CANONICAL DIMENSION OF (SEMI-)SPINOR GROUPS OF SMALL RANKS

NIKITA A. KARPENKO

Abstract

We show that the canonical dimension $\operatorname{cd} \operatorname{Spin}_{2 n+1}$ of the spinor group $\operatorname{Spin}_{2 n+1}$ has an inductive upper bound given by $n+c d \operatorname{Spin}_{2 n-1}$. Using this bound, we determine the precise value of $\operatorname{cd} \operatorname{Spin}_{n}$ for all $n \leq 16$ (previously known for $n \leq 10$). We also obtain an upper bound for the canonical dimension of the semi-spinor group cd $\operatorname{Spin}_{n}^{\sim}$ in terms of $\mathrm{cd} \operatorname{Spin}_{n-2}$. This bound determines cd $\operatorname{Spin}_{n}^{\sim}$ for $n \leq 16$; for any n, assuming a conjecture on the precise value of $\operatorname{cd}^{\operatorname{Spin}}{ }_{n-2}$, this bound determines $\mathrm{cd} \operatorname{Spin}_{n}^{\sim}$.

1. Introduction

Let X be a smooth algebraic variety over a field F. A field extension L / F is called a splitting field of X, if $X(L) \neq \emptyset$. A splitting field E of X is called generic, if it has an F-place $E \rightarrow L$ to any splitting field L of X. Given a prime number p, a splitting field E of X is called p-generic, if for any splitting field L of X there exists an F-place $E \rightarrow L^{\prime}$ to some finite extension L^{\prime} / L of degree prime to p. Note that since X is smooth, the function field $F(X)$ is a generic splitting field of X; besides, any generic splitting field of X is p-generic for any p.

The canonical dimension $\operatorname{cd}(X)$ of the variety X is defined as the minimum of $\operatorname{tr} . \operatorname{deg}_{F} E$, where E runs over the generic splitting fields of X; the canonical p-dimension $\operatorname{cd}_{p}(X)$ of X is defined as the minimum of $\operatorname{tr} \cdot \operatorname{deg}_{F} E$, where E runs over the p-generic splitting fields of X. For any p, one evidently has $\operatorname{cd}_{p}(X) \leq \operatorname{cd}(X)$.

Let G be an algebraic group over F. The notion of canonical dimension $\mathfrak{c d}(G)$ of G is introduced in [1]: $\mathfrak{c d}(G)$ is the maximum of $\operatorname{cd}(T)$, where T runs over the G_{K}-torsors for all field extensions K / F. The notion of canonical p-dimension $\mathfrak{c d}_{p}(G)$ of G is introduced in [3]: $\mathfrak{c d}_{p}(G)$ is the maximum of $\operatorname{cd}_{p}(T)$, where T runs over the G_{K}-torsors for all field extensions K / F. For any p, one evidently has $\mathfrak{c d}_{p}(G) \leq \mathfrak{c d}(G)$.

A recipe of computation of $\mathfrak{c d}_{p}(G)$ for an arbitrary p and an arbitrary split simple algebraic group G is given in [3]; the value of $\mathfrak{c d}_{p}(G)$ is determined there for all G of classical type (the remaining types are treated in [4]).

Let G be a split simple algebraic group over F and let p be a prime. As follows from the definition of the canonical p-dimension, $\mathfrak{c d}_{p}(G) \neq 0$ if and only if p is a torsion prime of G. It is shown in [2], that $\mathfrak{c d}(G)=\mathfrak{c d}_{p}(G)$ for any G possessing a unique torsion prime p with the exception of the case where G is a spinor or a semi-spinor group.

[^0]According to [3], for any $n \geq 1$ one has

$$
\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n+1}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n+2}\right)=n(n+1) / 2-2^{l}+1
$$

where l is the smallest integer such that $2^{l} \geq n+1$ (the prime 2 is the unique torsion prime of the spinor group). As shown in [1], $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right)=\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}\right)$ for any n and $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}\right)$ for all $n \leq 10$.

We note that the torsors over Spin_{10} are related to the 10-dimensional quadratic forms of trivial discriminant and trivial Clifford invariant, and that the value of $\mathfrak{c o}\left(\operatorname{Spin}_{10}\right)$ is obtained due to a theorem of Pfister on those quadratic forms.

In [2], an upper bound on $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right)$ given by $n(n-1) / 2$ is established. If $n+1$ is a power of 2 , this upper bound coincides with the lower bound given by the known value of $\mathfrak{c d} \boldsymbol{d}_{2}\left(\operatorname{Spin}_{2 n+1}\right)$. Therefore $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)=\mathfrak{c d} \boldsymbol{d}_{2}\left(\operatorname{Spin}_{n}\right)$, if n or $n+1$ is a 2 power.

In the current note, we establish for an arbitrary n the following inductive upper bound on $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right)$ (see Theorem 2.2):

$$
\mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right) \leq n+\mathfrak{c d}\left(\operatorname{Spin}_{2 n-1}\right)
$$

This bound together with the computation of $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)$ for $n \leq 10$, cited above, shows (see Corollary 2.4) that $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)=\mathfrak{c d _ { 2 }}\left(\operatorname{Spin}_{n}\right)$ for any $n \leq 16$ (the really new cases are $n \in\{11,12,13,14\})$. More generally, if $\mathfrak{c d}\left(\operatorname{Spin}_{2^{m}+1}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2^{m}+1}\right)$ for some positive integer m, then our inductive bound shows that $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}\right)$ for any n lying in the interval $\left[2^{m}+1,2^{m+1}\right]$ (see Corollary 2.3).

Note that $\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2^{m}+1}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2^{m}}\right)$. Therefore the crucial statement needed for a further progress on $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)$ is the statement that $\mathfrak{c d}\left(\operatorname{Spin}_{17}\right)=\mathfrak{c d}\left(\operatorname{Spin}_{16}\right)$. As mentioned above, the similar equality $\mathfrak{c d}\left(\operatorname{Spin}_{9}\right)=\mathfrak{c d}\left(\operatorname{Spin}_{8}\right)$, concerning the previous 2 power, is a consequence of the Pfister theorem.

We finish the introduction by discussing the semi-spinor group $\operatorname{Spin}_{n}^{\sim}$. Here n is a positive integer divisible by 4 . To better see the parallels with the spinor case, it is more convenient to speak on $\operatorname{Spin}_{2 n+2}^{\sim}$ with n odd. The lower bound on $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right)$ given by the canonical 2-dimension (the prime 2 is the unique torsion prime of the semi-spinor group) is calculated in [3] as

$$
\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n+2}\right)=n(n+1) / 2+2^{k}-2^{l}
$$

where k is the biggest integer such that 2^{k} divides $n+1$ (and l is still the smallest integer with $2^{l} \geq n+1$. The upper bound $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right) \leq n(n-1) / 2+2^{k}-1$, established in [2], shows that the canonical 2-dimension is the value of the canonical dimension if $n+1$ is a power of 2 . In particular, $\mathfrak{c d}\left(\operatorname{Spin}_{n}^{\sim}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}^{\sim}\right)$ for $n \in\{4,8,16\}$.

In the current note we establish the following general upper bound on the canonical dimension of the semi-spinor group in terms of the canonical dimension of the spinor group (see Theorem 3.1):

$$
\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right) \leq n-1+2^{k}+\mathfrak{c d}\left(\operatorname{Spin}_{2 n}\right)
$$

(with k as above). This bound together with the computation of $\mathfrak{c d}\left(\operatorname{Spin}_{10}\right)$ shows (see Corollary 3.3) that $\mathfrak{c d}\left(\operatorname{Spin}_{12}^{\sim}\right)=\mathfrak{c o}_{2}\left(\operatorname{Spin}_{12}^{\sim}\right)=11$; therefore the formula $\mathfrak{c d}\left(\operatorname{Spin}_{n}^{\sim}\right)=$ $\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}^{\sim}\right)$ holds for all $n \leq 16$ (where the only new case is $n=12$).

In general, if $\mathfrak{c d}\left(\operatorname{Spin}_{2 n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n}\right)$ for some (odd) n, then our upper bound on $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right)$ shows that $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right)$ for this n (see Corollary 3.2).

2. The Spinor group

Our main tool is the following general observation made in [2]. Let G be a split semisimple algebraic group over a field F, P a parabolic subgroup of G, P^{\prime} a special parabolic subgroup of G sitting inside of P. Saying special, we mean that any P_{K}^{\prime}-torsor for any field extension K / F is trivial.

For any G-torsor T, let us write $\operatorname{cd}^{\prime}(T / P)$ for $\min \{\operatorname{dim} X\}$, where X runs over all closed subvarieties of the variety T / P admitting a rational morphism $F\left(T / P^{\prime}\right) \rightarrow X$.

Lemma 2.1 ([2, lemma 5.3]). In the above notation, one has

$$
\operatorname{cd}(T) \leq \operatorname{cd}^{\prime}(T / P)+\max _{Y} \operatorname{cd}(Y)
$$

where Y runs over all fibers of the projection $T / P^{\prime} \rightarrow T / P$.
In this section, we apply Lemma 2.1 in the following situation: $G=\operatorname{Spin}_{2 n+1}=\operatorname{Spin}(\varphi)$, where $\varphi: F^{2 n+1} \rightarrow F$ is a split quadratic form; P is the stabilizer of a rational point x under the standard action of G on the variety of 1-dimensional totally isotropic subspaces of $\varphi ; P^{\prime} \subset P$ is the stabilizer of a rational point x^{\prime}, lying over x, under the standard action of G on the variety of flags consisting of a 1-dimensional totally isotropic subspace sitting inside of an n-dimensional (maximal) totally isotropic subspace of φ.

The parabolic subgroup P^{\prime} of G is clearly special.
Let T be a G-torsor and let $\psi: F^{2 n+1} \rightarrow F$ be a quadratic form such that the similarity class of ψ is the class corresponding to T in the sense of [3, §8.2]. Note that the even Clifford algebra of ψ is trivial.

The algebraic variety T / P is identified with the projective quadric of ψ; in particular, $\operatorname{dim}(T / P)=2 n-1$. The variety T / P^{\prime} is identified with the variety of flags consisting of a 1-dimensional subspace sitting inside of an n-dimensional (maximal) totally isotropic subspace of ψ. The morphism $T / P^{\prime} \rightarrow T / P$ is identified with the natural projection of the flag variety onto the quadric.

Let $X \subset T / P$ be an arbitrary subquadric of dimension n (X is the quadric of the restriction of ψ onto an $(n+2)$-dimensional subspace of $\left.F^{2 n+1}\right)$. Since over the function field $F\left(T / P^{\prime}\right)$ the quadratic form ψ becomes split, the variety $X_{F\left(T / P^{\prime}\right)}$ has a rational point, or, in other words, there exists a rational morphism $T / P^{\prime} \rightarrow X$. Therefore $\operatorname{cd}^{\prime}(T / P) \leq \operatorname{dim} X=n$.

Any fiber Y of the projection $T / P^{\prime} \rightarrow T / P$ is the variety of n-dimensional (maximal) totally isotropic subspaces of ψ, containing a fixed 1-dimensional subspace U. The latter variety is identified with the variety of $(n-1)$-dimensional (maximal) totally isotropic subspaces of the quotient U^{\perp} / U. Note that $\operatorname{dim} U^{\perp} / U=2 n-1$; besides, the quadratic form on U^{\perp} / U, induced by the restriction of ψ, is Witt-equivalent to ψ and, in particular, its even Clifford algebra is trivial. Since $\operatorname{cd}\left(\operatorname{Spin}_{2 n-1}\right)$ is the maximum of the canonical dimension of the variety of maximal totally isotropic subspaces of a $(2 n-1)$-dimensional quadratic forms with trivial even Clifford algebra, it follows that $\operatorname{cd}(Y) \leq \mathfrak{c d}\left(\operatorname{Spin}_{2 n-1}\right)$. Applying Lemma 2.1, we get our main inequality for the spinor group:

Theorem 2.2. For any n, one has $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right) \leq n+\mathfrak{c d}\left(\operatorname{Spin}_{2 n-1}\right)$.
Corollary 2.3. Assume that $\mathfrak{c d}\left(\operatorname{Spin}_{2^{m}+1}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2^{m}+1}\right)$ for some positive integer m. Then $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}\right)$ for any n lying in the interval $\left[2^{m}+1,2^{m+1}\right]$.
Proof. Let n be such that $2 n \pm 1 \in\left[2^{m}+1,2^{m+1}\right]$ and $\mathfrak{c d}\left(\operatorname{Spin}_{2 n-1}\right)=\mathfrak{c} \boldsymbol{d}_{2}\left(\operatorname{Spin}_{2 n-1}\right)$. Then

$$
\begin{aligned}
\mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right) \leq n+\mathfrak{c d}\left(\operatorname{Spin}_{2 n-1}\right) & =n+n(n-1) / 2-2^{m}+1= \\
n(n+1) / 2-2^{m}+1=\mathfrak{c d} & \left(\operatorname{Spin}_{2 n+1}\right) \leq \mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right)
\end{aligned}
$$

Consequently, $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+1}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n+1}\right)$.
Since $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}\right)$ for $n \leq 10$ (see [1, example 12.2]), the assumption of Corollary 2.3 holds for $m=3$, and we get
Corollary 2.4. The equality $\mathfrak{c d}\left(\operatorname{Spin}_{n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}\right)$ holds for any $n \leq 16$.

3. The semi-spinor group

In this section, we apply Lemma 2.1 in the following situation: $G=\operatorname{Spin}_{2 n+2}^{\sim}=$ $\operatorname{Spin}^{\sim}(\varphi)$, where $\varphi: F^{2 n+2} \rightarrow F$ is a hyperbolic quadratic form; P is the stabilizer of a rational point x under the standard action of G on the variety of 1-dimensional totally isotropic subspaces of $\varphi ; P^{\prime} \subset P$ is the stabilizer of a rational point x^{\prime}, lying over x, under the standard action of G on the scheme of flags consisting of a 1-dimensional totally isotropic subspace sitting inside of an ($n+1$)-dimensional (maximal) totally isotropic subspace of φ.

The parabolic subgroup P^{\prime} of G is clearly special.
Let T be a G-torsor and let π be a quadratic pair on a degree $2 n+2$ central simple F-algebra A such that the isomorphism class of π corresponds to T in the sense of [3, §8.4]. Note that the discriminant and a component of the Clifford algebra of π are trivial.

The quotient T / P is identified with the variety of rank 1 isotropic ideals of π; in particular, $\operatorname{dim}(T / P)=2 n$. The quotient T / P^{\prime} is identified with a component of the scheme of flags consisting of a rank 1 ideal sitting inside of a rank $(n+1)$ (maximal) isotropic ideal of π. The morphism $T / P^{\prime} \rightarrow T / P$ is identified with the natural projection.

The index of the degree $2 n+2$ central simple algebra A is a 2 power dividing $2 n+2$. Therefore A is Brauer-equivalent to a central simple algebra A^{\prime} of degree $n+1+2^{k}$, where k is the biggest integer such that 2^{k} divides $n+1$. Let π^{\prime} be the adjoint quadratic pair on A^{\prime} and let X be the variety of rank 1 isotropic ideals of π^{\prime}. The variety X is a closed subvariety of the quotient T / P. Over the function field $F\left(T / P^{\prime}\right)$ the variety T / P becomes a hyperbolic quadric and the closed subvariety X becomes its subquadric; since $\operatorname{dim} X>\operatorname{dim}(T / P)$, the variety $X_{F\left(T / P^{\prime}\right)}$ has a rational point, or, in other words, there exists a rational morphism $T / P^{\prime} \rightarrow X$. Therefore $\operatorname{cd}^{\prime}(T / P) \leq \operatorname{dim} X=n-1+2^{k}$.

Let y be a point of T / P. The algebra $A_{F(y)}$ is isomorphic to the algebra of $(2 n+2) \times$ $(2 n+2)$ matrices over $F(y)$. Let $\psi: F(y)^{2 n+2} \rightarrow F(y)$ be the adjoint quadratic form. Note that the discriminant and the Clifford algebra of ψ are trivial.

The fiber Y of the projection $T / P^{\prime} \rightarrow T / P$ over the point y is a component of the scheme of rank $n+1$ (maximal) isotropic ideals of π, containing a fixed rank 1 isotropic
ideal. Therefore Y is identified with a component of the scheme of $(n+1)$-dimensional (maximal) totally isotropic subspaces of ψ, containing a fixed 1-dimensional subspace U. The latter variety is identified with a component of the scheme of n-dimensional (maximal) totally isotropic subspaces of the quotient U^{\perp} / U. Note that $\operatorname{dim} U^{\perp} / U=2 n$; besides, the quadratic form on U^{\perp} / U, induced by the restriction of ψ, is Witt-equivalent to ψ and, in particular, its discriminant and Clifford algebra are trivial.

Since $\operatorname{cd}\left(\operatorname{Spin}_{2 n}\right)$ is the maximum of the canonical dimension of a component of the scheme of maximal totally isotropic subspaces of a $2 n$-dimensional quadratic form with trivial discriminant and Clifford algebra, it follows that $\operatorname{cd}(Y) \leq \mathfrak{c d}\left(\operatorname{Spin}_{2 n}\right)$. Applying Lemma 2.1, we get our main inequality for the semi-spinor group:

Theorem 3.1. For any odd n, one has $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right) \leq n-1+2^{k}+\mathfrak{c d}\left(\operatorname{Spin}_{2 n}\right)$.
Corollary 3.2. Assume that $\mathfrak{c d}\left(\operatorname{Spin}_{2 n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n}\right)$ for some odd n. Then

$$
\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}\right)=\mathfrak{c d}{ }_{2}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right)
$$

for this n.
Proof. Let l be the smallest integer such that $2^{l} \geq n+1$. Since n is odd, l is also the smallest integer such that $2^{l} \geq n$, therefore $\mathfrak{c o}\left(\operatorname{Spin}_{2 n}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n}\right)=n(n-1) / 2-2^{l}+1$. By Theorem 3.1 we have

$$
\begin{aligned}
\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right) \leq\left(n-1+2^{k}\right)+ & \left(n(n-1) / 2-2^{l}+1\right)= \\
& n(n+1) / 2+2^{k}-2^{l}=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right) \leq \mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right) .
\end{aligned}
$$

Consequently, $\mathfrak{c d}\left(\operatorname{Spin}_{2 n+2}^{\sim}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{2 n+2}\right)$.
Since the assumption of Corollary 3.2 holds for $n \leq 8$ (see Corollary 2.4), we get
Corollary 3.3. The equality $\mathfrak{c d}\left(\operatorname{Spin}_{n}^{\sim}\right)=\mathfrak{c d}_{2}\left(\operatorname{Spin}_{n}^{\sim}\right)$ holds for any $n \leq 16$.

References

[1] G. Berhuy, Z. Reichstein. On the notion of canonical dimension for algebraic groups. Adv. Math., to appear (available at www.sciencedirect.com).
[2] N. A. Karpenko. A bound for canonical dimension of the (semi-)spinor groups. Duke Math. J., to appear.
[3] N. A. Karpenko, A. S. Merkurjev. Canonical p-dimension of algebraic groups. Adv. Math., to appear (available at www.sciencedirect.com).
[4] K. Zainoulline. Canonical p-dimensions of algebraic groups and degrees of basic polynomial invariants. Preprint, arXiv:math.AG/0510167 v2 (available at arxiv.org).

Laboratoire de Mathématiques de Lens, Faculté des Sciences Jean Perrin, Université d'Artois, Rue Jean Souvraz SP 18, 62307 Lens Cedex, France
currently: Max-Planck-Institut für Mathematik, Postfach 7280, 53072 Bonn, GerMANY

Web page: www.math.uni-bielefeld.de/~karpenko
E-mail address: karpenko@euler.univ-artois.fr

[^0]: Date: December 12, 2005.
 Key words and phrases. Algebraic groups, projective homogeneous varieties, Chow groups. 2000 Mathematical Subject Classifications: 14L17; 14C25.

 Supported by the Max-Planck-Institut für Mathematik in Bonn.

