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Abstract. We show that the canonical dimension cd Spin2n+1 of the spinor group
Spin2n+1 has an inductive upper bound given by n + cd Spin2n−1. Using this bound,
we determine the precise value of cd Spin

n
for all n ≤ 16 (previously known for n ≤ 10).

We also obtain an upper bound for the canonical dimension of the semi-spinor group
cd Spin∼

n
in terms of cd Spin

n−2. This bound determines cdSpin∼

n
for n ≤ 16; for any n,

assuming a conjecture on the precise value of cd Spin
n−2, this bound determines cd Spin∼

n
.

1. Introduction

Let X be a smooth algebraic variety over a field F . A field extension L/F is called a
splitting field of X, if X(L) 6= ∅. A splitting field E of X is called generic, if it has an
F -place E 99K L to any splitting field L of X. Given a prime number p, a splitting field E
of X is called p-generic, if for any splitting field L of X there exists an F -place E 99K L′

to some finite extension L′/L of degree prime to p. Note that since X is smooth, the
function field F (X) is a generic splitting field of X; besides, any generic splitting field of
X is p-generic for any p.

The canonical dimension cd(X) of the varietyX is defined as the minimum of tr. degF E,
where E runs over the generic splitting fields of X; the canonical p-dimension cdp(X) of
X is defined as the minimum of tr. degF E, where E runs over the p-generic splitting fields
of X. For any p, one evidently has cdp(X) ≤ cd(X).

Let G be an algebraic group over F . The notion of canonical dimension cd(G) of G is
introduced in [1]: cd(G) is the maximum of cd(T ), where T runs over the GK-torsors for
all field extensions K/F . The notion of canonical p-dimension cdp(G) of G is introduced
in [3]: cdp(G) is the maximum of cdp(T ), where T runs over the GK-torsors for all field
extensions K/F . For any p, one evidently has cdp(G) ≤ cd(G).

A recipe of computation of cdp(G) for an arbitrary p and an arbitrary split simple
algebraic group G is given in [3]; the value of cdp(G) is determined there for all G of
classical type (the remaining types are treated in [4]).

Let G be a split simple algebraic group over F and let p be a prime. As follows from
the definition of the canonical p-dimension, cdp(G) 6= 0 if and only if p is a torsion prime
of G. It is shown in [2], that cd(G) = cdp(G) for any G possessing a unique torsion prime
p with the exception of the case where G is a spinor or a semi-spinor group.
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According to [3], for any n ≥ 1 one has

cd2(Spin2n+1) = cd2(Spin2n+2) = n(n + 1)/2 − 2l + 1 ,

where l is the smallest integer such that 2l ≥ n + 1 (the prime 2 is the unique torsion
prime of the spinor group). As shown in [1], cd(Spin2n+1) = cd(Spin2n+2) for any n and
cd(Spinn) = cd2(Spinn) for all n ≤ 10.

We note that the torsors over Spin10 are related to the 10-dimensional quadratic forms
of trivial discriminant and trivial Clifford invariant, and that the value of cd(Spin10) is
obtained due to a theorem of Pfister on those quadratic forms.

In [2], an upper bound on cd(Spin2n+1) given by n(n − 1)/2 is established. If n + 1 is
a power of 2, this upper bound coincides with the lower bound given by the known value
of cd2(Spin2n+1). Therefore cd(Spinn) = cd2(Spinn), if n or n+ 1 is a 2 power.

In the current note, we establish for an arbitrary n the following inductive upper bound
on cd(Spin2n+1) (see Theorem 2.2):

cd(Spin2n+1) ≤ n + cd(Spin2n−1) .

This bound together with the computation of cd(Spinn) for n ≤ 10, cited above, shows
(see Corollary 2.4) that cd(Spinn) = cd2(Spinn) for any n ≤ 16 (the really new cases are
n ∈ {11, 12, 13, 14}). More generally, if cd(Spin2m+1) = cd2(Spin2m+1) for some positive
integer m, then our inductive bound shows that cd(Spinn) = cd2(Spinn) for any n lying
in the interval [2m + 1, 2m+1] (see Corollary 2.3).

Note that cd2(Spin2m+1) = cd2(Spin2m). Therefore the crucial statement needed for a
further progress on cd(Spinn) is the statement that cd(Spin17) = cd(Spin16). As mentioned
above, the similar equality cd(Spin9) = cd(Spin8), concerning the previous 2 power, is a
consequence of the Pfister theorem.

We finish the introduction by discussing the semi-spinor group Spin∼

n . Here n is a
positive integer divisible by 4. To better see the parallels with the spinor case, it is more
convenient to speak on Spin∼

2n+2 with n odd. The lower bound on cd(Spin∼

2n+2) given by
the canonical 2-dimension (the prime 2 is the unique torsion prime of the semi-spinor
group) is calculated in [3] as

cd2(Spin∼

2n+2) = n(n + 1)/2 + 2k − 2l ,

where k is the biggest integer such that 2k divides n+1 (and l is still the smallest integer
with 2l ≥ n+1). The upper bound cd(Spin∼

2n+2) ≤ n(n− 1)/2+2k − 1, established in [2],
shows that the canonical 2-dimension is the value of the canonical dimension if n+ 1 is a
power of 2. In particular, cd(Spin∼

n ) = cd2(Spin∼

n ) for n ∈ {4, 8, 16}.
In the current note we establish the following general upper bound on the canonical

dimension of the semi-spinor group in terms of the canonical dimension of the spinor
group (see Theorem 3.1):

cd(Spin∼

2n+2) ≤ n− 1 + 2k + cd(Spin2n)

(with k as above). This bound together with the computation of cd(Spin10) shows (see
Corollary 3.3) that cd(Spin∼

12) = cd2(Spin∼

12) = 11; therefore the formula cd(Spin∼

n ) =
cd2(Spin∼

n ) holds for all n ≤ 16 (where the only new case is n = 12).
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In general, if cd(Spin2n) = cd2(Spin2n) for some (odd) n, then our upper bound on
cd(Spin∼

2n+2) shows that cd(Spin∼

2n+2) = cd2(Spin∼

2n+2) for this n (see Corollary 3.2).

2. The spinor group

Our main tool is the following general observation made in [2]. Let G be a split
semisimple algebraic group over a field F , P a parabolic subgroup of G, P ′ a special
parabolic subgroup of G sitting inside of P . Saying special, we mean that any P ′

K-torsor
for any field extension K/F is trivial.

For any G-torsor T , let us write cd′(T/P ) for min{dimX}, where X runs over all closed
subvarieties of the variety T/P admitting a rational morphism F (T/P ′) 99K X.

Lemma 2.1 ([2, lemma 5.3]). In the above notation, one has

cd(T ) ≤ cd′(T/P ) + max
Y

cd(Y ) ,

where Y runs over all fibers of the projection T/P ′ → T/P .

In this section, we apply Lemma 2.1 in the following situation: G = Spin2n+1 = Spin(ϕ),
where ϕ : F 2n+1 → F is a split quadratic form; P is the stabilizer of a rational point x
under the standard action of G on the variety of 1-dimensional totally isotropic subspaces
of ϕ; P ′ ⊂ P is the stabilizer of a rational point x′, lying over x, under the standard
action of G on the variety of flags consisting of a 1-dimensional totally isotropic subspace
sitting inside of an n-dimensional (maximal) totally isotropic subspace of ϕ.

The parabolic subgroup P ′ of G is clearly special.
Let T be a G-torsor and let ψ : F 2n+1 → F be a quadratic form such that the similarity

class of ψ is the class corresponding to T in the sense of [3, §8.2]. Note that the even
Clifford algebra of ψ is trivial.

The algebraic variety T/P is identified with the projective quadric of ψ; in particular,
dim(T/P ) = 2n− 1. The variety T/P ′ is identified with the variety of flags consisting of
a 1-dimensional subspace sitting inside of an n-dimensional (maximal) totally isotropic
subspace of ψ. The morphism T/P ′ → T/P is identified with the natural projection of
the flag variety onto the quadric.

Let X ⊂ T/P be an arbitrary subquadric of dimension n (X is the quadric of the
restriction of ψ onto an (n + 2)-dimensional subspace of F 2n+1). Since over the function
field F (T/P ′) the quadratic form ψ becomes split, the variety XF (T/P ′) has a rational
point, or, in other words, there exists a rational morphism T/P ′

99K X. Therefore
cd′(T/P ) ≤ dimX = n.

Any fiber Y of the projection T/P ′ → T/P is the variety of n-dimensional (maximal)
totally isotropic subspaces of ψ, containing a fixed 1-dimensional subspace U . The latter
variety is identified with the variety of (n − 1)-dimensional (maximal) totally isotropic
subspaces of the quotient U⊥/U . Note that dimU⊥/U = 2n − 1; besides, the quadratic
form on U⊥/U , induced by the restriction of ψ, is Witt-equivalent to ψ and, in particular,
its even Clifford algebra is trivial. Since cd(Spin2n−1) is the maximum of the canonical
dimension of the variety of maximal totally isotropic subspaces of a (2n− 1)-dimensional
quadratic forms with trivial even Clifford algebra, it follows that cd(Y ) ≤ cd(Spin2n−1).
Applying Lemma 2.1, we get our main inequality for the spinor group:
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Theorem 2.2. For any n, one has cd(Spin2n+1) ≤ n + cd(Spin2n−1) . �

Corollary 2.3. Assume that cd(Spin2m+1) = cd2(Spin2m+1) for some positive integer m.

Then cd(Spinn) = cd2(Spinn) for any n lying in the interval [2m + 1, 2m+1].

Proof. Let n be such that 2n ± 1 ∈ [2m + 1, 2m+1] and cd(Spin2n−1) = cd2(Spin2n−1).
Then

cd(Spin2n+1) ≤ n+ cd(Spin2n−1) = n+ n(n− 1)/2 − 2m + 1 =

n(n + 1)/2 − 2m + 1 = cd2(Spin2n+1) ≤ cd(Spin2n+1) .

Consequently, cd(Spin2n+1) = cd2(Spin2n+1). �

Since cd(Spinn) = cd2(Spinn) for n ≤ 10 (see [1, example 12.2]), the assumption of
Corollary 2.3 holds for m = 3, and we get

Corollary 2.4. The equality cd(Spinn) = cd2(Spinn) holds for any n ≤ 16. �

3. The semi-spinor group

In this section, we apply Lemma 2.1 in the following situation: G = Spin∼

2n+2 =
Spin∼(ϕ), where ϕ : F 2n+2 → F is a hyperbolic quadratic form; P is the stabilizer of
a rational point x under the standard action of G on the variety of 1-dimensional totally
isotropic subspaces of ϕ; P ′ ⊂ P is the stabilizer of a rational point x′, lying over x,
under the standard action of G on the scheme of flags consisting of a 1-dimensional to-
tally isotropic subspace sitting inside of an (n+1)-dimensional (maximal) totally isotropic
subspace of ϕ.

The parabolic subgroup P ′ of G is clearly special.
Let T be a G-torsor and let π be a quadratic pair on a degree 2n + 2 central simple

F -algebra A such that the isomorphism class of π corresponds to T in the sense of [3,
§8.4]. Note that the discriminant and a component of the Clifford algebra of π are trivial.

The quotient T/P is identified with the variety of rank 1 isotropic ideals of π; in
particular, dim(T/P ) = 2n. The quotient T/P ′ is identified with a component of the
scheme of flags consisting of a rank 1 ideal sitting inside of a rank (n + 1) (maximal)
isotropic ideal of π. The morphism T/P ′ → T/P is identified with the natural projection.

The index of the degree 2n + 2 central simple algebra A is a 2 power dividing 2n + 2.
Therefore A is Brauer-equivalent to a central simple algebra A′ of degree n + 1 + 2k,
where k is the biggest integer such that 2k divides n+ 1. Let π′ be the adjoint quadratic
pair on A′ and let X be the variety of rank 1 isotropic ideals of π ′. The variety X is a
closed subvariety of the quotient T/P . Over the function field F (T/P ′) the variety T/P
becomes a hyperbolic quadric and the closed subvariety X becomes its subquadric; since
dimX > dim(T/P ), the variety XF (T/P ′) has a rational point, or, in other words, there
exists a rational morphism T/P ′

99K X. Therefore cd′(T/P ) ≤ dimX = n− 1 + 2k.
Let y be a point of T/P . The algebra AF (y) is isomorphic to the algebra of (2n+ 2) ×

(2n + 2) matrices over F (y). Let ψ : F (y)2n+2 → F (y) be the adjoint quadratic form.
Note that the discriminant and the Clifford algebra of ψ are trivial.

The fiber Y of the projection T/P ′ → T/P over the point y is a component of the
scheme of rank n + 1 (maximal) isotropic ideals of π, containing a fixed rank 1 isotropic
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ideal. Therefore Y is identified with a component of the scheme of (n + 1)-dimensional
(maximal) totally isotropic subspaces of ψ, containing a fixed 1-dimensional subspace
U . The latter variety is identified with a component of the scheme of n-dimensional
(maximal) totally isotropic subspaces of the quotient U⊥/U . Note that dimU⊥/U = 2n;
besides, the quadratic form on U⊥/U , induced by the restriction of ψ, is Witt-equivalent
to ψ and, in particular, its discriminant and Clifford algebra are trivial.

Since cd(Spin2n) is the maximum of the canonical dimension of a component of the
scheme of maximal totally isotropic subspaces of a 2n-dimensional quadratic form with
trivial discriminant and Clifford algebra, it follows that cd(Y ) ≤ cd(Spin2n). Applying
Lemma 2.1, we get our main inequality for the semi-spinor group:

Theorem 3.1. For any odd n, one has cd(Spin∼

2n+2) ≤ n− 1 + 2k + cd(Spin2n) . �

Corollary 3.2. Assume that cd(Spin2n) = cd2(Spin2n) for some odd n. Then

cd(Spin∼

2n+2) = cd2(Spin∼

2n+2)

for this n.

Proof. Let l be the smallest integer such that 2l ≥ n + 1. Since n is odd, l is also the
smallest integer such that 2l ≥ n, therefore cd(Spin2n) = cd2(Spin2n) = n(n−1)/2−2l+1.
By Theorem 3.1 we have

cd(Spin∼

2n+2) ≤
(

n− 1 + 2k
)

+
(

n(n− 1)/2 − 2l + 1
)

=

n(n+ 1)/2 + 2k − 2l = cd2(Spin∼

2n+2) ≤ cd(Spin∼

2n+2) .

Consequently, cd(Spin∼

2n+2) = cd2(Spin∼

2n+2). �

Since the assumption of Corollary 3.2 holds for n ≤ 8 (see Corollary 2.4), we get

Corollary 3.3. The equality cd(Spin∼

n ) = cd2(Spin∼

n ) holds for any n ≤ 16. �
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d’Artois, rue Jean Souvraz SP 18, 62307 Lens Cedex, France

currently: Max-Planck-Institut für Mathematik, Postfach 7280, 53072 Bonn, Ger-

many

Web page: www.math.uni-bielefeld.de/~karpenko

E-mail address : karpenko@euler.univ-artois.fr


