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PAOLO ALUFFl t

FERNANDO CUKIERMAN

§O. INTRODUCTION.

Let 5 C pN be a smooth variety over an algebraically dosed field of character­
istic O. Denote by D C pN the dual variety of S, consisting of a.ll the hyperplanes
in pN that are tangent to S. The basic question that we consider in this note is:
if X E D is a singular hyperplane section of 5, what is the multiplicity mx(D) of
D at X?

Our answer is in the style of the weIl known formula for the degree of the dual
in terms of the Chern dasses of Sand of tbe hyperplane bundle.c (see for example
[F], p. 63). We associate with each hyperplane section X a zero-dimensional dass
in the Chow group of 5, obtained by capping the Segre class in S of the singular
scheme of X by the Chern c1asses of the bundle pt.c of principal parts of order
one (which are easily expressible in terms of the dasses of .c and of the cotangent
bundle of 5). Assuming that D is a hypersurface, the multiplicity of D at X
is then essentially the degree of this class. We give several examples illustrating
the 'computability' of the formula in specific instances; in particular, the answer
becomes especially simple when 5 is a surlace. For exa.mple, if 5 = p2, and one
writes the section X as "Ei ffiiXi with ffii natural numbers and Xi irreducible
divisors, then mx(D) has a simple expression in terms of the integers mi, the
degrees of the Xi, and the singularities of X red = "Ei Xi.

The main formula is stated in §1, Theorem ~, in a more general setting also
addressing the same question for the 'higher discriminants' D(r) c pN, consisting
of sections of 5 that have a point of multiplicity at least r + 1. The formula gives
mxD(r) under a hypothesis of surjectivity onto the bundle pr! (automatic in
the case of dual varieties) and assuming that the discriminants have the expected
dimension. In these hypotheses, the formula also specializes easily to compute the
degree of the discriminants (Corollary 1.1).

In fact the class introduced in Theorem I can be used to detect whether the
dual variety is not a hypersurface-that is, whether it is 'smaI!': we show (§2,
Theorem 11) that the dass vanishes if and only if the duaI is small-again, we
prove the corresponding result for all discriminants, under the same surjectivity
hypothesis employed in Theorem I. In fact, this exposes a surprising interaction
between different hyperplane sections: the vanishing of the degree of the dass for
one singular section forces the vanishing of the class for a11 sections.

The main difficulty in applying Theorem I to specific situations lies in the
computation of the Segre dass s(JrX, S) of the Jacobian schemes of a hyperplane
section. One important case occurs when S is a surface, or more generally when
the singularities of Xred are isolated: then one can write the Segre c1ass-and
therefore the multiplicity of D(r) at X-as the SUffi of an easily computable tenn
and a. contribution pr due to the singularities of X red • The result ia stated in
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Prop. 1.2 for all discriminants. The röle of Jll is clarified in §3, where we discuss the
dual of a surface using Lefschetz pencils and show that in this case the contribution
Jll is the sum of the Milnor numbers of tbe singularities of X red •

In §4 we provide a few examples of explicit computations of multiplicities. Also,
we illustrate Theorem 11 by showing how to apply it to prove a known criterion
for the product of projective spaces IP'n l x ... X pn" to have small dual under the
Segre embedding (Example 4.5).

Another approach to the computation of the multiplicity of a dual variety can
be found in [Pa], generalizing earlier results of Dimca and Nemethi ([D], [N)):
there the multiplicity is written in tenns of generalized Milnor numbers associated
with the singularities of the section and of its intersections with general linear
subspaces. Comparing Parusiilski's formula with Theorem I yields an expression
for the,generalized Milnor numbers in terms of Chern and Segre classes, elose in
spirit to recent work of Parusiilski and Pragacz. We plan to explore this connection
elsewhere.

Acknowledgements. We thank Joe Harris who asked us an interesting question
that originated this work. Also, we are grateful to Piotr Pragacz for bringing
Parusiilski's work to our attention. The first named author wishes to thank the
Max-Planck-Institut für Mathematik for the support and the hospitality during
part of tbe preparation of this note.

§1. MULTIPLICITIES OF DISCRIMINANTS.

Let r, be a line bundle on a smooth n-dimensional variety S. We let prr, denote
the r-th bundle oi principal parts: if I is the ideal sheaf of the diagonal in the
product S x S, denote by S(r) the subscheme of S x S defined by Ir+l and by P
and q- the two projections S(r) --+ S; then prr, is the sheaf on S defined by

Then po r, = r, and for r ~ 0, prr, is locally free of rank (r:n). One can think
of tbe fiber of the bundle prr, over pES as parametrizing the first r +1 terms of
the Taylor expansion of a germ of a section of r, at p. For all r there are natural
maps

Tr : S x HO(S, r,) -+ prr,

acting as 'truncated Taylor expansions' ([GI], [G2], [Pi] are good references for
facts about bundles of principal parts).

Let now V be a vector space mapping linearly to HO (5,1:,). An element X
of the projectivization PV of V determines a divisor on S, or maps to the zero
section of r,. We say that X 'has multiplicity 2:: r' at a point p of S if tbe
divisor corresponding to X does: that is, if all terms of degree < r in the Taylor
expansion at p of tbe section of I:, corresponding (up to scalar) to X vanish. In
particular, note that this will be the case for all r if X corresponds to the zero
section. Let now V = S x V denote the trivial bundle over S and denote by Cl'r

the composition V -+ S x HO(S, r,) -+ pr(,: then X has multiplicity 2:: r at p if
and only if Cl'r(P, X) = O. For r 2:: 0 we define the 'r-th discriminant D(r) of r,' by

n(r) = {X E PV S.t. X has a point of multiplicity > r}
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Thus D(O) = PV, and D(I) is the ordinary discriminant in PV. H I:, is very ampIe,
D(I) is the dual variety of S C pyv. Given a specific X E PV, we want to
compute the multiplicity mx D(r) of the r-th discriminant 8t X.

Let JrX denote the subscheme of S defined locally by all derivatives up to
order r of a Ioeal equation of (the divisor corresponding to) X: thus Jl X is the
ordinary Jacobian scheme of X, supported on its singularities; J2X is supported
on the subset of S along which X has multiplicity > 2, and so on. Finally, let "Yi
be the degree (in the sense of [F], Definition 1.4) deg[JiX] of the cycle [JiX] for
the general element X E n(i). So in particular ;i = 0 if the set of points along
which the general X has multiplicity > i has positive (pure) dimension. ;i = 1 if
the general element of D(i) has exactly one point of multiplicity i + 1: for example
this is the ca.se for i = 1 (in char. 0) if .c is very ample and the dual of X is a
hypersurface ([K]).

THEOREM I. Witb notations as above, suppose tbat tbe map V ~ pr1:, is SUT­

jectjve, and denote by n tbe cotangent bUDdle ol S. Tben for 0 < i ::; r

(Here and in the following, {'}o denotes the component of dimension 0 of the dass
between brackets)

REMARKS. V surjects onto pa r. = .c when the natural map S --J. pyv has no
base locus; V surjects onto pI I:, if the same map is locally a closed immersion.

Also, in §2 we will deal more specifically with the case "Yi = O.

Before giving a proof of this result, we draw two consequences.

COROLLARY 1.1. In tbe bypotbeses ol the Theorem,

PROOF: Consider the direct sum Y EI) 1 of V and al-dimensional vector space,
with the natural map V EB 1 -+ Y --J. HO(S, .c). The diseriminant in r(V EB 1) is the
cone over the discriminant in PV, with vertex the point X corresponding to the
summand 1. The degree of n(i) is then the multiplieity of the new cliscriminant at
X. Now X maps down to the zero-section of 1:" so JiX = 5, so s(JiX, 5) = [5].
The statement of the corollary follows then from the theorem. I

The statement of the above corollary for i = 1 is equivalent to the computation
of the degree of the dual variety in [F], p. 63.

Next, denote by x(r) the cyde of codimension 1 in S on which JrXis supported
(so e.g. x(r) = 0 if JrX has no eomponents of coclimension 1 in S). That is, if
X = 2: OiXi with Xi irredueible divisors, then x(r) = 2:(Oi - r)Xi, the sum
extended over tbe i's such that 0i > r. Abusing notations, we write X for X(O).
ThuB X(I) = X - Xred, and x(r) is the r-th iteration of this operation. Observe
that JrX and x(r) eoincide away horn the singular locus of X red •

One partieular but interesting ease is tbe one in which Xred has only jsolated
singularities (of course this is not a restriction in ease S is a surface). Then by
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the above observation and [F], Prop. 9.2:

d .

s(Jr X, S) = s(x(r), S) + Jlr = L(_1);+1 x(r)1 + Jlr

;=1

where Jlr is a. contribution (in dimension 0) supported on the singularities of Xred:

more precisely, Jlr ia the Segre dass in S of the residual scheme to x(r) in JrX.
Note that only singular points of Xred at which X has multiplicity > r contribute
to JJr.

PROPOSITION 1.2. Let S be a smooth surface. With the above notation, suppose
V --+ pr~ is surjective, and let K denote the canomcal divisor of S. Then for
O<i~r

PROOF: As observed above

where Pi ia supported on points, so this follows immediately from the theorem,
after writing out C1(Symi(n EI1 0) ~ ~). I

Comparing this result with a fonnula we will obtain in §3, it will follow that
in fact JJl ie the SUffi of the Milnor numbers of the singularities of Xred when
S ia a surface. It would be interesting to have a sitnilar interpretation for the
contributions JJi, i > 1.

PROOF OF THEOREM I: Thinking of X as a point of n(i), one has s(X, n(i») =
mxn(i) X ([F], 4.3): thus mxn(i) = deg s(X, n(i»). Now we see n(i) c PV as
the projection from S x PV = PV of the correspondence

V(i) = {(p,X) E PV B.t. X has multiplicity > i at p}

To see if (p, X) iB in v<i), one lifts X to any of its representatives in V, maps it
to a section s E HO(S,.c) (near p this will simply be an equation for the divisor
corresponding to X), then checks that tbe Taylor expansion of s at p has no terms
in degree ~ i. Therefore:

(1) by identifying the fiber of PV over X with S, the fiber of V(i) is identified
with JiXj

(2) Vi) = PNi, where Ni ia the kernel of the 'truncated Taylor map' V --+ pi[,;
(3) also, the number ii of the statement of the theorem is the degree of the

projection v<i) --+ n(i).

LEMMA. In the above hypotheses:

'Yi • mxn(i) = deg {c(Ni )-l n s(JiX, S)}°
4



PROOF: H 7r denotes the projection v<i) --+ n(i), then Proposition 4.2 (a) from
[F], (3) and the identification from (1) above give us

;i . s(X, n(i») = 7r. s(JiX, V(i») ;

taking degrees, we get

;i . mxn(i) = deg s(JiX, Vi») .

So we are after this latter Segre class. Now both S and V<i) (= PNi by (2)) are
non-singular, so {F], 4.2.6 gives

from which
s(JiX, V(i») = c(TV(i)IS)-l n s(JiX, S) .

where Tv<i)IS is the relative tangent bundle of v<i) over 8. The Chern dass of
TV(i) 18 is computed by using the Euler sequence for Vi) = PNi:

where 0(1) is the canonicalline bundlej the restriction of this to the fiber over X
is trivial, so in fact we get

which concludes the proof of the lemma.

So proving the theorem amounts· to computing the Chern dass of Ni for 0 <
i ~ r, under the hypothesis that V --+ pr.c is surjective.

CLAIM. Suppose V --+ pr.c is surjective for some r 2: O. Then for 0 ~ i ~ r

PROOF: H V --+ pr.c is surjective, then following with the truncation surjections
piE, --+ pi-l[, shows that ai : V --+ pi.c is surjective for 0 ~ i ~ r. Since
Ni = ker(ai), Whitney's fonnula gives c(Ni)-l = c(pi.c).

To compute the latter, use the standard exact sequence for the bundles of
principal parts:

o--+ Symkn ®.c --+ pk.c --+ pk-l [, --+ 0

implies c(P«[,)C(p«-l[,)-l = c(Sym«n ® .c); recalling pO[, = .c, we get

i

c(pi[,) = c(pO[,) . rr c(pkE,)c(pk-1.c)-1
«=1

= c(.c)c(n ® [,)c(Sym2 n ® .c) ... c(Symin ® .c)

hut this equals c(Symi(n ffi 0) ® [,), so the claim and the theorem are proved.•
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§2. SMALL DISCRIMINANTS.

We maintain the notations of section 1. In this section we choose r > 0, and
assume that the map O'r : V ~ prr. oE §1 is surjective; recall that this condition
is automatically satisfied for r = 1 if r. is very ample (thus, in studying dual
varieties).

For every X E PV we have considered the class

{c(Symr(Sl EB 0) ® r.) n s(JrX,S)}o

where JrX denotes the scheme of zeroes of 0r 0 s, where s ia a section of V
corresponding to X. In the course of the proof, we have realized n( r) as the
projection from PV = S x PV to PV of a subbundle PNr of PV: specifically,
Nr = ker(O'r). Since O'r is assumed to be surjective, 'the codimension of PNr in
PV equals the rank of pr[" that is (r~n). Therefore, the codimension of n(r) in
PV is ;::: (r~n) - n ..

DEFINITION. We say tbat the r-tb discriminant is 'small , iE its codimension in PV
is > (r~n) - n.

It follows from the above discussion that, in our hypotheses, the discriminant
is small if and oo1y if the projection PNr --t n(r) is not generically finite, that ia
if and only if tbe number of points of multiplicity > r in tbe general element of
n(r) is not finite-in other words, if and only if 'Yr ia O. We will now show tbat
this happens precisely wben the above dass vanisbes.

THEOREM II. Suppose tbat tbe map V~ pr[, is surjective. Tben the following
are equivalent:

(1) For all X E f'V

{c( Symr(Sl ffi 0) ® [,) n s(JrX, S)}o = 0

(2) For some X E n(r)

deg {c(Symr(n E9 0) ® [,) n s(JrX, S)}o = 0

(3)
deg {c(Symr(n E9 0) ~ [,) n [S]}o = 0 ;

(4) the r-th discriminant n(r) js small.

PROOF: The implications (1) ~ (2) ~ (3) are trivial ((3) is a particular
case of (2), cf. tbe proof of Corollary 1.1).

Next, if the discriminant in PV ia not small, then ,r 1:- O. The degree in (3) is
then the degree of the discriminant, multiplied by 'Yr (by Corollary 1.1): thus it
can't be O. This shows (3) ~ (4).

Thus we simply have to show that (4) implies (1), that is that if the projection
7r : v(r) = pNr --t n(r) ia not finite, then the dass in (1) vanishes for all X E n(r)

(the class vanishes automatically if X tt. D(r»). Observe that Theorem I implies
immediately that the degree of the class is 0 if (4) holds, since in this case 'Yr = 0;
proving that the dass itself is 0 requires a little more work.

Recall from the proof of Theorem I that the dass between brackets in (1) equals
the Segre dass s(J(r), v<r»), and that J(r) = 1r-1(X). Thus we have to show that if
7r is not finite then {s(1r- 1(X), v<r»)}o = 0 (notice that this follows immediately
from [F], Proposition 4.2 (b) if 1r is Bat over a neighborhood of X). This is a
consequence of the following general result.
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LEMMA. Let 1r : y' --+ Y be an onto morpbism oE irreducible schemes, witb
dim Y' > dim Y; let X E Y be a dosed point, and denote by X' = 1r-1 (X) tbe
inverse image scheme.

Tben {s(X', Y')}o = O.

PROOF: Let C, C' resp. denote the normal cones to X in Y, and X' to Y' resp.
In thiB set up we get (see [F], proof of Prop. 4.2) an induced morphism

G
P(C' EI) 1) -+ P(C EB 1) ,

such that the canonicalline bundle on P(C' E9 1) is the pull-back G*O{l) of the
canonicalline bundle on P(C EI) 1). If q' denotes the projection from P{C' EI) 1) to
X', then

{s(X', Y')}o = q~ (cl(G*O(l))dim Y'+l n [P(C' E91)])

but this is necessarily 0: indeed, certainly there exist dim Y' + 1 sections of
0(1) which don't vanish sirnultaneously anywhere on P(C E91) (because dim Y <
dim Y'), and these pull-back to dirn Y' +1 sections of G*{O(l)) that don't vanish
simultaneously anywhere on P(C' E91). I

This proves the Lemma, and coneludes the proof of the Theorem. I

REMARK. We find the implications (3) => (2) => (1) particularly striking,
as they seem to impose (in the hypotheses of the theorem) a strong condition on
the Segre classes of the Jacobian schemes of divisors. For example, the vanishing
of the class for one singular hyperplane section of a smooth variety S C pn (in
fact, the vanishing of its degree suffices) implies the vanishing of the dass for a1l
hyperplane sections, and that the dual of S is small. See Example 4.5 for an
illustration of this fact.

§3. THE CASE dim(S) = 2.

In this section we give an independent derivation of Proposition (1.2) for i = 1,
over the complex numbers. In this particular situation we obtain more precise
information, namely, that Jll is the SUffi of the Milnor numbers of the singularities
of Xred.

Let S be a smooth compact algebraic surface over the complex numbers, l.cl
a very ample complete linear system on S and D = D(l) C l.cl the discriminant
hypersurface, consisting of singular members of l.cl. It is known [E] that the dual
variety D is actually a hypersurface.

Dur goal is to determine, for each X E l.cl, the multiplicity mx(D) of the
hypersurface D at the point X. Suppose that

(1) X = L niXi
1:5i:5r

where Xi is reduced and irreducible. Take a general Y E l.cl (i.e. a Y intersecting
Xred = El<i<r Xi transversally) and denote by L C l.cl the pencil containing X
and Y. Then-

(2) mx(D) = deg (D) - s
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where s is the number of singular members of L different from X (each of these
singular members has one node 88 singular set). In order to determine s we shall
blow up S to construct a. family parametrized by L and use Lefschetz' fonnula
([G-H], page 509).

For ea.ch 1 ~ i ~ T, denote by Pij (1 ~ j ~ Y . Xd the points of intersection of
Y and Xi. Let Sdenote the surface obtained from S by blowing up at each Pij

ni times (in the direction of Y). The indueed peneil on S is base-point-free and
gives a map 1 : S-t pI. H Etj , k = 1, ... , ni are the exceptional divisors at Pij

then the fiber of 1 at the point 0 eorresponding to X is

1-(0) = X +L L (ni - k)E~
i,j I~k~ni-I

In other words, the special fiber is isomorphie to X with strings of pI 's (each
pI with a eertain multiplicity) attached at the points Pij; each string has ni - 1
components.
We now denote

X' = (/-(O»red = Xred +LTij
i,j

the reduced (Le. set-theoretie) fiber of 1 at 0, where Tij = l:l~k~ni-l E~ ia
the (reduced) string attached at Pij. The argument in [G-H] wodcs in the present
eircumstance (the topology does not "see" the multiplieities of the special fiber)
and gives

x(S) = 2X(Y) - y. Y + (X(X') - X(Y» + L (X(Y.\) - X(Y»
I~.\~ ..

where X denotes topological Euler characteristic and Y.\ are the singular fibers
for ,,\ # O. Sinee X(Y.\) - x(Y) = 1 ([G-H] or (5) below) and deg(D) = X(S) ­
2X(Y) +Y.Y ([G-H] or Corollary (1.1», combining with (2) we obtain

(3) mx(D) = X(X') - X(Y)

In order to compute X(X'), denoting T = Ui,j Tij we have

(4)
x(X') = X(Xred UT) = X(Xred) + X(T) - X(Xred n T)

=X(Xred) +L X(Tij) - L X( {Pij}) = X(X~ed) +L ni - L 1
i,j i,j i,j

Now we compute X(Xred). Let Z = l:1~i~r Zi be a reduced (connected, for
simplicity) eurve with normalization

p : Z = Il Zi -+ Z
l~i~r
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H p E Z is a singular point, denote B(p) = p-l(p) the set of branches of Z at
p. Topologically, Z is obtained from the smooth surface Z by identifying each of
the sets B(p) to a point p. Recall from {Gr], page 96, that if X ia a topological
spa.ce and A c X is a subspa.ce such that (X, A) is a collared pair then X#(X) ­
X#(X/A) = X#(A), where X/A ia the space obtained from X by identifying A to
a point and x# is Euler characteristic {or augmented homology. H X ia a manifold
and A conaista of a points then X#(X) - X#(X/A) = X(X) - X(X/A) = a - l.
Applying this for each singular point we obtain

(5) x(Z) - X(Z) = L(b{Z,p) - 1)
pEZ

where b(Z,p) ia the number of brauches of Z at p. Also, from the exact sequence
of sheaves

o~ Oz ~ P.Oz ~ P.Oz/Oz ~ 0

we obtain 1 - r + EpEz c5(Z,p) - h1(Oz) + h1(Oz) = 0, where we let b(Z,p) =
lengthp(p.Oz/Oz), and then, combining with (5),

(6) x(Z) = 2 - 2pa(Z) + L jj(Z,p)
pEZ

where jj(Z,p) = 2c5(Z,p) - b(Z,p) + 1 ia the Milnor number of (Z,p). Combining
(3), (4) and (6) we obtain

mx(D) = X(Xred) - X(Y) +X . (X - X red )

= (2 - 2pa(Xred)) - (2 - 2pa(Y)) +X . (X - Xred) + L jj(Xred,p)
pEXl"ed

= (Ks +Y)· Y - (Ks + Xred) . Xred +X· (X - Xred) + L jj(Xred,P)
pEXred

and rearranging we finally obtain

(7) rnx(D) = (X - Xred)· (Ks + 2X +Xred) + L jj(Xred,P)
pEXred

Companng with Proposition (1.2), i = 1, yields jjl = EpExred jj(Xred,p) as
c1aimed at the beginning of this section.

§4. EXAMPLES.

In this section we apply the results obtained thus far to a few concrete situations,
to illustrate the acttial 'computability' of the formulas.

Example 4.1. Applying the result in §3 we may compute the multiplicity of the
discriminant of the space of plane curves of a given degree d at a singular curve
X. H ci<1) ia the degree of X(l) = X - Xred, then the formula in §3 gives

rnxD = [3(d -1) - Jl)] a<1} + jj

9



where J.l is the sum of the MiInor numbers of the singularities of Xred. Thus the
multiplicity of the discriminant of plane comes at a double line is 2, while for
degree 3 and 4, the following 'kinds' C?f singular (resp., non-reduced) curves occur,
with the indicated multiplicity (arrows denote 'specialization'):

Example 4.2. For higher discriminants, let again S = p2, .c = O(d), and V =
HO(P2,O(d)). For 0 < i :S d let d(i).= degX(i)j then Proposition 1.2 gives

(Indeed K has degree -3, and the map S x HO(P2 ,O(d)) -+ piO(d) is clearly
surjective for i :$ d. Also, it is dear that ii = 1 in this case.)

For example, for X a d-fold line oue has J.li = 0 for all i > 0 (since Xred is
non-singular), and d(i) = d - i; so we get the multiplicity md,r of the locus of
degree-d plane curves with a ~ r-tuple point, along the locus of d-fold lines, for
o< r :S d: (let i = r - 1 in the above)

In fa.ct the computation runs just as easily to give the multiplicity mn,d,r of
the locus degree-d hypersurfaces in pn with a ~ r-tuple point, along the locus of
d-fold hyperplanes. First, for S = pn the (n~i) ehern roots of Symi(f! EI) 0) are
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all equal to -iH, where H is the hyperplane class (indeed, the n + 1 ehern roots
of 11 ffi 0 are all equal to -H since c(11 ffi 0) = (1 - H)n+1) so

c(Symi(11 ffi 0) ® O(d)) = (1 + (d _ i)H)(n~i) ;

with the same notation, X(i) = (d - i)H; thus, applying the theorem gives

mn,d,r = deg { c(Symr-1 (11 ffi 0) ® O(d)) n s(x(r-1) ,pn)} 0

[
(n+"-I) (d - r + 1)H ]

= coeff. ofHn in (1+(d-r+1)H) n 1+(d-r+1)H

= (d _ r + 1)n . ((n+~-l) - 1)
n-1

For r = 2 this gives the well known multiplicity n(d - 1)" of a d-fold hyperplane
in the ordinary discriminant. At the other end of the spectrum, we get the multi­
plicity of a d-fold hyperplane in the locus of degree-d hypersurfaces with a d-tuple
point (i.e., the cones !rom a point over a degree-d hypersurface of pn-1):

Example 4.3. To illustrate a case in which the singularities of X red are not
isolated, consider S = r 3 , .c = O(d), and X = Wlion of three planes, with
multiplicities d1 , d2 , d3 adding up to d. We are going to compute the multiplicity
mx of the ordinary discriminant at X. In this case c«11 ffi 0) ® O(d)) = (1 +
(d - 1)H)4, where H denotes the hyperplane class; so we onIy need to compute
the Segre class of J1 X. One can distinguish several cases: in decreasing order of
speciality (and thus necessarily with decreasing multiplicities)

-H d2 = d3 = 0, then X is simply a d-fold plane, so the previous example gives
the multiplicity as

3(d - 1)3

-H d1 =F 0, d'J =F 0, d3 = 0, then X is the union of two distinct planes, say with
equation x d1 yd~ = 0. The Jacobian scheme J1 X bas ideal (xdt -1 yd~ , x d1 yd~ -1 ),
that ia tbe divisor xdl-1yd~-1 = °with an embedded component along the line
(x, y) at which tbe planes intersect. The Segre class of J1 X in p3 can then
be obtained for example by applying [F], Prop. 9.2: the reader will check that
s(J1 X, P3) pushes forward to p'3 to

(d - 2)H + (1 - (d - 2)2)H2 +«d - 2)3 - 3(d - 2) - 2)H3

and applying the theorem yields

mx = (d - 1)2(3d - 4) .

-H d1 =F 0, d2 =F 0, d3 =F °and the three (distinct) planes intersect along a
common line, then the same procedure gives for s(J! X, P3)

(d - 3)H + (4 - (d - 3)2)H'J +«d - 3)3 - 12(d - 3) - 16)H3
,
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from which
mx = (d - 1)2 (3d - 5) .

-Finally, if the three planes are in general position, sa.y the equation for X
is xdtyd2Zds. Tben Jl X is tbe divisor xdt-lyd2-l zds-l with an embedded com-
ponent along (xy, xz, yz), supported a.long three 'coordinate' lines. To compute
s(Jl X, P3) one can blow-up 1'3 at the point common to the lines, then blow-up
again along the proper transforIDs of the lines: tbe inverse image of Jl X is a
Cartier divisor in tbe top blow-up, and pushing forward the Segre class of this
latter to p3 gives

s(J l X,p3) = (d - 3)H + (3 - (d - 3)2)H2 + ((d - 3)3 - 9(d - 3) - 10)H~

from which, applying Theorem I again, we get

mx = (d - 2)(d -1)(3d - 2) .

Example 4.4. Again let S = p3, and let l, = O(dl +dz). Let Xl, X 2 be smooth
bypersurfaces of degrees d1 , dz, intersecting along a curve C. H X = Xl U X 2 ,

then X is singular along C; the multiplicity mx of the discriminant at X is then

Indeed, in this case JlX = C is regularly embedded in S = Jr3, so s(]lX, S) =
c(NCP3)-1 n [Cl pushes forward to p3 to

(where again H is the hyperplane class in P3), while c((11 ffi 0) @ O(d)) = (1 +
(d - 1)H)4 : 80

mx = deg {(I + 4(dl + d2 - l)H) . dl dz(H 2
- (dl + d2 )H3

)} 0

witb the above result. More generally, say a complete intersection curve C is
(scheme-theoretically) a connected component of tbe singular scheme of a degree­
d hypersurface X in pn, and degC = T, deg(Cl(Tc)) =2-29; tben C 'contributes'
to mx by

deg {(I + (d -l)Ht+I r~:-: ;~~i~c)}0 = r(d - 2)(n + 1) + 2 - 2g .

However, at least when C is smootb there are strong constraints on what T, d, n, 9
can actua.lly be realized, so that for example tbe genus of the curve is determined
by r, d, n. One can show that in this case the multiplicity will necessarily be

r(4 + (d - 2)(n +3))
2
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These constraints arise by comparing Theorem I to Parusinski's results ([Pa]).
For example, a smooth curve of genus 2 cannot appear aB the singular scheme of
a hypersurface of pn. We will prove these facts elsewhere.

Example 4.5. Let S = pn} X •.• X pn r , let Hl, . .. , H r be the pull-backs of the
hyperplane classes from the factors, and r. = O(HI + .. ·+Hr)-that is, the bundle
defining the Segre embedding of S. With this embedding, when is the dual variety
of S a hypersurface? The following criterion is proved in [G-K-Z], §3, and can
be deduced from more general criteria in [K-M] (see [G-K-Z], Theorem 1.3 and
Lemma 3.5). We give here a simple direct argument.

PROPOSITION 4.1. Tbe dual varjety of S = pn} X ••• X pnr js a bypersurface jf

and only if2ni ~ n = Ej nj for an i.

PROOF: Let xi = (x~, . .. ,x~,) denote homogeneous coordinates on pn,. If h E

HO(S, r.) then h ia a multilinear function in Xl, ... ,xr , and h is a singular section
if and only if the system of equations

8h. = 0
8x··

1

has a non-trivial solution (i.e. a. solution with xi 1= 0 for all i).
Suppose that the condition 2ni ~ n for all i is not satisfiedj for simplicity

of notation let us assume that it fails for i = 1, so that nl > ml = Ej >1 nj.

Let h E HO(S, r.) denote any singular section. We claim that the singular locus
of h is positive-dimensional, and hence the dual of S is sma.ll. In fact, let x =
(Xl, x2 , ••• ,xr ) denote a singular point of h; it is easy to see from the system of
equations above that the singular points of h of the form (yl, x 2 , ••• ,xr ), yl E pn},
form a family of dimension nl - ml.

Conversely, suppose 2ni :$ n for all i. We prove by induction on r that there
exist sections h with isolated singularities. The initial ca.se r = 2 is easy; for
r > 2, arrange the indices 80 that ni ~ ni+l for all i, let SI = p n

2 X .•. x pn r
,

and l/ = O(H2 + ... + H r ). We claim that there exist ho E HO(S',r.' ) with
singularity locus of dimension at most nl (notice that nl ~ ml = dim(S')).
To see this, we treat two separate ca.ses: first, if n2 :$ N = E j >2 nj then by
the inductive hypothesis there exists ho E HO(S', r.1

) with isolated singularities;
second, if n2 > N take ho = EO'5:j:5N xjfj(x3, ... , x r

) where the fj are general
multilinear forms in the indicated variables. It is easy to see (as in the argument
above) that the singular locus of ho has dimension n2 - N < nl. Choose then
such an ho and choose non-singular sections h 1 , • •• , hn1 E HO(S', r.') so that the
set h1 = ... = hn1 = 0 intersects the singular locUB of ho in isolated points (since
l.' is very ample, this can be achieved). It is noweasy to check that h = "E x~ hi
has isolated singularities. I

It is natural to try to use Theorem 11 to prove (4.1). Curiously, if one uses (3) in
Theorem 11 (or equivalently [F], p. 63), the comhinatorics hecomes rather involvedj
hut it is easy to show that the dual of S ia small if the numerical conditions are
not satisfied, using Theorem 11 (2). By just choosing one singular section and
showing that the class in (2) is 0, one shows that a11 singular sections roust have
positive dimensional singular locus.

13



So we need to produce 8 singular divisor X on S such that

deg {c«f! ffi 0) ~ r.) n s(J1X, S)} 0 = 0

the trick is to choose X so that Jl X is 'contained in one fa.ctor' of the product,
so that the computation of the ehern class becomes manageable.

Using the notation above, nl > ml. Let (xo : ... : x n1 ) be coordinates in
pn1 , and choose ffil sections h i E HO(S', r.') for 0 ::; i < ml that a.re non­
singular and intersect transversally. Then let X be the divisor on S defined by
h = l:O<i<m Xihi: JlX has ideal (ho, ... , hm1 - 1 , Xo, ••• , Xm1 -1)-that is, it con-_ 1

sists of the disjoint union of several spaces u-n1 - m1 = pn t -
m

l X {(1'2, .. . ,Pr)}, as
(1)2, ... ,Pr) runs through the list of the points of intersection of ho, ... , hm1 - 1 • It's
enough then to show that the above degree is 0 for each of these components. Now
notice that H 2 , ••• , H r are trivial on each component, so with obvious notations

since nl > ml' •
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