition 21, and Corollary 7.

Remark 37. Let (M,ω) and (M ′, ω′) be symplectic manifolds and X ⊆
M a subset. Then we have

e
(
X ×M ′,M ×M ′) ≤ e(X,M).

This follows from a straight-forward argument. 2

Remark 38. For every n ∈ N and a > 0 we have

e(Z2n(a),R2n) ≤ a.

This follows from a straight-forward argument. 2

A.2. Topology and manifolds. The next result was used in the
proof of Lemma 29.

Lemma 39. Let M and M ′ be manifolds, x0 ∈ M , x′0 ∈ M ′, and
u ∈ C∞(M ′,M). If M is connected then u is smoothly homotopic to a
map v ∈ C∞(M ′,M) satisfying x0 = v(x′0).

For the proof of this lemma we need the following two results. Let
n ∈ N, M be a manifold, and u ∈ C∞(Rn,M).



38 JAN SWOBODA AND FABIAN ZILTENER

Lemma 40. There exists a map h ∈ C∞([0, 1]× Rn,M) satisfying

h(1, x) = u(0), ∀x ∈ Bn
1 ,

(93) h(t, x) = u(x), ∀(t, x) ∈ ({0} × Rn) ∪
(
[0, 1]× (Rn \Bn

2 )
)
.

Proof of Lemma 40. We choose a function f ∈ C∞(
[0, 1]×[0,∞), [0,∞)

)
satisfying

f(1, a) = 0, ∀a ∈ [0, 1],

f(t, a) = 1, ∀(t, a) ∈ ({0} × [0,∞)) ∪ ([0, 1]× [4,∞)).

We define h(t, x) := u (f(t, |x|2)x), for every t ∈ [0, 1] and x ∈ Rn. This
map has the required properties. This proves Lemma 40. �

Lemma 41. Let γ ∈ C∞([0, 1],M) be a path. Assume that u(x) =
γ(0), for every x ∈ Bn

1 . Then there exists a map h ∈ C∞([0, 1]×Rn,M)
satisfying h(1, 0) = γ(1) and (93).

Proof of Lemma 41. We choose a function f ∈ C∞(
[−1, 1], [0, 1]

)
sat-

isfying f(t) = 0 for t ≤ 0 and f(1) = 1. We define h : [0, 1]×Rn →M
by

h(t, x) :=

{
γ ◦ f(t− |x|2), if |x| ≤ 1,
u(x), otherwise.

This map has the required properties. This proves Lemma 41. �

Proof of Lemma 39. Since M is connected, there exists a path γ ∈
C∞([0, 1],M) satisfying γ(0) = u(x′0) and γ(1) = x0. The statement
of the lemma follows from an argument using a chart around x′0 and
Lemmas 40 and 41. (We concatenate the homotopies provided by these
Lemmas and smoothen the resulting homotopy.) This proves Lemma
39. �

The next two remarks and Lemma 44 below were used in the proof of
Proposition 12. These statements follow from elementary arguments.

Remark 42. If X1 and X2 are non-empty topological spaces such that
X1 ×X2 is compact then X1 and X2 are compact. 2

Remark 43. For i = 1, 2 let Xi be a topological space and ∅ 6= Ai ⊆ Xi

a subset. If A1×A2 ⊆ X1×X2 is closed then A1 and A2 are closed. 2

Lemma 44. For i = 1, 2 let Mi be a manifold and Xi ⊆ Mi a non-
empty subset. Assume that X1×X2 ⊆M1×M2 is a submanifold. Then
Xi is a submanifold of Mi, for i = 1, 2.
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The next lemma was used to ensure that the Hofer norm ‖ · ‖ω (see
(28)) is well-defined.

Lemma 45. Let X be a topological space and f : [0, 1] × X → R a
continuous function. Assume that there exists a sequence of compact
subsets Kν ⊆ X, ν ∈ N such that

⋃
ν Kν = X. Then the map

[0, 1] 3 t 7→ sup
x∈X

f(t, x)

is Borel measurable.

Proof. This follows from an elementary argument. �
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