CANONICAL DIMENSION
OF (SEMI-)SPINOR GROUPS OF SMALL RANKS

NIKITA A. KARPENKO

ABSTRACT. We show that the canonical dimension cdSpin,, ; of the spinor group
Spin,,,,; has an inductive upper bound given by n 4 cd Spin,,, ;. Using this bound,
we determine the precise value of c¢d Spin,, for all n < 16 (previously known for n < 10).
We also obtain an upper bound for the canonical dimension of the semi-spinor group
cd Spin;; in terms of c¢d Spin,,_,. This bound determines cd Spin,, for n < 16; for any n,
assuming a conjecture on the precise value of cd Spin,,_,, this bound determines cd Spin’; .

1. INTRODUCTION

Let X be a smooth algebraic variety over a field F. A field extension L/F is called a
splitting field of X, if X(L) # (. A splitting field F of X is called generic, if it has an
F-place E --» L to any splitting field L of X. Given a prime number p, a splitting field £
of X is called p-generic, if for any splitting field L of X there exists an F-place E --» L’
to some finite extension L'/L of degree prime to p. Note that since X is smooth, the
function field F'(X) is a generic splitting field of X; besides, any generic splitting field of
X is p-generic for any p.

The canonical dimension c¢d(X) of the variety X is defined as the minimum of tr. deg F,
where E runs over the generic splitting fields of X; the canonical p-dimension cd,(X) of
X is defined as the minimum of tr. deg, £/, where E runs over the p-generic splitting fields
of X. For any p, one evidently has cd,(X) < cd(X).

Let G be an algebraic group over F'. The notion of canonical dimension ¢d(G) of G is
introduced in [1]: ¢d(G) is the maximum of c¢d(7), where 7" runs over the G k-torsors for
all field extensions K /F. The notion of canonical p-dimension ¢d,(G) of G is introduced
in [3]: ¢0,(G) is the maximum of c¢d,(T"), where T" runs over the G k-torsors for all field
extensions K/F. For any p, one evidently has ¢0,(G) < ¢d(G).

A recipe of computation of ¢d,(G) for an arbitrary p and an arbitrary split simple
algebraic group G is given in [3]; the value of ¢d,(G) is determined there for all G' of
classical type (the remaining types are treated in [4]).

Let G be a split simple algebraic group over F' and let p be a prime. As follows from
the definition of the canonical p-dimension, d,(G) # 0 if and only if p is a torsion prime
of G. It is shown in [2], that ¢d(G) = ¢0,(G) for any G possessing a unique torsion prime
p with the exception of the case where G is a spinor or a semi-spinor group.
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According to [3], for any n > 1 one has
¢02(Sping, 1) = @2(Sping, 5) = n(n+1)/2 — 2 +1,

where [ is the smallest integer such that 2! > n + 1 (the prime 2 is the unique torsion
prime of the spinor group). As shown in [1], ¢d(Spin,, ;) = ¢d(Spin,,,,) for any n and
¢d(Spin,,) = d2(Spin,,) for all n < 10.

We note that the torsors over Spin,, are related to the 10-dimensional quadratic forms
of trivial discriminant and trivial Clifford invariant, and that the value of ¢d(Spin,,) is
obtained due to a theorem of Pfister on those quadratic forms.

In [2], an upper bound on ¢d(Spin,, ;) given by n(n — 1)/2 is established. If n + 1 is
a power of 2, this upper bound coincides with the lower bound given by the known value
of ¢d5(Spiny,, ;). Therefore ¢d(Spin, ) = ¢d2(Spin,,), if n or n + 1 is a 2 power.

In the current note, we establish for an arbitrary n the following inductive upper bound
on ¢d(Spiny, ;) (see Theorem 2.2):

c0(Sping,, ;1) < 1+ d(Spiny, ;) .

This bound together with the computation of ¢d(Spin,,) for n < 10, cited above, shows
(see Corollary 2.4) that ¢d(Spin,,) = ¢d2(Spin,,) for any n < 16 (the really new cases are
n € {11,12,13,14}). More generally, if ¢d0(Spingm,,) = 02(Spingm ;) for some positive
integer m, then our inductive bound shows that ¢d(Spin,,) = ¢d2(Spin,,) for any n lying
in the interval [2™ 4 1, 2™*1] (see Corollary 2.3).

Note that c02(Spingm_ ;) = d2(Spinym). Therefore the crucial statement needed for a
further progress on ¢d(Spin,, ) is the statement that ¢d(Spin,,;) = ¢®(Spin,g). As mentioned
above, the similar equality ¢d(Sping) = ¢0(Sping), concerning the previous 2 power, is a
consequence of the Pfister theorem.

We finish the introduction by discussing the semi-spinor group Spin),. Here n is a
positive integer divisible by 4. To better see the parallels with the spinor case, it is more
convenient to speak on Spinj, ,, with n odd. The lower bound on ¢d(Spin3,,,) given by
the canonical 2-dimension (the prime 2 is the unique torsion prime of the semi-spinor
group) is calculated in [3] as

c02(Sping,.,) = n(n+1)/2 4+ 2F — 2"

where k is the biggest integer such that 2% divides n+ 1 (and [ is still the smallest integer
with 2/ > n+1). The upper bound ¢d(Spiny,,,) < n(n—1)/2+ 2% —1, established in [2],
shows that the canonical 2-dimension is the value of the canonical dimension if n 41 is a
power of 2. In particular, ¢d(Spin)’) = ¢05(Spin,) for n € {4,8,16}.

In the current note we establish the following general upper bound on the canonical
dimension of the semi-spinor group in terms of the canonical dimension of the spinor
group (see Theorem 3.1):

cd(Sping, ) < n — 1+ 2% + cd(Spin,,)

(with & as above). This bound together with the computation of ¢d(Spin,,) shows (see
Corollary 3.3) that ¢d(Spin7;) = 2(Spiny;) = 11; therefore the formula ¢d(Spin)) =
¢02(Spin’’) holds for all n < 16 (where the only new case is n = 12).
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In general, if ¢d(Spin,,) = cd2(Spin,,) for some (odd) n, then our upper bound on
cd(Spins,, ») shows that ¢d(Spinj, ,) = c02(Spins, ) for this n (see Corollary 3.2).

2. THE SPINOR GROUP

Our main tool is the following general observation made in [2]. Let G be a split
semisimple algebraic group over a field F', P a parabolic subgroup of GG, P’ a special
parabolic subgroup of G sitting inside of P. Saying special, we mean that any Pj.-torsor
for any field extension K/F is trivial.

For any G-torsor T, let us write cd’(7T/P) for min{dim X}, where X runs over all closed
subvarieties of the variety T//P admitting a rational morphism F(T/P’) --» X.

Lemma 2.1 (]2, lemma 5.3]). In the above notation, one has

cd(T) < cd'(T/P) + max cd(Y)
where Y runs over all fibers of the projection T/P" — T/ P.

In this section, we apply Lemma 2.1 in the following situation: G' = Spin,,,,; = Spin(yp),
where ¢ : F?"*1 — F is a split quadratic form; P is the stabilizer of a rational point x
under the standard action of GG on the variety of 1-dimensional totally isotropic subspaces
of p; P’ C P is the stabilizer of a rational point 2/, lying over x, under the standard
action of G on the variety of flags consisting of a 1-dimensional totally isotropic subspace
sitting inside of an n-dimensional (maximal) totally isotropic subspace of .

The parabolic subgroup P’ of G is clearly special.

Let T be a G-torsor and let 1: F?"*! — F be a quadratic form such that the similarity
class of 9 is the class corresponding to 7 in the sense of [3, §8.2]. Note that the even
Clifford algebra of v is trivial.

The algebraic variety T'/P is identified with the projective quadric of 1; in particular,
dim(7/P) = 2n — 1. The variety T/ P’ is identified with the variety of flags consisting of
a 1-dimensional subspace sitting inside of an n-dimensional (maximal) totally isotropic
subspace of 1. The morphism 7'/P’ — T/P is identified with the natural projection of
the flag variety onto the quadric.

Let X C T/P be an arbitrary subquadric of dimension n (X is the quadric of the
restriction of ¥ onto an (n + 2)-dimensional subspace of F?"™!). Since over the function
field F'(T'/P') the quadratic form ¢ becomes split, the variety Xp/py has a rational
point, or, in other words, there exists a rational morphism 7/P" --+ X. Therefore
cd(T/P) < dim X = n.

Any fiber Y of the projection T'/P" — T/ P is the variety of n-dimensional (maximal)
totally isotropic subspaces of 1, containing a fixed 1-dimensional subspace U. The latter
variety is identified with the variety of (n — 1)-dimensional (maximal) totally isotropic
subspaces of the quotient U+ /U. Note that dim U+ /U = 2n — 1; besides, the quadratic
form on U+ /U, induced by the restriction of v, is Witt-equivalent to ¢ and, in particular,
its even Clifford algebra is trivial. Since c¢d(Spin,, ;) is the maximum of the canonical
dimension of the variety of maximal totally isotropic subspaces of a (2n — 1)-dimensional
quadratic forms with trivial even Clifford algebra, it follows that c¢d(Y) < ¢d(Spin,, ;).
Applying Lemma 2.1, we get our main inequality for the spinor group:
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Theorem 2.2. For any n, one has ¢d(Spin,, ;) < n + cd(Spiny,_,) . O

Corollary 2.3. Assume that ¢d(Spingm ;) = ¢02(Spingm, ) for some positive integer m.
Then ¢d(Spin,,) = ¢05(Spin,,) for any n lying in the interval 2™ + 1, 2mT1].

Proof. Let n be such that 2n £ 1 € [2™ + 1, 2™"!] and ¢d(Spiny, ;) = c02(Spin,,, ;).
Then

¢d(Spiny, 1) < n+ @(Spin,,, ;) =n+n(n—-1)/2-2"+1=
n(n+1)/2 —=2" +1 = 02(Sping, ;) < cd(Spiny, ;) .
Consequently, ¢d(Spin,, ;) = c02(Spin,,,, ;). O

Since ¢0(Spin,,) = d2(Spin,,) for n < 10 (see [1, example 12.2]), the assumption of
Corollary 2.3 holds for m = 3, and we get

Corollary 2.4. The equality ¢d(Spin,,) = ¢d2(Spin,,) holds for any n < 16. !

3. THE SEMI-SPINOR GROUP

In this section, we apply Lemma 2.1 in the following situation: G = Sping, ., =
Spin~ (), where ¢ : F**? — F is a hyperbolic quadratic form; P is the stabilizer of
a rational point x under the standard action of G' on the variety of 1-dimensional totally
isotropic subspaces of p; P’ C P is the stabilizer of a rational point z’, lying over x,
under the standard action of G on the scheme of flags consisting of a 1-dimensional to-
tally isotropic subspace sitting inside of an (n+1)-dimensional (maximal) totally isotropic
subspace of .

The parabolic subgroup P’ of G is clearly special.

Let T be a G-torsor and let 7 be a quadratic pair on a degree 2n + 2 central simple
F-algebra A such that the isomorphism class of 7 corresponds to 7" in the sense of [3,
§8.4]. Note that the discriminant and a component of the Clifford algebra of 7 are trivial.

The quotient 7'/P is identified with the variety of rank 1 isotropic ideals of m; in
particular, dim(7/P) = 2n. The quotient T/P’ is identified with a component of the
scheme of flags consisting of a rank 1 ideal sitting inside of a rank (n 4+ 1) (maximal)
isotropic ideal of . The morphism 7'/ P’ — T/ P is identified with the natural projection.

The index of the degree 2n + 2 central simple algebra A is a 2 power dividing 2n + 2.
Therefore A is Brauer-equivalent to a central simple algebra A’ of degree n + 1 + 2%,
where k is the biggest integer such that 2% divides n 4 1. Let 7’ be the adjoint quadratic
pair on A’ and let X be the variety of rank 1 isotropic ideals of 7’. The variety X is a
closed subvariety of the quotient 7/ P. Over the function field F'(T/P’) the variety T//P
becomes a hyperbolic quadric and the closed subvariety X becomes its subquadric; since
dim X > dim(7"/P), the variety Xp(r/pry has a rational point, or, in other words, there
exists a rational morphism 7'/ P’ --» X. Therefore cd'(T/P) < dim X =n — 1 + 2F.

Let y be a point of T'/P. The algebra Ap(, is isomorphic to the algebra of (2n + 2) x
(2n + 2) matrices over F(y). Let v : F(y)*** — F(y) be the adjoint quadratic form.
Note that the discriminant and the Clifford algebra of 1) are trivial.

The fiber Y of the projection T//P’ — T/P over the point y is a component of the
scheme of rank n 4+ 1 (maximal) isotropic ideals of 7, containing a fixed rank 1 isotropic
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ideal. Therefore Y is identified with a component of the scheme of (n + 1)-dimensional
(maximal) totally isotropic subspaces of v, containing a fixed 1-dimensional subspace
U. The latter variety is identified with a component of the scheme of n-dimensional
(maximal) totally isotropic subspaces of the quotient U+/U. Note that dim UL /U = 2n;
besides, the quadratic form on U+ /U, induced by the restriction of 1, is Witt-equivalent
to 1 and, in particular, its discriminant and Clifford algebra are trivial.

Since cd(Spin,,) is the maximum of the canonical dimension of a component of the
scheme of maximal totally isotropic subspaces of a 2n-dimensional quadratic form with
trivial discriminant and Clifford algebra, it follows that cd(Y) < ¢d(Spin,,). Applying
Lemma 2.1, we get our main inequality for the semi-spinor group:

Theorem 3.1. For any odd n, one has ¢d(Spiny,.,) < n — 1+ 2% + ¢d(Spin,,,) . O

Corollary 3.2. Assume that ¢d(Spin,,, ) = ¢d2(Spiny,) for some odd n. Then
c0(Sping,,») = €2(Sping, )

for this n.

Proof. Let | be the smallest integer such that 2! > n + 1. Since n is odd, [ is also the
smallest integer such that 2! > n, therefore ¢d(Spiny,) = ¢02(Spiny,) = n(n—1)/2—2"+1.
By Theorem 3.1 we have

d(Sping, o) < (n—1+2%) 4+ (n(n—1)/2—-2"+1) =
n(n+1)/2 + 2% — 2! = ¢05(Spiny,, ) < d(Spin;,.,) -

Consequently, ¢@(Spin, ,,) = d2(Sping, ). O
Since the assumption of Corollary 3.2 holds for n < 8 (see Corollary 2.4), we get
Corollary 3.3. The equality ¢d(Spin)’) = ¢0,5(Spin,’) holds for any n < 16. O
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