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Mathematische Arbeitstagung
June 24–30, 2011

Second Announcement

The opening of the Arbeitstagung will take place in the Großer Hörsaal, Mathematisches Institut, Universität
Bonn, Wegelerstr. 10, at 3.30 p.m. on Friday, June 24. After the opening and the first program discussion there will
be a short break for tea, followed by

THE OPENING LECTURE, Großer Hörsaal, at 5 p.m., by Maxim Kontsevich (IHES).

The other lectures will be decided during the course of the meeting, according to the traditional method of the
Arbeitstagung. The lectures continue throughout the week, including Saturday, June 25, and Sunday, June 26. Since
Don Zagier will celebrate his 60th birtday on June 29th, the AT will have a number-theoretical emphasis. Apart
from the opening lecture, there will be some further invited lectures, by M. Atiyah, H. Cohen, A. Goncharov, B.
Gross, T. Ibukiyama and G. van der Geer (amongst others).

From Tuesday June 28 onwards lectures will be given at the Max-Planck-Institute for Mathematics. There are also
some non-mathematical events during the week, to which all are invited:

BOAT TRIP ON THE RHINE: on Monday, June 27. The boat trip is to Koblenz and back and will take the whole
day. There will be some lectures on the boat.

RECTOR’S PARTY: on Wednesday, June 29, at 8 p.m., Festsaal der Universität

Anyone who wishes to attend the Arbeitstagung and would like us to reserve a hotel room, or who wants to request
financial support, should fill in the registration form at our homepage. Your wishes for hotel reservations should
arrive here by the beginning of May. Since our resources are rather restricted, applications of requesting financial
support will be treated on the basis of need and availability of funds. You will be informed about the financial
support as soon as possible. If you have any questions, please contact us by e-mail.

Werner Ballmann Gerd Faltings Peter Teichner Don Zagier
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More information and registration:
Website: http://www.mpim-bonn.mpg.de

E-mail: AT2011@mpim-bonn.mpg.de





1 Program of the Mathematische Arbeitstagung 2011

Fri, 24 Jun 2011

14:00 - 14:30 MPI Tea Room
Tea

15:30 - 16:15 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
Opening and first program discussion

16:15 - 17:00 Former Mathematical Institute, Wegelerstrasse 10
Break

17:00 - 18:00 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
MAXIM KONTSEVICH (IHES)
Opening lecture: Noncommutative identities

Sat, 25 Jun 2011

10:15 - 11:15 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
TOMOYOSHI IBUKIYAMA (OSAKA UNIVERSITY)
Exact critical values of a symmetric fourth L-function and Zagier’s conjecture

11:15 - 12:00 Former Mathematical Institute, Wegelerstrasse 10
Break

12:00 - 13:00 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
MARTIN MÖLLER (UNIVERSITÄT FRANKFURT)
Teichmüller curves

15:30 - 16:00 MPI Tea Room
Tea

17:00 - 18:00 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
HIDEKAZU FURUSHO (NAGOYA UNIVERSITY)
Double shuffle for associators

Sun, 26 Jun 2011

10:15 - 10:30 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
Program discussion II

10:30 - 11:30 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
ALEXANDER GONCHAROV (BROWN UNIVERSITY)
Hodge correlators for local systems

11:30 - 12:00 Former Mathematical Institute, Wegelerstrasse 10
Break

12:00 - 13:00 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
VALENTIN BLOMER (UNIVERSITÄT GÖTTINGEN)
Bounding eigenfunctions on arithmetic surfaces

15:30 - 16:00 MPI Tea Room
Tea

17:00 - 18:00 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
STAVROS GAROUFALIDIS (GEORGIA INSTITUTE OF TECHNOLOGY)
Quantum knot invariants



Mon, 27 Jun 2011

09:00 - 14:00 Boat trip to Koblenz (cast off 09:00 sharp!)

10:00 - 11:00 BENEDICT GROSS (HARVARD)
Talk on the boat: Don Zagier’s work on singular moduli

12:00 - 13:00 GUNTHER CORNELISSEN (UTRECHT)
Talk on the boat: Classfield theory as a dynamical system

14:00 - 17:30 Stopover in Koblenz

17:30 - 20:00 Return trip to Bonn

18:00 - 19:00 GAËTAN BOROT (CEA, FRANCE)
Talk on the boat: Loop equations and spectral curves

Tue, 28 Jun 2011

10:15 - 10:30 MPI Lecture Hall
Program discussion III

10:30 - 11:30 MPI Lecture Hall
DMITRY LEBEDEV (ITEP MOSCOW AND AARHUS)
Arithmetic geometry and topological strings

11:30 - 12:00 MPI Tea Room
Tea

12:00 - 13:00 MPI Lecture Hall
ALEXANDER BEILINSON (UNIVERSITY OF CHICAGO)
The p-adic Poincaré lemma and the period map

15:30 - 16:00 MPI Lecture Hall
The future of the AT (public discussion)

16:00 - 16:30 MPI Tea Room
Tea

17:00 - 18:00 MPI Lecture Hall
JOACHIM SCHWERMER (UNIVERSITÄT WIEN)
Geometric cycles and discrete groups



Wed, 29 Jun 2011

10:15 - 11:15 MPI Lecture Hall
GERARD VAN DER GEER (UNIVERSITY OF AMSTERDAM)
Modular Forms of Genus Three

11:15 - 12:00 MPI Tea Room
Tea

12:00 - 13:00 MPI Lecture Hall
TUDOR DIMOFTE (PRINCETON)
Chern-Simons with complex gauge groups

16:00 - 16:30 MPI Tea Room
Tea

17:00 - 18:00 MPI Lecture Hall
FRANCIS BROWN (CNRS, IMJ)
On multiple zeta values

20:00 - 23:00 Rector’s Party, Festsaal der Universität

Thu, 30 Jun 2011

10:00 - 11:00 Former Mathematical Institute, Großer Hörsaal, Wegelerstr. 10
SIR MICHAEL ATIYAH

Cones and signatures - old formulae revisited

12:00 - 13:00 MPI Lecture Hall
MANJUL BHARGAVA (PRINCETON)
Selmer groups

13:00 - 13:30 MPI Tea Room
Unveiling of a piece of art

15:00 - 16:00 MPI Lecture Hall
ANANTHARAM RAGHURAM (OKLAHOMA STATE UNIVERSITY)
Special values of L-functions

16:00 - 16:30 MPI Tea Room
Tea

17:00 - 18:00 MPI Lecture Hall
MAJID HADIAN (ESSEN)
Motivic fundamental groups

Fri, 01 Jul 2011

10:30 - 11:30 MPI Lecture Hall
PETER TEICHNER (MPIM)
Universal elliptic cohomology and modular forms

12:00 - 13:00 MPI Lecture Hall
MARTIN RAUM (MPIM)
Eichler relations





2 Extended Abstracts of the Talks

The articles below are extended abstracts or short summaries of the talks given at the Mathe-
matische Arbeitstagung 2011. The order is chronologic.





Noncommutative identities

Maxim Kontsevich

June 28, 2011

to Don, on the occasion of his 3 · 4 · 5 birthday, with love and admiration

1 “Characteristic polynomial”

Let us fix an integer n ≥ 1 and consider the algebra

A := C〈X±1
1 , . . . , X±1

n 〉
of noncommutative Laurent polynomials with coefficients in C in n invertible
variables, i.e. the group ring of the free group Freen in n generators:

A = C[Freen] =
{ ∑

g∈Freen

cg · g | cg ∈ C, cg = 0 for almost all g ∈ Freen
}
.

Define a linear functional “Tr” on A by taking the constant term,

“‘Tr” : A → C ,
∑

g

cg · g 7→ cid .

This functional vanishes on commutators, like the trace for matrices. By
the analogy with the matrix case, we define the “characteristic polynomial”
for any a ∈ A as a formal power series in one (central) variable t:

Pa = Pa(t) := “det”(1− ta) := exp


−

∑

k≥1

“Tr”(ak)

k
tk


 = 1 + · · · ∈ C[[t]] .

Theorem 1. For any a ∈ A the series Pa is algebraic, i.e.

Pa ∈ C(t) ∩ C[[t]] ⊂ C((t)) .

Here are few examples:

1



• the case n = 1 is elementary, follows easily from the residue formula,

• for any n ≥ 1 and

a = X1 +X−1
1 + · · ·+Xn +X−1

n

one can show that

Pa =

(
f+1

2

)n

(
nf+n−1

2n−1

)n−1 , f = f(t) :=
√

1− 4(2n− 1)t2 = 1+ · · · ∈ Z[[t]] .

• if a = X1 + · · ·+Xn + (X1 . . . Xn)−1 then the series Pa is an algebraic
hypergeometric function.

A sketch of the proof:
Let us assume for simplicity that a ∈ Z[Freen], the general case is just

slightly more complicated.
Step 1. For a =

∑
g cg · g ∈ Z[Freen] the series Pa also has integer

coefficients. Indeed, it is easy to see that

Pa =
∏

k≥1

∏

(g1,...,gk)

(1− cg1 . . . cgktk)

where for any k ≥ 1 we take the product over sequences of elements of Freen
such that g1 . . . gk = id and the sequence (g1, . . . , gk) is strictly smaller than
all its cyclic permutations for the lexicographic order on sequences associated
with some total ordering of Freen considered as a countable set. The similar
argument works if we replace Freen by an arbitrary torsion-free group.

Step 2. Consider series

Fa = Fa(t) :=
∑

k≥1

“Tr”(ak) tk ∈ Z[[t]].

Then Fa is algebraic. It follows from the theory of noncommutative algebraic
series developed by N. Chomsky and M.-P. Schützenberger in 1963 (see [2]
and Corollary 6.7.2 in [6]).

Step 3. Recall the Grothendieck conjecture on algebraicity. It says that
for any algebraic vector bundle with flat connection over an algebraic variety
defined over a number field, all solutions of the corresponding holonomic
system of differential equations are algebraic if and only if the p-curvature
vanishes for all sufficiently large primes p � 1. There is a simple sufficient

2



criterion for such a vanishing. Namely, it is enough to assume that there
exists a fundamental system of solutions in formal power series at some
algebraic point, such that all Taylor coefficients (in some local algebraic
coordinate system) of all solutions have in total only finitely many primes
in denominators.

The Grothendieck conjecture in its full generality is largely unaccessible
by now. The only two general results is a theorem by N. Katz on the validity
of the Grothendieck conjecture for Gauss-Manin connections, and a theorem
of D. Chudnovsky and G. Chudnovsky [3] in the case of line bundles over
algebraic curves. This is exactly our case, by the previous step, and because

d

dt
Pa = −Fa

t
Pa .

2 Noncommutative integrability, the case of two
variables

Let now consider the algebra of noncommutative polynomials in two (non-
invertible) variables

A = C〈X,Y 〉 .
For any integer d ≥ 1 we consider the variety Md of GLd(C)-equivalence
classes (by conjugation) of d-dimensional representations ρ : A → Matd×d(C)
of A. More precisely, we are interested only in generic pairs of matrices
(ρ(X), ρ(Y )) and treat variety Md birationally. It has dimension d2 + 1.

For generic ρ we consider the “bi-characteristic polynomial” in two com-
mutative variables

Pρ = Pρ(x, y) := det(1− xρ(X)− yρ(Y )) = 1 + · · · ∈ C[x, y] .

The equation Pρ(x, y) = 0 of degree ≤ d defines so-called Vinnikov curve

Cρ ⊂ CP 2. The number of parameters for the polynomial Pρ is (d+1)(d+2)
2 −1,

and it is strictly smaller than dimMd for d ≥ 3. The missing parameters
correspond to the natural line bundle Lρ on Cρ (well-defined for generic ρ)
given by the kernel of operator (1−xρ(X)−yρ(Y )) for (x, y) ∈ Cρ. Bundle Lρ
has the same degree as a square root of the canonical class of Cρ, and defines
a point in a torsor over the Jacobian Jac(Cρ). For any given generic curve

C ⊂ CP 2 of degree d the line bundle on C depends on genus(C) = (d−1)(d−2)
2

3



parameters. Now the dimensions match:

dimMd = d2 + 1 =
(d+ 1)(d+ 2)

2
− 1 +

(d− 1)(d− 2)

2
.

The conclusion is thatMd is fibered over the space of planar curves of degree
d, with the generic fiber being a torsor over an abelian variety. Hence we have
one of simplest examples of an integrable system. Any integrable system has
a commutative group of discrete symmetries, i.e. birational automorphisms
preserving the structure of the fibration, identical on the base, and acting
by shifts on the generic fiber. Similarly, one can consider an abelian Lie
algebra consisting of vertical rational vector fields which are infinitesimal
generators of shifts on fibers.

Now I want to consider noncommutative symmetries, i.e. certain univer-
sal expressions in free variables (X,Y ) which can be specialized and make
sense for any d ≥ 1. An universal discrete symmetry is an automorphism
of A (or maybe of some completion of A) which preserves the conjugacy
class of any linear combination Z(t) := X + tY, t ∈ C. Indeed, in this
case for any d ≥ 1 and any representation, the value of the bi-characteristic
polynomial Pρ at any pair of complex numbers (x, y) ∈ C2 is preserved, as
it can be written as det(1 − xρ(Z(y/x))). Hence the automorphism under
consideration is inner on both variables X and Y :

X 7→ R ·X ·R−1, Y 7→ R′ · Y · (R′)−1 .

We are interested in automorphisms of A only up to inner automorphisms,
therefore we may safely assume that R′ = 1. Thus, the question is reducing
to the following one:

find R such that for any t ∈ C there exists Rt such that

R ·X ·R−1 + tY = Rt · (X + tY ) ·R−1
t .

First, let us make calculations on the Lie level. Denote by g the Lie
algebra of derivations δ of A of the form

δ(X) = [D,X] for some X ∈ A, δ(Y ) = 0

and such that for any t ∈ C there exists Dt ∈ A such that

δ(X + tY ) = [Dt, X + tY ] ⇐⇒ [D,X] = [Dt, X + tY ] .

It is easy to classify such derivations, and one can check that the following
elements form a linear basis of g:

δn,m(X) = [cn,m, X], δn,m(Y ) = 0, n ≥ 0, m ≥ 1

4



where for any n,m ≥ 0 we define

cn,m :=
∑

(n+m)!
n!m!

shuffles w

w ,

i.e. the sum of all words in X,Y containing n copies of X and m copies of
Y . Elements Dt ∈ A corresponding to the derivation δn,m are given by

Dt =
∑

0≤k≤n
cn−k,m+k t

k .

A direct calculation shows that g is an abelian Lie algebra.
Let us go now the completions of algebra A, and of Lie algebra g:

Â := C〈〈X,Y 〉〉, ĝ :=
∏

n≥0,m≥1

C · δn,m .

Then the action of ĝ on Â exponentiates a continuous group action

ĝ
exp' Ĝ ⊂ Aut(Â) .

For any δ ∈ ĝ the corresponding one-parameter group of automorphisms
acts by

exp(τ · δ) : X 7→ R(τ) ·X ·R(τ)−1, Y 7→ Y ∀ τ ∈ C

for certain invertible element R(τ) ∈ Â×. An easy calculation shows that
R(τ) is the unique solution of the differential equation

d

dτ
R(τ) = δ(R(τ)) +R(τ) ·D, R(0) = 1

where D ∈ Â is such that δ(X) = [D,X]. The value R(τ)|τ=1 gives exp(δ).
Now we can start to look for a class of elements δ ∈ ĝ such that the

corresponding automorphism exp(δ) is sufficiently nice, e.g. if it makes
some sense for A without passing to the completion.

Let us encode a generic element δ as before by the corresponding gener-
ating series in commutative variables x, y:

δ =
∑

n,m

fn,mδn,m ∈ ĝ  δ̃ :=
∑

n,m

fn,mx
nym ∈ C[[x, y]] .

I suggest the following Ansatz:

δ̃ is the logarithm of a rational function in x, y.

Hypothetically, for such δ the corresponding automorphism exp(δ) of Â can
be extended to certain “algebraic extension” of A. A good indication is

5



Theorem 2. For any P = P (x, y) = 1 + · · · ∈ C[x, y] expand

log(P ) =
∑

n,m

fn,mx
nym ∈ C[[x, y]] .

Then the series

exp

(∑

n,m

(n+m)!

n!m!
fn,mx

nym

)

is algebraic.

This result is elementary, and I leave it as an exercise to the reader.
(Hint: use the residue formula twice.) It implies that the image of R under
the abelianization morphism

C〈〈X,Y 〉〉� C[[x, y]], X 7→ x, Y 7→ y

is algebraic.
Example. Consider the case

δ̃ = log(1− xy) = −
∑

k≥1

xkyk

k
.

Then one can show that

R = 1− Y X − C ∈ Â×

where C is the unique solution of the equation

C = X · (1− C)−1 · Y .

It can be written

C = XY+XXY Y+XXYXY Y+XXXY Y Y+· · · = ()+(())+(()())+((()))+. . .

as the sum of all irreducible bracketings if we replace X by ( and Y by ).
The equation for C is equivalent to the generic “quadratic equation”

T 2 +AT +B = 0

by the substitutions

A := X−1, B := −X−1Y, T := X−1C .

6



The invertible elements Rt ∈ Â×, t ∈ C are given by

Rt := R · (1− tT 2), R ·X ·R−1 + tY = Rt · (X + tY ) ·R−1
t .

I’ll finish with another example of an integrable system. Few years ago
together with S. Duzhin we discovered numerically that the rational map

S−1 : (X,Y ) 7→ (XYX−1, (1 + Y −1)X−1)

should be a discrete symmetry of an integrable system, where X,Y are two
d × d matrices for d ≥ 1. Recently O. Efimovskaya and Th. Wolf found an
explanation. Namely, they proved that the conjugacy class of the matrix
Z(t) of size 2d× 2d, defined as

Z(t) :=

(
Y −1 +X tY + Y −1X−1 +X−1 + 1
Y −1 + 1

tX Y + Y −1X−1 +X−1 + 1
t

)

does not change under the discrete symmetry S−1 as above, for any t ∈ C.

3 Noncommutative integrability for many variables

Let M = (Mij)1≤i,j≤3 be a matrix whose entries are 9 = 3× 3 free indepen-
dent noncommutative variables. Let us consider 3 “birational involutions”

I1 : M 7→M−1

I2 : M 7→M t

I3 : Mij 7→ (Mij)
−1 ∀i, j .

The composition I1 ◦ I2 ◦ I3 commutes with the multiplication on the left
and on the right by diagonal 3 × 3 matrices. We can factorize it by the
action of Diagleft×Diagright and get only 4 independent variables, setting
e.g. Mij = 1 for i = 3 and/or j = 3.

Conjecture 1. The transformation (I1 ◦ I2 ◦ I3)3 is equal to the identity
modulo Diagleft×Diagright-action. In other words, there exists two diagonal
3× 3 matrices DL(M), DR(M) whose entries are noncommutative rational
functions in 9 variables (Mij), such that

(I1 ◦ I2 ◦ I3)3(M) = DL(M) ·M ·DR(M) .

This is a very degenerate case of integrability. The conjecture just means
that the finite group Σ3 o (Z/3Z) (the wreath product, with 63 · 3 = 648

7



elements) acts by noncommutative birational transformations in 4 variables.
Similarly, for 4 × 4 matrices the transformation I1 ◦ I2 ◦ I3 should give a
genuinely nontrivial integrable system. In the simplest case when the entries
of this matrix are scalars, the Zariski closure of the generic orbit (modulo
the left and the right diagonal actions) is a 8-dimensional abelian variety of
the form

EE8 = elliptic curve root lattice of E8 .

Finally, I’ll present a series of hypothetical discrete symmetries of inte-
grable systems written as recursions. Fix an odd integer k ≥ 3 and consider
sequences (Un)n∈Z (of, say, d× d matrices), satisfying

Un =U−1
n−k (1 + Un−1 Un−k+1) for n ∈2Z

Un = (1 + Un−k+1 Un−1)U−1
n−k for n ∈2Z + 1 .

Then the map (U1, . . . , Uk) 7→ (U3, . . . , Uk+2) is integrable.

4 Noncommutative Laurent phenomenon

In the previous example one observes also the noncommutative Laurent
phenomenon:

∀n ∈ Z Un ∈ Z〈U±1
1 , . . . , U±1

k 〉 .
Also with S. Duzhin we discovered that the noncommutative birational map

S l : (X,Y ) 7→ (XYX−1, (1 + Y l)X−1)

for l ≥ 1 satisfies the same Laurent properties, i.e. both components of
2-dimensional vector obtained by an arbitrary number of iterations, belong
to the ring Z〈X±1, Y ±1〉. The case l = 1 is easy, and the case l = 2 was
studied by A. Usnich (unpublished) and by Ph. Di Francesco and R. Kedem,
see [4]. The Laurent property has now three different proofs for the case
l ≥ 3 when the dynamics is non-integrable:

• by A. Usnich using triangulated categories, see [7],

• an elementary algebraic proof by A. Berenstein and V. Retakh, see [1],

• a new combinatorial proof of Kyungyong Lee, which also shows that
all the coefficients of noncommutative Laurent polynomials obtained
by iterations, belong to {0, 1} ⊂ Z, see [5].

Finally, recently A. Berenstein and V. Retakh found a large class of
noncommutative mutations related with triangulated surfaces, and proved
the noncommutative Laurent property for them.

8
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EXACT CRITICAL VALUES OF THE SYMMETRIC
FOURTH L FUNCTION AND ZAGIER’S CONJECTURE

ARBEITSTAGUNG, 25 JUNE 2011

TOMOYOSHI IBUKIYAMA

1

We gave a talk on three things.
(1) Exact critical values of the symmetric fourth L function of the
Ramanujan Delta function.
(2) A congruence between Hecke eigenvalues of vector valued Siegel
modular forms of a lift and a non-lift.
(3) A little survey on why differential opeartors on automorphic forms
are interesting. Here (1) and (2) are joint works with H. Katsurada
and the details will appear elsewhere (cf. [8]).

2

For any Hecke eigen elliptic modular form f =
∑an

n=1 qn ∈ Sk(Γ1)
(Γ1 = SL2(Z)) with a1 = 1, the symmetric j-th L function L(s, f, Sym(j))
is defined by

L(s, f, Sym(j)) =
∏

p:prime

j∏

i=0

(1 − αi
pβ

j−i
p p−s)−1

where 1−app
−s+pk−1−2s = (1−αpp

−s)(1−βpp
−s). In 1977, Don Zagier

gave the following conjecture for the Ramanujan Delta function ∆.

Conjecture 2.1 (Zagier [16]). We have

((2π)−3s+33Γ(11)−1Γ(s)Γ(s − 11)L(s, ∆, Sym(4)) = c(s)233(∆, ∆)3

for s = 24, 26, 28, 30, 32 where c(s) are given in the following table.

s c(s)
24 25 × 32

26 25 × 3 × 5
28 22 × 23 × 691/72

30 23 × 653
32 2 × 3 × 34981∗/7

(∗ He stated 34891 instead of the above prime 34981, but this is an
obvious typo since 34891 = 23 × 37 × 41.)

Now, we denote by S13,10(Γ2) the space of vector valued Siegel cusp
forms of weight det13 Sym(10) of degree two belonging to the Siegel

1
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full modular group Γ2 = Sp(2, Z) (size four). Our main theorems are
as follows.

Theorem 2.2. There exists a vector valued Siegel cusp Hecke eigen-
form F ∈ S13,10(Γ2) such that

(2π)33−3sΓ(11)−1Γ(s)Γ(s − 11)L(s, ∆, Sym(4)) = c(s)(F, F )

for any s = 24, 26, 28, 30, 32.

Here c(s) is as in Zagier’s conjecture and the above F does not
depend on the choice of s and given explicitly by a theta function.

For a Hecke eigenform f ∈ Sk(SL2(Z)), denote by Q(f) the field
generated over Q by all the Hecke eigenvalues of f .

Theorem 2.3. For any primitive form f ∈ Sk(Γ1), there exists a con-
stant c(f) depending only on f such that L(l, f, Sym(4))/π−3k+3l+3c(f)
belongs to Q(f) for any even integer l such that 2k ≤ l ≤ 3k − 4.

The proof of the above theorem 2.3 is a direct corollary of the results
in Ramakrishnan-Shahidi [15] but the proof of Theorem 2.2 is much
more difficult. The ingredients of the proof of Theorem 2.2 is as fol-
lows.
(1) Kim-Ramakrishnan-Shahidi lifting: Ramakrishnan-Shashidi [15]
asserts that there exists a lifting from f ∈ Sk(Γ1) to a holomorphic
vector valued Siegel modular form F of weight detk+1 Sym(k − 2) such
that

L(s, f, Sym(3)) = L(s, F, Sp),

where Sp means the spinor L function. (I had also an experiment of
this type of lifting with conjecture in [6], as quoted in their paper.) The
following fact does not seem to be written in [15] but an easy corollary
of their theorem.

L(s, f, Sym(4)) = L(s − 22, F, St),

where St means the standard L function. So the problem is to give F
explicitly and calculate critical values of L(s, F, St).
(2) For the calculation of L(s, F, St), we use the pullback formula of
Kozima [14], shifting Eisenstein series by certain differential operators.
(3) In the above, we use a general theory on differential opeartors on
automorphic forms which behaves well under a certain restriction of
the domain.

Practically, we need
(i) Explicit Fourier coefficients of a basis of S13,10(Γ2).
(ii) Explicit Fourier coefficients of Eisenstein series El of degree 4 of
weight l = 4, 6, 8, 10, or 12.
(iii) Explicit holomorphic linear differential operators which map El to
the sum of tensors of S13,10(Γ2) after the restriction to the diagonal
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2 × 2 blocks from the Siegel upper half space of degree 4.

Among these, the basis in (i) is given by theta functions and Fourier
coefficients can be calculated by a computer. As for (ii), it is well
known that the Fourier coefficients are written by Siegel series and a
fairly precise structural formula for Siegel series is known in [11]. Al-
though this is not completely a closed formula and it is not very easy
to calculate Fourier coefficients of El, we can do this by computer cal-
culation for each concretely given l.
Finally we need some differential operators. General setting is as fol-
lows. We take bounded symmetric domains ∆ ⊂ D and assume a
natural inclusion of the automorphism groups Aut(∆) ⊂ Aut(D). We
take finite dimensional vector space V over C and V -valued automor-
phy factor J∆ in GL(V ) for ∆ and C-valued JD for D.
We use V -valued differential operators D such that for any g ∈ Aut(∆) ⊂
Aut(D), the following diagram is commutative.

Hol(D, C)
D−−−→ Hol(D,V )

Res.−−−→ Hol(∆, V )

|JD
[g]

y
y|J∆

[g]

Hol(D, C)
D−−−→ Hol(D,V )

Res.−−−→ Hol(∆, V )

A general characterization of such differential operators when a pair
(∆, D) consists of products of Siegel upper half spaces is given in [4].
This theory also gives a certain way to calculate operators explicitly,
though it is not so easy to execute this in general (cf. also [2]). These
operators are interesting at least in the following points.
(1) A source of new special functions (a kind of generalization of Le-
gendre or Gegenbauer) and holonomic systems (cf. the work with Za-
gier [10] and the work with Kuzumaki and Ochiai [9].)
(2) To obtain new Siegel modular forms by known modular forms which
are sometimes difficult by any other method. (cf. [1], [7].)
(3) An application for pullback formulas (e.g. [12], [3])

Here we use (3). Such differential operators are complicated and not
easily obtained explicitly, but we can do this by a lengthy computer
calculation.

Finally we give a result on congruence. By Tsushima’s dimension for-
mula, we have dim S13,10(Γ2) = 2 and the Hecke eigen basis {F13,10a, F13,10b}
of S13,10(Γ2) is given explicitly by theta functions with harmonic poly-
nomials, one of which (say F13,10a) is a Kim-Ramakshnan-Shahidi lift
and the other is a non-lift. We can often expect that for any kind of lift,
there exists a non-lift congruent to the lift. We denote by λ(n, F13,10∗)
the Hecke eigenvalue of T (n) of F13,10∗. Then we have the following
theorem.
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Theorem 2.4. For any natural number n, we have

λ(n, F13,10a) ≡ λ(n, F13,10b) mod 13.
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THETA DERIVATIVES AND TEICHMÜLLER CURVES

(ARBEITSTAGUNG 2011)

MARTIN MÖLLER

1. Special curves on Hilbert modular surfaces

Consider the Hilbert modular surfaces XD = H2/SL(oD ⊕ o∨
D) where o is the order

of discriminant D in K = Q(
√

D). Clearly the most special algebraic curve in
XD is the diagonal, the image of the composition z 7→ (z, z) and the projection
π : H2 → XD. For any matrix M ∈ GL+

2 (K) one can consider the twisted diagonal
z 7→ (Mz,Mσz), where σ is the generator of the Galois group. The π-images of
these twisted diagonals are still algebraic curves, called special curves, Shimura
curves, modular curves or Hirzebruch-Zagier cycles and the literature on them is
even longer than the number of names. Note that for these curves both components
of the universal covering map are given by Mobius transformations.
An algebraic curve C → XD in a Hilbert modular surface is still quite special
if one asks just that (at least) one of the components of the universal covering
map H → H2 should be a Mobius transformation. Equivalently, one may ask that
C → XD is totally geodesic for the Kobayashi metric and we thus call these curves
Kobayashi geodesics. Yet equivalently, we can characterize these curves as being
everywhere transversal to (at least) one of the two foliations of H2. See [MV10] for
more equivalent conditions.
We will provide examples of these curves soon. We give one number theoretic reason
why one might be interested in these curves. Consider the differential equation

(1)

L(y, t) =
(
A(t) y′(t)

)′
+ B(t) y(t) = 0

A(t) = t (t − 1) (t − `)(t − `−1) = t4 − βt3 + βt2 − t ,

B(t) =
3

4

(
3t2 − (β + γ) t + γ

)

where

` =
31 − 7

√
17

2
, β = ` + `−1 + 1 =

1087 − 217
√

17

64
, γ =

27 − 5
√

17

4
.

There is a well-known recursive procedure for finding a solution y =
∑

n≥0 antn of

such a differential equation that involves dividing by (n + 1)2 when computing the
n-th term. But the solution of this particular differential equation

y = 1 +
81 − 15

√
17

16
t +

4845 − 1155
√

17

64
t2 +

3200225 − 775495
√

17

2048
t3 + ...(2)

has coefficients in the ring of integers o√
17[1/2] ([BM10]). The differential equation

is the Picard-Fuchs equation for the curve W17 introduced below.
1
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2. Theta derivatives

Let Θ(m,m′)(v, Z) be the usual Siegel theta function on C2 ×H2 with characteristic

(m,m′) ∈ ( 1
2Z2/Z2)2. A choice of a basis for oD determines a ’Siegel’ modular

embedding, i.e. map ψ : H2 → H2 and equivariant with respect to an adapted
group homomorphism Ψ : SL(oD ⊕ o∨

D) → Sp4(Z).
In Siegel upper half space there are no distinguished directions and consequently
none of the partial derivatives of Θ with respect to εi is distinguished. Altogether
the form a vector-valued modular form. But H2 has two distinguished foliations
and thus the restriction of Θ(z1, z2) to the universal covering of XD has two distin-
guished partial derivatives. We denote second of these derivatives by D2Θ(z1, z2).
This is a modular form of weight (1/2, 3/2) for some subgroup of SL(oD ⊕ o∨

D).

Theorem 2.1 ([MZ11]). The function

D2Θ(z1, z2) =
∏

(m,m′) odd

D2Θ(m,m′)(0, ψ(z1, z2))

is a modular form for the full Hilbert modular group SL(oD ⊕ o∨
D) of weight (3, 9).

Its vanishing locus

WD = {D2Θ(z1, z2) = 0} ⊂ XD

is a Kobayashi geodesic.

Sketch of proof. Being transversal to the second of the two foliations means that the
derivative in the z2-direction never vanishes. Using the heat equation this means
that the third partial derivative of the theta function never vanishes on WD (in the
interior of XD). This third derivative is a ’modular form’ on WD. The number of
zeros on a compactification of WD can thus be computed. It suffices thus to list the
number of cusps of WD and show that the vanishing orders of the third derivative
at these points add up to the required number. ¤

3. Connection to Teichmüller curves

Teichmüller curves are algebraic curves in the moduli space of curves Mg that are
totally geodesic for the Kobayashi (equivalently: Teichmüller) metric. In [McM03]

McMullen found an interesting series of such curves WEig
D using eigenforms for real

multiplication, see [McM05] for a complete classification. Precisely,

WEig
D ={[X] ∈ M2 : Jac(X) has RM by oD,

a RM-eigenform ω ∈ H0(X,Ω1
X) has a double zero}

Theorem 3.1 ([MZ11]). These two series of curves coincide, i.e. WD = WEig
D

when considered in A2.

The proof relies on two facts. First, a genus two curve equals the theta divisor in
its Jacobian. Second an eigenform has a double zero if and only if the derivative of
the theta function in a ’foliation’ direction vanishes at a Weierstraß point.

By construction WEig
D is in M2, hence disjoint from the locus PD ⊂ XD of reducible

abelian surfaces. There are two more proofs of this fact using theta functions only.

Theorem 3.2 ([MZ11]). The loci WD and PD are disjoint.
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Sketch of proof. The reducible locus is the vanishing locus of the product of all even
theta functions. Its restriction to XD is the vanishing locus of a modular form of
weight (5, 5). As in the proof of Theorem 2.1 one can thus calculate the number of
intersection point of WD and PD by intersection theory. Again, a local calculation
at the cusps of WD shows that the intersection points are all located there.
For the second proof, one shows that on the reducible locus the derivatives of theta
functions factor as a product of two unary theta series. They are known to vanish
only at the cusps. ¤

Since a Kobayashi geodesic C in XD is a Teichmüller curve if and only if C is
disjoint from PD, this provides a proof of the property Teichmüller curve using
theta functions only.
Disconnecting from the world of Teichmüller curves. Given the univeral
covering map z 7→ (z, ϕ(z)) of a Kobayashi geodesic one can obtain more Kobayashi
geodesics by twisting, i.e. considering the π-images of z 7→ (Mz,Mσϕ(z)). For these
curves one can ask the same questions as for the Hirzebruch-Zagier curves. Some
answers are provided in the forthcoming Ph.D. thesis of C. Weiß. But this is still
surely not yet the end the story.
If C is Kobayashi geodesic and Li are the classes of the two foliations of XD,
then the quantity λ2 = (C · L1)/(C · L2) is invariant under twisting. Beside the
case λ2 = 1 (HZ-cycles) and λ2 = 1/3 (from WD) C. Weiss also showed that the
Prym Teichmüller curves of [McM06] give Kobayashi geodesics with λ2 = 1/7. A
construction of these curves using Θ-functions is in progress.

4. Two compactifications

A list of cusps of WD was needed in (some of the) proof(s) sketched above. To

describe them, there is a very useful compactification XD
B

defined by Bainbridge
([Ba07]) as follows. Consider the preimage of XD in M2, lift to ΩM2, the total
space of the relative dualizing sheaf over the Deligne-Mumford compactification,

and take XD
B

to be the normalization of the closure.

On the other hand there is Hirzebruch’s compactification XD
H

, the minimal smooth
compactification. This compactification is toroidal, that is given by a fan, a se-
quence of αn ∈ oD totally positive with σ(αn)/αn decreasing and invariant under
multiplication by squares of units in oD. The toroidal structure allows to compute
easily e.g. if and at which point HZ-cycles meet the boundary.

There is also a way of realizing XD
B

as a toroidal compactification. For a fractional

oD ideal a let a∗[2] be the set of non-zero elements in 1
2a/a. We let M̃M(a, ξ) be

the set of α ∈ K such that the quadratic form F (x) = tr(αx2) is positive definite
and assumes its minimum on a + ξ more than once (where x and −x are not
distinguished). We define a multiminimizer for ξ to be the equivalence classes

MM(a, ξ) = M̃M(a, ξ)/Q∗

and we let the set of multiminimizers be the union of MM(a, ξ) over all ξ ∈ a∗[2].

Theorem 4.1 ([MZ11]). For any a, the set of multiminimizers forms a fan. The

associated toroidal compactification is Bainbridge’s compactification XD
B

at the
cusp a.
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This compactification can be calculated by an easy algorithm. In fact, given one
multiminimizer, the subsequent ones can be constructed using the ’slow-greater one’
continued fraction algorithm. Here ’slow-greater one’ continued fraction algorithm
means that

xn+1 =

{
xn − 1 if xn > 2

1/(xn − 1) if 2 > xn > 1
.

Note that Hirzebruch’s compactification is driven by the ’fast-minus’ continued
fraction algorithm

x = p1 − 1

p2 − 1

. . .

,

where at each step pi = dxie.
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[MV10] Möller, M., Viehweg, E., Kobayashi geodesics in Ag , J. Differential Geom. 86 (2010),
355-579.
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Four Groups Related to Associators

Hidekazu Furusho

Mathematische Arbeitstagung 24th June-1st July.2011.

Dedicated to Professor Don Zagier
on the occasion of his 60th birthday

1. Associators

We recall the definition of associators [Dr] and explain our main results in [F10a,
F11] which are on the defining equations of associators.

Let us fix notations: Let k be a field of characteristic 0 and k̄ its algebraic
closure. Denote by UF2 = k⟨⟨X0, X1⟩⟩ a non-commutative formal power series
ring, a universal enveloping algebra of the completed free Lie algebra F2 with two
variables X0 and X1. Its element φ = φ(X0, X1) is called group-like 1 if it satisfies

(1) ∆(φ) = φ ⊗ φ and φ(0, 0) = 1

with ∆(X0) = X0 ⊗ 1 + 1 ⊗ X0 and ∆(X1) = X1 ⊗ 1 + 1 ⊗ X1. For any k-algebra
homomorphism ι : UF2 → S, the image ι(φ) ∈ S is denoted by φ(ι(X0), ι(X1)).

Definition 1 ([Dr]). A pair (µ, φ) with a non-zero element µ in k and a group-
like series φ = φ(X0, X1) ∈ UF2 is called an associator if it satisfies one pentagon
equation in Ua4

(2) φ(t12, t23 + t24)φ(t13 + t23, t34) = φ(t23, t34)φ(t12 + t13, t24 + t34)φ(t12, t23)

and two hexagon equations in Ua3

(3) exp{µ(t13 + t23)

2
} = φ(t13, t12) exp{µt13

2
}φ(t13, t23)

−1 exp{µt23
2

}φ(t12, t23),

(4)

exp{µ(t12 + t13)

2
} = φ(t23, t13)

−1 exp{µt13
2

}φ(t12, t13) exp{µt12
2

}φ(t12, t23)
−1.

Here Ua3 (resp. Ua4) means the universal enveloping algebra of the completed
pure braid Lie algebra a3 (resp. a4) over k with 3 (resp. 4) strings, generated by
tij (1 6 i, j 6 3 (resp. 4)) with defining relations

tii = 0, tij = tji, [tij , tik + tjk] = 0 (i,j,k: all distinct)

and [tij , tkl] = 0 (i,j,k,l: all distinct).

Remark 2. (i). Drinfeld [Dr] proved that such a pair always exists for any filed k
of characteristic 0.

(ii). The equations (2)∼(4) reflect the three axioms of braided monoidal cat-
egories [JS]. We note that for any k-linear infinitesimal tensor category C each
associator gives a structure of braided monoidal category on C[[h]] (cf.[C, Dr]).
Here C[[h]] means the category whose set of objects is equal to that of C and whose
set of morphism MorC[[h]](X, Y ) is MorC(X, Y ) ⊗ k[[h]] (h: a parameter).

1It is equivalent to φ ∈ exp F2.

1
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(iii). Associators are essential for construction of quasi-triangular quasi-Hopf
quantized universal enveloping algebras [Dr].

(iv). Le and Murakami [LMa] and Bar-Natan [Ba97] gave a reconstruction of uni-
versal Vassiliev knot invariant (Kontsevich invariant [K, Ba95]) in a combinatorial
way by using associators.

Our first result is the implication of two hexagon equations from one pentagon
equation.

Theorem 3 ([F10a]). Let φ = φ(X0, X1) be a group-like element of UF2. Suppose
that φ satisfies the pentagon equation (2). Then there exists µ ∈ k̄ (unique up to
signature) such that the pair (µ, φ) satisfies two hexagon equations (3) and (4).

Recently several different proofs of the above theorem were obtained (see [AT,
BaD, W]).

One of the nice examples of associators is the Drinfeld associator below.

Examples 4. The Drinfeld associator ΦKZ = ΦKZ(X0, X1) ∈ C⟨⟨X0, X1⟩⟩ is de-
fined to be the quotient ΦKZ = G1(z)−1G0(z) where G0 and G1 are the solutions of
the formal KZ (Knizhnik-Zamolodchikov) equation, the following differential equa-
tion over C\{0, 1} with G(z) valued on C⟨⟨X0, X1⟩⟩

d

dz
G(z) =

(X0

z
+

X1

z − 1

)
G(z),

such that G0(z) ≈ zX0 when z → 0 and G1(z) ≈ (1 − z)X1 when z → 1 (cf.[Dr]).
It is shown in [Dr] that the pair (2π

√
−1, ΦKZ) forms an associator for k = C.

Namely ΦKZ satisfies (1)∼(4) with µ = 2π
√

−1.

Remark 5. (i). The Drinfeld associator is expressed as follows:

ΦKZ(X0, X1) = 1+
∑

(−1)mζ(k1, · · · , km)Xkm−1
0 X1 · · · Xk1−1

0 X1+(regularized terms).

Here ζ(k1, · · · , km) is the multiple zeta value (MZV in short), the real number
defined by the following power series

(5) ζ(k1, · · · , km) :=
∑

0<n1<···<nm

1

nk1
1 · · · nkm

m

for m, k1,. . . , km ∈ N(= Z>0) with km > 1 (its convergent condition). All the
coefficients of ΦKZ including its regularized terms are explicitly calculated in terms
of MZV’s in [F03] proposition 3.2.3 by Le-Murakami’s method in [LMb].

(ii). Since MZV’s are coefficients of ΦKZ , the equations (1)∼(4) for (µ, φ) =
(2π

√
−1, ΦKZ) yield algebraic relations among them, which are called associator

relations. It is expected that the associator relations might produce all algebraic
relations among MZV’s.

Various relations among MZV’s have been found and studied so far. The regu-
larised double shuffle relations which were initially introduced by Zagier and Ecalle
in early 90’s might be one of the most fascinating ones. To state them let us fix no-
tations again: Let πY : k⟨⟨X0, X1⟩⟩ → k⟨⟨Y1, Y2, . . . ⟩⟩ be the k-linear map between
non-commutative formal power series rings that sends all the words ending in X0 to
zero and the word Xnm−1

0 X1 · · · Xn1−1
0 X1 (n1, . . . , nm ∈ N) to (−1)mYnm · · · Yn1 .
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Define the coproduct ∆∗ on k⟨⟨Y1, Y2, . . . ⟩⟩ by

∆∗Yn =

n∑

i=0

Yi ⊗ Yn−i

with Y0 := 1. For φ =
∑

W :word cW (φ)W ∈ UF2 = k⟨⟨X0, X1⟩⟩ with cW (φ) ∈ k (a
‘word’ means a monic monomial element or 1 in UF2 ), put

φ∗ = exp

( ∞∑

n=1

(−1)n

n
cXn−1

0 X1
(φ)Y n

1

)
· πY (φ).

The regularised double shuffle relations for a group-like series φ ∈ UF2 mean

(6) ∆∗(φ∗) = φ∗⊗̂φ∗.

Remark 6. The regularised double shuffle relations for MZV’s mean the algebraic
relations among them obtained from (1) and (6) for φ = ΦKZ (cf. [IKZ, R]). It is
also expected that the relations might produce all algebraic relations among MZV’s.

The following is the simplest example of the relations.

Examples 7. For a, b > 1,

ζ(a)ζ(b) = ζ(a, b) + ζ(a + b) + ζ(b, a)

=
a−1∑

i=0

(
b − 1 + i

i

)
ζ(a − i, b + i) +

b−1∑

j=0

(
a − 1 + j

j

)
ζ(b − j, a + j).

Our second result here is the implication of the regularised double shuffle rela-
tions from the pentagon equation.

Theorem 8 ([F11]). Let φ = φ(X0, X1) be a group-like element of UF2. Suppose
that φ satisfies the pentagon equation (2). Then it also satisfies the regularised
double shuffle relations (6).

This result attains the final goal of the project posed by Deligne-Terasoma [T].
Their idea is to use some convolutions of perverse sheaves, whereas our proof is to
use Chen’s bar construction calculus.

Remark 9. Our theorem 8 was extended cyclotomically in [F10b].

The following Zagier’s relation which is essential for Brown’s proof of theorem
14 might be also one of the most fascinating ones. The author does not know if it
also follows from our pentagon equation (2).

Theorem 10 ([Z]).

ζ(2{a}, 3, 2{b}) = 2
a+b+1∑

r=1

(−1)r(Ar
a,b − Br

a,b)ζ(2r + 1)ζ(2{a+b+1−r})

with Ar
a,b =

(
2r

2a+2

)
and Br

a,b = (1 − 2−2r)
(

2r
2b+1

)
.

2. Four Groups

We explain recent developments on the four pro-unipotent algebraic groups re-
lated to associators; the motivic Galois group, the Grothendieck-Teichmüller group,
the double shuffle group and the Kashiwara-Vergne group.
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2.1. Motivic Galois group. We review on the motivic Galois group, the tan-
nakian dual group of the category of unramified mixed Tate motives.

We work in the triangulated category DM(Q)Q of mixed motives 2 over Q con-
structed by Hanamura, Levine and Voevodsky. Tate motives Q(n) (n ∈ Z) are
(Tate) objects of the category. Let DMT (Q)Q be the triangulated sub-category
of DM(Q)Q generated by Tate motives Q(n) (n ∈ Z). By the work of Levine a
neutral tannakian Q-category MT (Q) = MT (Q)Q of mixed Tate motives over Q
is extracted by taking a heart with respect to a t-structure of DMT (Q)Q. Deligne
and Goncharov [DeG] introduced the full subcategory MT (Z) = MT (Z)Q of un-
ramified mixed Tate motives inside. All objects there are mixed Tate motives M
(i.e. an object of MT (Q)) such that for each subquotient E of M which is an
extension of Q(n) by Q(n + 1) for n ∈ Z, the extension class of E in

Ext1MT (Q)(Q(n),Q(n + 1)) = Ext1MT (Q)(Q(0),Q(1)) = Q× ⊗ Q

is equal to Z× ⊗ Q = {0}.
In the category MT (Z) of unramified mixed Tate motives, the followings hold:

dimQ Ext1MT (Z)(Q(0),Q(m)) =

{
1 (m = 3, 5, 7, . . . ),

0 (m : others),
(7)

dimQ Ext2MT (Z)(Q(0),Q(m)) = 0.(8)

The category MT (Z) forms a neutral tannakian Q-category with the fiber func-
tor ωcan : MT (Z) → V ectQ (V ectQ: the category of Q-vector spaces) sending each
motive M to ⊕nHom(Q(n), GrW

−2nM).

Definition 11. The motivic Galois group here is defined to be the pro-Q-algebraic
group GalM(Z) := Aut⊗(MT (Z) : ωcan).

By tannakian category theory, ωcan induces an equivalence of categories

(9) MT (Z) ≃ RepGalM(Z)

where RHS means the category of finite dimensional Q-vector spaces with GalM(Z)-
action.

Remark 12. The action of GalM(Z) on ωcan(Q(1)) = Q defines a surjection

GalM(Z) → Gm and its kernel GalM(Z)1 is the unipotent radical of GalM(Z).

There is a canonical splitting τ : Gm → GalM(Z) which gives a negative grading

on its associated Lie algebra LieGalM(Z)1. From (7) and (8) it follows that the
Lie algebra is the graded free Lie algebra generated by one element in each degree
−3, −5, −7, . . . . (consult [De] §8 for the full story).

The motivic fundamental group πM
1 (P1\{0, 1, ∞} :

−→
01) constructed in [DeG] §4 is

a (pro-)object of MT (Z). By our tannakian equivalence (9), it gives a (pro-)object
of RHS of (9), which induces a (graded) action

(10) Ψ : GalM(Z)1 → Aut expF2.

2A part of idea of mixed motives is explained [De] §1. According to Wikipedia, “the (partly
conjectural) theory of motives is an attempt to find a universal way to linearize algebraic varieties,

i.e. motives are supposed to provide a cohomology theory which embodies all these particular
cohomologies.”
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Remark 13. For each σ ∈ GalM(Z)1(k), its action on exp F2 is described by
eX0 7→ eX0 and eX1 7→ φ−1

σ eX1φσ for some φσ ∈ expF2.

The following has been conjectured (Deligne-Ihara conjecture) for a long time
and finally proved by Brown by using Zagier’s relation (Theorem 10).

Theorem 14 ([Br]). The map Ψ is injective.

It is a unipotent analogue of the so-called Bely̆ı’s theorem. The theorem says
that all unramified mixed Tate motives are associated with MZV’s.

2.2. Grothendieck-Teichmüller group. The Grothendieck-Teichmüller group
was introduced by Drinfeld [Dr] in his study of deformations of quasi-triangular
quasi-Hopf quantized universal enveloping algebras. It was defined to be the set
of ‘degenerated’ associators. The construction of the group was also stimulated by
the previous idea of Grothendieck, un jeu de Teichmüller-Lego, posed in his article
Esquisse d’un programme [G].

Definition 15 ([Dr]). The Grothendieck-Teichmüller group GRT1 is defined to be
the pro-algebraic variety whose set of k-valued points consists of group-like series
φ ∈ UF2 satisfying the defining equations (2)∼(4) of associators with µ = 0.

Remark 16. (i). By our theorem 3, it is reformulated to be the set of group-like
series satisfying (2) without quadratic terms.

(ii). It forms a group [Dr] by the multiplication below

(11) φ2 ◦ φ1 := φ1(φ2X0φ
−1
2 , X1) · φ2 = φ2 · φ1(X0, φ

−1
2 X1φ2).

(iii). By the map sending X0 7→ X0 and X1 7→ φ−1X1φ, the group GRT1 is
regarded as a subgroup of Aut exp F2.

(iii). The cyclotomic analogues of associators and the Grothendieck-Teichmüller
group were introduced by Enriquez [E]. Some elimination results on their defining
equations in special case were obtained in [EF].

Geometric interpretation (cf. [Dr]) of the equations (2)∼ (4) implies the following

Proposition 17. ImΨ ⊂ GRT1.

Actually it is expected that they are isomorphic.

Remark 18. (i). The Drinfeld associator ΦKZ is an associator (cf. example 4)
but is not a degenerated associator, i.e. ΦKZ ̸∈ GRT1(C).

(ii). The p-adic Drinfeld associator Φp
KZ introduced in [F04] is not an associator

but a degenerated associator, i.e. Φp
KZ ∈ GRT1(Qp) (cf. [F07]).

2.3. Double shuffle group. The double shuffle group was introduced by Racinet
as the set of solutions of the regularised double shuffle relations with ‘degeneration’
condition (no quadratic terms condition).

Definition 19 ([R]). The double shuffle group DMR0 is the pro-algebraic variety
whose set of k-valued points consists of the group-like series φ ∈ UF2 satisfying the
regularised double shuffle relations (6) without linear terms and quadratic terms.

Remark 20. (i). We note that DMR stands for double mélange regularisé ([R]).
(ii). It was shown in [R] that it forms a group by the operation (11).
(iii). By the same way to remark 16 (iii), the group DMR0 is regarded as a

subgroup of Aut expF2.
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It is also shown that ImΨ is contained in DMR0 (cf.[F07])). Actually it is
expected that they are isomorphic. Theorem 8 follows the inclusion between GRT1

and DMR0:

Proposition 21. GRT1 ⊂ DMR0.

It is also expected that they are isomorphic.

Remark 22. (i). The Drinfeld associator ΦKZ satisfies the regularised double
shuffle relations (cf. remark 6) but it is not an element of the double shuffle
group, i.e. ΦKZ ̸∈ DMR0(C), because its quadratic terms are non-zero, actually
ζ(2)X1X0 − ζ(2)X0X1.

(ii). The p-adic Drinfeld associator Φp
KZ satisfies the regularised double shuffle

relations (cf. [BeF, FJ]) and it is an element of the double shuffle group, i.e.
Φp

KZ ∈ DMR0(Qp), which also follows from remark 18.(ii) and proposition 21.

2.4. Kashiwara-Vergne group. In [KV] Kashiwara and Vergne proposed a con-
jecture relating on Campbell-Baker-Hausdorff series which generalises Duflo’s the-
orem (Duflo isomorphism) to some extent. The conjecture was settled generally by
Alekseev and Meinrenken [AM]. The Kashiwara-Vergne group was introduced as a
‘degeneration’ of the set of solution of the conjecture by Alekseev and Torossian in
[AT], where they gave another proof of the conjecture by using associators.

The following is one of formulations of the conjecture stated in [AET].
Generalized Kashiwara-Vergne problem: Find a group automorphism P :

expF2 → expF2 such that P belongs to TAut expF2 (that is,

P (eX0) = p1e
X0p−1

1 and P (eX1) = p2e
X1p−1

2

for some p1, p2 ∈ expF2) and P satisfies

P (eX0eX1) = e(X0+X1)

and the coboundary Jacobian condition

δ ◦ J(P ) = 0.

Here J stands for the Jacobian cocycle J : TAut expF2 → tr2 and δ means the
differential map δ : trn → trn+1 for n = 1, 2, . . . (for their precise definitions see
[AT]). We note that P is uniquely determined by the pair (p1, p2).

The following is essential for the proof of the conjecture.

Proposition 23 ([AT, AET]). Let (µ, φ) be an associator. Then the pair

(p1, p2) =
(
φ(X0/µ,X∞/µ), eX∞/2φ(X1/µ, X∞/µ)

)

with X∞ = −X0 − X1 gives a solution to the above problem.

The Kashiwara-Vergne group is defined to be the set of solutions of the problem
with ‘degeneration condition’ (‘the condition of µ = 0’):

Definition 24 ([AT, AET]). The Kashiwara-Vergne group KRV is defined to be
the set of P ∈ Aut expF2 which satisfies P ∈ TAut expF2,

P (e(X0+X1)) = e(X0+X1)

and the coboundary Jacobian condition δ ◦ J(P ) = 0.
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It forms a subgroup of Aut expF2. We denote by KRV0 the subgroup of KRV
consisting of P without linear terms in both p1 and p2. Proposition 23 yields the
inclusion below.

Proposition 25. GRT1 ⊂ KRV0.

Actually it is expected that they are isomorphic (cf. [AT]). Recent result of
Schneps in [S] also leads

Proposition 26. DMR0 ⊂ KRV0.

2.5. Comparison. By combining theorem 14 and proposition 17, 21, 25 and 26,
we obtain

Proposition 27. GalM(Z)1 ⊆ GRT1 ⊆ DMR0 ⊆ KRV0.

Here we come to an interesting question on our four groups.

Question 28. Are they all equal? Namely,

GalM(Z)1 = GRT1 = DMR0 = KRV0 ?

Though it might be not so good mathematically to believe such equalities without
a strong conceptual support, the author thinks that it might be good at least
spiritually to imagine/expect a hidden theory to relate them behind.
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Hidden Hodge symmetries and Hodge correlators

A.B. Goncharov

To Don Zagier for his 60-th birthday

1 Hidden Hodge symmetries

There is a well known parallel between Hodge and étale theories, still incomplete and
rather mysterious:

l-adic Étale Theory Hodge Theory

Category of l-adic Abelian category MHR
Galois modules of real mixed Hodge strucrures
Galois group Hodge Galois group GHod :=

Gal(Q/Q) Galois group of the category MHR

Gal(Q/Q) acts on H∗et(X,Ql), H∗(X(C),R) has a functorial
where X is a variety over Q real mixed Hodge structure

étale site ??

Gal(Q/Q) acts on the étale site, and thus ??
on categories of étale sheaves on X, e.g. ??

on the category of l-adic perverse sheaves ??

Gal(Q/Q)-equivariant perverse sheaves Saito’s Hodge sheaves

The current absense of the “Hodge site” was emphasized by A.A. Beilinson [B].

The Hodge Galois group. A weight n pure real Hodge structure is a real vector space
H together with a decreasing filtration F •HC on its complexification satisfying

HC = ⊕p+q=nF pHC ∩ F qHC.

A real Hodge structure is a direct sum of pure ones. The category PHR real Hodge
structures is equivalent to the category of representations of the real algebraic group C∗C/R.
The group of complex points of C∗C/R is C∗×C∗; the complex conjugation interchanges the
factors.

A real mixed Hodge structure is given by a real vector space H equipped with the
weight filtration W•H and the Hodge filtration F •HC of its complexification, such that
the Hodge filtration induces on grWn H a weight n real Hodge structure. The category

1



MHR of real mixed Hodge structures is an abelian rigid tensor category. There is a fiber
functor to the category of real vector spaces

ωHod :MHR −→ VectR, H −→ ⊕ngrWn H.

The Hodge Galois group is a real algebraic group given by automorphisms of the fiber
functor:

GH := Aut⊗ωHod.

The fiber functor provides a canonical equivalence of categories

ωHod :MHR
∼−→ GHod −modules.

The Hodge Galois group is a semidirect product of the unipotent radical UHod and C∗C/R:

0 −→ UHod −→ GHod −→ C∗C/R −→ 0, C∗C/R ↪→ GHod. (1)

The projection GHod→C∗C/R is provided by the inclusion of the category of real Hodge
structurs to the category of mixed real Hodge structures. The splitting s : Gm → GHod is
provided by the functor ωHod.

The complexified Lie algebra of UHod has canonical generators Gp,q, p, q ≥ 1, satisfying
the only relation Gp,q = −Gq,p, defined in [G1]. For the subcategory of Hodge-Tate
structures they were defined in [L]. Unlike similar but different Deligne’s generators [D],
they behave nicely in families. So to define an action of the group GHod one needs to have
an action of the subgroup C∗C/R and, in addition to this, an action of a single operator

G :=
∑

p,q≥1

Gp,q.

The twistor Galois group. Denote by C∗ the real algebraic group with the group of
complex points C∗. The extension induced from (1) by the diagonal embedding C∗ ⊂ C∗C/R
is the twistor Galois group. It is a semidirect product of the groups UHod and C∗.

0 −→ UHod −→ GT
←−−→ C∗ −→ 0. (2)

It is not difficult to prove

Lemma 1.1 The category of representations of GT is equivalent to the category of mixed
twistor structures defined by Simpson [Si2].

We suggest the following fills the ??-marks in the dictionary related the Hodge and
Galois. Below X is a smooth projective complex algebraic variety.

Conjecture 1.2 There exists a functorial homotopy action of the twistor Galois group
GT by A∞-equivalences of an A∞-enhancement of the derived category of perverse sheaves
on X such that the category of equivariant objects is equivalent to Saito’s category real
mixed Hodge sheaves.1

1We want to have a natural construction of the action first, and get Saito’s category real mixed Hodge
sheaves as a consequence, not the other way around.
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Denote by Db
sm(X) the category of smooth complexes of sheaves on X, i.e. complexes

of sheaves on X whose cohomology are local systems.

Theorem 1.3 There exists a functorial for pull-backs homotopy action of the twistor
Galois group GT by A∞-equivalences of an A∞-enhancement of the category Db

sm(X).

The action of the subgroup C∗ is not algebraic. It arises from Simpson’s action of C∗

on semisimple local systems [Si1]. The action of the Lie algebra of the unipotent radical
UHod is determined by a collection of numbers, which we call the Hodge correlators for
semisimple local systems. Our construction uses the theory of harmonic bundles [Si1].
The Hodge correlators can be interpreted as correlators for a certain Feynman integral.
This Feynman integral is probably responsible for the “Hodge site”.

For the trivial local system the construction was carried out in [G2]. A more general
construction for curves, involving the constant sheaves and delta-functions, was carried
out in [G1].

In the case when X is the universal modular curve, the Hodge correlators contain the
special values L(f, n) of weight k ≥ 2 modular forms for GL2(Q) outside of the critical
strip – it turns out that the simplest Hodge correlators in this case coincide with the
Rankin-Selberg integrals for the non-critical special values L(f, k + n), n ≥ 0 – the case
k = 2, n = 0 is discussed in detail in [G1].

2 Hodge correlators for local systems

2.1 An action of GT on the “ minimal model”of Dsm(X).

Tensor products of irreducible local systems are semisimple local systems. The category
of harmonic bundles HarX is the graded category whose objects are semi-simple local
systems on X and their shifts, and morphisms are given by graded vector spaces

Hom•HarX
(V1, V2) := H•(X, V ∨1 ⊗ V2). (3)

Here is our main result.

Theorem 2.1 There is a homotopy action of the twistor Galois group GT by A∞-equivalences
of the graded category HarX , such that the action of the subgroup C∗ is given by Simpson’s
action of C∗ on semi-simple local systems.

This immediately implies Theorem 1.3. Indeed, given a smallA∞-categoryA, there is a
functorial constraction of the triangulated envelope Tr(A) of A, the smallest triangulated
category containing A. Since Dbsm(X) is generated as a triangulated category by semi-
simple local systems, the category Tr(HarX) is equivalent to Dbsm(X) as a triangulated
category, and thus is an A∞-enhancement of the latter. On the other hand, the action of
the group GT from Theorem 2.1 extends by functoriality to the action on Tr(HarX).

Below we recall what are A∞-equivalences of DG categories and then define the cor-
responding data in our case.
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2.2 A∞-equivalences of DG categories

The Hochshild cohomology of a small dg-category A. Let A be a small dg cate-
gory. Consider a bicomplex whose n-th column is

∏

[Xi]

Hom
(
A(X0, X1)[1]⊗A(X1, X2)[1]⊗ . . .⊗A(Xn−1, Xn)[1],A(X0, Xn)[1]

)
, (4)

where the product is over isomorphism classes [Xi] of objects of the category A. The
vertical differential d1 in the bicomplex is given by the differential on the tensor product
of complexes. The horisontal one d2 is the degree 1 map provided by the composition

A(Xi, Xi+1)⊗A(Xi+1, Xi+2) −→ A(Xi, Xi+2).

Let HC∗(A) be the total complex of this bicomplex. Its cohomology are the Hochshild
cohomology HH∗(A) of A. Let FunA∞(A,A) be the space of A∞-functors from A to
itself. Lemma 2.2 can serve as a definition of A∞-functors considered modulo homotopy
equivalence.

Lemma 2.2 One has
H0FunA∞(A,A) = HH0(A). (5)

Indeed, a cocycle in HC0(A) is the same thing as an A∞-functor. Coboundaries corre-
sponds to the homotopic to zero functors.

The cyclic homology of a small rigid dg-category A. Let (α0 ⊗ ...⊗ αm)C be the
projection of α0 ⊗ ...⊗ αm to the coinvariants of the cyclic shift. So, if α := degα,

(α0 ⊗ ...⊗ αm)C = (−1)αm(α0+...+αm−1)(α1 ⊗ ...⊗ αm ⊗ α0)C.

We assign to A a bicomplex whose n-th column is
∏

[Xi]

(
A(X0, X1)[1]⊗ . . .⊗A(Xn−1, Xn)[1]⊗A(Xn, X0)[1]

)
C
.

The differentials are induced by the differentials and the composition maps on Hom’s.
The cyclic homology complex CC∗(A) of A is the total complex of this bicomplex. Its
homology are the cyclic homology of A.

Assume that there are functorial pairings

A(X, Y )[1]⊗A(Y,X)[1] −→ H∗.
Then there is a morphism of complexes

HC∗(A)∗ −→ CC∗(A)⊗H. (6)

For the category of harmonic bundles HarX there is such a pairing with

H := H2n(X)[−2].

It provides a map

ϕ : Hom
(
H0(CC∗(HarX)⊗H,C

)
−→ HH0(HarX)

(5)
= H0FunA∞(HarX ,HarX). (7)
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2.3 The Hodge correlators

Theorem 2.3 a) There is a linear map, the Hodge correlator map

CorHarX : H0(CC∗(HarX)⊗H) −→ C. (8)

Combining it with (7), we get a cohomology class

HHarX := ϕ(CorHarX) ∈ H0FunA∞(HarX ,HarX). (9)

b) There is a homotopy action of the twistor Galois group GT by A∞-autoequivalences
of the category HarX such that

• Its restriction to the subgroup C∗ is the Simpson action [Si1] on the category HarX .

• Its restriction to the Lie algebra LieUHod is given by a Lie algebra map

HHarX : LHod −→ H0FunA∞(HarX ,HarX), (10)

uniquely determined by the condition that HHarX(G) = HHarX .

c) The action of the group GT is functorial with respect to the pull backs.

2.4 Construction.

To define the Hodge correlator map (8), we define a collection of degree zero maps

CorHodX
:
(
H•(X, V ∗0 ⊗ V1)[1]⊗ . . .⊗H•(X, V ∗m ⊗ V0)[1]

)
C
⊗H −→ C. (11)

The definition depends on some choices, like harmonic representatatives of cohomology
classes. We prove that it is well defined on HC0, i.e. its resctriction to cycles is indepen-
dent of the choices, and coboundaries are mapped to zero.

We picture an element in the sourse of the map (11) by a polygon P , see Fig 1,
whose vertices are the objects Vi, and the oriented sides ViVi+1 are graded vector space
Ext∗(Vi, Vi+1)(1).

Figure 1: A decorated plane trivalent tree; Vi are harmonic bundles.
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Green currents for harmonic bundles. Let V be a harmonic bundle on X. Then
there is a Doulbeaut bicomplex (A•(X, V );D′, D′′) where the differentials D′, D′′ are pro-
vided by the complex structure on X and the harmonic metric on V . It satisfies the
D′, D′′-lemma.

Choose a splitting of the corresponding de Rham complex A•(X, V ) into an arbitrary
subspace Har•(X, V ) isomorphically projecting onto the cohomology H•(X, V ) (”har-
monic forms”) and its orthogonal complement. If V = CX , we choose a ∈ X and take the
δ-function δa at the point a ∈ X as a representative of the fundamental class.

Let δ∆ be the Schwarz kernel of the identity map V → V given by the δ-function of
the diagonal, and PHar the Schwarz kernel of the projector onto the space Har•(X, V ),
realized by an (n, n)-form on X × X. Choose a basis {αi} in Har•(X, V ). Denote by
{α∨i } the dual basis. Then we have

PHar =
∑

α∨i ⊗ αi,
∫

X

αi ∧ α∨j = δij.

Let pi : X ×X → X be the projections onto the factors.

Definition 2.4 A Green current G(V ;x, y) is a p∗1V
∗ ⊗ p∗2V -valued current on X ×X,

G(V ;x, y) ∈ D2n−2(X ×X, p∗1V ∗ ⊗ p∗2V ), n = dimCX,

which satisfies the differential equation

(2πi)−1D′′D′G(V ;x, y) = δ∆ − PHar. (12)

The two currents on the right hand side of (12) represent the same cohomology class, so
the equation has a solution by the D′′D′-lemma.

Remark. The Green current depends on the choice of the “harmonic forms”. So if
V = C, it depends on the choise of the base point a. Solutions of equation (12) are well
defined modulo ImD′′ + ImD′ +Har•(X, V ).

Construction of the Hodge correlators. Trees. Take a plane trivalent tree T dual
to a triangulation of the polygon P , see Fig 1. The complement to T in the polygon P
is a union of connected domains parametrized by the vertices of P , and thus decorated
by the harmonic bundles Vi. Each edge E of the tree T is shared by two domains. The
corresponding harmonic bundles are denoted VE− and VE+. If E is an external edge, we
assume that VE− is before VE+ for the clockwise orientation.

Given an internal vertex v of the tree T , there are three domains sharing the vertex.
We denote the corresponding harmonic bundles by Vi, Vj, Vk, where the cyclic order of the
bundles agrees with the clockwise orientation. There is a natural trace map

Trv : V ∗i ⊗ Vj ⊗ V ∗j ⊗ Vk ⊗ V ∗k ⊗ Vi =−→ C. (13)

It is invariant under the cyclic shift.
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Decorations. For every edge E of T , choose a graded splitting of the de Rham complex

A•(X, V ∗E− ⊗ VE+) = Har•(X, V ∗E− ⊗ VE+)
⊕
Har•(X, V ∗E− ⊗ VE+)⊥.

Then a decomposable class in
(
⊗mi=0H

∗(X, V •i ⊗Vi+1)[1]
)
C

has a harmonic representative

W =
(
α0,1 ⊗ α1,2 ⊗ . . .⊗ αm,0

)
C
.

We are going to assign to W a top degree current κ(W ) on

X{internal vertices of T }. (14)

Each external edge E of the tree T is decorated by an element

αE ∈ Har•(X, V ∗E− ⊗ VE+).

Put the current αE to the copy of X assigned to the internal vertex of the edge E, and
pull it back to (14) using the projection pαE

of the latter to the X. Abusing notation, we
denote the pull back by αE. It is a form on (14) with values in the bundle p∗αE

(V ∗E−⊗VE+)

Green currents. We assign to each internal edge E of the tree T a Green current

G(V ∗E− ⊗ VE+;x−, x+). (15)

The order of (x−, x+) agrees with the one of (V ∗E−, VE+) as on Fig 2: the cyclic order
of (V ∗E−, x−, VE+, x+) agrees with the clockwise orientation. The Green current (15) is
symmetric:

G(V ∗E− ⊗ VE+;x−, x+) = G(V ∗E+ ⊗ VE−;x+, x−). (16)

So it does not depend on the choice of orientation of the edge E.

Figure 2: Decorations of the Green current assigned to an edge E.

The map ξ. There is a degree zero map

ξ : A•(X, V0)[−1]⊗ . . .⊗A•(X, Vm)[−1] −→ A•(X, V0 ⊗ ...⊗ Vm)[−1]; (17)
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ϕ0 ⊗ . . .⊗ ϕm 7−→ Sym{0,...,m}

(
ϕ0 ∧DCϕ1 ∧ . . . ∧DCϕm

)
. (18)

The graded symmetrization in (18) is defined via isomorphisms Vσ(0) ⊗ ... ⊗ Vσ(m) →
V0⊗...⊗Vm, where σ is a permutation of {0, ...,m}. It is essential that degDCϕ = degϕ+1.

An outline of the construction. We apply the operator ξ to the product of the Green
currents assigned to the internal edges of T . Then we multiply on (14) the obtained local
system valued current with the one provided by the decoration W , with an appropriate
sign. Applying the product of the trace maps (13) over the internal vertices of T , we
get a top degree scalar current on (14). Integrating it we get a number assigned to T .
Taking the sum over all plane trivalent trees T decorated by W , we get a complex number
CorHarX(W ⊗H). Altogether, we get the map (8). One checks that its degree is zero. The
signs in this definition are defined the same way as in [G2].

Theorem 2.5 The maps (11) give rise to a well defined Hodge correlator map (8).

Acknowledgments. I am grateful to Alexander Beilinson and Maxim Kontsevich for
their interest to this project and useful discussions. This work was supported by the NSF
grant DMS-1059129, MPI (Bonn) and IHES.
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Bounding eigenfunctions on arithmetic surfaces

Valentin Blomer

Let M be a compact Riemannian manifold with Laplace operator ∆,
and let φ be a normalized eigenfunction,

∆φ+ λφ = 0, ‖φ‖2 = 1.

What can we say about ‖φ‖∞ with respect to λ and M?
This is an interesting question for several reasons: on the one hand,

sup-norm bounds give bounds for the multiplicities of eigenvalues:

dimVλ ≤ vol(M) max
φ∈Vλ
‖φ‖2=1

‖φ‖2∞.

Secondly it is often important and useful to bound an eigenfunction φ along
certain “periods”. Pointwise bounds are in a sense the strongest form of
such results, where the period degenerates to a single point. A non-trivial
sup-norm bound can therefore be interpreted as a type of equidistribution
statement, saying that the mass of φ cannot be concentrated too much.
We will see that this has connections to the subconvexity problem for L-
functions. See [7] for an enlightening discussion.

For dimM = 2 we have the general bound

‖φ‖∞ � (1 + λ)1/4,

and this is sharp, as can be seen for M = S2 and φ a zonal spherical
function. In this talk, we want to consider two examples where the surface
is “of arithmetic type”. It turns out that the sup-norm problem, originally
a purely analytic question, then becomes a problem in diophantine analysis.

Modular curves - the case SL(2)

Consider

M = X0(N) = Γ0(N)\H→ X0(1), N squarefree,

a cover of the standard modular cover X0(1). As usual, H is the upper half
plane, a surface with constant negative curvature −1, and Γ0(N) denotes

1



2

the group 2 × 2 integer matrix with determinant 1 and left lower corner
divisible by N . This example doesn’t quite fit into the above framework, as
M is non-compact, but it is of finite volume: vol(M) = N1+o(1) < ∞. In
cartesian coordinates the Laplacian is given by

∆ = y2(∂2
x + ∂2

y).

The space Γ0(N)\H is equipped with arithmetic extra structure, owing to
the fact that Γ0(N) is a “congruence subgroup”: there is a commutative
family of Hecke operators

Tn =
1√
n

∑

ad=n
b (mod d)

(
a b

d

)
∈ C[PGL2]

that also commutes with ∆. Assuming that φ is a joint eigenfunction of ∆
and all Hecke operators, the first breakthrough was obtained by Iwaniec and
Sarnak:

Theorem 1. [6] In the above setting with N = 1 one has

‖φ‖∞ � (1 + λ)5/24+ε.

The same bound holds for Eisenstein series in compact regions. A direct
application is subconvexity for the Dedekind zeta-function of Q(i): we have
a “trivial” period formula E(1/2 + it, i) = ζQ(i)(1/2 + it)× some simple
factors. Since the eigenvalue of E(1/2 + it, z) is 1/4 + t2, we conclude

ζQ(i)(1/2 + it)� (1 + |t|)5/12+ε.

Of course, better bounds are known by other methods (the strongest expo-
nent is slightly better than 1/3), but this shows already a first connection
to L-functions.

With a little extra work [1], one can show ‖φ‖∞ � (1+λ)5/24((1+λ)N)ε

for any squarefree N . The bound N ε can be regarded as the trivial bound
in the level aspect. We are interested in non-trivial bounds simultaneously
with respect to the eigenvalue and the volume.

Theorem 2. [1] Keeping the notation an assumption as above, there is
δ > 0 such that

‖φ‖∞ � λ1/4(vol(M)λ1/2)−δ

One can take δ = 1/2500.

The volume bound holds for automorphic forms φ with arbitrary (fixed)
K-type, in particular for holomorphic cusp forms. The best possible value
for δ would be 1/2 (at least in any fixed compact region of M) which would
imply the Lindelöf hypothesis in the level aspect for the standard L-function
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L(1/2, φ).

The proof starts by considering an amplified pre-trace formula. The
geometric side of the trace formula leads to a counting problem of the type

#

{
γ =

(
a b
Nc d

)
| det γ = `,dist(z, γz) < δ

}
,

uniformly in z ∈ M , 0 < δ < 1, and ` an integer of size Nη for some small
η > 0. We see now clearly that a diophantine problem has arisen. An extra
difficulty, not existent in the work of Iwaniec-Sarnak occurs: the above count
will not produce the desired saving in the volume aspect if z = x + iy is
such that x is “well approximable” by rational numbers, that is x ≈ a/q
with q “small”. Reminiscent of the circle method, we therefore split each
horocycle into major and minor arcs. The trace formula approach works well
for the minor arcs, whereas on the major arcs one has to “pre-condition”
the point z by applying a certain Atkin-Lehner involution first. This leads
to considerable technical complications that have partly been simplified in
[8]. A somewhat different approach can be found in [5].

Unions of ellipsoids - the case SO(3)

Next we consider

M =
h∐

j=1

S2.

which we realize arithmetically as follows: Let B be a positive quaternion
algebra over Q of discriminant D. Then PB× is isomorphic to SO(B0) ∼=
SO(3) (where B0 denotes the traceless quaternions) via conjugation. Let O

be an Eichler order in B of level N with (N,D) = 1, that is, locally we have

Op ∼=
(

Zp Zp
NZp Zp

)
. Let Kf := A×fin\A×finÔ

× and fix once and for all a point

x∞ on the ellipsoid {x ∈ B0 | nr(x) = 1}, say the north pole. The stabilizer
of x∞ under the action of PB× is isomorphic to SO(2). Therefore we have

M := PB×\PB×(A)/KfSO(2) =
h∐

j=1

S2

where h ≈ DN/12 ≈ vol(M) is the class number of B. Note that each
connected component is equipped with its own quadratic form, but all these
quadratic forms are locally conjugated (in the same genus).

Theorem 3. [2] Let φ be an L2-normalized Hecke-Laplace eigenform on
M of Laplacian eigenvalue λ = k(k + 1) for some k ∈ N0 Then there is a
δ > 0 such that

‖φ‖∞ � (1 + λ)1/4(vol(M)(1 + λ)1/2)−δ.
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One can take δ = 1/40, cf. [3].

In the case of the maximal order in the Hamilton quaternions, that is,
D = 2, N = 1, h = 1, a corresponding result was proved in [9]. The proof
starts again with an amplified trace formula which leads to

∑

γ∈Oj
nr(γ)=`

pk

(
1

2
tr(x, γ · x)

)

where pk is the k-th Legendre polynomial and Oj is the the order of the
j-th ideal class. This amounts to counting integral points on some slightly
thickened S1 inside a slant ellipsoid.

Remark 1: The proof works for a totally positive quaternion alge-
bra B over any totally real number field. This solves automatically the
sup-norm problem on SO(4): if the discriminant ∆ of the underlying 4-
dimensional quadratic space is a square, we need to consider products of
functions on SO(3) × SO(3), otherwise functions on SO(3) over the field
extension Q(

√
∆).

Remark 2: Theorem 3 is even non-trivial in the case λ = 0 (that is,
φ is locally constant), D = p a prime, N = 1. In this case the set of ideal
classes of B can be identified with the set of isomorphy classes of supersin-
gular elliptic curves defined over Fq, and our theorem shows that a locally
constant function on this space cannot accumulate too much of its mass on
a single component.

Remark 3: Eichler has shown a correspondence between the eigenspace
Vk(k+1) and the space of holomorphic cusp forms of weight 2 + k. Let K
be an imaginary quadratic field that embeds into B, and fix a class group
character χ viewed as a weight 1 CM form. Gross’ [4] formula expresses the
special value of the Rankin-Selberg L-function L(f × χ, 1/2) where f is a
cusp of weight 2 + k, as the square of a weighted sum of f over Heegner
points. Estimating trivially with the sup-norm bound from Theorem 3, one
obtains

L(f × χ, 1/2)� k6/7.

Again, over Q there are stronger subconvexity exponents available, but on
the one hand our exponent is uniform in the number field, and on the other
hand our proof is a sense purely diophantine.
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QUANTUM KNOT INVARIANTS
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Abstract. This is a survey talk on one of the best known quantum knot invariants, the
colored Jones polynomial of a knot, and its relation to the algebraic/geometric topology
and hyperbolic geometry of the knot complement. We review several aspects of the colored
Jones polynomial, emphasizing modularity, stability and effective computations. The talk
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1. The Jones polynomial of a knot

Quantum knot invariants are powerful numerical invariants defined by Quantum Field
theory with deep connections to the geometry and topology in dimension three [Wit89]. This
is a survey talk on the various limits the colored Jones polynomial [Jon87], one of the best
known quantum knot invariants. This is a 25 years old subject that contains theorems and
conjectures in disconnected areas of mathematics. We chose to present some old and recent
conjectures on the subject, emphasizing two recent aspects of the colored Jones polynomial,
Modularity and Stability and their illustration by effective computations. Zagier’s influence
on this subject is profound, and several results in this talk are joint work with Don. We
thank Don Zagier for his generous sharing of his ideas with us.

The Jones polynomial JL(q) ∈ Z[q±1/2] of a link L in 3-space is uniquely determined by
the linear relations [Jon87]

qJ (q) − q−1J (q) = (q1/2 − q−1/2)J (q) J (q) = q1/2 + q−1/2 .

The Jones polynomial has a unique extension to a polynomial invariant JL,c(q) of links L
together with a coloring c of their components are colored by positive natural numbers that
satisfy the following rules

JL∪K,c∪{N+1}(q) = JL∪K(2),c∪{N,2}(q) − JL∪K,c∪{N−1}(q), N ≥ 2

JL∪K,c∪{1}(q) = JL,c(q)

JL,{2,...,2}(q) = JL(q)

where (L ∪ K, c ∪ {N}) denotes a link with a distinguished component K colored by N and
K(2) denotes the 2-parallel of K with zero framing.

Here, a natural number N attached to a component of a link indicates the N -dimensional
irreducible representation of the Lie algebra sl(2, C). For a detailed discussion on the poly-
nomial invariants of links that come from quantum groups, see [Jan96, Tur88, Tur94]. The
above relations make clear that the colored Jones polynomial of a knot determines and is
uniquely determined by the Jones polynomial of a knot and its 0-framed parallels.

2. Three limits of the colored Jones polynomial

In this section we will list three conjectures, the MMR Conjecture (proven), the Slope
Conjecture (mostly proven) and the AJ Conjecture (less proven). These conjectures relate
the colored Jones polynomial of a knot with the Alexander polynomial, with the set of slopes
of incompressible surfaces and with the PSL(2, C) character variety of the knot complement.

2.1. The colored Jones polynomial and the Alexander polynomial. We begin by
discussing a relation of the colored Jones polynomial with the homology of the universal
abelian cover of its complement. The homology H1(M, Z) ≃ Z of the complement M = S3\K
of a knot K in 3-space is independent of the knot K. This allows us to consider the universal

abelian cover M̃ of M with deck transformation group Z, and with homology H1(M̃, Z) a
Z[t±1] module. As is well-known this module is essentially torsion and its order is given by
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the Alexander polynomial ∆K(t) ∈ Z[t±1] of K [Rol90]. The Alexander polynomial does not
distinguish knots from their mirrors and satisfies ∆K(1) = 1.

There are infinitely many pairs of knots (for instance (1022, 1035) in the Rolfsen table
[Rol90, BN]) with equal Jones polynomial but different Alexander polynomial. On the other
hand, the colored Jones polynomial determines the Alexander polynomial. This so-called
Melvin-Morton-Rozansky Conjecture was proven in [BNG96], and states that

(1) ĴK,n(e~) =
∑

i≥j≥0

aK,ij~inj ∈ Q[[n, ~]]

and
∞∑

i=0

aK,ij~i =
1

∆K(e~)
∈ Q[[~]] .

Here ĴK,n(q) = JK,n(q)/JUnknot,n(q) ∈ Z[q±1] is a normalized form of the colored Jones
polynomial. The above conjecture is a statement about formal power series. A stronger
analytic version is known [GL11a, Thm.1.3], namely for every knot K there exists an open
neighborhood UK of 0 ∈ C such that for all α ∈ UK we have

lim
n

JK,n(eα/n) =
1

∆K(eα)
,

where convergence is uniform with respect to compact sets. More is known about the sum-
mation of the series (1) along a fixed diagonal i = j + k for fixed k, both on the level of
formal power series and on the analytic counterpart. For further details the reader may
consult [GL11a] and references therein.

2.2. The colored Jones polynomial and slopes of incompressible surfaces. In this
section we discuss a conjecture relating the degree of the colored Jones polynomial of a knot
K with the set bsK of boundary slopes of incompressible surfaces in the knot complement
M = S3 \ K. Although there are infinitely many incompressible surfaces in M , it is known
that bsK ⊂ Q ∪ {1/0} is a finite set [Hat82]. Incompressible surfaces play an important
role in geometric topology in dimension three, often accompanied by the theory of normal
surfaces. From our point of view, incompressible surfaces are a tropical limit of the colored
Jones polynomial, corresponding to an expansion around q = 0 [Gar11c].

The Jones polynomial of a knot is a Laurent polynomial in one variable q with integer
coefficients. Ignoring most information, one can consider the degree δK(n) of ĴK,n+1(q)

with respect to q. Since (ĴK,n(q)) is a q-holonomic sequence [GL05], it follows that δK is a
quadratic quasi-polynomial [Gar11a]. In other words, we have

δK(n) = cK(n)n2 + bK(n)n + aK(n) ,

where aK , bK , cK : N −→ Q are periodic functions. In [Gar11b] the author formulated the
Slope Conjecture.

Conjecture 2.1. For all knots K we have

4cK(N) ⊂ bsK .
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The movitating example for the Slope Conjecture was the case of the (−2, 3, 7) pretzel
knot, where we have [Gar11b, Ex.1.4]

δ(−2,3,7)(n) =

[
37

8
n2 +

17

2
n

]
=

37

8
n2 +

17

2
n − ǫ(n),

where ǫ(n) is a periodic sequence of period 4 given by 0, 1/8, 1/2, 1/8 if n ≡ 0, 1, 2, 3 mod 4
respectively. In addition, we have

bs(−2,3,7) = {0, 16, 37/2, 20} .

In all known examples, cK(N) consists of a single element, the so-called Jones slope. How the
colored Jones polynomial selects one of the finitely many boundary slopes is a challenging
and interesting question. The Slope Conjecture is known for all torus knots, all alternating
knots and all knots with at most 8 crossings [Gar11b] as well as for all adequate knots
[FKP11] and all 2-fusion knots [DG12b].

2.3. The colored Jones polynomial and the PSL(2, C) character variety. In this
section we discuss a conjecture relating the colored Jones polynomial of a knot K with
the moduli space of SL(2, C)-representations of M , restricted to the boundary of M . The
latter is a 1-dimensional plane curve (ignoring 0-dimensional components). To formulate the

conjecture we need to recall that the colored Jones polynomial ĴK,n(q) is q-holonomic [GL05]
i.e., it satisfies a non-trivial linear recursion relation

(2)
d∑

j=0

aj(q, q
n)ĴK,n+j(q) = 0

for all n where aj(u, v) ∈ Z[u±1, v±1] and ad 6= 0. q-holonomic sequences were introduced by
Zeilberger [Zei90], and a fundamental theorem (multisums of q-proper hypergeometric terms
are q-holonomic) was proven in [WZ92] and implemented in [PWZ96]. Using two operators
M and L which act on a sequence f(n) by

(Mf)(n) = qnf(n), (Lf)(n) = f(n + 1) ,

we can write the recursion (2) in operator form

P · ĴK = 0 where P =
d∑

j=0

aj(q,M)Lj .

It is easy to see that LM = qML and M,L generate the q-Weyl algebra. One can choose
a canonical recursion AK(M,L, q) ∈ Z[q,M ]〈L〉/(LM − qML) which is a knot invariant
[Gar04], the non-commutative A-polynomial of K.

The reason for this terminology is the potential relation with the A-polynomial AK(M,L)
of K [CCG+94]. The latter is defined as follows. Let XM = Hom(π1(M), SL(2, C))/C denote
the moduli space of flat SL(2, C) connections on M . We have an identification

X∂M ≃ (C∗)2/(Z/2Z), ρ 7→ (M,L)

where {M, 1/M} (resp., {L, 1/L}) are the eigenvalues of ρ(µ) (resp., ρ(λ)) where (µ, λ) is a
meridian-longitude pair on ∂M . XM and X∂M are affine varieties and the restriction map
XM −→ X∂M is algebraic. The Zariski closure of its image lifted to (C∗)2, and after removing
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any 0-dimensional components is a one-dimensional plane curve with defining polynomial
AK(M,L) [CCG+94]. This polynomial plays an important role in the hyperbolic geometry of
the knot complement. We are now ready to formulate the AJ Conjecture [Gar04, Gel02]. Let
us say that two polynomials P (M,L) =M Q(M,L) are essentially equal if their irreducible
factors with positive L-degree are equal.

Conjecture 2.2. For all knots K, we have AK(M2, L, 1) =M AK(M,L).

The AJ Conjecture was checked for the 31 and the 41 knots in [Gar04]. It is known for most
2-bridge knots [Lê06], for torus knots and for the pretzel knots of Section 4; see [LT, Tra].

From the point of view of physics, the AJ Conjecture is a consequence of the fact that
quantization and the corresponding quantum field theory exists [Guk05, Dim].

3. The Volume and Modularity Conjectures

3.1. The Volume Conjecture. The Kashaev invariant of a knot is a sequence of complex
numbers defined by [Kas97, MM01]

〈K〉N = ĴK,N(e(1/N))

where e(α) = e2πiα. The Volume Conjecture concerns the exponential growth rate of the
Kashaev invariant and states that

lim
N

1

N
log |〈K〉N | =

vol(K)

2π

where Vol(K) is the volume of the hyperbolic pieces of the knot complement S3 \K. Among
hyperbolic knots, the Volume Conjecture is known only for the 41 knot; for a detailed
computation see [Mur04]. Refinements of the Volume Conjecture to all orders in N and
generalizations were proposed by several authors [DGLZ09, GM08, GL11a, Gar08]. Although
proofs are lacking, there appears to be a lot of structure in the asymptotics of the Kashaev
invariant. In the next section we will discuss a modularity conjecture of Zagier and some
numerical verification.

3.2. The Modularity Conjecture. Zagier considered the Galois invariant spreading of
the Kashaev invariant on the set of complex roots of unity given by

φK : Q/Z −→ C, φK

(a

c

)
= ĴK,c

(
e
(a

c

))

where (a, c) = 1 and c > 0. The above formula works even when a and c are not coprime
due to a symmetry of the colored Jones polynomial [Hab02]. Moreover φK determines 〈K〉
and is uniquely determined by 〈K〉 via Galois invariance.

Let γ =

(
a b
c d

)
∈ SL(2, Z) and α = a/c and ~ = 2πi/(X + d/c) where X −→ +∞

with bounded denominators. Let φ = φK denote the extended Kashaev invariant of a
hyperbolic knot K and let F ⊂ C denote the invariant trace field of M = S3 \ K [MR03].
Let C(M) ∈ C/(4π2Z) denote the complex Chern-Simons invariant of M [GZ07, Neu04].
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Conjecture 3.1. With the above conventions, there exist ∆(α) ∈ C with ∆(α)2c ∈ F (ǫ(α))
and Aj(α) ∈ F (e(α)) such that

(3)
φ(γX)

φ(X)
∼
(

2π

~

)3/2

eC(M)/~∆(α)
∞∑

j=0

Aj(α)~j .

When γ =

(
1 0
1 1

)
and X = N − 1, and with the properly chosen orientation of M , the

leading asymptotics of (3) together with the fact that ℑ(C(M)) = vol(M) gives the volume
conjecture.

4. Computation of the non-commutative A-polynomial

As we will discuss below, the key to an effective computation the Kashaev invariant is a
recursion for the colored Jones polynomial. Proving or guessing such a recursion is at least
as hard as computing the A-polynomial of the knot. The A-polynomial is already unknown
for several knots with 9 crossings. For an updated table of computations see [Cul10]. The
A-polynomial is known for the 1-parameter families of twist knots Kp [HS04] and pretzel
knots KPp = (−2, 3, 3 + 2p) [GM11] depicted on the left and the right part of the following
figure

where an integer m inside a box indicates the number of |m| half-twists, right-handed (if
m > 0) or left-handed (if m < 0), according to the following figure

The non-commutative A-polynomial of the twist knots Kp was computed with a certificate
by X. Sun and the author in [GS10] for p = −14, . . . , 15. The data is available from

www.math.gatech.edu/∼stavros/publications/twist.knot.data

The non-commutative A-polynomial of the pretzel knots KPp = (−2, 3, 3 + 3p) was guessed
by C. Koutschan and the author in [GK12a] for p = −5, . . . , 5. The guessing method used
an a priori knowledge of the monomials of the recursion, together with computation of the
colored Jones polynomial using the fusion formula, and exact but modular arithmetic and
rational reconstruction. The data is available from

www.math.gatech.edu/∼stavros/publications/pretzel.data

For instance, the recursion relation for the colored Jones polynomial f(n) of the 52 =
(−2, 3,−1) pretzel knot is given by

b(qn, q)−q9+7n(−1+qn)(−1+q2+n)(1+q2+n)(−1+q5+2n)f(n)+q5+2n(−1+q1+n)2(1+q1+n)(−1+

q5+2n)(−1 + q1+n + q1+2n − q2+2n − q3+2n + q4+2n − q2+3n − q5+3n − 2q5+4n + q6+5n)f(1 + n) −
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q(−1+ q2+n)2(1+ q2+n)(−1+ q1+2n)(−1+2q2+n + q2+2n + q5+2n − q4+3n + q5+3n + q6+3n − q7+3n −
q7+4n + q9+5n)f(2 + n) − (−1 + q1+n)(1 + q1+n)(−1 + q3+n)(−1 + q1+2n)f(3 + n) = 0 ,

where

b(qn, q) = q4+2n(1 + q1+n)(1 + q2+n)(−1 + q1+2n)(−1 + q3+2n)(−1 + q5+2n) .

The recursion relation for the colored Jones polynomial f(n) of the (−2, 3, 7) pretzel knot
is given by

b(qn, q)− q224+55n(−1+ qn)(−1+ q4+n)(−1+ q5+n)f(n)+ q218+45n(−1+ q1+n)3(−1+ q4+n)(−1+

q5+n)f(1+n)+q204+36n(−1+q2+n)2(1+q2+n+q3+n)(−1+q5+n)f(2+n)+(−1+q)q180+27n(1+q)(−1+

q1+n)(−1 + q3+n)2(−1 + q5+n)f(3 + n) − q149+18n(−1 + q1+n)(−1 + q4+n)2(1 + q + q4+n)f(4 + n) −
q104+8n(−1+q1+n)(−1+q2+n)(−1+q5+n)3f(5+n)+q59(−1+q1+n)(−1+q2+n)(−1+q6+n)f(6+n) =

0 ,

where

b(qn, q) = q84+5n(1− q1+n − q2+n + q3+2n − q16+3n + q17+4n + q18+4n − q19+5n − q26+5n + q27+6n +

q28+6n + q31+6n − q29+7n − q32+7n − q33+7n − q36+7n + q34+8n + q37+8n + q38+8n − q39+9n + q45+9n −
q46+10n − q47+10n + q49+10n + q48+11n − q50+11n − q51+11n − q54+11n + q52+12n + q55+12n + q56+12n −
q57+13n − q62+13n + q63+14n + q64+14n − q66+14n + q67+14n − q65+15n + q67+15n − q69+15n + q71+15n −
q69+16n + q70+16n − q72+16n − q75+17n − q78+17n + q76+18n + q79+18n − q83+19n + q85+19n + q84+20n −
q86+20n +q88+20n −q89+21n +q91+21n −q96+22n −q93+23n +2q98+24n −q99+25n −q108+26n −q107+27n +

q109+27n + q108+28n − q110+28n + q112+28n − q113+29n + q115+29n + q112+30n + q115+30n − q117+31n −
q120+31n − q117+32n + q118+32n − q120+32n − q119+33n + q121+33n − q123+33n + q125+33n + q123+34n +

q124+34n − q126+34n + q127+34n − q123+35n − q128+35n + q124+36n + q127+36n + q128+36n + q126+37n −
q128+37n − q129+37n − q132+37n − q130+38n − q131+38n + q133+38n − q129+39n + q135+39n + q130+40n +

q133+40n + q134+40n − q131+41n − q134+41n − q135+41n − q138+41n + q135+42n + q136+42n + q139+42n −
q133+43n − q140+43n + q137+44n + q138+44n − q142+45n + q135+46n − q139+47n − q140+47n + q144+48n) .

The pretzel knots KPp are interesting from many points of view. For every integer p, the
knots in the pair (KPp,−KP−p) (where −K denotes the mirror of K)

• are geometrically similar, in particular they are scissors congruent, have equal volume,
equal invariant trace fields and their Chern-Simons invariant differ by a sixth root of
unity,

• their A-polynomials are equal up to a GL(2, Z) transformation [GM11, Thm.1.4].

Yet, the colored Jones polynomials and the Kashaev invariants of (KPp,−KP−p) are dif-
ferent, and so are the asymptotics of the Kashaev invariant, even ∆(0) in the modularity
conjecture 3.1. An explanation of this puzzle is given in [DG12a].

Zagier posed a question to compare the modularity conjecture for geometrically similar
pairs of knots, which was a motivation for many of the computations in Section 5.2.

5. Numerical asymptotics and the Modularity Conjecture

5.1. Numerical computation of the Kashaev invariant. To numerically verify Conjec-
ture 3.1 we need to compute the Kashaev invariant efficiently. In this section we discuss this
topic.
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There are multidimensional R-matrix state sum formulas for the colored Jones polynomial
JK,N(q) where the number of summation points are given by a polynomial in N of degree
the number of crossings of K minus 1 [GL05]. Unfortunately, this is not practical method
even for the 41 knot.

An alternative way is to use fusion [KL94, Cos09, GvdV12] which allows one to compute
the colored Jones polynomial more efficiently at the cost that the summand is a rational
function of q. For instance, the colored Jones polynomial of a 2-fusion knot can be com-
puted in O(N3) steps using [GK12a, Thm.1.1]. This method works better, but it still has
limitations.

A preferred method is to guess a nontrivial recursion relation for the colored Jones poly-
nomial (see Section 4) and instead of using it to compute the colored Jones polynomial,
differentiate sufficiently many times and numerically compute the Kashaev invariant. In the
efforts to compute the Kashaev invariant of the (−2, 3, 7) pretzel knot, Zagier and the author
obtained the following lemma, of theoretical and practical use.

Lemma 5.1. The Kashaev invariant 〈K〉N can be numerically computed in O(N) steps.

A computer implementation of Lemma 5.1 is available.

5.2. Numerical verification of the Modularity Conjecture. Given a sequence of com-
plex number (an) with an expected asymptotic expansion

an ∼ λnnα(log n)β

∞∑

j=0

cj

nj

how can one numerically compute λ, α, β and several coefficients cj? This is a well-known
numerical problem [BO99]. An acceleration method was proposed in [Zag01, p.954], which
is also equivalent to the Richardson transform. For a detailed discussion of the acceleration
method see [GIKM, Sec.5.2]. In favorable circumstances the coefficients cj are algebraic
numbers, and a numerical approximation may lead to a guess for their exact value.

A concrete application of the acceleration method was given in the appendix of [GvdV12]
where one deals with several λ of the same magnitude as well as β 6= 0.

Numerical computations of the modularity conjecture for the 41 knot were obtained by
Zagier around roots of unity of order at most 5, and extended to several other knots in [GZ].
As a sample computation, we present here the numerical data for 41 at α = 0, computed
independently by Zagier and by the first author. The values of Ak in the table below are
known for k = 0, . . . , 150.

φ41(X) = 3−1/4 exp(CX)

( ∞∑

k=0

Ak

k!12k
hk

)

h = A/X A =
π

33/2
C =

1

π
Li2(exp(2πi/3))
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k Ak

0 1
1 11
2 697
3 724351/5
4 278392949/5
5 244284791741/7
6 1140363907117019/35
7 212114205337147471/5
8 367362844229968131557/5
9 44921192873529779078383921/275

10 3174342130562495575602143407/7
11 699550295824437662808791404905733/455
12 14222388631469863165732695954913158931/2275
13 5255000379400316520126835457783180207189/175
14 4205484148170089347679282114854031908714273/25
15 16169753990012178960071991589211345955648397560689/14875
16 119390469635156067915857712883546381438702433035719259/14875
17 1116398659629170045249141261665722279335124967712466031771/16625
18 577848332864910742917664402961320978851712483384455237961760783/914375
19 319846552748355875800709448040314158316389207908663599738774271783/48125
20 5231928906534808949592180493209223573953671704750823173928629644538303/67375

21 158555526852538710030232989409745755243229196117995383665148878914255633279/158125

22 2661386877137722419622654464284260776124118194290229321508112749932818157692851/186875

23 1799843320784069980857785293171845353938670480452547724408088829842398128243496119/8125

24 1068857072910520399648906526268097479733304116402314182132962280539663178994210946666679/284375

25 1103859241471179233756315144007256315921064756325974253608584232519059319891369656495819559/15925

26 8481802219136492772128331064329634493104334830427943234564484404174312930211309557188151604709/6125

In addition, we present the numerical data for the 52 knot at α = 1/3, computed in [GZ].

φ52(X/(3X + 1))/φ52(X) ∼ eC/h(2π/h)3/2∆(1/3)

( ∞∑

k=0

Ak(1/3)hk

)

h = (2πi)/(X + 1/3)

F = Q(α) α3 − α2 + 1 = 0 α = 0.877 · · · − 0.744 . . . i

C = R(1 − α2) + 2R(1 − α) − πi log(α) + π2

R(x) = Li2(x) +
1

2
log x log(1 − x) − π2

6

[1 − α2] + 2[1 − α] ∈ B(F )

−23 = π2
1π2 π1 = 3α − 2 π2 = 3α + 1

π7 = (α2 − 1)ζ6 − α + 1 π43 = 2α2 − α − ζ6
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∆(1/3) = e(−2/9)π7
3
√

−3√
π1

A0(1/3) = π7π43

A1(1/3) =
−952 + 321α − 873α2 + (1348 + 557α + 26α2)ζ6

α5π3
1

One may use the recursion relations [GK12b] for the twisted colored Jones polynomial to
expand the above computations around complex roots of unity [DG].

6. Stability

6.1. Stability of a sequence of polynomials. The Slope Conjecture deals with the high-
est (or the lowest) q-exponent in the colored Jones polynomial. In this section we discuss
what happens when we shift the colored Jones polynomial and place its lowest q-exponent
to 0. Stability concerns the coefficients of the resulting sequence of polynomials in q. A
weaker form of stability (0-stability, defined below) for the colored Jones polynomial of an
alternating knot was conjectured by Dasbach and Lin, and proven independently by Armond
[Arm11].

Stability was observed in some examples of alternating knots by Zagier, and conjectured
by the author to hold for all knots, assuming that we restrict the sequence of colored Jones
polynomials to suitable arithmetic progressions, dictated by the quasi-polynomial nature of
its q-degree [Gar11b, Gar11a]. Zagier asked about modular and asymptotic properties of the
limiting q-series.

A proof of stability in full for all alternating links is given in [GL11b]. Besides stability,
this approach gives a generalized Nahm sum formula for the corresponding series, which in
particular implies convergence in the open unit disk in the q-plane. The generalized Nahm
sum formula comes with a computer implementation (using as input a planar diagram of a
link), and allows the computation of several terms of the q-series as well as its asymptotics
when q approaches radially a root of unity. The Nahm sum formula is reminiscent to the co-
homological Hall algebra of motivic Donaldson-Thomas invariants of Kontsevich-Soibelman
[KS], and may be related to recent work of Witten [Wit] and Dimofte-Gaiotto-Gukov [DGG].

Let

Z((q)) = {
∑

n∈Z
anq

n | an = 0, n ≪ 0}

denote the ring of power series in q with integer coefficients and bounded below minimum
degree.

Definition 6.1. Fix a sequence (fn(q)) of polynomials fn(q) ∈ Z[q]. We say that (fn(q)) is
0-stable if the following limit exists

lim
n

fn(q) = Φ0(q) ∈ Z[[q]],

i.e. for every natural number m ∈ Z, there exists a natural number n(m) such that the
coefficient of qm in fn(q) is constant for all n > n(m).
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We say that (fn(q)) is stable if there exist elements Φk(q) ∈ Z((q)) for k = 0, 1, 2, . . . such
that for every k ∈ N we have

lim
n

q−nk

(
fn(q) −

k∑

j=0

qjnΦj(q)

)
= 0 ∈ Z((q)) .

We will denote by

F (x, q) =
∞∑

k=0

Φk(q)x
k ∈ Z((q))[[x]]

the corresponding series associated to the stable sequence (fn(q)).

Thus, a 0-stable sequence fn(q) ∈ Z[q] gives rise to a q-series limn fn(q) ∈ Z[[q]]. The q-
series that come from the colored Jones polynomial are q-hypergeometric series of a special
shape, i.e., they are generalized Nahm sums. The latter are introduced in the next section.

6.2. Generalized Nahm sums. In [NRT93] Nahm studied q-hypergeometric series f(q) ∈
Z[[q]] of the form

f(q) =
∑

n1,...,nr≥0

q
1
2
nt·A·n+b·n

(q)n1 . . . (q)nr

where A is a positive definite even integral symmetric matrix and b ∈ Zr. Nahm sums appear
in character formulas in Conformal Field Theory, and define analytic functions in the complex
unit disk |q| < 1 with interesting asymptotics at complex roots of unity, and with sometimes
modular behavior. Examples of Nahm sums is the famous list of seven mysterious q-series
of Ramanujan that are nearly modular (in modern terms, mock modular). For a detailed
discussion, see [Zag09]. Nahm sums give rise to elements of the Bloch group, which governs
the leading radial asymptotics of f(q) as q approaches a complex root of unity. Nahm’s
Conjecture concerns the modularity of a Nahm sum f(q), and was studied extensively by
Zagier, Vlasenko-Zwegers and others [VZ11, Zag07].

The limit of the colored Jones function of an alternating link leads us to consider gener-
alized Nahm sums of the form

(4) Φ(q) =
∑

n∈C∩Nr

(−1)c·n q
1
2
nt·A·n+b·n

(q)n1 . . . (q)nr

where C is a rational polyhedral cone in Rr, b, c ∈ Zr and A is a symmetric (possibly
indefinite) symmetric matrix. We will say that the generalized Nahm sum (4) is regular if
the function

n ∈ C ∩ Nr 7→ 1

2
nt · A · n + b · n

is proper and bounded below, where mindegq denotes the minimum degree with respect to
q. Regularity ensures that the series (4) is a well-defined element of the ring

Z((q)) = {
∑

n∈Z
anq

n | an = 0, n ≪ 0}

of power series in q with integer coefficients and bounded below minimum degree. In the
remaining of the paper, the term Nahm sum will refer to a generalized Nahm sum.
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6.3. Stability for alternating links. Let K denote an alternating link. The lowest mono-
mial of JK,n(q) has coefficient ±1, and dividing JK,n+1(q) by its lowest monomial gives a
polynomial J+

K,n(q) ∈ 1 + qZ[q]. We can now quote the main theorem of [GL11b].

Theorem 6.2. [GL11b] For every alternating link K, the sequence (J+
K,n(q)) is stable and

the corresponding limit FK(x, q) can be effectively computed by a planar projection D of K.
Moreover, FK(0, q) = ΦK,0(q) is given by an explicit generalized Nahm sum computed by D.

An illustration of the corresponding q-series ΦK,0(q) the knots 31, 41 and 63 is given in
Section 6.4.

6.4. Computation of the q-series of alternating links. Given the generalized Nahm
sum for ΦK,0(q) (a multidimensional sum of as many variables as the number of crossings of
K), one may try to guess a formula for ΦK,0(q). In joint work with Zagier, we computed the
first few terms of the corresponding series (an interesting and nontrivial task in itself) and
guessed the answer for knots with a small number of crossings. The guesses are presented
in the following table

K c− c+ σ Φ∗
K,0(q) ΦK,0(q)

31 = −K1 3 0 2 h3 1

41 = K−1 2 2 0 h3 h3

51 5 0 4 h5 1
52 = K2 0 5 −2 h∗

4 h3

61 = K−2 4 2 0 h3 h5

62 4 2 2 h3h
∗
4 h3

63 3 3 0 h2
3 h2

3

71 7 0 6 h7 1
72 = K3 0 7 −2 h∗

6 h3

73 0 7 −4 h∗
4 h5

74 0 7 −2 (h∗
4)

2 h3

75 7 0 4 h∗
4 h∗

4

76 5 2 2 h3h
∗
4 h2

3

77 3 4 0 h3
3 h2

3

81 = K−3 6 2 0 h3 h7

82 6 2 4 h3h
∗
6 h3

83 4 4 0 h5 h5

84 4 4 2 h∗
4h5 h3

85 2 6 −4 h3 ???

Kp, p > 0 0 2p + 1 −2 h∗
2p h3

Kp, p < 0 2|p| 2 0 h3 h2|p|+1

T (2, p), p > 0 2p + 1 0 2p h2p+1 1

where, for a positive natural number b, hb and h∗
b are the unary theta and false theta series

hb(q) =
∑

n∈Z
ε(n)qbn(n+1)/2−n, h∗

b(q) =
∑

n∈Z
(−1)nqbn(n+1)/2−n
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where ε(n) = 1,−1 if n ≥ 0 or n < 0. Observe that

h1(q) = 0, h∗
2(q) = 1, h3(q) = (q)∞ .

In the above table, c+ (resp. c−) denotes the number of positive (resp., negative) crossings
of an alternating knot K, and Φ∗

K,0(q) = Φ−K,0(q) denotes the q-series of the mirror −K of
K, and T (2, p) denotes the (2, p) torus knot.

Concretely, the above table predicts the following identities

(q)−2
∞ =

∑

a,b,c≥0

(−1)a q
3
2
a2+ab+ac+bc+ 1

2
a+b+c

(q)a(q)b(q)c(q)a+b(q)a+c

(q)−3
∞ =

∑

a,b,c,d,e≥0
a+b=d+e

(−1)b+d q
b2

2
+ d2

2
+bc+ac+ad+be+a

2
+c+ e

2

(q)b+c(q)a(q)b(q)c(q)d(q)e(q)c+d

(q)−4
∞ =

∑

a,b,c,d,e,f≥0
a+e≥b,b+f≥a

(−1)a−b+e q
a
2
+ 3a2

2
+ b

2
+ b2

2
+c+ac+d+ad+cd+ e

2
+2ae−2be+de+ 3e2

2
−af+bf+f2

(q)a(q)b(q)c(q)a+c(q)d(q)a+d(q)e(q)a−b+e(q)a−b+d+e(q)f (q)−a+b+f

corresponding to the knots

31 41 63

Some of the identities of the above table have been consequently proven [AD11]. In
particular this settles the (mock)-modularity properties of the series ΦK,0(q) for all but one
knot.

The q-series of the remaining knot 85 is given by an 8-dimensional Nahn sum

Φ85,0(q) = (q)8
∞

∑

a,b,c,d,e,f,g,h≥0
a+f≥b

S(a, b, c, d, e, f, g, h) 85

where S = S(a, b, c, d, e, f, g, h) is given by

S = (−1)b+f q2a+3a2− b
2

−2ab+ 3b2

2
+c+ac+d+ad+cd+e+ae+de+ 3f

2
+4af−4bf+ef+ 5f2

2
+g+ag−bg+eg+fg+h+ah−bh+fh+gh

(q)a(q)b(q)c(q)d(q)e(q)f (q)g(q)h(q)a+c(q)a+d(q)a+e(q)a−b+f (q)a−b+e+f (q)a−b+f+g(q)a−b+f+h
.

The first few terms are given by

Φ85(q)/(q)∞ =
1− q + q2 − q4 + q5 + q6 − q8 +2q10 + q11 + q12 − q13 −2q14 +2q16 +3q17 +2q18 + q19 −3q21 −

2q22 +q23 +4q24 +4q25 +5q26 +3q27 +q28 −2q29 −3q30 −3q31 +5q33 +8q34 +8q35 +8q36 +6q37 +
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3q38 −2q39 −5q40 −6q41 −q42 +2q43 +9q44 +13q45 +17q46 +16q47 +14q48 +9q49 +4q50 −3q51 −
8q52 −8q53 −5q54 +3q55 +14q56 +21q57 +27q58 +32q59 +33q60 +28q61 +21q62 +11q63 + q64 −
9q65−11q66−11q67−2q68+9q69+27q70+40q71+56q72+60q73+65q74+62q75+54q76+39q77+
23q78 + 4q79 − 9q80 − 16q81 − 14q82 − 3q83 + 16q84 + 40q85 + 67q86 + 92q87 + 114q88 + 129q89 +
135q90+127q91+115q92+92q93+66q94+35q95+9q96−12q97−14q98−11q99+13q100+O(q)101 .

We were unable to identify Φ85,0(q) with a known q-series. Nor were we able to decide
whether it is a mock-modular form [Zag09]. It seems to us that 85 is not an exception, and
that the mock-modularity of the q-series Φ85,0(q) is an open problem.

Question 6.3. Can one decide if a generalized Nahm sum is a mock-modular form?

7. Modularity and Stability

Modularity and Stability are two important properties of quantum knot invariants. The
Kashaev invariant 〈K〉 and the q-series ΦK,0(q) of a knotted 3-dimensional object have some
common properties, namely asymptotic expansions at roots of unity approached radially (for
〈K〉) and on the unit circle (for ΦK,0(q)), depicted in the following figure

The leading asymptotic expansions of 〈K〉 and ΦK,0(q) are governed by elements of the Bloch
group as is the case of the Kashaev invariant and also the case of the radial limits of Nahm
sums [VZ11]. In this section we discuss a conjectural relation, discovered accidentally by
Zagier and the author in the spring of 2011, between the asymptotics of 〈41〉 and Φ6j,0(q),
where 6j is the q-6j symbol of the tetrahedron graph whose edges are colored with 2N
[Cos09, GvdV12]

The evaluation of the above tetrahedron graph J+
6j,N(q) ∈ 1 + qZ[q] is given explicitly by

[Cos09, GvdV12]

J+
6j,N(q) =

1

1 − q

N∑

n=0

(−1)n q
3
2
n2+ 1

2
n

(q)3
n

(q)4N+1−n

(q)3
n(q)4

N−n

.

The sequence (J+
6j,N(q)) is stable and the corresponding series F6j(x, q) is given by

F6j(x, q) =
1

(1 − q)(q)3
∞

∞∑

n=0

(−1)n q
3
2
n2+ 1

2
n

(q)3
n

(xq−n)4
∞

(x4q−n+1)∞
∈ Z((q))[[x]] ,

where as usual (x)∞ =
∏∞

k=0(1 − xqk) and (q)n =
∏n

k=1(1 − qk). In particular,

lim
N

J+
6j,N(q) = Φ6j,0(q) =

1

(1 − q)(q)3
∞

∞∑

n=0

(−1)n q
3
2
n2+ 1

2
n

(q)3
n

.
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Let

φ6j,0(q) =
(q)4

∞
1 − q

Φ6j,0(q) = (q)∞

∞∑

n=0

(−1)n q
3
2
n2+ 1

2
n

(q)3
n

.

The first few terms of φ6j,0(q) are given by

φ6j,0(q) = 1−q−2q2−2q3−2q4+q6+5q7+7q8+11q9+13q10+16q11+14q12+14q13+8q14−
12q16 − 26q17 − 46q18 − 66q19 − 90q20 − 114q21 − 135q22 − 155q23 − 169q24 − 174q25 − 165q26 −
147q27−105q28−48q29+37q30+142q31+280q32+435q33+627q34+828q35+1060q36+O(q)37 .

The next conjecture which combines stability and modularity of two knotted objects has
been numerically checked around complex roots of unity of order at most 3.

Conjecture 7.1. As X −→ +∞ with bounded denominator, we have

φ6j,0(e
−1/X) = φ41(X)/X1/2 + φ41(−X̄)/(−X̄)1/2 .
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[KL94] Louis H. Kauffman and Sóstenes L. Lins, Temperley-Lieb recoupling theory and invariants of 3-
manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ,
1994.

[KS] Maxim Kontsevich and Yan Soibelman, Cohomological hall algebra, exponential hodge structures
and motivic donaldson-thomas invariants, arXiv:1006.2706, Preprint 2010.



QUANTUM KNOT INVARIANTS 17
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Don Zagier’s work on singular moduli

Benedict H. Gross

Singular moduli are the values of the modular function j(τ) at the points z in the upper
half plane that satisfy a quadratic equation with rational coefficients. In other words, they
are the j-invariants of elliptic curves with complex multiplication.

These invariants were studied intensively by the leading number theorists of the nine-
teenth century. They are algebraic integers, which generate certain abelian extensions of
the imaginary quadratic fields Q(z). The theory was believed to have been brought to a
very satisfying completion in the early twentieth century. That was before Don got his
hands on it.

In early 1983 Don sent me an amazing letter from Japan containing a proof of a factor-
ization formula for the integer which is the norm of the difference of two singular moduli of
relatively prime discriminants D and D′. This was a completely new aspect of the theory,
which Don had discovered by extensive numerical experimentation. One particularly strik-
ing fact (which should have been noticed earlier) is that any prime p dividing this norm
must divide an integer of the form (DD′ − x2)/4. This letter (in its original handwritten
form, as well as a Latex version prepared by Carl Erickson) is reproduced below.

Don’s proof involved the study of a Hilbert modular Eisenstein series for the real
quadratic field Q(

√
DD′). At the end of the letter, he challenged me to find an alge-

braic proof, which I sketched in a letter of reply (also reproduced below) and reproduced
in the talk.

In 2002, Don discovered another wonderful formula, relating the integers which are the
traces of singular moduli to the Fourier coefficients of a meromorphic modular form of
weight 3/2. I will put this result into the context of computing the images of Heegner
points in the Jacobians of modular curves. In this case, the Jacobian of the curve of level
1 is trivial, but the generalized Jacobian relative to the divisor 2(∞) is isomorphic to the
additive group.
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[Kyoto, Japan]
Monday, Feb. 7 [1983]

Dick,
I’ve been in Japan for two weeks now and am enjoying it tremendously, both for sightseeing

and mathematics. However, telling you about the trip can wait till you get to Germany;
I’m writing now for mathematical reasons only. I’d meant not to look at our business until
returning to Germany, since I have several other things to finish writing up, but this weekend
I returned to it after all, and came up with something.

As you may remember, I had asked you whether our results on

N(j(z)) = N(j(z)− j(ρ)), N(j(z)− 1728) = N(j(z)− j(i)), and N(j(z)− j(z′))

(disc z = disc z′ = −p) might not generalize to results on N(j(z) − j(z′)) (or j(z) − j(z′))
for arbitrary CM points z and z′, with unrelated discriminants. You pooh-poohed the idea,
explaining why your method applies only to Aut(E) or to Hom(E,E ′) with E,E ′ having
CM by the same order. Not daunted (actually, I was: I didn’t do the calculations till now),

I calculated j(z) − j(z′) for z =
1+i
√
p

2
, z′ =

1+i
√
q

2
for the primes with class number 1 - a

somewhat tricky business, since my HP has only 10 places - and found the values

p q = 11 q = 19 q = 43
7 7 · 13 · 17 · 19 37 · 13 · 31 36 · 53 · 7 · 19 · 73
11 216 · 13 215 · 72 · 19 · 29
19 215 · 36 · 37

p q = 67 q = 163
7 37 · 53 · 7 · 13 · 61 · 97 38 · 53 · 7 · 13 · 17 · 31 · 103 · 229 · 283
11 217 · 72 · 13 · 41 · 43 215 · 72 · 11 · 13 · 17 · 73 · 79 · 107 · 109
19 216 · 37 · 13 · 79 215 · 37 · 13 · 19 · 31 · 37 · 67 · 193
43 215 · 36 · 53 · 72 219 · 36 · 53 · 73 · 37 · 433
67 215 · 37 · 53 · 72 · 13 · 139 · 331

It seemed pretty clear that these numbers were too highly factorized for this to be acci-
dental. However, since we had ` ≤ p for ` | (j−p − j−4) and ` ≤ 3p

4
for ` | (j−p − j−3), I had

expected ` ≤ pq
4

for ` | (j−p− j−q), and although this holds in the above table, I was worried
by the fact that I never got as big as pq

4
, e.g. for p = 67, q = 163 the biggest ` is 331, barely

bigger than 2q. From the formulas

` | p− x2, ` | 3p− x2

4
for ` | (j−p − j−4), ` | (j−p − j−3),

I expected ` | pq−x2
4

; in a typical case this gave
1



x 7·163−x2
4

x 7·163−x2
4

x 7·163−x2
4

x 7·163−x2
4

1 3 · 5 · 19 11 3 · 5 · 17 21 52 · 7 31 32 · 5
3 283 13 35 23 32 · 17 33 13

5 32 · 31 15 229 25 3 · 43

7 3 · 7 · 13 17 3 · 71 27 103

9 5 · 53 19 3 · 5 · 13 29 3 · 52

All factors (3, 5, 7, 13, 17, 31, 103, 229, 283) dividing j−7 − j−163 appear on this list, but so
do several others. However, for ` | j−p− j−3 we had

(−p
`

)
= −1,

(−3
`

)
= −1 and similarly for

` | j−p − j−4, so here we should have
(−p
`

)
=
(−q
`

)
= −1 or

(
`
p

)
=
(
`
q

)
= −1. Moreover, if

` | pq−x2
4

and ` 6= p, q, then
(
pq
`

)
= +1, so

(−p
`

)
and

(−q
`

)
are always the same. This suggests

defining χ(d) on prime divisors ` of pq−x2
4

by

χ(`) =





(
`
p

)
=
(
`
q

)
` 6= p, q(

`
p

)
` = q(

`
q

)
` = p

,

and extend multiplicatively, setting R(n) =
∑

d|n χ(d), and conjecturing

Theorem.

ν`(N(j(
1 + i

√
p

2
)− j(1 + i

√
q

2
))) =

∑

k∈Z
k2<pq
k odd

∑

n≥1
n odd

R(
pq − k2

4`n
)

for p ≡ q ≡ 3 (mod 4), p, q > 3, where N is the absolute norm to Q.

Before trying to prove this, I worked out several examples. In particular, I wanted to
understand why so few and such small primes occur in the above table; in the above theorem
you’d expect 1

4
of all primes < pq

4
or about 50 primes going up to 2700 in the case p = 67, q =

163. So I worked out that case:
2



x 67·163−x2
4

Contr. x 67·163−x2
4

Contr. x 67·163−x2
4

Contr.

1 2 · 3 · 5 · 7 · 13 − 35 23 · 3 · 101 − 69 22 · 5 · 7 · 11 −
3 23 · 11 · 31 − 37 22 · 3 · 199 32 71 2 · 3 · 5 · 72 −
5 22 · 3 · 227 32 39 2 · 52 · 47 22 73 2 · 3 · 233 −
7 2 · 32 · 151 22 41 2 · 3 · 5 · 7 · 11 − 75 22 · 331 331

9 2 · 5 · 271 − 43 22 · 34 · 7 7 77 25 · 3 · 13 −
11 22 · 33 · 52 32 45 24 · 139 139 79 2 · 32 · 5 · 13 −
13 27 · 3 · 7 − 47 2 · 32 · 112 2 81 2 · 5 · 109 −
15 2 · 7 · 191 − 49 2 · 3 · 5 · 71 − 83 24 · 32 · 7 7

17 2 · 3 · 443 − 51 25 · 5 · 13 − 85 22 · 3 · 7 · 11 −
19 24 · 3 · 5 · 11 − 53 22 · 3 · 132 3 87 2 · 419 22

21 22 · 5 · 131 52 55 2 · 3 · 7 · 47 − 89 2 · 3 · 53 −
23 2 · 3 · 433 − 57 2 · 7 · 137 − 91 22 · 3 · 5 · 11 −
25 2 · 32 · 11 · 13 − 59 22 · 3 · 5 · 31 − 93 23 · 71 24

27 22 · 72 · 13 13 61 23 · 32 · 52 22 95 2 · 3 · 79 −
29 23 · 32 · 5 · 7 − 63 2 · 11 · 79 − 97 2 · 33 · 7 −
31 2 · 3 · 5 · 83 − 65 2 · 33 · 31 − 99 23 · 5 · 7 −
33 2 · 1229 22 67 23 · 3 · 67 − 101 22 · 32 · 5 5

103 2 · 3 · 13 −

The last column is the contribution of pq−x2
4

to j(zp)− j(zq), i.e. it is

`s·R( pq−x
2

4`2
) if `2s−1 || pq − x

2

4

and ` is the only non-residue dividing pq−x2
4

to an odd power, and 1 (denoted −) if there are
several such `. The product of these contributions is

215 · 37 · 53 · 72 · 13 · 139 · 331

as required, confirming the conjectured formula; the reason that there are so few con-
tributions is that, since −p and −q have h = 1, there are exceptionally many ` with(−p
`

)
=
(−q
`

)
= −1 (in particular, all ` < 17), so almost all pq−x2

4
have more than one such `

occurring to an odd power. Indeed, if we fix a prime ` then we can do some heuristics on the
3



size of the number ν` given by the formula in the theorem for p, q →∞,
(−p
`

)
=
(−q
`

)
= −1;

ν` =
∑

k2<pq
k odd

∑

n≥1

`n| pq−k2
4

n odd

∑

d≥1

d| pq−k2
4`n

χ(d)

=
∑

n≥1
n odd

∑

d≥1

χ(d) ·#{k ∈ Z | −√pq < k <
√
pq, k2 ≡ pq (mod 4`nd)}

For d small, #{k . . . } ≈
√
pq

`nd
Npq(`

nd), whereND(d) = #{k (mod 2d) | k2 ≡ D (mod 4d)},
so ν` looks like

√
pq
∑

n≥1

∑

d≥1

χ(d)
N(`nd)

d
.

But for D a fundamental discriminant (as here) we have
∑

d≥1N(d)d−s = ζQ(
√
p)(s)/ζ(2s),

and here (D = pq, p ≡ q ≡ 3 (mod 4)) we have N(d) > 0 ⇐⇒ d = N(a) for some primitive

ideal a of Q(
√
`), χ(d) = χ(a) (genus character corresponding to D = (−p) · (−q),

∑

d≥1

χ(d)N(d)d−s =
L−p(s)L−q(s)

ζ(2s)
.

Also, ` splits in Q(
√
`), so

N(`nd) = N(`d) =

{
2N(d) ` - d
N(d) ` - d for n ≥ 1 odd;

hence

ν` ∼
√
pq ·

∑

n≥1
n odd

1

`n
· L−p(1)L−q(1)

ζ(2)
· 2

1− `−1
=

12`2

(`− 1)2(`+ 1)
h(−p)h(−q)

where the factor 2
1−`−1 appears becase the Euler factor in

L−p(1)L−p(1)

ζ(2)
=

1 + `−1

1− `−1
= 1 +

2

`
+

2

`2
+ · · ·

gets replaced here by

2 +
2

`
+

2

`2
+ · · · = 2

1− `−1
.

For h(−p) = h(−q) = 1 and ` = 2, 3, 5, 7 this gives 16, 27
4
≈ 7, 25

8
≈ 3, 49

24
≈ 2 in accordance

with the powers to which these primes occur in the table on page 1 (when they do occur).
In any case, we see that the powers of ` depend more on h(−p) and h(−q) than on p and q,
which explains why they do not grow in the table on page 1.

In the formula given on page 2, I wrote N(j−p−j−q) although all j-values so far have been
in Q. Although this was the obvious conjecture, I thought I should test one case of h > 1.
The first one is p = 7, q = 23, where we get
(here every x contributes, not like the 67, 163 - case!), i.e. we should have

N(j(
1 + i

√
7

2
)− j(1 + i

√
23

2
)) = 59 · 73 · 17 · 19.
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x 7·23−x2
4

Contribution x 7·23−x2
4

Contribtuion

1 23 · 5 54 7 22 · 7 73

3 2 · 19 192 9 22 · 5 53

5 2 · 17 172 11 2 · 5 52

From Berwick we have (with θ3 − θ − 1)

j(
1 + i

√
7

2
)− j(1 + i

√
23

2
) =− 33 · 53 + 53(5θ2 + 11θ + 7)3

= 53 · [(5θ2 + 11θ + 7)− 3]

· [(5θ2 + 11θ + 7)2 + 3(5θ2 + 11θ + 7) + 32]

= 53 · 7 · (5θ2 + 11θ + 4)(33θ2 + 46θ + 27)

Now

x = 5θ2 + 11θ + 4 =⇒ x2 = 186θ2 + 223θ + 126,
x3 = 4757θ2 + 6369θ + 3665 = 22x2 + 133x+ 361

and

y = 33θ2 + 46θ + 27 =⇒ y2 = 4987θ2 + 6609θ + 3765,
y3 = 727479θ2 + 963703θ + 549154 = 147y2 − 170y + 289

so N(x) = 192, N(y) = 172, and the formula works. In fact, we have x = 19
π19
θ7, y = 17

π17
θ14

where π17 = 3θ+ 2, π19 = 3θ+ 1, so j(1+i
√

7
2

)− j(1+i
√

23
2

) = 53 · 7 · π∗17 · π∗19 · θ21 where π∗` = `
π`

with norm `2. This corresponds to the prime factorization you’d expect from the analogue
of your results on N(j), N(j − 1728), N(j − j′), viz.

Conjecture. Let K = Q(
√−p), j = j(

1+i
√
p

2
), h = h(−p), A0, A±1, . . . , A±h−1

2
the ideal

classes of K, (`) = `0`1 · · · `h−1
2

the correspondingly numbered decomposition of (`) in Q(j)

(“correspondingly” means as in your paper, i.e. via the Artin symbol twisted by a 7→ a2) with

N`0 = `,N`j = `2 (here
(
`
p

)
= 0 or −1). Then

∏

disc(z)=q

(
j(

1 + i
√
p

2
)− j(z)

)
=

h−1
2∏

j=0

`
∑
k2<pq

∑
n≥1,n oddRj(

pq−x2
4`n

)

j .

(Rj(n) = #{a ∈ Aj | Na = n}).

Presumably a clever fellow like you will be able to prove the theorem on page 2 by super-
singular methods, and then your proof will automatically give this; you should also be able
to work out the full splitting of j(z−p) − j(z−q) in the composition of Q(j−p) and Q(j−q).
However, I have an analytic proof of the theorem (hence theorem & not conjecture) and,
as in the cases we studied already, it gives only the norm. On the other hand, it works for
q = −3 or −4 (or any fund. disc. −q prime to p), so that I now have an analytic proof of
our results for A and B separately rather than just A2B, making me a fully justified author
of our future j-paper.
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Before describing my proof, let me describe a different method of getting at the above
result by using the results we already have. This result strongly supports the formula given
on page 2, but does not quite prove it (unless you can think of an improvement); on the
other hand, it gets at (j(z−p)− j(z−q)) rather than just the norm.

Let hD(X) and HD(X) be the near-polynomials

hD(X) =





X1/3 D = −3
(X − 1728)1/2 D = −4∏

disc z=D
mod SL2(Z)

(X − j(z)) D < −4,

HN(X) =
∏

f2|N
h−N/f2(X) (N > 0, N ≡ 0, 3 (mod 4))

so that deg hD = h(D)/1
2
w(D), degHN = H(N) (Hurwitz-Kronecker notation). If Φm(X, Y )

is the usual modular polynomial, then, as is well known

Φm(X,X) =
∏

x2<4m

H4m−x2(X) (m 6= �);

this is an actual polynomial because the multiplicity of, say, h−3(X) is

#{x, y | 4m− x2 = 3y2} ≡ 0 (mod 3).

For m = � we still have this formula for Φm(j, j) if we replace the term Φ1(X, Y ) = X − Y
dividing Φm(X, Y ) (mod �) by j′/2πiη(z)4 = j2/3(j−1728)1/2 =

∏
x2<4H4−x2(j). Then our

old formula was (roughly; there are some twists for ` | m or ` = p)

ν`
(
NQ(j)/QΦm(j, j)

)
=
∑

n≥1
n odd

∑

x,y∈Z
Q(x,y)<mp

R

(
mp−Q(x, y)

`n

)

(where j = j(
1+i
√
p

2
), Q(x, y) = principal form = (x2 + py2)/4) while the new formula we

want is

ν`
(
NQ(j)/QHN(j)

)
=
∑

n≥1
n odd

∑

x2<Np

R

(
Np− x2

`n

)
(N > 0, N ≡ 0, 3 (mod 4)).

But Φm(j, j) =
∏

y2<4mH4m−y2 , as stated, so the first formula can be written

∑

y2<4m

ν`(N(H4m−y2(j))) =
∑

y2<4m

∑

n≥1

∑

x2<(4m−y2)p

R

(
(4m− y2)p− x2

4`n

)
.

In other words, if (∗)N is the desired identity (N > 0, N ≡ 0, 3 (mod 4)), then our result
on Φm proves

∑
y2<4m(∗)4m−y2 . Unfortunately, this is not quite enough; for each new m

we get (∗)4m and (∗)4m−1 together, so we can prove the result we need by induction. If we
could prove, say,

∑
y2<4m y

2 · (∗)4m−y2 , then at each new stage we’d get (∗)4m−1 and (∗)4m

separately, which would suffice; however, I see no way to get this. (Notice, however, that the
identity

∑

y2−4m

H(4m− y2) =
∑

d|m
max(d,

m

d
) +

{
1
6

m = �
0 m 6= �

6



obtained by taking the degrees of Φm(X,X) =
∏H4m−y2 is the first of an infinite series of

identities giving ∑

y2<4m

pν(m, y
2)H(4m− y2)

in terms of tr(T (m), S2ν+2(SL2Z)) for certain homogenous polynomials pν of degree ν; can

these be sharpened to express
∏H4m−y2(X)pν(m,y2) as a polynomial in X which for X = j(E)

relates somehow to End(E)?)
Enough digressions; let me show you my proof of the theorem. Strangely enough, almost

all of the ingredients — finding an Eisenstein series which vanishes at s = 0 and computing
∂
∂s
|s=0 of its coefficients, using Sturm’s holomorphic projection in weight 2, and expressing

log(j(z)− j(z′)) as lims→0

(∑
γ∈Γ . . .− pole

)
— are the same as in the analytic proof of the

result on N(j(z) − j(z′)) for disc(z) = disc(z′) = −p, but the starting point is completely
different: instead of using Rankin’s method, one uses Siegel’s way (actually due to Eichler,
as I think I once told you) of computing L-series of real number fields by restricting Hilbert
Eisenstein series to the diagonal. More precisely, let us rewrite our conjectural result

log |N(j(z1)− j(z2))| =
∑

` prime

(D1
` )=(D2

` )=−1

( ∑

|k|<
√
D

k≡D (mod 2)

∑

`n|D−k2
4

∑

d|D−k2
4`n

χ(d)
)

log `

(where we have replaced−p and−q by arbitrary coprime fundamental discriminants disc z1 =
D1, disc z2 = D2 < 0 and set D = D1D2) as

∑

disc zi=Di (mod SL2(Z))
i=1,2

log |j(z1)− j(z2)| =
∑

|k|<
√
D

k≡D (mod 2)

( ∑

d|D−k2
4

χ(d) log d
)

=
∑

ν∈D−1

v�0
tr(ν)=1

(∑

a|(ν)D
χ(a) logN(a)

)
;

here D−1 = inverse different of Q(
√
D), ν = k+

√
D

2
√
D

, and χ(a) in the inner sum is the

genus character associated to the decomposition D = D1D2. Note that
∑
χ(a) logN(a) =

d
ds

(
∑
χ(a)N(a)2) |s=0 and that

∑
χ(a)N(a)s vanishes at s = 0 ((ν)D is a principal ideal

with a generator ν
√
D of negative norm, and the character χ is of norm signature type since

D1, D2 < 0). In other words, we are looking at the number

d

ds

∑

ν�0
tr(ν)=1

σs,χ ((ν)D) ,

where

σs,χ(a) =
∑

b|a
b integral

χ(b)N(b)s.

for an (integral) ideal a.
7



Now in Siegel’s paper, the number
∑

ν�0
trν=m

σk−1,χ ((ν)D)

occurs as the mth Fourier coefficient of the restriction to SL2(Z) of the Eisenstein series of
weight k on SL2(OD) corresponding to the character χ. Siegel looked at the case χ = wide
ideal class character (i.e. χ ((λ)) ∀ λ ∈ O), k even, but his method works equally well for χ
of norm signature type (i.e. χ ((λ)) = sign(N(λ)) ∀ λ ∈ O) and k odd. However, for k = 1
the corresponding Eisenstein series, which can be defined despite non-convergence by Hecke’s
method, vanishes identically. It is interesting that Hecke studied these series but failed to
notice their vanishing — in fact, he claimed to show they weren’t 0 — so that his whole
paper was invalidated (as pointed out by Schoenberg in his footnotes to H.’s Werke). Van
der Geer and I in our paper on Q(

√
13) pointed out that Hecke’s method was correct and that

one could get examples of non-vanishing Eisenstein series of weight 1 on the Hilbert modular
group by going to congruence subgroups. However, what I (unfortunately) didn’t think of
doing then was to take Hecke’s series that vanish at s = 0 and look at their derivatives there.

Enough talk; let’s calculate. Let K = Q(
√
D) (D > 0) be a real quadratic field, χ a

narrow ideal class character of K of norm signature type (later, χ will be a genus character).
Set

E(z,z′; s) = Ek,χ,1(z, z′, s)

=
∑

[a]

χ(a)N(a)1+2s
∑

(m,n)∈(a×a−(0,0))/O×

ysy′s

(mz + n)(m′z′ + n′)(mz + n)2s(m′z′ + n′)2s

(z = x+ iy, z′ = x′+ iy′ ∈ H, s ∈ C,<(s)� 0), where [a] runs over all wide ideal classes (the
summand is unchanged by a 7→ (λ)a); this is a non-holomorphic Eisenstein series for SL2O
and transforms like a holomorphic Hilbert modular form of weight 1. (Such forms needn’t
be 0, since OK cannot contain a unit of norm −1.) The usual Fourier coefficient calculation
gives

E(z, z′; s) =LK(1 + 2s, χ)ysy′s +D−1/2LK(2s, χ)Φs(0)2y−sy′−s

+D−1/2y−sy′−s
∑

ν∈D−1

ν 6=0

σ−2s,χ((ν)D)Φs(2πνy)Φs(2πν
′y)e2πi(νx+ν′x′)

where

Φs(t) =

∫ ∞

−∞

e−ixt

(x+ i)(x2 + 1)s
dx (t ∈ R).

Now Φs(t) has an analytic continuation to all s (so E(z, z′; s) also does) with

Φ0(t) =




−2πie−t t > 0
−πi t = 0

0 t < 0

Hence if χ = χ̄ (i.e. χ is a genus character), then

E(z, z′; 0) = LK(1, χ)− π2D−1/2LK(0, χ)− 4π2D−1/2
∑

ν�0

σ0,χ((ν)D)e2πi(νz+ν′z′) ≡ 0

8



by the functional equation of LK(s, χ) and the fact that χ((ν)D) = −1 for ν � 0. (This
was the vanishing that Hecke failed to notice.) In this case we look at d

ds
|s=0. For ν � 0 the

factor Φs(2πνy),Φs(2πν
′y) are 6= 0 at s = 0, so we replace σ−2s,χ by its derivative and Φs by

Φ0. For N(ν) < 0, σ0,χ((ν)D) is non-0 but one of the Φs vanishes. For ν � 0, all 3 factors
σ−2,χ(νD),Φs(2πνy),Φs(2πν

′y′) vanish, so they don’t contribute. Hence

∂

∂s
E(z, z′; s)|s=0 = 2LK(1, χ) log(yy′) + 4Cχ + 8π2D−1/2

∑

ν∈D−1

ν�0

σ′χ((ν)D)e2πi(νz+ν′z′)

−2πiD−1/2
∑

ν∈D−1

ν>0>ν′

σ0,χ((ν)D)Φ(2π |ν ′| y)e2πi(νz+ν′z′) − (same with ν ↔ ν ′),

where

Cχ = L′K(1, χ) + LK(1, χ)(constant expression involving Γ′(
1

2
), etc.),

σ′χ(a) =
∂

∂s
σs,χ(a)|s=0 =

∑

b|a
χ(b) logN(b) (a integral),

Φ(t) = et · ∂
∂s

Φs(−t)|s=0 = −2πi

∫ ∞

1

e−2txdx

x
(t > 0),

and the term (ν ↔ ν ′) is like its predecessor with ν, ν ′ and y, y′ interchanged. Setting z = z′,
we deduce that the function

E(z) =LK(1, χ) log y + Cχ +
2π2

√
D

∞∑

m=1

( ∑

ν∈D−1

ν�0
tr(ν)=m

σ′χ((ν)D)
)
e2πimz

− πi√
D

∞∑

m=1

( ∑

ν∈D−1

ν>0>ν′
tr(ν)=m

σ0,χ((ν)D)Φ(2π |ν ′|u)
)
e2πimz

transforms under SL2(Z) like a modular form of weight 2. (Here we have divided by 4; the
calculation is a little cleaner if we replace E(z, z′; s) by

E∗(z, z′; s) = π−2sDsΓ(s+ 1)2E(z, z′; s) = −E∗(z, z′;−s)

and work with ΛK(s, χ) instead of LK(s, χ).) Applying the holomorphic projection lemma
of our paper, we deduce

∑

ν∈D−1

ν�0
tr(ν)=m

σ′χ((ν)D) = lim
s→0

[
2im

∑

ν∈D−1

ν>0>ν′
tr(ν)=m

σ0,χ((ν)D)

∫ ∞

0
Φ(2π

∣∣ν ′
∣∣ y)e−2πmyysdy +

12i

m

σ1(m)

m

LK(1, χ)

s

]

+
12i

π

σ1(m)

m
Cχ + (elementary expression) · LK(1, χ)

9



We want to show that for m = 1 this reduces to∑

disc z1=D1
disc z2=D2
(mod SL2(Z))

log |j(z1)− j(z2)| (χ↔ D = D1 ·D2);

the result for higher m will correspond to non-maximal orders. The calculation is exactly
analogous to the one in our paper: one shows that the integral

∫ ∞

0

Φ(2π |ν ′| y)e−2πmyysdy

(
=
−2πiΓ(s+ 1)

(2πm)s+1

∫ ∞

1

dx

x(1 + 2 |ν ′|x)s+1

)

in the above expression can be replaced by (elementary factor)Qs(1+ 2|ν′|
m

) without changing
the value of the limit; one then observes that

∑

ν>0>ν′
tr(ν)=m

σ0,χ((ν)D)Qs(1 +
2 |ν ′|
m

) =
∑

n>m
√
D

n≡mD (mod 2)

σ0,χ(
n+m

√
D

2
)Qs(

n

m
√
D

).

Hence (for m = 1)

∑

ν�0
tr(ν)=1

σ′χ((ν)D) = (elem.) · lim
s→0

( ∑

n>
√
D

n≡D (mod 2)

R(
n2 −D

4
)Qs(

n√
D

)− const.

s

)
+ const.

where the first constant is (elem.) · LK(1, χ) = (elem.) · h(D1)h(D2) and the second is
(elem.) · L′K(1, χ) + (elem.) · LK(1, χ). On the other hand,

∑

z1∈H/Γ
disc z1=D1

∑

z2∈H/Γ
disc z2=D2

log |j(z)− j(z′)| =

lim
s→0

( ∑

(z1,z2)∈H2/Γ
disc zj=Dj(j=1,2)

Qs

(
1 +

(z1 − z2)2

2y1y2

)
− const.

s

)
+ (const.)

and one easily checks 1 + (z1−z2)2

2y1y2
= n√

D
for some n >

√
D with n2−D

4
= Na and that this is

a 1-1 correspondence. Modulo details, that completes the proof.
This letter is getting very long and I should sign off, especially as it’s 4:45 A.M. and I have

a Japanese lesson today and am supposed to go skiing tomorrow. There was one other thing
I wanted to mention, though. I always liked the higher Green’s functions Rk(z, z

′), whereas
you prefer to stick to j(z)− j(z′) (or its analogues for ΓD(N)) since you can only make sense
of the finite heights in that case. However, I urge you to think seriously about Rk for k > 1.
Our result shows that, for instance, the function Rk(z) = limz→z′(Rk(z, z

′) − singularity)
satisfies

∑

disc z=−p (mod Γ)

Rk(z) =
∑

0<n<p


∑

d|n

(
d

p

)
log d


RQ0(p− n) · (2n

p
− 1)

if S2k = 1 (k = 2, 3, 4, 5, 7). I had checked this numerically for k = 2 and h(−p) = 1, using

R2(z) =
π

3
y +

119ζ(3)

4π2
y−2 −

(
4− 240

πy
− 120

π2y2

)
e−2πy cos 2πx+ . . .
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and got agreement (not perfect, since I don’t know the coefficient of e−4πy). I now looked at
p = 23 and p = 31 and found (to accuracy e−2π

√
p, i.e. very nearly exactly on my HP-37)

R2

(
1+i
√

23
2

)
= 1

23
[21 log 11 + 15 log(3θ + 1) + 5 log 7− 14 log(θ + 2) + 22 log(3θ + 2)

+15 log 5− 40 log(2− θ)− 23 log(2θ − 1)− 250 log θ] + 1
2

log θ + 1
2

log(3− θ)
(θ3 − θ − 1 = 0)

R2

(
1+i
√

31
2

)
= 1

31
[30 log(−θ2 + 2θ + 2) + 31 log 3 + 23 log(θ + 1)− 31 log(3θ − 4)

+6 log(3− θ) + 13 log 11− 181 log θ] + 1
2

log(3θ + 1)

(θ3 − θ2 − 1 = 0)

which except for the coefficients 250 and 181 of log θ (i.e. the choice of generator of a
principal ideal) is what you would get by supposing that pR2(z) is the log of a number in
Q(j) of the appropriate norm, found by splitting up the norm in the same way as you did for
logN(j(z)− j(z′)). So R2(z) (and presumably also R3, R4, R5, R7) can be used just as well
as j(z) to generate class fields and hence is worthy of your algebraically oriented attention;
moreover, the wealth of such functions suggests that there may be canonical generators for
a great many ideals in Q(j) or K(j), so that one gets relations in the class group à la
Stickelberger.

Yours, Don
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[Providence, RI]
Feb 18, 1983

Dear Don,
Mea culpa – this letter is intended as my repentance. Let p ≡ 3 (mod 4) be prime with

p > 3, K = Q(
√−p), j = j(1+

√−p
2

), H = K(j) as usual. Let N be a positive integer with
N ≡ 0, 3 (mod 4), so −N is a discriminant of a positive definite binary quadratic form.
Assume further that N is prime to p, and define HN(x) =

∏
f2|N h−N/f2(x) as in page 6 of

your letter. For example

H4(x) = (x− 1728)1/2

H12(x) = x1/3(x− 243353)
... etc.

The value HN(j) is an algebraic integer in H, and the following theorem gives its prime
factorization.

Proposition 1. Let λ be a finite prime of H dividing the rational prime `.

(1) If
(
`
p

)
= +1 then ordλ(HN(j)) = 0

(2) If
(
`
p

)
= −1 and λ = λτ , then

ordλ(HN(j)) =
∑

z≥0

∑

k≥1

δ(z)rτ2

(
Np− z2

4`k

)

where rτ2(m) is the number of integral ideals of norm m of K in the class of τ 2

(τ ∈ Gal(H/K), and where δ(z) = 2 if z > 0 and z ≡ 0 (mod p), and δ(z) = 1
otherwise.

Before the proof, some more examples:

p = 11 H12(j) = 29 · 11 · 17 · 29

p = 7 H12(j) = 34 · 54 · 17

p = 11 H28(j) = 72 · 132 · 17 · 19 · 41 · 61 · 73

and an obvious corollary : if ` divides NH/QHN(j) then ` ≤ Np/4.

Now a sketch of the proof. If
(
`
p

)
= +1, the elliptic curve E with invariant j has good

ordinary reduction (mod `). Let E ′ be any curve with multiplication by an order containing

O−N = Z + N+
√
−N

2
Z; then j′ 6= j in characteristic zero, and by Deuring’s theorem on the

reduction of singular moduli at ordinary primes ∴ j′ 6≡ j (mod λ).

If
(
`
p

)
6= +1 the curve E has supersingular reduction (mod `). Let W denote the

integers in the maximal unramified extension of the completion H2 and to a prime of W .
We’ll assume ` > 3 and ` 6= p for simplicity, but everything works in those cases too. By the
results in singular moduli, EndW/πk(Ẽ) = R(a)k, where a is an ideal with class τ in G. If Ẽ

is isomorphic to any Ẽ ′ as above, R(a)k must contain an element [α, β] which satisfies the
12



same characteristic polynomial as N+
√
−N

2
. That is:

Trα⇒ α =
x+N

√−p
2
√−p with x ∈ Z

N[α, β] = αᾱ + `2k−1ββ̄ =
N2 +N

4
.

But αᾱ = x2+pN2

4p
and β = γ/

√−p with γ ∈ ā/a. Thus we get a solution to the equation:

(∗) x2 + 4`2k−1Nb = Np

with b = (γ)a/ā an integral ideal in the class of τ 2. Conversely, if we have a solution (x, b)
to (∗), we can reverse the process to recover ±b. The insistence that x ≥ 0 fixes the sign of
β whenever x 6≡ 0 (mod p), as we must have the congruence α ≡ µβ (mod O√−p). If x ≡ 0
(mod p) we get two possibilities (but x = 0 really only contributes one). Furthermore, if we

have any [α, β] in R(a)k satisfying the equation of
(
N+
√
−N

2

)
, by Deuring’s theory we can

lift the curve together with this endomorphism to characteristic zero. This gives a curve E ′

over W with EndW (E ′) ⊇ O−N . Putting all this together in the right order gives the proof.
To check the δ = 2 business, try p = 11 and N = 43.

Sorry I didn’t see this before - it’s really identical with the formulae for j1/3 and (j −
1728)1/2, where I was looking for elements like i or ρ = 1+

√−3
2

in R(a)k. I think it should
definitely go in the paper on singular moduli.

Your idea about relations in the class group had occurred to me before, but then I saw only
a finite number of relations for each p. Now each choice of N gives a new principal ideal,
so it’s probably worth looking into carefully. But I’m worried that the primes of residue

characteristic
(
`
p

)
= +1 never enter in ....

Best, Dick
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Class field theory as a dynamical system
by Gunther Cornelissen (Utrecht)
at the Arbeitstagung 2011

To Don Zagier, on his 60th birthday

Counting points. Let X denote a smooth projective curve over a finite field k = Fq . Is X determined (up to isomor-
phism) from counting its points over finite extensions of k, i.e., by the numbers Nn := |X(Fqn)|, i.e., by knowing its zeta
function

ζX(s) := exp


∑

n≥1
Nn

q−sn

n


 ?

The answer is no in general. Tate (1966) and Turner (1978) proved that for two curves X,Y over k, the equality ζX = ζY is
equivalent to their respective Jacobians Jac(X) ∼ Jac(Y ) being k-isogenous. The following example of E. Howe from 1996
illustrates this phenomenon: let X± : y2 = x5 ± x3 + x2 − x− 1 over F3. Then

ζX± =
1− T + T 2 − 3T 3 + 9T 4

(1− T )(1− 3T )
with T = q−s,

and here are the first few point counts (for this occasion done independently in Sage):

n 1 2 3 4 5 6 7 . . .
Nn 3 11 21 107 288 719 2271 . . .

Can we remedy this?

Number fields. Now consider the same problem for a number field K, with its Dedekind zeta function

ζK(s) :=
∑

0 6=a

1

N(a)s
,

where the sum runs over all non-zero ideals a of the ring of integers of K. Knowing ζK is the same as knowing f(p|p) for
all prime ideals p. A Theorem of Mihály Bauer (1903) says that if K,L are two number fields that are Galois over Q, then
K ∼= L is equivalent to ζK = ζL. However, a result of Gaßmann from 1926 says that in general, there do exist non-isomorphic
number fields K,L with ζK = ζL. Actually, he proves that ζK = ζL is equivalent to the following statement: fix a common
extension N of K and L that is Galois over Q with Galois group G, and let HK and HL denote the Galois groups of N/K
and N/L, respectively. Then ζK = ζL if and only if each G-conjugacy class intersects HK and HL in the same number of
elements. A result from Perlis from 1977 says that the first example with ζK = ζL but K 6∼= L occurs in degree 7 over Q, and
an example is given by K = Q(α), L = Q(β) with

α7 − 7α+ 3 = 0 and β7 + 14β4 − 42β2 − 21β + 9 = 0.

Can we remedy this?

Historical aside: internal/external = failure/success. Here are some further attempts at finding objects that determine iso-
morphism of number fields K and L: an isomorphism of adele rings AK

∼= AL is stronger than equality of zeta functions
(strictly stronger for number fields, equivalent for function fields), but still does not imply field isomorphism (Komatsu, 1976);
an example is K = Q( 8

√
18)and L = Q( 8

√
288). An isomorphism of abelian Galois groups Gab

K
∼= Gab

L is not enough, either:
Kubota determined the isomorphism type of Gab

K (its Ulm invariants) in terms of K, and Onabe (1976) gave explicit examples,
such as Gab

Q(
√−2)

∼= Gab
Q(
√−3). At the other side of the spectrum, an isomorphism of absolute Galois groups GK ∼= GL does

imply that K ∼= L! This is due to Neukirch (1969) when K,L are Galois over Q and Uchida (1976) in general. This last
theorem is the first manifestation of what Grothendieck called anabelian theorems. We conclude that the objects listed above,
that are internal to a number field K (i.e., can be described in terms of ideals of K), such as ζK ,AK or Gab

K (which is internal
by class field theory), lead to failure, whereas a mysterious object GK , that is external to K (described in terms of extensions
of K, or via the Langlands program in terms of automorphic forms), leads to success . . . Can we do better, and have internal
success?
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Method: class field theory as (noncommutative) dynamical system. Let JK denote the group of fractional ideals of K,
J+
K the semigroup of integral ideals of K, ϑK : A∗K → Gab

K the Artin reciprocity map and ÔK the integral finite adeles of K.
Choose a section s of the natural map A∗K,f → JK : (xp)p 7→

∏
pvp(xp).

These objects were used by Ha and Paugam in 2005 to construct a dynamical system associated to K (for K = Q, this is the
famous Bost-Connes system), as follows: we make a topological space

XK = Gab
K ×Ô∗K

ÔK ,

consisting of classes [(γ, ρ)] for γ ∈ Gab
K and ρ ∈ ÔK , defined by the equivalence

(γ, ρ) ∼ (ϑK(u−1) · γ, uρ) for all u ∈ Ô∗K .

Then we consider the action of n ∈ J+
K on XK given by

n ∗ [(γ, ρ)] := [(ϑK(s(n))−1γ, s(n)ρ)].

In this way, we get a dynamical system (XK , J
+
K).

Main Theorem. (C-Matilde Marcolli, arxiv:1009.0736) For two number fieldsK and L, an isomorphismK ∼= L is equivalent
to a norm-preserving isomorphism of dynamical systems (XK , J

+
K) ∼= (XL, J

+
L ).

By isomorphism of dynamical systems, we mean a homeomorphism Φ: XK
∼→ XL and a group homomorphism ϕ : J+

K
∼→ J+

L

such that Φ(n ∗ x) = ϕ(n) ∗ Φ(x) for all x ∈ XK and n ∈ J+
K ; and norm-preserving means that NL(ϕ(n)) = NK(n) for all

n ∈ J+
K .

In a sense, this theorem shows that a suitable combination of failure (ζK , which will be the partition function of the system,
Gab
K and AK , which occur in the system) may lead to success. It gives an “internal” description of the isomorphism type of a

number field. It also holds in a function field, with a slightly different, easier proof.

The proof is really to “hit the dynamical system with a hammer until enough isomorphic objects jump out”.

Reformulation using Quantum Statistical Mechanics. There is a way to reformulate the main theorem by encoding the
dynamics in Banach algebra language. We set AK := C(XK) o J+

K to be the semigroup crossed product C∗-algebra cor-
responding to the dynamical system. Physically, it corresponds to the algebra of observables. If we let µn and µ∗n denote
the partial isometries of the algebra corresponding to n ∈ J+

K , then we also need the non-involutive subalgebra A†K of AK
generated by C(X) and 〈µn〉n∈J+

K
(but not the µ∗n). We also consider a one-parameter subgroup of automorphisms of AK ,

denoted σK : R ↪→ Aut(AK), defined by σK(t)(f) = f and σK(t)(µn) = NK(n)itµn. The algebra with this so-called time
evolution is an abstract quantum statistical mechanical system. A slightly stronger statement than the main theorem is the
following: K ∼= L is equivalent to an isomorphism of (AK , σK)

∼→ (AL, σL) that maps A†K to A†L.

From the main theorem, we can deduce our answer to the problems outlined before:

Theorem. If K and L are global fields (number fields, or function fields of curves over finite fields), then K ∼= L (which, in the
case of function fields of curves is equivalent to isomorphism of the curves up to twists over the ground field) is equivalent to
the existence of an isomorphism ψ : Gab

K
∼→ Gab

L , such that all abelian L-series match: LK(χ) = LL((ψ−1)∗χ) for all χ ∈
Hom(Gab

K , S
1).

We discovered this theorem because L-series occur as evaluations of low temperature equilibrium states of the system at
particular test functions related to the character. Our proof of this theorem is to deduce from L-series equality an isomorphism
of dynamical systems, which basically boils down to a bit of character theory, and then using the main theorem. In the
meanwhile, Bart de Smit has discovered a purely number theoretical proof of the theorem forL-series for number fields, and has
actually proven something much stronger: for every number fieldK, there is a character of order 3, such thatLK(χ) 6= LK′(χ

′)
for every number field K ′ 6∼= K and character for Gab

K′ . This proof does not seem to transfer readily to function fields.

Final remark: the theorem is not really an analytic statement. It suffices to have equality of L-series at sufficiently large
integers. Hence the theorem also holds with p-adic L-functions. One may read it as an equivalence of rank-one motives over
K and L.
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An analog in Riemannian geometry. The isospectrality problem has a long history, that can be traced back at least to the
Wolfskehl lecture of the dutch physicist Lorentz in Göttingen in 1910, where he asked whether the spectrum of the Laplacian on
a domain (with suitable boundary conditions) determines the volume. He refers to the Leiden PhD thesis of Johanna Reudler,
that very cleverly computes several convincing examples (published in 1912). Hermann Weyl proved the general case in 1911,
and much later Mark Kac popularized the question whether the entire shape of the region (so up to euclidean transformations)
is determined by the spectrum, as “Can you hear the shape of a drum?”(this formulation is due to Bers, the problem was
originally posed by Bochner). The first counterexample was the construction of two non-isometric Riemannian manifolds with
the same spectrum by Milnor, based on Witt’s theory of quadratic forms. Then even came non-homeomorphic isospectral
manifolds in the work of Ikeda (lens spaces) and Vignéras (3-manifolds).

Let (X, g) denote a closed Riemannian manifold with Laplace operator ∆X . The question whether or not the spectrum (with
multiplicities) determines the isometry type of X is the same as that whether or not the spectral zeta function

ζX(s) =
∑

λ 6=0

1

λs
= tr(∆−sX )

(sum over the non-zero eigenvalues of the Laplace operator, with multiplicities) does so. Can we do better? This time,
our “remedy” is the following: for a ∈ C(X), set ζX,a(s) = tr(a∆−sX ), and for a ∈ W (X) (Lipschitz functions) set
ζ̃X,a = tr(a[∆X , a]∆−sX ). Then:

Theorem. (C-Jan Willem de Jong; arXiv:1007.0907) Let X and Y denote two closed RIemannian manifolds, and ϕ : X → Y
a C1-bijective map. Then ϕ being an isometry is equivalent to the following two properties holding simultaneously

(a) ζY,a0 = ζX,ϕ∗(a0) for all a0 ∈ C(Y ), and

(b) ζ̃Y,a1 = ζ̃X,ϕ∗(a1) for all a1 ∈W (Y ).

The proof is a rather formal computation with residues. Various analytically more challenging amplifications are possible, for
example, condition (a) alone suffices when the spectrum is simple (which is the generic case by a result of Uhlenbeck). In the
above theorem, one can also restrict to a countable dense subset of functions, and to sufficiently large integral values of the
zeta functions, so the characterisation is really by countably many values.

Lengths of maps. One may now define the length of a map ϕ : X → Y as the “distance between the (meromorphic) zeta
functions that occur in the theorem”. The usual distance of meromorphic functions doesn’t quite work, but the following does:
The length `(ϕ) of ϕ of Riemannian manifolds of dimension n is

`(ϕ) := sup
a0∈C(Y,R≥0)−{0}
a1∈W 1(Y )−R

sup
n≤s≤n+1

max {| log

∣∣∣∣
ζX,a∗0 (s)

ζY,a0(s)

∣∣∣∣ |, | log

∣∣∣∣∣
ζ̃X,a∗1 (s)

ζ̃Y,a1(s)

∣∣∣∣∣ |}.

This then satisfies `(ϕ) = 0 if and only if ϕ is an isometry, and `(ψ ◦ ϕ) ≤ `(ψ) + `(ϕ). One can also show that

d(X,Y ) := max{ inf
C1(X

ϕ→Y )

`(ϕ),+∞}

defines an extended metric between isometry classes of Riemannian manifolds.

As an example especially for Don Zagier, we bound the distance d between two tori, corresponding to i and ρ = (1 +
√
−3)/2

in the upper half plane. This will satisfy

ed ≤ E(i, 2)

E(ρ, 2)
=

ζm2+n2(2)

ζm2−mn+n2(2)
=

3
√

3

4
· D(i)

D(ρ)
= 1.17235730884473 . . . ,

where E is an Eisenstein series, ζQ (with Q a binary quadratic form) is the Epstein zeta function, and D is the Bloch-Wigner
dilogarithm function.

Pluralizing zeta. ZETA counts things (points, ideals, geodesics, spectra, . . . ) — it is beautiful, but sometimes lonely, it can
fail as an individual. But it will be happy and succeed as part of a family of ZETAS. This statement applies with the author
substituted for ZETA (maybe not the part about beauty . . . ) and the MPIM substituted for ‘family’. Thank you, Don. �
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Loop equations and spectral curves

Gaëtan Borot, IPhT CEA Saclay

Schwinger-Dyson equations are well-known relations in any field theory, which fol-

low from the diffeomorphism invariance of an integration or by integration by parts.

They are very useful in probability, in quantum field theory, string theory, . . . because

they give a large amount (even if not a complete set) of relations between expectations

values, i.e. the observables of the theory. Those arising from large matrix integrals,

with a unitary invariant weight, can be recast into a universal form, which we call

loop equations. I do not intend to be precise here, but we will use the name ”loop

equations” as soon as we deal with a family of observables Wn(x1, . . . , xn), which are

analytic multivalued 1-forms in each complex variable xi (1 ≤ i ≤ n), and satisfy:

(?n)
∑

a

Wn(ax, xI) = δn,1 ν
−1 P1(x1) + δn,2 P2(x1, x2)

(♦n)
∑

a<b

Wn+1(ax, bx, xI) +
∑

J⊆I
W|J |+1(ax, xJ)Wn−|J |(

bx, xI\J) = dx ν−2Qn(x)

where Pi and Qi are analytic 1-forms whose singularities are known and fixed a priori,

and in particular which are univalued around the points where Wn become multivalued.

The meaning of this property should become clear to the reader after some examples.

ν is an extra parameter. The purpose of this text is to illustrate the ubiquity of loop

equations, and review briefly the existing technology to solve them.

1. The topological recursion

Loop equations have many solutions, which are not always matrix integrals. Af-

ter precursor works by Ambjørn, Chekhov, Makeenko and others [2, 1], Eynard and

Orantin have described a complete family of solutions of loop equations [3], for which

(i) the Wn’s have a expansion of the form Wn =
∑

g≥0 ν
−(2−2g−n) W

(g)
n (it can be either

a formal generating series with parameter ν, or an asymptotic series when ν → 0) ;

(ii) where ω(ax) is interpreted as the value taken by ω in different sheets of a covering

X : Σ → P1 ; (iii) W
(g)
n is an element of Ω1(Σ)⊗n (i.e. a 1-form in each of its n

variables), whose singularities are located at the branchpoints of X only.

Definition

It can be presented as an axiomatic construction, which associates to a spectral

curve S, a family of forms ω
(g)
n [S] ∈ Ω1(Σ)⊗n, and of numbers F (g)[S] ∈ C. We need

some preliminary definitions. For us, a spectral curve is the data of a plane curve and



a Bergman kernel. A plane curve is defined by an equation E(X, Y ) = 0 in C2, or

equivalently by the data of a Riemann surface Σ and two analytic functions X and Y

defined on Σ. A Bergman kernel is an element B ∈ Ω1(Σ)⊗Ω1(Σ) (i.e a bi-differential

form), whose singularity locus is the diagonal ∆ = {(z, z) z ∈ Σ}, and such that, in

any coordinate patch ξ, B(ξ(z1), ξ(z2)) = dξ(z1)dξ(z2)
(ξ(z1)−ξ(z2))2

+ O(1) when z2 → z1. When

Σ ' C or Ĉ, we can take for sure B(ξ1, ξ2) = dξ1dξ2
(ξ1−ξ2)2

where ξ is a global coordinate.

On the torus Σ ' C/(Z + τZ), another example of Bergman kernel is provided by

the Weierstraß elliptic function, namely B(u1, u2) = du1du2 (℘(u1 − u2|τ) + cte). The

ramification points ai ∈ Σ are the zeroes of dX. For simplicity, we shall assume that

these are only simple zeroes. So, in a small neighborhood Ui ⊆ Σ of ai, a given value

x ∈ X(Ui) has two preimages in Ui. We define a local involution by associating to

z ∈ Ui the point z ∈ X−1(X(Ui)) such that X(z) = X(z) but z 6= z unless z = ai. We

then define the adapted Cauchy kernel, which is an element of Ω1(Σ)⊗ Ω−1
(∐

i Ui

)
:

R(z0, z) = −1

2

∫ z
z
B(z0, ·)(

Y (z)− Y (z)
)
dX(z)

We are now in position to give the definition of ω
(g)
n (since the spectral curve S is

fixed, we omit to precise it in bracket), by induction on −χn,g = 2g + 2− n. We set

ω
(0)
1 (z) = −Y dX(z)

by convention, in order to have later uniform formulas for all n and g. We set for

initialization:

ω
(0)
2 (z1, z2) = B(z1, z2)

and then:

ω(g)
n (z1, z2 . . . , zn︸ ︷︷ ︸

zI

) =
∑

i

Res
z→ai

R(z1, z)
[
ω

(g−1)
n+1 (z, z, zI) +

′∑

J⊆I
0≤h≤g

ω
(h)
|J |+1(z, zJ)ω

(g−h)
n−|J | (z, zI\J)

]

It is a sum over residues at ramifications points.
∑′ means that the terms involving

ω
(0)
1 should be discarded. Though one has to choose one variable (here z1) to write the

formula, one can prove by induction that ω
(g)
n (z1, . . . , zn) is symmetric in all the zi’s.

This formula has a diagrammatic representation: ω
(g)
n is a weighted sum over trivalent

graphs G of genus g with n external legs. Recursively, following an external leg of G up

to a trivalent vertex and cutting it, we are left either with a graph G ′ which is either

connected but with one handle less (first term), or disconnected so that the handles

and the remaining external legs are shared out between the two connected components

(second term). This construction is a recursion on the Euler characteristics of the



graphs G, hence the name topological recursion. Eventually, we define for g ≥ 2 the

complex numbers:

ω
(g)
0 ≡ F (g) =

1

2g − 2

∑

i

Res
z→ai

ω
(g)
1 (z)

∫ z

ω
(0)
1 (z)

We shall not address here the definition of F (0) (the so-called prepotential of the spectral

curve [4]) nor of F (1) (which is related [5] to the spectral determinant of the Laplacian

on Σ endowed with the metrics |Y dX|2), but we point out that these notions exist

and complete harmoniously the construction. I have not told yet what does the ω
(g)
0 =

F (g) represent from the point of view of the loop equations. Formula 0-1 for n = 0

provides the explanation. Notice that the stable topologies χg,n < 0 are in some

sense more uniform to compute than the unstable topologies χg,n ≥ 0 (occuring for

(g, n) = (0, 0), (1, 0), (0, 1), (0, 2)).

Properties

This intrinsic construction has several interesting properties, the first one being

that it satisfies ?n and ♦n, order by order in powers of ν. The index a labels the sheets

of the covering X : Σ→ Ĉ. The other most important properties regarding algebraic

geometry are:

� Symplectic invariance [6]. F (g)[S] are invariant under the transformations

(X, Y ) → (X ′, Y ′) such that dX ′ ∧ dY ′ = ±dX ∧ dY . Although ω
(g)
n [S] are

themselves not invariant, their cohomology class is invariant.

� Special geometry. Imagine that we have a smooth family of curves Sε = (Σ, X +

ε(δX), Y + ε(δY ), B). We introduce δΩ = (δY )dX − (δX)dY , which can always

be represented in the form Ω(z0) =
∫
z∈Ω∗ ΛΩ(z)B(z0, z), where Ω∗ ⊆ Σ is a cycle

and ΛΩ is a germ of holomorphic function on Ω∗. Then:

∀n, g ∈ N2 ∂ε=0 ω
(g)
n [Sε](z1, . . . , zn) =

∫

z∈Ω∗
ΛΩ(z)ω

(g)
n+1[S0](z, z1, . . . , zn) (0-1)

� Modular properties. Assume that Σ is a compact Riemnn surface of genus g > 0.

H1(Σ,Z) ' Z2g, and it admits a symplectic basis (Ah,Bh)1≤h≤g. Such a choice

determines a basis of holomorphic forms duh which are dual to the A-cycles, an

Abel map u, a matrix of periods τhh′ = (2iπ)−1
∮
Bh duh′ and thus a Siegel theta

function. Then, the admissible Bergman kernels on Σ are of the form:

Bκ(z1, z2) = dz1dz2 ln Θ(u(z1)− u(z2) + c|τ) + 2iπ

g∑

h,h′=1

κhh′ duh(z1) duh′(z2)



where c is a nonsingular odd characteristics. In turn, the choice of a Bergman

kernel allows to construct the ω
(g)
n [Sκ] and the F (g)[Sκ]. We have emphasized the

dependence in κ, and actually ω
(g)
n is a polynomial of degree 3g−3+2n in κ. The

modular group Sp(2g,Z) acts on all these objects by change of symplectic basis.

Remarkably, for κ = κ0 = i
2 Im τ

, Bκ0 is invariant under the full modular group.

This implies that all ω
(g)
n [Sκ0 ] with χg,n < 0 are also invariant. But they are

obviously not holomorphic in the moduli of the curve: they satisfy holomorphic

anomaly equations [7]. Conversely, if κ is chosen such that ω
(g)
n [Sκ] is holomorphic

in the moduli of the curve, the ω
(g)
n are no more modular invariant. This kind

of phenomena has been highlighted earlier by Kaneko and Zagier in the context

of modular forms [8], and Aganagic, Bouchard and Klemm in the context of

topological strings [9]

This axiomatic is robust, in the sense that it gives solutions to many different-

looking loop equations. The curve S need not be algebraic, nor compact. The notion

of Bergman kernel can also be twisted [10]. The topological recursion has many appli-

cations, to compute ”weighted sum over surfaces” [11], understood widely: number of

discretized surfaces, intersection numbers in the moduli space of curves [12], Gromov-

Witten invariants (cf. below) and instanton counting in string theory, . . . For each of

these problems, there exists a spectral curve S for which the ω
(g)
n ’s produces (provably,

or conjecturally for Gromov-Witten invariants) the desired numbers or generating se-

ries of them. Nevertheless, we do not understand at present its true nature in algebraic

geometry. In particular, though the F (g)[S] are symplectic invariants, their meaning is

unclear.

2. Some instances of loop equations

The lesson to draw at the end of each of the examples below is that (a) if you have

quantities Wn which satisfy loop equations and have (provably or by construction)

an expansion of the form
∑

g≥0 ν
−(2−2g−n) W

(g)
n , where W

(g)
n (x1, . . . , xn) for χg,n < 0

have singularities only at branchpoints ; (b) and if you can determine explicitly the

corresponding spectral curve S ; then, W
(g)
n is given by the topological recursion applied

to S.

N dimensional integrals and matrix integrals

Consider a measure of the form:

dµN,γN (λ) =
N∏

i=1

dλi e
−NV (λi)

∏

1≤i<j≤N
K(λi, λj) (0-2)

where we assume for our example K(λi, λj) = |λi − λj|βid
∏

f (λi − f(λj))
βf , and also



that f(γ)∩ γ = ∅ for any f appearing there. We call ZN,γ =
∫

dµN,γN (λ) the partition

function, and we define the correlators :

W1(x) =
〈 N∑

i=1

dx

x− λi

〉

W2(x1, x2) =
〈 N∑

i1=1

N∑

i2=1

dx1

x1 − λi1
dx2

x2 − λi2

〉
−
〈 N∑

i=1

dx1

x1 − λi1

〉〈 N∑

i2=1

dx2

x2 − λi2

〉
etc.

If we express the invariance of the integral (up to boundary terms) under all possible

change of variables generated by λi 7→ λi+ε λ
p
i to first order in ε, we arrive to a relation

[10]:

(βid − 2)dx[W1(x)] +W2(x, x) + β
(
W1(x)

)2

+
∑

f

(
βfW2(x, f(x)) +W1(x)W1(f(x))

)
−N dV (x)W1(x) = dxQ1(x)

While the Wn’s are holomorphic differential forms in the domain (C \ γ)n but prob-

ably will have a discontinuity on γ, the main information hidden in this equation is

that Q1(x) is a holomorphic 1-form in the neighborhood on γ. When βid = 2, note

the similarity with ♦1, where ν−1 = N is the number of random variables. By the

same method, one can derive relations of the form ♦n for the n-point correlators Wn.

Computing then the discotinuity of the left hand side, we arrive also to ?n. Sticking

to βid = 2, let us mention various realizations of (0-2):

� For K(λi, λj) = |λi − λj|2, dµN,RN (λ) is the measure on eigenvalues on a N ×N
hermitian matrix M equipped with a measure dµ(M) = dM e−N Tr V (M).

� The partition function of U(N) Chern-Simons theory for the Seifert manifolds

X(p1/q1, . . . , pL/qL) [13] can be written as before with

K(λi, λj) =
L∏

l=1

λpli − λplj
λi − λj

λqli − λqlj
λi − λj

� If V and K are polynomials, βf ∈ −aN for some number a independent of f ,

and (0-2) is considered as a formal measure, the standard mapping of Brézin,

Itzkyson, Parisi and Zuber [14] shows that Z is a generating series for discretized

surfaces M, carrying self-avoiding loops going through the faces of M. The

weight ofM in this sum is proportional to Nχ (χ being the Euler characteristics

of M) and a#loops.

In this context, the spectral curve is the plane curve of equation y =

limN→∞N−1W1(x), endowed with a Bergman kernel related to limN→∞W2(x1, x2).



It has also been shown that loop equations of the form (?n,♦n) arise in the chain

of hermitian matrices with external field, i.e. for a measure on HN(R)k:

dµ(M1, . . . ,Mk) = dM1 · · · dMk exp N
( k∑

l=1

TrVl(Mk)−
∑

l

cl,l+1 TrMlMl+1+ TrM1R
)

where R is a fixed matrix (cf. [6] for the chain of 2 matrices). Again, the n-point

correlators Wn are defined from expectations values of
∏n

j=1 Tr 1
xj−Ml

(for any fixed

index l ∈ {1, . . . , k}). Unlike the case of (0-2), several non trivial steps are involved on

top of the derivation of Schwinger-Dyson equations before arriving to (?n,♦n), and in

particular they rely on the existence of a 1/N expansion.

Integrable systems

Given any d× d linear system with rational coefficients

ν ∂xΨ(x) = L(x)Ψ(x) (0-3)

one may define the transition matrix K and the correlators Wn:

K(x1, x2) =
Ψ−1(x1)Ψ(x2)

x1 − x2

√
dx1 dx2

W1(x; a) = lim
x′→x

(
Kaa(x, x

′)− 1

x− x′
)

W2(x1, x2; a1, a2) = −Ka1,a2(x1, x2)Ka2,a1(x2, x1)− δa1,a2
(x1 − x2)2

Wn(x1, . . . , xn; a1, . . . , an) = (−1)n+1
∑

σ cycle of
length n

Kai,aσ(i)(xi, xσ(i))

Bergère and Eynard observed that [15]

∑

a

W1(x; a) = −(dx) ν−1 Tr L(x)

∑

a<b

W2(x, x; a, b) +W1(x; a)W1(x; b) =
(dx)2 ν−2

2

[(
Tr L(x)

)2 − Tr L2(x)
]

(0-4)

Whatever complicated the analytical properties of W1 and W2 may be, the right hand

side is a rational function whose singularities are fixed from the beginning. These equa-

tions look like (?1,♦1), where a is an index attached to independent vector solutions

ψa of ∂xψa(x) = L(x)ψa(x) (there are d of them).

In general, a solution to (0-3) has essential singularities at the poles p of L:

Ψ(x) ∼
x→p

(x− p)Sp exp
(
ν−1

d∑

a,b=1

∑

j≥1

tp,j,[a,b]
(x− p)j Ea,b

)



We can study isomonodromic deformations Ψ(x,~tp0) of that solution, namely we choose

a pole p0 and an index a ∈ {1, . . . , d} and consider the flows (∂tp0,j,[a,a])j≥1 for a given

pole p0, without changing the monodromy matrices Sp and the other tp,k,[a′,b′]. The

result is that there exists a family [M(p0,j,a)(x,~tp0)]j≥1 and L(x,~tp0) of d× d matrices,

whose coefficients are rational functions of x having well controlled singularities, and

such that: {
ν ∂xΨ(x,~tp0) = L(x,~tp0) Ψ(x,~tp0)

ν ∂tIΨ(x,~tp0) = MI(x,~tp0) Ψ(x,~tp0)

The system above expresses the existence of a family of commuting flows, and is called

a (classical) integrable system. Such systems are important because they have many

links with geometry, and we have many techniques to say something about them [16].

Since the compatibility equations of the systems yields interesting nonlinear differential

equations on the coefficients of L and M, they play also an important role in the

study of such nonlinear equations. The relevant fact immediately useful to us is that

the solution Ψ(x,~tp0) can be in principle reconstructed from a function τ(~tp0), the so

called tau function of Jimbo, Miwa and Ueno [17]. If we build the formal operator

D
(p0)
(x,a) =

∑
j≥1(x− p0)j−1 ∂tp0,j,[a,a] , we claim [10] that the Taylor series around around

p0 of the n-point correlators Wn encode the n-th derivatives of the tau function:

Wn(x1, . . . , xn; a1, . . . , an) = dx1, . . . dxn ν
nD

(p0)
(x1,a1) · · ·D

(p0)
(xn,an) ln τ(~tp0)−

δn,2 δa1,a2
(x1 − x2)2

Applying the operators (n − 1) operators D
(p0)
(xi,ai)

to (0-4) yields relations similar to

♦n. In this context, the spectral curve is the plane curve given by the semiclassical

dispersion relation Σ : det(y− limν→0 L(x,~t)) = 0 of the differential system, endowed

with a Bergman kernel related to limν→0W2(x1, x2; a1, a2). ai ∈ {1, . . . , d} is also in

relation with the different sheets of the covering x : Σ→ Ĉ.

Combinatorics of surfaces

In a large variety of problems in enumerative geometry, we want to compute

a generating series W
(g)
n for connected orientable surfaces of genus g, and with n

marked points (or n boundaries). For this, we rather build a generating series

Wn =
∑

g≥0 ν
−(2−2g−n) W

(g)
n where ν is a formal parameter. One might be able to

establish relations of combinatorial nature between the W
(g)
n ’s, which in some cases

are equivalent to loop equations expanded order by order in powers of ν. The two

kind of terms in ♦n would come from the geometric alternative of ”losing one handle,

adding a boundary”, or ”disconnect the surface”. Simple Hurwitz numbers Hg,µ have

been studied successfully with this method. It is not useless to consider this example,

since it is the simplest case of the next, important application of loop equations. By

definition, if µ is a partition, Hg,µ is the number of (topological classes of) coverings



π : Σg → Ĉ of the Riemann sphere by a compact Riemann surface of genus g, such

that all but one branchpoints are simple, and the special branchpoint has n = `(µ)

preimages in Σg with respective multiplicities µ1, . . . , µn. The conjecture of Bouchard

and Mariño [18], which we proved in [19], is that:

∑

µ / `(µ)=n

t|µ| µ1 · · ·µnMµ(v1, . . . , vn)Hg,µ =
ωn(g)[SL,t]

dX(v1) · · · dX(vn)
(0-5)

where SL,t is the Lambert curve:

X(v) = ln v = −Y (v) + ln[Y (v)/t], B(v1, v2) =
dY (v1) dY (v2)

(Y (v1)− Y (v2))2

Actually, loop equations are in that case equivalent [20] to the cut-and-join recursion

relations obtained by Goulden, Jackson, Vakil [21] by looking at all possible ways of

merging a simple branchpoint to the special branchpoint.

The bkmp conjecture

When X is a symplectic manifold, the Gromov-Witten invariants Ng,β(X) can be

defined as integration of the virtual fundamental class over the moduli space of stable

maps φ ; Σg → X with fixed degree β ∈ H2(X,Z). They are rational numbers, which

count intuitively how many ways are there to embed a Riemann surface of genus g in X,

up to automorphisms. These invariants are the most interesting when X has complex

dimension 3, and are the better understood when X is a toric Calabi-Yau, thanks to

the method of the topological vertex [22]. Yet, an important problem is to compute the

generating series:

Fg(X;~t) =
∑

β∈H2(X)

e−β·tNg,β(X)

which is non-perturbative in the Kähler radii t. There exists also open Gromov-

Witten invariants, which count in a certain sense embeddings of a Riemann sur-

face of genus g with n boundaries in X. They can be packed into a generating

series W
(g)
n (X;~t; z1, . . . , zn), the variables zi’s being coupled to the configuration of

the boundaries in X. Supported by many numerical evidence, Bouchard, Klemm,

Mariño and Pasquetti [23] have formulated the conjecture that Wn(X;~t; z1, . . . , zn) =∑
g≥0 ν

−(2−2g−n) W
(g)
n (X;~t; z1, . . . , zn) satisfies loop equations, hence W

(g)
n ’s are com-

puted by the topological recursion. The spectral curve should be the singular locus

of the mirror Calabi-Yau, which has an equation of the form Polynomial(eX , eY ) = 0

depending also on ~t. The appropriate choice of functions X and Y and of Bergman

kernel is prescribed by the mirror map.

When X = C3 for a special configuration of boundaries1, Gromov-Witten invariants

can be expressed in terms of simple Hurwitz numbers [24], and this led Bouchard and

1The infinite framing limit



Mariño to conjecture (0-5). Today, the only cases where the bkmp conjecture has been

proved are C3 for general configuration of boundaries [25], and Xp = O(p) ⊕ O(−p −
2)→ P1 [26]. Although progress has been made toward the full conjecture, we still do

not understand at a fundamental level why the topological recursion would compute

Gromov-Witten invariants.

Apart from asymptotic power series expansions

There exists a way to exhibit beautiful2 solutions of the loop equations starting

from the topological recursion. These solutions do not have an expansion in powers

of ν, but they rather feature pseudo-periodic behavior when ν → 0 [27, 28]. It is

conjectured that they give the correct answer to the large N asymptotic expansions of

multi-cut matrix models, to the asymptotics of biorthogonal polynomials, to the non

perturbative completion problem in string theory, . . . but unfortunately, no general

theorems are available yet.
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Archimedean Langlands correspondence

and

Quantum Field Theory

Anton A. Gerasimov and Dimitri R. Lebedev

1 Introduction

In the first part of this note we review an interpretation of the Archimedean Langlands correspon-
dence via mirror symmetry in two-dimensional topological field theories [1], [2], [3]. In the second
part we review a simplified version of the Archimedean Langlands correspondence that allows a
similar interpretation but in terms of finite-dimensional symplectic geometry [4] (topological theory
in zero dimension).

To present a motivation of further presentation we start with a discussion of the Riemann
ζ-function. The Riemann ζ-function is defined as the analytic continuation of the series

ζ(s) =

∞∑

n=1

1

ns
=
∏

p∈P

1

1− p−s , Re(s) > 1.

Here the product goes over the set P of prime numbers. The analytic continuation satisfies the
functional equation

ζ∗(s) = ζ∗(1− s),
where

ζ∗(s) = ζ∗(s) = ζ(s)π−s/2Γ(
s

2
) =

∏

p∈P∪∞
ζp(s),

ζ∞(s) = π−s/2Γ(
s

2
), ζp(s) =

1

1− p−s .

The form of the functional equation implies that ζ∗(s) is a more fundamental object then ζ(s).
According to A.Weil the meaning of the additional factor ζ∞(s) can be understood as follows.

Recall that an exponential valuation (norm) | | : K → R+ is defined by the properties:

• |x y| = |x| |y|,
• |x| = 0↔ x = 0,

• |x+ y| ≤ |x|+ |y|, Archimedean,

|x+ y| ≤ max(|x|, |y|) non−Archimedean.
Essentially different norms on Z are given by:

• non-Archimedean norm: for each prime p

|a|p = p−n iff a = pna0, (p, a0) = 1.
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• Archimedean norm:
|a|∞ = |a|.

The corresponding completions lead to inclusions Q ⊂ Qp, Q ⊂ R.
One can reformulate the product formula for ζ∗(s) as

ζ∗(s) =
∏

p∈Spec(Z)

ζp(s), (1.1)

where local zeta-functions are associated with local completions of Q

ζR(s) = π−s/2Γ(
s

2
), ζQp(s) =

1

1− p−s , p 6=∞.

The nontrivial form of the additional factor ζR(s) = π−s/2Γ( s2) manifests some hidden structure of
the field R of real numbers.

2 Archimedean Langlands correspondence via 2d topological field
theory

To better understand the form of the local Archimedean contributions in various product formu-
las, analogous to (1.1), we consider Whittaker functions associated with local fields Qp, R. The
Whittaker functions over Qp allow two completely different realizations manifesting local non-
Archimedean Langlands duality.

The Archimedean version of the Langlands duality for the Whittaker functions over R is more
involved. Its proper formulation provides a hint on what is the right point of view on the field of
real numbers leading to involved expressions like ζR(s).

The Whittaker function is defined as a matrix element of an infinite-dimensional representation
πλ : G→ End(V) of a reductive group G

Ψλ(g) =< ψL|πλ(g) |ψR〉, g ∈ G,

such that
Ψλ(n−gn+) = χL(n−)χR(n+)Ψλ(g), n± ∈ N±,

where N± - opposite maximal unipotent subgroups and χL/χR - non-trivial characters of N− and
N+.

It has the following basic properties.

• The Whittaker function Ψλ(g) reduces to a function Ψλ(a) on a factor A = N−\G/N+ (in
split case A is a diagonal subgroup).

• TheWhittaker functions have natural integral representations arising from explicit realizations
of the pairing in representation πλ : G→ End(V).
• Irreducibility of the representation πλ : G→ End(V) leads to a system of difference/differential

equations on Ψλ

HrΨλ(a) = cr(λ)Ψλ(a), a ∈ A.

Non-Archimedean Langlands duality pattern for the Whittaker functions can be succinctly
described via the Shintani-Casselman-Shalika formula. The Whittaker function for G(Qp) can
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be expressed as a character of a finite-dimensional representation of the Langlands dual group
G∨. For G(Qp) = GL(` + 1,Qp) let Vγ1,...,γ`+1

be an irreducible representation induced from a

generic character χB
(pγ1 ,...,pγ`+1 )

(g) =
∏`+1

j=1 |gjj |γj of the Borel subgroup B ⊂ GL(` + 1,Qp). Let

Vn1,n2,...,n`+1
be a finite-dimensional irreducible representation of GL(` + 1,C) corresponding to a

partition (n1 ≥ n2 ≥ . . . ≥ n`+1), then

Ψ(γ1,...,γ`+1)(diag(p
n1 , . . . , pn`+1)) = Tr Vn1,...,n`+1

diag(pγ1 , . . . , pγ`+1). (2.1)

Now let us look for an analog of this relation for the Archimedean Whittaker functions. The
gl`+1-Whittaker function over R is a common eigenfunction of a family of commuting differential
operators which can be identified with quantum Hamiltonians of gl`+1-Toda chain. The simplest
non-trivial quantum Hamiltonian acting on Whittaker function is given by

H = −~
2

2

`+1∑

i=1

∂2

∂x2i
+
∑̀

i=1

exi+1−xi .

Explicit solution of this system of equations is given by a matrix element written in the integral
form using a realization of principle series representation as a space of (twisted) functions on a
G-homogeneous space.

Due to Givental we know the following integral representation of gl`+1-Whittaker function:

Ψλ1,...,λ`+1
(x1, . . . , x`+1; ~) = (2.2)

=

∫

C

∏̀

k=1

k∏

i=1

dTk,i exp

(
ı

~

`+1∑

k=1

λk

(
k∑

i=1

Tk,i −
k−1∑

i=1

Tk−1,i

))

× exp

{∑̀

k=1

−1

~

(
k∑

i=1

eTki−Tk+1,i +
k∑

i=1

eTk+1,i+1−Tk,i

)}
,

where (x1, . . . , x`+1) = (T`+1,1, . . . , T`+1,`+1). This integral arises naturally as a matrix element in
principle series representation of GL`+1(R).

To formulate the Archimedean Langlands correspondence for the Whittaker functions
(i.e. Archimedean analog of Shintani - Casselman - Shalika formula) one shall define another
representation for Archimedean Whittaker function analogous to trace representation in the right
hand side of (2.1).

In [1]-[3] it was shown that along with finite-dimensional integral representations the Whit-
taker functions have also infinite-dimensional integral representations. Recall that given a finite-
dimensional symplectic manifold (M , ω) and the Hamiltonian action of a compact Lie group G one
can define a G-equivariant symplectic volume of M as:

Z(M,ω)(λ) =

∫

M
eωG .

Here ωG is G-equivariant extension of the symplectic form ω depending on an element λ ∈ g∗ of
the dual Lie algebra. This construction can be also extended to a class of infinite-dimensional
manifolds M .
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The gl`+1-Whittaker function allows the following infinite-dimensional integral representation

Ψλ(x) =

∫

M(D,GL`+1/B)
eωG(x,λ), (2.3)

whereM(D,GL`+1(C)/B) is an infinite-dimensional spaces of holomorphic maps of a two-dimensional
disk D = {z ∈ C| |z| ≤ 1} into symplectic U`+1-spaces GL`+1(C)/B . There is a natural Hamilto-
nian action ofG = S1×U`+1 onM(D,GL`+1(C)/B), where S1 acts by rotations ofD and the action
of U`+1 is induced from the action on GL`+1(C)/B. Thus the equivalence of finite-dimensional and
infinite-dimensional integral representations of the Whittaker functions is an Archimedean coun-
terpart of local Langlands correspondence over Qp identifying Qp-Whittaker functions given by
matrix element with characters of irreducible finite-dimensional representations of dual Lie groups.
The equivariant symplectic volume of the spaceM(D,GL`+1(C)/B) of holomorphic maps can be
interpreted as a correlation function in a two-dimensional equivariant topological sigma model on
a disk D with the target space GL`+1(C)/B. In these terms the local Archimedean Langlands
correspondence is an instance of mirror symmetry.

We illustrate this interpretation for the most simple case of local Archimedean L-factors as-
sociated with principle series representations of GL`+1(R). We construct two different integral
representations of local Archimedean L-factors as correlation functions in Topological Field Theo-
ries (TFT) of types A and B. In terms of type A TFT local Archimedean L-factors are given by
equivariant symplectic volumes of spaces of holomorphic maps ofD into V = C`+1. In Type B TFT
local Archimedean L-factors are given by periods of holomorphic forms over middle-dimensional
cycles. Thus we demonstrate that the mirror symmetry relating underlying topological field theo-
ries of type A and B at the same time relates infinite-dimensional and finite-dimensional integral
representations of Archimedean L-factors. Let us stress that this is an Archimedean analog of “Pe-
riod=Trace” relation (2.1) for non-Archimedean case (in Archimedean case the trace is replaced by
its classical limit - equivariant volume of the underlying symplectic manifold).

Let D = {z| |z| ≤ 1} be a disk with a flat metric

h =
1

2
(dzdz̄ + dz̄ dz) = (dr)2 + r2(dσ)2, z = reıσ.

Lie group S1 acts by rotations on D. We supply C`+1 with the following Kähler form and the
Kähler metric

ω =
ı

2

`+1∑

j=1

dϕj ∧ dϕ̄j , g =
1

2

`+1∑

j=1

(dϕj ⊗ dϕ̄j + dϕ̄j ⊗ dϕj).

Lie group U`+1 acts on C`+1 via standard representation.
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Type A topological sigma model.

Let K and K̄ be canonical and anti-canonical bundles on world-sheet D and TCX = T 1,0⊕T 0,1

be a decomposition of the complexified tangent bundle of the target space X = C`+1.

The quantum field content of the model is as follows.

Commuting fields: ϕ, ϕ̄- describe maps Φ : D → X, F , F̄ - sections of K ⊗ Φ∗(T 0,1), K̄ ⊗
Φ∗(T 1,0).

Anticommuting fields: χ, χ̄ - sections of Φ∗(ΠT 1,0), Φ∗(ΠT 0,1), ψ, ψ̄ - sections ofK⊗Φ∗(ΠT 0,1),
K̄ ⊗ Φ∗(ΠT 1,0).

Metrics g and h induce the Hermitian parings 〈 , 〉

〈χ, χ〉 =
`+1∑

j=1

gij̄ χ̄
j̄ χi, 〈F, F 〉 =

`+1∑

j=1

hzz̄gij̄F̄
j̄
z F

i
z̄ .

The S1 × U`+1-equivariant BRST transformation is defined as follows:

δGϕ = χ, δGχ = −(ıΛϕ+ ~Lv0ϕ),

δGψ = F, δGF = −(ıΛψ + ~Lv0ψ),
where Λ is an element of Lie(U`+1), v0 =

∂
∂σ is a generator of Lie(S1) and Lv0 = d iv0 + iv0 d is the

Lie derivative. Equivariant BRST operator satisfies

δ2G = −(inf. symmetry transformation).

Consider a linear sigma model with the action functional given by

SD =

∫

D
d2z δG(ı〈ψ, ∂ϕ〉+ ı〈ψ̄, ∂ϕ̄〉) =

ı

∫

D
d2z

(
〈F, ∂ϕ〉+ 〈F̄ , ∂ϕ̄〉+ 〈ψ̄, ∂χ̄〉+ 〈ψ, ∂χ〉

)
.

The δG-invariant observable is defined by :

O =
ı

π

∫ 2π

0
dσ (−〈χ(eıσ), χ(eıσ)〉+ 〈ϕ(eıσ), (ıΛ + ~Lv0)ϕ(eıσ)〉).

Theorem A [1] In S1 × U`+1-equivariant Type A topological linear sigma model on D with the
target space V = C`+1 one has the following expression for a correlation function of exp(O):

〈
eO
〉
= ~−

`+1
2 det V

(π
~

)−Λ/~
Γ(Λ/~).

By taking ~ = 1 and changing the variables Λ→ (s ·id−Λ)/2 the correlation function turns into
local Archimedean L-factor. The left hand side is an integral over a symplectic space of holomorphic
maps D → C`+1 and is given by inverse ζ-function regularized infinite-dimensional determinant.
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Type B topological Landau-Ginzburg theory

Type B linear topological sigma model is associated with a pair (C`+1,W ), W ∈ H0(C`+1,O).
Let us specify the standard field content of the model.

Commuting fields: φ, φ̄ - describe maps Φ : D → C`+1, Ḡ, G - sections of Φ∗(T 0,1), K ⊗ K̄ ⊗
Φ∗(T 1,0).

Anticommuting fields: η, θ - sections of Φ∗(ΠT 0,1), ρ - sections of (K ⊕ K̄)⊗ Φ∗(ΠT 1,0).

Real structure. Topological linear sigma model allows a non-standard real structure

(φi)† = φi, (φ̄i)† = −φ̄i, (θi)
† = −θi,

(η̄i)† = −η̄i, (ρi)† = ρi, (Gi)† = Gi, (Ḡi)† = −Ḡi.

This real structure is imposed by the condition on Type B topological sigma model to be a mirror
dual to the Type A topological sigma model discussed previously.

The S1-equivariant BRST transformation δS1 is defined as follows:

δS1φi− = ηi, δS1ηi = ~ιv0dφi−,

δS1θi = Gi
−, δS1Gi

− = ~ιv0dθi,

δS1ρi = −dφi+ − ~ιv0Gi
+, δS1φi+ = ~ιv0ρi, δS1Gi

+ = d ρi.

Define the δS1-invariant observable inserted at the center of the disk D:

O =
`+1∏

i=1

δ(φi−(0)) η
i(0).

The action functional for the nonstandard real structure is given by

S = −ı
`+1∑

j=1

∫

D

(
(dφj+ + ~ιv0G

j
+) ∧ ∗dφj− + ρj ∧ ∗dηj − θjdρj

+Gj
+G

j
−
)
+

`+1∑

i,j=1

∫

D
d2z
√
h

(
−∂

2W−(φ−)

∂φi−∂φ
j
−
ηiθj − ı∂W−(φ−)

∂φi−
Gi
−

)

+
`+1∑

i,j=1

∫

D

(
−1

2

∂2W+(φ+)

∂φi+∂φ
j
+

ρi ∧ ρj + ∂W+(φ+)

∂φi+
Gi

+

)

−1

~

∫

S1=∂D
dσW+(φ+),

where W+ and W− are arbitrary independent regular functions on R`+1.

Theorem B [2] The correlation function of expO in the type B topological S1-equivariant
Landau-Ginzburg sigma model on D with

W+(φ+) =
`+1∑

j=1

(λjφ
j
+ − eφ

j
+), W−(φ−) = 0,
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is given by

〈O〉 =
∫

R`+1

`+1∏

j=1

dtj e
1
~
∑`+1

j=1(λjt
j−etj ) =

`+1∏

j=1

~
λj
~ Γ

(
λj
~

)
.

This coincides with the correlation function calculated in Type A TFT. The underlying reason is
the mirror duality between considered TypeA and TypeB TFT. In this terms the local Archimedean
Langlands correspondence is an instance of mirror symmetry.

Similar considerations applied to type A topological field theory with the target space being flag
space and its type B Landau-Ginzburg dual lead to Archimedean version of Shintani-Casselman-
Shalika formula (that is to the identity (2.3)=(2.2)) and thus to the Archimedean analog of the local
Langlands duality on the level of the Whittaker functions. We can draw the following conclusions
from this result.

• Archimedean geometry arises as a symplectic geometry of infinite-dimensional spaces of holo-
morphic maps of two-dimensional disks into a target space.

•Mirror duality between holomorphic periods and infinite-dimensional symplectic volumes/traces
is a guiding principle to construct Archimedean analogs of all standard notions of algebraic geom-
etry.

• S1-equivariant topological sigma model is a way to describe topological sigma model coupled
with topological gravity. Thus topological string theory is a proper setting for geometry over real
numbers.

3 Elementary Archimedean Langlands correspondence

Formulation in terms of two-dimensional topological field theories leads to a natural question - what
do we get by replacing the symplectic volume of M(D,GL`+1(C)/B) by the symplectic volume
of GL`+1/B. Effectively this is achieved by taking the limit ~ → ∞ where ~ is the equivariant
parameter corresponding to S1-rotations of the disk D. We call the resulting expression elementary
Whittaker function. The same limit taken in the finite-dimensional integral representation (2.2) of
Whittaker function leads to interpretation of elementary gl`+1-Whittaker function as a matrix ele-
ment of a representation of the monoid GL`+1(R) where R is a tropical semifield. The elementary
version of the Archimedean Langlands correspondence relates finite-dimensional symplectic geome-
try of flag spaces G/B and representation theory of tropical monoids associated with dual reductive
groups G∨. Below we consider the elementary version of Archimedean Langlands correspondence
following [4].

We define the elementary gl`+1-Whittaker function as U`+1-equivariant volume of GL`+1/B:

Ψ
(0)
λ1,··· ,λ`+1

(x1, · · · , x`+1) =

∫

GL`+1/B
eωU`+1

(x,λ). (3.1)

The elementary Whittaker function is a limit of the classical Whittaker function

Ψ
(0)
λ (x) = lim

~→∞
(~)−`(`+1)/2Ψλ(~x, ~). (3.2)

The integral (3.1) can be explicitly calculated in many ways e.g via explicit calculation or via the
Duistermaat-Heckman localization formula. One of the calculations is based on using the Gelfand-
Zetlin type parametrization of an open part of GL`+1/B using the Darboux coordinates {Tij , θij},
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such that the symplectic form ω is given by

ω =
∑

i≥j
δTij ∧ δθij .

Here θij are periodic coordinates θij ∼ θij + 1 and Tij ∈ R, 1 ≤ j ≤ i < ` + 1 satisfy the
Gelfand-Zetlin conditions

Ti+1,j ≥ Ti,j ≥ Ti+1,j+1, 1 ≤ j ≤ i ≤ `+ 1.

This defines the convex Gelfand-Zetlin polytop D`+1 in R`(`−1)/2 which can be interpreted as an
image of GL`+1/B under moment map with respect to U(1)`(`−1)/2.

The elementary Whittaker function given by U`+1-equivariant volume of GL`+1/B has the
following integral representation:

Ψ
(0)
λ (x) =

∫

D`+1

exp{ı
`+1∑

k=1

λk

(
k∑

i=1

Tk,i −
k−1∑

i=1

Tk−1,i

)
}
∏̀

k=1

k∏

i=1

dTk,i,

T`+1,1 ≥ . . . ≥ T`+1,`+1,

where xi = T`+1,i, i = 1, . . . , ` + 1. The elementary analog of Toda chain is given by a quantum
billiards i.e. the elementary gl`+1-Whittaker function is a common eigenfunction of the elementary
Toda chain Hamiltonians

Pi(∂x)Ψλ(x) = Pi(λ)Ψλ(x), Pi(y) ∈ C[y1, . . . , y`+1]
S`+1 ,

where x ∈ D`+1 = {x = (x1, . . . , x`+1) ∈ R`+1|xi ≥ xi+1} is a compactification of the fundamental
domain of the action of S`+1 in R`+1 and the Dirichlet boundary conditions are imposed

Ψλ(x)|xj=xj+1 = 0.

The existence of the nontrivial limit (3.2) on the level of the integral representation (2.2) is
related with the deep positivity property of the integral representation (2.2). The integral repre-
sentation of gl`+1-Whittaker function over R is obtained via explicit realization of the pairing on
infinite - dimensional principal series representation [5] . The integral is over an open part of the
flag space GL`+1/B corresponding to positive elements of the maximal unipotent subgroup N+ of
GL`+1. Positive elements of N+ are the elements realized in the standard matrix representation
by positive matrices i.e. the matrices with all non-trivial minors being positive. The product of
two positive elements of GL`+1(R) is again a positive element and thus the space of positive el-
ements GL>0

`+1(R) is a monoid (i.e. one can multiply elements but not divide in general). Note
that according to Lusztig this property allows a generalization to the case of an arbitrary reductive
group.

The gl`+1-Whittaker function can be lifted to a function on the monoid GL>0
`+1 such that the

following functional equation holds:

Ψλ(fgn) = ψ+(n)ψ−(f)Ψλ(g),

where
g ∈ GL>

`+1, n ∈ N>
+ , f ∈ N>

− ,
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and ψ± are characters of N>
± . This is a key property that allows to take the limit ~→∞ retaining

the property of the Whittaker function to be a matrix element. The resulting Whittaker function
is a matrix element of a monoid over tropical semifield.

Tropical semifield R is a set R with the following operations

α×̇β = α+ β, α+̇β = min(α, β).

The tropical semifield R can be understood as a degeneration of the standard semifield structure
on the positive subset R+ ⊂ R of real numbers written in the following form

a×~ b = a× b, a+~ b = (a~ + b~)1/~.

This semifield is isomorphic to R+ with the standard addition and multiplication via the map

a→ a
1
~ .

Consider a = e−α, b = e−β, α, β ∈ R and take the limit ~ → +∞. In the result we obtain
tropical structure

α×̇β := − lim
~→+∞

log
(
e−α ×~ e−β

)
= α+ β,

α+̇β = − lim
~→+∞

log
(
e−α +~ e

−β
)
= min(α, β).

The set of matrices Mat`+1(R) has a monoid structure arising in the limit ~ → +∞ from the

monoid structure on the subset of positive elements GL>
`+1(R

(~)
+ ).

Theorem [4]: (i) The elementary gl`+1-Whittaker function allows the following matrix element
representation:

Ψ
(0)
λ (x) = 〈ψL, π

(0)
λ (g(x))ψR〉, g(x) = diag(x1, · · · , x`+1),

where ψL and ψR are left and right Whittaker vectors.

(ii) The function Ψ
(0)
λ (x) can be naturally lifted to a function on the monoid GL`+1(R) satisfying

the functional relations

Ψ
(0)
λ (fgn) = ψ+

0 (n)ψ
−
0 (f)Ψ

(0)
λ (g), g ∈ GL`+1(R), n ∈ N+(R), f ∈ N−(R+).

The elementary analog of the Archimedean Langlands correspondence can be formulated as
follows:

U`+1-equivariant volume of GL`+1/B
=

Matrix element of the monoid GL`+1(R) where R is the tropical semifield.

4 Q1 as a common degeneration of Qp and R

The appearance of the tropical semifield in formulation of the elementary version of the Archimedean
Langlands correspondence propose the following question.

Question: Does the tropical limit have a meaning from arithmetic point of view?
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To try to answer this question let us recall that GL`+1(Qp)-Whittaker functions are given by
characters of finite-dimensional irreducible representations of gl`+1

Ψ
p−λ1 ,··· ,p−λ`+1 (n1, · · · , n`+1) = Tr Vn1,··· ,n`+1

p−λ1E11 · · · p−λ`+1E`+1,`+1 ,

where the partition n1 ≥ . . . ≥ n`+1 corresponds to a finite-dimensional irreducible representation.

One can write the character explicitly using the Gelfand-Zetlin bases in finite-dimensional ir-
reducible representations of gl`+1. Denote P`+1 a set of Gelfand-Zetlin patterns, that is a set of
collections q = {qi,j}, i = 1, . . . , `+ 1, j = 1, . . . , j of integers satisfying the conditions

qi+1,j ≥ qi,j ≥ qi+1,j+1.

An irreducible finite-dimensional representation can be realized in a vector space with the basis
vp enumerated by the Gelfand-Zetlin patterns q with fixed ni = q`+1,i, i = 1, . . . , `+ 1. This leads
to the following expression for the GL`+1(Qp)-Whittaker function of GL`+1 corresponding to a
partition (n1 ≥ . . . ≥ n`+1)

Ψ
p−λ1 ,...,p−λ`+1 (n1, . . . , n`+1) =

∑

qk,i∈P`+1

`+1∏

k=1

p−λk (
∑k

i=1 qk,i−
∑k−1

i=1 qk−1,i) .

Let ni(p, xj) be integer parts of xj/ log p, xj ∈ R. In the formal limit p→ 1 the non-Archimedean
Whittaker function reduces to the elementary Whittaker function

Ψ
(0)
λ1,...,λ`+1

(x1, . . . , x`+1) (4.1)

= lim
p→1

(log p)`(`+1)/2 Ψ
p−λ1 ,··· ,p−λ`+1 (n1(p, x1), · · · , n`+1(p, x`+1)).

This is a manifestation of the well-known fact that characters of irreducible representations turn
in appropriate limit into equivariant volumes of coadjoint orbits. The sum over the set P`+1 of
Gelfand-Zetlin patterns turns into the integral over D`+1 thus reproducing integral representation
of the elementary Whittaker function.

Thus the elementary Whittaker function can be understood not only as a limit of the Whittaker
function over R (see (3.2)) but also as a limit of the Whittaker function over Qp. Optimistically
one can consider (4.1) as an indication on the possible interpretation of the elementary Whittaker
functions/ Whittaker functions over tropical semifield as the Whittaker functions over a yet to
be defined field Q1. Let us stress that the similar relation holds between elementary version of
L-factors

L(s) =
`+1∏

j=1

1

s− λj

and non-Archimedean local L-factors. Thus elementary L-factors shall be considered as local L-
factors corresponding to Q1. Note that these local L-factors were introduced by Kurokawa as
L-factors over a field with one element F1. In our approach these local L-factors are interpreted in
terms of tropical semifield.

To clarify the relation between tropical semifield R, Q1 and Qp recall that the valuation on a
local non-Archimedean field K is a map ν : K → R such that

ν(x) = 0↔ x = 0,
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ν(x · y) = ν(x) + ν(y),

ν(x+ y) ≥ min(ν(x), ν(y)).

The non-Archimedean valuation is a morphism ν : K → R of K considered as a semifield (i.e
taking into account only addition, multiplication and division operations) to the tropical semifield
R

νp(p
na) = n, (p, a) = 1.

Thus the image of νp : Qp → R is a semifield (Z, ×̇, +̇) ∈ R and νp has a big kernel Z∗p consisting
of invertible p-adic integers.

The limit Q1 of the field Qp when p → 1 is a strange creature but at least it shall allow a
surjective valuation map ν1 onto the tropical semifield R. What is the kernel of the evaluation map
ν1 is not quite clear yet.

Fortunately many constructions over Qp can be reformulated in terms of the semifield (Z, ×̇, +̇)
considered as an image domain of the valuation map νp. These constructions then allow a limit
p→ 1 formulated in terms of the tropical semifield R.

An example of such construction is the integral representation of Qp-Whittaker functions and
its p → 1 limit. This explains the meaning of the tropical Whittaker function as the Whittaker
function over Q1.

To conclude this Section we stress the following points.

• The construction of the elementary Langlands correspondence reveals a fundamental role of
the geometry over tropical semifields as a mirror dual description of finite-dimensional symplectic
geometry.

• In elementary setting many difficult problems related with Langlands correspondence (e.g.
functoriality) have a chance to be solved in full generality.

• Positivity is an arithmetic property.

• The natural appearance of the tropical field as an image of Q1 under the norm map rises
several fundamental questions about the mysterious field Q1. What is a proper description of Q1

(what is a kernel of the valuation map ν1)? What is the residual field F1 of Q1?
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The Poincaré lemma and the period map for
p-adic varieties

Alexander A. Beilinson

For an algebraic variety X over a field of characteristic 0 we have its alge-
braic de Rham cohomology H ·dR(X) := H ·(XZar,Ω

·
X). If the base field

is C, then one has the Betti cohomology H ·B(X) := H ·(Xcl,Q) and a
canonical period isomorphism (“integration of algebraic differential forms

over topological cycles”) ρ : H ·dR(X)
∼→ H ·B(X) ⊗ C compatible with the

Gal(C/R)-conjugation. To define ρ, consider the analytic de Rham cohomol-

ogy H ·dR(Xan). One has evident maps H ·dR(X)
α→ H ·dR(Xan)

β← H ·B(X)⊗C.
Then β is an isomorphism due to the Poincaré lemma, and ρ := β−1α (the
fact that ρ is an isomorphism was established by Grothendieck).

Suppose our base field is an algebraic closure of Qp. The role of H ·B(X)
is played now by the p-adic étale cohomology H ·ét(X,Qp). Following Tate
and Grothendieck, one can ask for an analog of the period isomorphism in
this setting. The precise conjecture was made by Fontaine in the beginning
of 80s: he introduced a remarkable p-adic periods field BdR, which is a
twisted version of the Laurent power series field Cp((π)), where Cp is Tate’s
field (the p-adic completion of Q̄p) and π stands for the Tate twist Cp(1),
and conjectured that there should be a natural p-adic period isomorphism
ρp : H ·dR(X) ⊗Q̄p

BdR
∼→ H ·ét(X,Qp) ⊗ BdR compatible with the Galois

symmetries. Moreover, as was envisioned later by Fontaine and Jannsen,
the matrix coefficients of ρ should lie in the subring K̄Bst of BdR, and ρ be
compatible with the extra symmetries of log crystalline story.

The p-adic period map was defined in three very different ways in works
of, respectively, Faltings, Niziol, and Tsuji. In the talk, based on recent
papers ”p-adic periods and derived de Rham cohomology” and ”On the
crystalline period map”, I sketched another construction of ρp which is fairly
direct and has the same flavor as the classical picture. Its key ingredient is the
p-adic Poincaré lemma, which tells that natural complexes of presheaves on
the category Q̄p-varieties, defined by the derived de Rham or log crystalline
cohomology of log schemes over Z̄p, reduce to constants when viewed locally
in the h-topology. The proofs are simple applications of de Jong’s alterations
technique.

Department of Mathematics, University of Chicago, 5734 University Av-
enue, Chicago, IL 60637, USA
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GEOMETRIC CYCLES AND DISCRETE GROUPS

JOACHIM SCHWERMER

Talk at the Arbeitstagung 2011, Bonn

Let G be a connected semi-simple real Lie group with finite center, and let K ⊂
be a maximal compact subgroup. The homogenous spaceK\G = X attached to the
Riemannian symmetric pair (G,K) is a Riemannian symmetric space, diffeomorphic
to some Rn. Suppose that Γ ⊂ G is a torsion free discrete subgroup (such that G/Γ
has finite volume with respect to some non-zero G-invariant measure). Then Γ acts
freely on X, and the quotient space X/Γ is a Riemannian locally symmetric space.
Our object of concern is the cohomology space H∗(X/Γ,C), viewed as singular
cohomology or, by use of the deRham theorem, as the cohomology attached to the
complex of Γ-invariant differential forms on X. We have to distinguish two cases: Γ
is uniform (or cocompact) if G/Γ is compact, nonuniform otherwise. For example,
the principal congruence subgroups Γ(m) ⊂ SLn(Z) of level m are torsion free
subgroups of finite index for m > 4, and Γ(m) are nonuniform discrete subgroups of
SLn(R). It is a more difficult task to construct uniform discrete subgroups in a given
G. However, by a number theoretical approach, a connected semi-simple Lie group
always has discrete subgroups Γ so that G/Γ is compact. Arithmetically defined
subgroups in semi-simple algebraic groups defined over some algebraic number field
give rise to such uniform examples.

The cohomology groups attached to arithmetic groups Γ in reductive algebraic
groups defined over an algebraic number field k can be interpreted in terms of
the automorphic spectrum of the underlying arithmetic group. This context in
place, it is the main objective of this talk to discuss a geometric approach to con-
struct non-trivial cohomology classes (in particular, special cycles following Millson-
Raghunathan resp. Rohlfs-Schwermer) for arithmetically defined groups and draw
some consequences for the existence of certain automorphic representations in these
cases. In particular, we discuss the case of uniform discrete subgroups of the real
Lie group SU∗(2n), the special linear group over the Hamilton quaternions.

1. Geometric construction of cohomology classes

We briefly review the general construction of geometric cycles in arithmetic quo-
tients X/Γ as outlined in [8, Sections 6 and 9]. In the next section, in the specific
case of interest for us, we use one of the techniques developed in [7] to show that
certain geometric cycles exist and represent non-zero homology classes for the un-
derlying manifold X/Γ. This relies on the approach via “excess intersections”.

1.1. Generalities. Let G be a connected reductive algebraic group defined over
an algebraic number field k. We choose an embedding ρ : G → GLN and write
GOk

= G(k) ∩GLN (Ok) for the group of integral points with respect to ρ.
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2 JOACHIM SCHWERMER

For every archimedean place v ∈ V∞ corresponding to the embedding σv : k → k
there are given a local field kv = R or C and a real Lie group Gv = Gσv (kv).
The group G∞ =

∏
v∈V∞

Gv, viewed as the topological product of the groups Gv,

v ∈ V∞, is isomorphic to the group of real points G′(R) of the algebraic Q-group
G′ = Resk/QG obtained from G by restriction of scalars. In G∞, we identify G(k)
resp. GOk

with the set of elements (gσv )v∈V∞ with g ∈ G(k) resp. g ∈ GOk
. If Γ

is an arithmetic subgroup of G then Γ is a discrete subgroup in G∞.
Each of the groups Gv has finitely many connected components. The factor Gv

has maximal compact subgroups, and any two of these are conjugate by an inner
automorphism. Thus, if Kv is one of them, the homogeneous space Kv\Gv = Xv

may be viewed as the space of maximal compact subgroups of Gv. Since Xv is dif-
feomorphic to Rd(Gv), where d(Gv) = dimGv−dimKv, the spaceXv is contractible.
Notice that, if G is semi-simple, the space Xv is the symmetric space associated to
Gv. We let X =

∏
v∈V∞

Xv (or we write XG emphasizing the underlying k-group
G) resp. d(G) =

∑
v∈V∞

d(Gv).
A torsion-free arithmetic subgroup Γ of G acts properly discontinously and freely

on X and the quotient X/Γ is a smooth manifold of dimension d(G). The space
X/Γ has finite volume if and only if G has no non-trivial rational character, and it
is compact if and only if, in addition, every rational unipotent element belongs to
the radical of G.

1.2. The construction of geometric cycles. Let G denote a connected semi-
simple algebraic group defined over an algebraic number field k, Γ ⊂ G(k) an
arithmetic subgroup. Let H be a reductive k - subgroup of G, let KH be a maximal
compact subgroup of the real Lie group H∞, and let XH = KH\H∞ be the space
associated to H∞. If x0 ∈ X is fixed under the natural action of KH ⊂ G∞ on X,
then the assignment h 7→ x0 h defines a closed embedding XH = KH\H∞ −→ X,
that is, the orbit map identifies XH with a totally geodesic submanifold of X. Thus,
we also have a natural map jH|Γ : XH/ΓH −→ X/Γ, where ΓH = Γ ∩H(k). It is
known [8, Sect. 6] that the map jH|Γ is proper.

Now we are interested in situations in which for a given subgroupH and a torsion
free arithmetic subgroup Γ of G, the corresponding map jH|Γ is an injective immer-
sion. Thus, by being proper, jH|Γ is an embedding, and the image jH(XH/ΓH) of
XH/ΓH is a submanifold in X/Γ. This submanifold is totally geodesic, to be called
a geometric cycle in X/Γ. The following Theorem, stated in [8, Sect. 6, Thm. D]
with an outline of its proof, is a combination of a result by Raghunathan [1, Sect.
2] and a result in [7].

Theorem. Let G be a connected semi-simple algebraic k-group, let H ⊂ G be a
connected reductive k-subgroup, and let Γ be an arithmetic subgroup of G(k). Then
there exists a subgroup Γ′ of finite index in Γ such that if Γ is replaced by Γ′ the
map

jH|Γ′ : XH/Γ
′
H −→ X/Γ′

is a proper, injective, closed embedding, and so that each connected component of
the image is an orientable, totally geodesic submanifold of X/Γ′.

For example, such geometric cycles naturally arise as fixed point components of
an automorphism µ of finite order on X/Γ which is induced by a rational automor-
phism of G. It is known (see e.g. [8, 6.4]) that the connected components of the
fixed point set Fix(〈µ〉, X/Γ) are totally geodesic closed submanifolds in X/Γ of
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the form F (γ) = X(γ)/Γ(γ) where γ ranges over a set of representatives for the
classes in the non-abelian cohomology set H1(〈µ〉,Γ). Such a connected compenent
is of the form X(γ)/Γ(γ) where X(γ) is the set of fixed points of the action of µ
on X twisted by the cocycle γ. The component originates with the group G(γ) of
elements fixed by the γ-twisted µ-action on G. Occasionally one also writes XG(γ)

for X(γ). As first noted in [5] resp. [6] in specific cases, the map jG(γ)|Γ is injective
in such a case.

In general, we are interested in cases where a geometric cycle Y is orientable and
its fundamental class is not homologous to zero in X/Γ, in singular homology or
homology with closed supports, as necessary. As stated, there exists a subgroup of
finite index in Γ such that the corresponding cycles are orientable.

One way to go about the second question is to construct an orientable submani-
fold Y ′ of complementary dimension such that the intersection product (if defined)
of its fundamental class with that of Y is non-zero. In the case of classical groups,
this idea was exploited in the work of Millson-Raghunathan [4]. In doing so, if
X/Γ is non-compact, we have to assume that at least one of the cycles Y, Y ′ is
compact, while the other need not be. A simple method to prove that such a geo-
metric cycle represents a nontrivial homology class is by showing that the cycle
intersects a second geometric cycle, of complementary dimension, in a single point
with multiplicity ±1. However, geometric cycles of complementary dimension usu-
ally intersect in a quite complicated set, possibly of dimension greater than zero.
The theory of “excess intersections” as developed in [7, Sects. 3 and 4], is helpful
in such a situation. In particular, it provides a formula for the intersection number
of a pair of two such geometric cycles Y and Y ′ which intersect perfectly. We will
use this technique in the specific case we are interested in.

By definition, Y and Y ′ intersect perfectly if the connected components of the
intersection are immersed submanifolds in X/Γ and for each of the components
F of Y ∩ Y ′ the tangent bundle TF of F coincides with the intersection of the
restriction of the tangent bundles of Y and Y ′ to F , that is, TF = TY|F ∩ TY ′

|F .
If the intersection is compact the intersection number of two such cycles can be
expressed as the sum of the Euler numbers of the excess bundles corresponding to
the connected components of the intersection [7, Prop. 3.3]. A detailed analysis of
the intersection number might then enable us to show that the underlying geometric
cycles are indeed non-bounding cycles. In order to find a non-zero intersection
product, if at all possible, it is often necessary to replace the arithmetic group Γ
by a suitable subgroup of finite index.

Following the recent work [9], we discuss the geometric construction of non-
bounding cycles in the case of arithmetic subgroups in algebraic groups of type
2A2n−1.

2. Arithmetic subgroups in algebraic groups of type 2A2n−1

Starting off with a totally real number field F , a quaternion algebra Q′/F , a
specific quadratic extension field L of F , the associated quaternion algebraQ = Q′⊗
L which admits an involution τ of the second kind we attach to a suitable Hermitian
form on Q the corresponding simple connected algebraic group G′ = SU(H,Q, τ)
defined over F . For an appropriate choice of our data the group G′(R) is the real
Lie group SU∗(2n). Arithmetic subgroups of G′ give rise to discrete subgroups in
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SU∗(2n). Then one can define various (families of) rational F -automorphisms of
finite order on G′ and determine their corresponding groups of fixed points.

2.1. The algebraic group. Let F a totally real number field of degree [F : Q] =:
r ≥ 1. Denote by V∞ = {s : F ↪→ R} the set of real places of F . Instead of
s(F ) we write Fs. Let d ∈ F , d > 0 such that s(d) < 0, for all s ∈ V∞ − {id}.
It is a consequence of the weak approximation theorem for number fields that
such a number exists. Let L = F (

√
d) and let σ denote the unique non-trivial

Galoisautomorphism of the extension L/F . Furthermore, let Q′ be a quaternion
algebra over F , endowed with the canonical conjugation τc. We suppose that Q′

does not split over R. The quaternion algebra Q := Q′ ⊗ L admits the involution
τ := τc ⊗ σ of the second kind, that is, the restriction of τ to the center Z(Q) = L
of Q acts as the Galoisautomorphism σ. All involutions of the second kind on a
quaternion algebra are obtained in this way (cf. [2, 2.22]). We denote the involution
τc⊗ 1 (resp. 1⊗ σ) on Q simply by τc (resp. σ). Note that σ induces an F -algebra
automorphism, also denoted by σ, of the matrix algebra Mn(Q) of order two. By
our choice of L we see that Q does not split over R and that all other conjugates
s(Q), s ∈ V∞ − {id}, split over R.

Now, we choose h1, . . . , hn ∈ F , such that s(hi) > 0, for all i = 1, . . . , n,
s ∈ V∞ and define H = diag(h1, . . . , hn), Hk = diag(h1, . . . , hk) and Hk =
diag(hk+1, . . . , hn), k = 1, . . . , n− 1. Then we have the unitary group

U(H,Q, τ) = {g ∈ GL(n,Q)|τ(tg)Hg = H}
and the special unitary group SU(H,Q, τ) = U(Q,H) ∩ SL(n,Q). The algebraic
group G′ = SU(H,Q, τ) is a simple, simply connected, connected F -group of
type 2A2n−1. Let G := ResF/QG

′ be the algebraic Q-group obtained from G′ by
restriction of scalars. By our choice of Q′ and L, we have G′ := G′(R) ∼= SU∗(2n)
and

G := G(R) ∼= SU∗(2n)× SU(2n)× · · · × SU(2n).

Hence G′ is F -anisotropic resp. G is Q-anisotropic. Note, that in the case F = Q,
G = SU∗(2n) and G′ = G is Q-anisotropic too, since H is positive definite.

2.2. Rational automorphisms of order two. The F -rational involution θ :
G′ → G′, g 7→ H−1τc(

tg)−1H induces the ordinary Cartan involution θ : g 7→ tḡ−1

on SL(n,H), because the real group G′(θ)(R) given by the fixed points of θ in G′

is Sp(n). Given an index k = 1, . . . , n − 1, one has the F -rational involution
νk : G′ → G′, g 7→ Ik,n−kgIk,n−k, where Ik,n−k denotes the diagonalmatrix with
1 at the first k entries and −1 at the last n − k entries. The involutions νk and θ
commute with one another.

Let Skew(Q, τc) = {x ∈ Q| τc(x) = −x} be the set of skew-symmetric elements
in Q. For any invertible element u ∈ Skew(Q, τc), we get an involution conju ◦τc on
Q (cf. [2, 2.21]). The algebra Q has an L-basis given by elements 1, i, j, k such that
i2 =: a0, j

2 =: b0 ∈ F and ij = k = −ji, for short, Q = Q(a0, b0|L). Obviously,
i, j ∈ Skew(Q, τc). Define J1 := jIn, J2 := iIn,. Then µs : G′ → G′, g 7→
JsgJ

−1
s , s = 1, 2 is an F -rational automorphism. Moreover, µs is an involution and

commutes with θ. Note that τrs : Q → Q, τr1(x) = jτc(x)j
−1, τr2(x) = iτc(x)i

−1

is an antiinvolution of Q (called the reversion).
The following table lists all the subgroups of G′ obtained as groups of fixed

points as described above. It also indicates the notation for the corresponding
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geometric cycles discussed in the next section. Recall that the range of the index
k is k = 1, . . . , n− 1.

B B ∼= B(R) ∼= C
G′ SU(H,Q, τ) SL(n,H) X/Γ

G′(νk) S(U(Hk, Q, τ)×U(Hk, Q, τ)) S(GL(k,H)×GL(n− k,H)) C(νk)
G′(νkθ) SU(HIk,n−k, Q

′, τc) Sp(k, n− k) C(νkθ)
G′(µ1) SU(H,L[j], τ) SL(n,C) C(µ1)
G′(µ2) SU(H,L[i], τ) SL(n,C) C(µ2)
G′(µ1θ) SU(H,Q1, τr1) SO(n,H) C(µ1θ)
G′(µ2θ) SU(H,Q2, τr2) SO(n,H) C(µ2θ)

3. Non-bounding cycles

3.1. Special cycles. We consider an algebraic F -group G′ = SU(H,Q, τ) and the
corresponding algebraic Q-group G := ResF/QG

′ obtained from G′ by restriction
of scalars. By our choice of Q′ and L, we have G′ := G′(R) ∼= SU∗(2n) and

G := G(R) ∼= SU∗(2n)× SU(2n)× · · · × SU(2n).

A torsion free arithmetic subgroup of G′ gives rise to a discrete subgroup of the
real Lie group SU∗(2n). By the very construction of G′, using the compactness
criterion of Borel and Harish-Chandra, these discrete subgroups are cocompact.
Consequently, the arithmetic quotient X/Γ is compact.

On one hand, we have the family {νk}k=1,...,n−1 of F - rational automorphisms
of G′ of order two. On the other, we have the two F - rational automorphisms µs :
G′ → G′. In both cases the automorphisms commute with the Cartan involution
θ. Therefore, following the general construction of geometric cycles, a torsion
free arithmetic subgroup of G′ gives rise to the family {C(νk)}k=1,...,n−1 of cycles.
They come with the family {C(νkθ)}k=1,...,n−1 where the cycles C(νk) and C(νkθ),
k = 1, . . . , n−1, have complementary dimension in X/Γ. Similarly, there are cycles
C(µs), s = 1, 2, with the cycles C(µ1θ), s = 1, 2 of complementary dimension.

3.2. Theorem. There exists a uniform discrete arithmetically defined subgroup Γ
of the real Lie group SU∗(2n) so that the cohomology Hj(X/Γ,R) contains a non-
trival cohomology class for any integer

j = 4k(n− k), and j = dimX/Γ− 4k(n− k), [k = 1, . . . , n− 1]

respectively

j = (n+ 1)(n− 1) and j = n(n− 1).

By duality, these classes are detected by the fundamental classes of a totally geodesic
submanifold, a so called geometric cycle, of the form C(νk) resp. C(νkθ) in the first
case, and C(µs) resp. C(µsθ) in the second case. These classes cannot be obtained
as the restriction of a continuous class from the underlying Lie group SU∗(2n).

3.3. Comments. Since the cohomology of an arithmetically defined group Γ is
strongly related to the theory of automorphic forms with respect to Γ this geometric
construction of non-vanishing classes leads to results concerning the existence of
specific automorphic forms. The deRham cohomology groups H∗(X/Γ,C) can be
interpreted as the relative Lie algebra cohomology groups H∗(g,K,C∞(G/Γ)K⊗C)
where g denotes the complexified Lie algebra of G. Since Γ is a uniform discrete
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group, by a result of Matsushima, the study of this cohomology amounts to the
study of the finite algebraic sum

⊕
π∈Ĝ

m(π,Γ) H∗(g,K,Hπ,K ⊗ C)

where the sum ranges over all irreducible unitary representations (π,Hπ) of G
which occur with non-zero multiplicity m(π,Γ) in the spectral decomposition of

the space of square integrable functions L2(G/Γ) =
⊕̂

π∈Ĝm(π,Γ) Hπ and have
non-vanishing relative Lie algebra cohomology. One makes explicit the general
classification, due to Vogan-Zuckerman [10], of unitary representations with non-
vanishing cohomology in the case of the real Lie group SU∗(2n) (see [9, Sect. 3]).

In view of this representation theoretical interpretation of the cohomology groups,
the existence of non-vanishing geometric cycles implies the existence of certain au-
tomorphic forms. However, on one hand, a direct comparison of the various families
of non-vanishing classes for X/Γ with the family {Aq}q of irreducible unitary repre-
sentations of SU∗(2n) (up to infinitesimal equivalence) with non-zero cohomology
shows that the cardinality of the latter exceeds by far the range of geometrically
constructed cycles. Therefore the geometric construction misses possible cohomo-
logical degrees. On the other hand, in some cases one can “identify” an automorphic
form which corresponds to a non-bounding geometric cycle but, in all generality,
this is an enticing open problem. It might be that the theory of period integrals is
of some help in a structural characterization.
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MODULAR FORMS FOR GENUS THREE

GERARD VAN DER GEER

This is a report of joint work with Jonas Bergström and Carel Faber.

1. Happy Birthday to Don

2. Introduction

For an algebraic geometer modular forms live on moduli spaces; the mod-
uli spaces in question are the moduli space Ag of principally polarized abelian
varieties of dimension g and the moduli space Mg of curves of genus g. Over
C we have Ag(C) = Sp(2g, Z)\Hg , with Hg the Siegel upper half space.
Let ρ be an irreducible complex representation ρ : GL(g, C) → Aut(W ). A
Siegel modular form of weight ρ is a holomorphic map f : Hg → W such
that f((aτ + b)(cτ + d)−1) = ρ(cτ + d)f(τ) for all (a, b; c, d) ∈ Sp(2gZ). The
space of cusp forms is denoted by Sρ. We want to calculate the trace of the
Hecke operators on Sρ, and by this we mean calculating it as explicitly as
Don would do that. Our tool is the cohomology of local systems.

Recall that these moduli spaces are defined over Z and the idea is that
one can study the cohomology over Q by looking at the fibre Mg ⊗ Fp with
Fp a finite field and using comparison theorems; we get information about

the ℓ-adic étale cohomology (ℓ 6= p) of Mg ⊗Fp by counting points over finite
fields.

3. Genus one

Let us start with g = 1. The space Sk of cusp forms of weight k on
SL(2, Z) has a cohomological interpretation: consider the universal elliptic
curve π : X1 → A1 and the local system V = R1π∗Q of rank 2. For a ∈ Z≥1

we have the local system Va = Syma(V ) of rank a + 1. We look at the
‘motivic’ Euler characteristic

ec(A1, Va) =
2∑

i=0

(−1)i[H i
c(A1, Va)] ,

where the subindex c refers to compactly supported cohomology and the
square brackets indicate that we consider the cohomology in an appropriate
Grothendieck group of mixed Hodge modules or Galois representations (for

the ℓ-adic counterpart V
(ℓ)
a ). Remark that the cohomology vanishes for a

odd.
Then we have ec(A1, Va) = −S[a+2]−1 for even a ≥ 2 with S[k] the mo-

tive associated to the space of cusp forms Sk as constructed by Scholl. The
1
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Eichler-Shimura congruence relation then implies that the trace of Frobe-

nius on H1
c (A1 ⊗ Fp, V

(ℓ)
a ) equals 1 + tr(T (p), Sa+2), that is, 1 plus the trace

of the Hecke operator T (p) on Sa+2.
We then can calculate the trace of T (p) on all spaces Sa+2 if we
1) make a list of all elliptic curves defined over Fp up to ∼=Fp ;
2) determine for all E in the list #AutFp(E) and #E(Fp) = p+1−α− ᾱ.

Then the formula is

Tr(T (p), Sa+2) + 1 = −
∑

E

αa + αa−1ᾱ + · · · + ᾱa

#AutFp(E)

4. Genus Two

We extended this approach to genus 2 by looking at the universal abelian
surface π : X2 → A2, the local system V = R1π∗Q and the symplectic local
systems Vλ with λ = (a, b) associated to a representation of Sp(4, Q) of
highest weight a − b, b. We write ec(A2, Vλ) =

∑
i(−1)i[H i

c(A2, Vλ)] for the
Euler characteristic. i

Note that the cohomology vanishes if a+b is odd. A result of Faltings tells
us that H i(A2, Vλ) and H i

c have mixed Hodge structures and H i
! = Im(H i

c →
H i) has a pure Hodge structure. Moreover, if λ is regular, i.e., a > b > 0,
then if H i

! (A2, Vλ) 6= (0) we have i = 3. The first step in the Hodge filtration

F a+b+3 ⊂ F a+2 ⊂ F b+1 ⊂ F 0 = H3
! (A2, Vλ) can be interpreted as a space

of vector-valued Siegel modular cusp forms:

F a+b+3 ∼= Sa−b,b+3,

with the factor of automorphy being Syma−b(Cτ + D) det(Cτ + D)b+3 for a
matrix τ = (A,B;C,D) ∈ Sp(2g, Z).

If we want to use the traces of Frobenius obtained by counting over finite
fields to calculate the traces of the Hecke operators as we did for g = 1
we face for g = 2 two problems. First we must calculate the Eisenstein
cohomology, that is, the kernel

∑
(−1)i ker(H i

c → H i); this we did in [6, 4].
Second, there are contributions that do not see the first and the last part
of the Hodge filtration (endoscopy). We gave a conjectural formula for this
in [4]. In [8], Weissauer shows that the conjecture (in the case of a regular
weight) can be deduced from earlier work of his. Assuming this the formula
for the trace of the Hecke operator T (p) on Sa−b,b+3 is

−trace of Fp on ec(A2 ⊗ Fp, V
ℓ
a,b) + trace of Fp on e2,extra(a, b)

with Fp Frobenius at p and e2,extra(a, b) given by

sa−b+2 − sa+b+4(S[a − b + 2] + 1)Lb+1 +

{
S[b + 2] + 1 a ≡ 0(mod2)

−S[a + 3] a ≡ 1(mod2),

and L the Lefschetz motive and sk = dim Sk. With this formula and our
counting (using that A2 is the moduli space of curves of genus 2 of compact
type) we can calculate the trace of T (p) on the spaces Sj,k for all j and k for
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p ≤ 37. The results agree with everything we know about g = 2 modular
forms.

For example, let a = b = 32. Then the space S0,35 is 1-dimensional and
generated by Igusa’s χ35 and we we find for the eigenvalue for p = 37

λ37(χ35) = −47788585641545948035267859493926208327050656971703460.

Inspired by our results Harder formulated a conjecture about congruences
between g = 1 and g = 2 modular forms and we obtained a lot of numerical
evidence for this, see [7, 6]. All of these things have been generalized to
g = 2 and level 2 in [2].

5. Genus Three

What about g = 3? There we have a degree 2 map of stacks M3 → A3.
We now have local systems Va,b,c parametrized by triples (a, b, c) with a ≥
b ≥ c ≥ 0. We are interested in vector-valued Siegel modular cusp forms of
weight (a − b, b − c, c + 4), i.e. holomorphic functions f : H3 → W on the
Siegel upper half space H3 to a finite-dimensional complex vector space W
satisfying

f((aτ + b)(cτ + d)−1) = ρ(cτ + d)f(τ)

where ρ is the irreducible representation of GL(3, C) on W of highest weight
a − b, b − c, c + 4.

We now have the following conjectural formula for the trace of the Hecke
operator T (p) on the space of cusp forms Sa−b,b−c,c+4:

trace of Frobenius on ec(A3 ⊗ Fp), Va,b,c) − e3,extra(a, b, c),

with e3,extra(a, b, c) given by

−ec(A2, Va+1,b+1) − e2,extra(a + 1, b + 1) ⊗ S[c + 2]

+ec(A2, Va+1,c) + e2,extra(a + 1, c) ⊗ S[b + 3]

−ec(A2, Vb,c) − e2,extra(b, c) ⊗ S[a + 4]

The evidence we have is overwhelming and includes the following. It fits all
the calculations we did over finite fields. The numerical Euler characteristic

∑
(−1)i dim H i

c(A3, Va,b,c)

is known by [3, ?] and this fits the results. As a corollary we get a formula
for the dimension of the space of cusp forms Sa−b,b−c,c+4. We find that for
a + b + c ≤ 60 the space Sa−b,b−c,c+4 contributes to the cohomology a rank
that is always divisible by 8. For a = b = c it fits with the dimension
formula for dimS0,0,c+4 for scalar-valued modular forms due to Tsuyumine.
Moreover, we observed various sorts of Harder-type congruences between
g = 1 and g = 3 modular forms.

We also have a precise conjectural formula for all the lifts from g = 1 to
g = 3.
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Gross and Savin predicted that there should be Siegel modular forms of
genus 3 with motivic Galois group of type G2. We found examples of these,
for example in the space S3,3,7.

To illustrate our results, assuming the conjecture we find for the eigenval-
ues of T (p) with p = 2, 3, 5 and 7 on S3,3,7 the values 23 · 33 · 5, 26 · 34 · 5 · 7,
23 · 33 · 52 · 7 · 9749 and 28 · 53 · 72 · 8887.

Or taking (a, b, c) = (11, 5, 2) we find that the space of Siegel modular
cusp forms S6,3,6 is 1-dimensional, say generated by F with eigenvalue for
T (17)

λ17(F ) = −107529004510200.

One can also look at the cohomology of M3 instead of A3. The degree 2
covering M3 → A3 is ramified along the hyperelliptic locus. Unlike A3 the
moduli space M3 can have cohomology for a + b + c odd. This is related
to Teichmüller modular forms that do not come from Siegel modular forms.
An example is the modular form χ9 =

√
χ18 on M3 that vanishes on the

hyperelliptic locus and was studied by Ichikawa; we see it occurring in the
cohomology of the local system V5,5,5 on M3. We also could detect vector-
valued Teichmüller modular forms that do not come from Siegel modular
forms.
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Arbeitstagung, June 2011

T. Dimofte: Chern-Simons Theory with Complex Gauge Group

1 Introduction

I will be discussing a circle of ideas that started out with a paper of Sergei Gukov in 2003
[1], and have since appeared in papers of Sergei Gukov, Don Zagier, myself, and others
[2, 3, 4, 5, 6].

I will start with an overview of classical and quantum Chern-Simons theory with a com-
plex gauge group. I will give a few mathematical definitions and a few “physical” definitions.
While these physical definitions may initially involve objects like path integrals, I must stress
that it should be possible to define all “quantum,” “physical” objects quite rigorously —
just as in the well known case of Chern-Simons theory with compact gauge group.

Next, I will give some examples of the standard objects one computes in complex Chern-
Simons theory: partition functions, A-polynomials (and their generalizations), and quantum
Â-polynomials. I will then try to give some motivation for why these objects might be of
interest in a wider mathematical setting.

Finally, I will discuss some basic details of the actual quantization procedure used in
complex Chern-Simons theory. I hope to give a flavor of how computations actually work,
and to emphasize that the process of computation really boils down to rigorous, well defined
algebra and combinatorics.

2 Classical and quantum Chern-Simons theory

Classically, Chern-Simons theory is a theory of flat connections on a 3-manifold. It takes as
inputs

• a 3-manifold M , possibly with boundary; and

• a gauge group GC, which will be complex for us, e.g. GC = SL(2,C);

and considers flat GC connections on M . Note that locally, a connections can be described
as a Lie algebra (gC)–valued one-form A. The condition for flatness then becomes

F := dA+A ∧A = 0 . (1)

Given such a connection, Chern-Simons theory computes its “volume” on M:

“Vol(A)” = SCS(A) = −1

2

∫

M

Tr
(
A ∧ dA+ 2

3
A ∧A ∧A

)
. (2)

Now and for the rest of the talk, I will specialize to GC = SL(2,C) , which is by no means

necessary, but is useful for building intuition. When GC = SL(2,C), flat connections can
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be rewritten as hyperbolic metrics, and then we are just talking about classical hyperbolic
geometry. In particular,

SCS(A) = i(Vol(M) + iCS(M)) , (3)

where Vol(M) and CS(M) are the classical hyperbolic volume and Chern-Simons invariants
of a 3-manifold.

The story becomes a bit more interesting when M has boundaries. Then the volumes
above depend on boundary conditions. For example, if we consider a knot complement
M = S3\K, there is a torus boundary ∂M = T 2. As good boundary conditions for the
differential equation (1), we must then specify the eigenvalues of the holonomy of A around
one cycle on this torus. For a knot complement, a canonical choice of cycle is the so-called
“meridian” µ of the knot. This is a small loop that links the knot once, as in Figure 1, and
generates H1(M,Z) ' Z.

K
a) b)

µ ∼
�

m ∗
0 m−1

�

λ ∼
�
� ∗
0 �−1

�

Figure 1: Meridian (µ) and longitude (λ) holonomies for a knot complement K.

Suppose that we fix the holonomy to be conjugate to (m ∗
0 m−1 ), as in the figure. Let’s set

m = eu . (4)

Then, geometrically, Im(u) can be identified with the cusp angle at K of a hyperbolic metric
on M ; and Re(u) can be identified with the torsion in the metric as one circles around K.
The classical hyperbolic invariants in (3) (equivalently, the volume of a flat connection (2))
become generalized to

SCS(A) → SCS(A;u) = i(Vol(M ;u) + iCS(M ;u)) . (5)

Now, there is another cycle on T 2 = ∂M , dual to the meridian. It is typically called
the longitude λ of the knot, and can be described as a loop parallel to K and having zero
linking number with K (the longitude is null-homologous in M). It has its own holonomy
eigenvalues (`, `−1) = (ev, e−v). However, these are not independent of (m,m−1). Indeed, in
order to define good boundary conditions for a flat connection on M , we can specify either
m or `, but not both.

There is some interesting symplectic geometry hidden in this statement. If we define

P∂M =Mflat(SL(2,C), T 2) = {(`,m)}/Z2 ' (C∗ × C∗)/Z2 (6)

to be the space of 2d flat GC connections on the boundary, then the subset of 2d connections
that can be extended as 3d flat connections throughout the bulk of M (a.k.a. the subset of
good boundary conditions) forms a mid-dimensional submanifold

LM = {connections that extend to M} ⊂ P∂M . (7)
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Indeed, since GC = SL(2,C) is an algebraic group, it turns out that LM = {A(`,m) = 0} is
cut out by an algebraic equation; the equation is the well known A-polynomial of M [7].

Moreover, notice that LM is in fact Lagrangian in P∂M with respect to the symplectic
structure

ω = 2
d`

`
∧ dm
m

= 2 dv ∧ du . (8)

This symplectic structure is induced naturally on P∂M by the Chern-Simons action (2). This
is equivalent to saying that the classical Chern-Simons action itself (or rather, its dependence
on u = logm) can be written as

SCS(A;u) = −2

∫ u

LM
θ , (9)

where θ is a one-form that satisfies dθ = ω (for example θ = 2vdu), and we integrate along
LM . Note that on LM itself, θ is closed. In terms of hyperbolic geometry, formula (9) is pre-
cisely the variation in SCS(A;u) = i(Vol(M ;u) + iCS(M ;u)) uncovered by Neumann-Zagier
and Yoshida [8, 9].

Having described many of classical quantities associated to complex Chern-Simons theory,
we can consider what it means to quantize them. Physically, quantum Chern-Simons theory
arises by putting the Chern-Simons action (2) in a path integral, or partition function:

Z(M ;u; ~) =

∫
DA e

1
~SCS(A;u) . (10)

The functional integral here is over all connections on M (modulo gauge equivalence), not
just the flat connections. When M has a boundary, we must still impose boundary conditions
“u,” of exactly the same type discussed in the classical scenario above.1

In the semi-classical limit ~→ 0, the leading contribution to the partition function (10)
comes from critical points of the classical action — and these are precisely the classical flat
connections. Then we expect the partition function to have an (asymptotic) expansion of
the form

Z(M ;u; ~)
~→0∼ exp

[
1
~SCS(Aflat;u) + ~n≥0 corrections

]
+ expy small corrections , (11)

where Aflat is the flat connection on M with the largest volume.2 When M is a hyperbolic
manifold, this is the same as the connection associated to the hyperbolic metric. Therefore,
we can think of quantum Chern-Simons theory with gauge group GC = SL(2,C) as a theory
that lets metrics on M fluctuate away from being purely hyperbolic, but suppresses their
fluctuations by a factor of (−i)~. We see explicitly that in (11), the contribution from
non-hyperbolic metrics (non-flat connections) comes with factors of ~.

The partition function (10) is supposed to be well defined, and I will try to explain later
(Section 5) how it can be made so, in terms of a simple combinatorial algorithm. For now, let

1In particular, the notion of longitude and meridian “holonomy eigenvalues” on a torus (say) can be made
sense of even when connections A are not flat.

2More precisely, the flat connection with largest real volume ImSCS(A;u) is the dominant contribution
when −i~ is real and positive.
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me note that one way to characterize Z(M ;u; ~) is as being a solution to a certain difference
equation of the form

Â(ˆ̀, m̂; q)Z(M ;u; ~) = 0 . (12)

Here A(ˆ̀, m̂; q) is a quantization of the classical A-polynomial (defining the Lagrangian LM)
in the following sense. The canonically conjugate coordinates ` and m on P∂M are promoted
to quantum operators that act on Z(M ;u; ~) (now viewed as a wavefunction) as

m̂Z(u) = eûZ(u) = euZ(u) , ˆ̀Z(u) = ev̂ Z(u) = e
~
2
∂u Z(u) = Z(u+ ~/2) . (13)

These operators “q–commute,”

ˆ̀m̂ = q
1
2 m̂ˆ̀, with q := exp(~) . (14)

In promoting the classical polynomial A(`,m) to an operator Â(ˆ̀, m̂; q), severe q–dependent
ordering ambiguities can arise. These have all been resolved, and there is a unique way to
fix them.

3 Examples

As a first example of a partition function in quantum Chern-Simons theory, we can consider
the complement of the trefoil knot M = S3\31. The classical A-polynomial is

A31 = m6`+ 1 , (15)

and the quantum partition function turns out to be

Z(31;u; ~) = e−
1
~6u2+ 2πi+~

~ u . (16)

The trefoil is not a hyperbolic manifold in the classical sense — in particular, its hyperbolic
volume at u = 0 is zero — it still admits flat SL(2,C) connections. In fact, there is a unique
irreducible flat SL(2,C) connection, and (16) calculates fluctuations around it. In this case,
the ~-expansion in (16) is fairly trivial, due mainly to the fact that the trefoil is simply a
torus knot.

It is easy to check that (16) is annihilated by the operator

Â31 = qm̂6 ˆ̀+ 1 , (17)

which is clearly a quantization of (15). Moreover, the partition function has a symmetry

Z(31;u; ~) = Z
(
31; 2πi

~ u;−4π2

~ ) , (18)

which is the first hint of modular-like behavior in Chern-Simons theory.
A more complicated, and much more typical example is the complement of the figure-

eight knot, M = S3\41. The classical A-polynomial in this case is3

A41 = `− (m4 −m2 − 2−m−2 +m−4) + `−1 , (19)

3Since this is defining equation of a variety in C∗ × C∗, we are free to multiply A by factors of `±1 and
m±1. Here it’s written as a Laurent polynomial.
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and it becomes quantized as

Â41 = (q−1m̂2−m̂−2)ˆ̀−(m̂2−m̂−2)(m̂4−m̂2−q−q−1−m̂−2+m̂−4)+(qm̂2−m̂−2)ˆ̀−1 . (20)

This quantization is far from obvious. The quantum Â operator annihilates a partition
function

Z(41;u; ~) =
1√
π~
e−

4u2+2πiu
~

∫
dp

Φ~(p− 2u)

Φ~(−p)
e

2pu
~ , (21)

where Φ~(p) is the “noncompact” quantum dilogarithm function [10, 11], given (e.g.) as

Φ~(p) :=
∞∏

r=1

1 + e(r− 1
2

)~+p

1 + e(r− 1
2

) 4π2

~ + 2πi
~ p

, (Re ~ < 0) , (22)

with a similar formula when Re ~ > 0.
In the classical limit ~→ 0, we have Φ~(p) ∼ e

1
~Li2(−ep), so

Z(41;u; ~) ∼ 1√
π~
e−

4u2+2πiu
~

∫
dp exp

1

~
[
Li2(−ep−2u)− Li2(−e−p) + 2pu

]
. (23)

The integrand has two critical points, each corresponding to a flat connection on the 41

knot complement. In particular, the flat connection that provides the dominant asymptotic
in (23) is the one giving the hyperbolic metric. We find, as expected, that Z(41;u; ~) ∼
exp i

~

[
Vol(41;u) + iCS(41;u)

]
. It is useful to observe that hyperbolic volumes are typi-

cally expressed as a sum of classical dilogarithms; whereas quantum Chern-Simons partition
functions are typically integrals of products of quantum dilogarithms.

The inversion symmetry (18) also holds for the figure-eight partition function (up to a

factor of e
4πi
~ u). More precisely, I should say this holds formally for the integral (21), and

will hold more concretely once specific integration contour(s) are chosen.

4 Why is this interesting?

Chern-Simons theory with complex gauge group has deep and interesting connections to
other subjects in geometry, topology, and number theory. I’ll list four of them.

4.1 Knot polynomials

First, there is a relation between partition functions Z(M ;u; ~) and more common, compact
knot and 3-manifold invariants, such as Jones polynomials.

For example, the compact version of the SL(2,C) invariants discussed here are the col-
ored Jones polynomials. As Witten explained 20 years ago, the colored Jones polynomials
of a knot K arise by considering Chern-Simons theory with compact gauge group SU(2).
Specifically, if we put SU(2) Chern-Simons theory on a manifold M = S3\K, set ~ = 2πi

k
,

or q to be a root of unity

q = e
2πi
k , (24)

5



and fix boundary conditions4

m = eu ≡ e
iπN
k = qN/2 (25)

for N ∈ N, then the compact Chern-Simons partition function becomes the colored Jones
polynomial JN(K, q).

In 2003, Gukov argued that SL(2,C) Chern-Simons theory should be thought of as
an analytic continuation of SU(2) theory. In particular, the complex partition functions
Z(M\K;u; ~) should have the same semi-classical asymptotics at fixed u and ~→ 0 as the
colored Jones. This generalized and gave a physical motivation for the Volume Conjecture
[12, 13], which states that the asymptotics of colored Jones polynomials are governed by the
hyperbolic volume of a knot complement.

Gukov also argued that there should exist a quantized version of the A-polynomial, our
“Â” operator, that annihilates the complex Chern-Simons partition function — and that this
same operator provides a recursion relation for the colored Jones polynomial. By translating
the action of ˆ̀ and m̂ operators (13) to compact notation, we see that they should act on
JN(K; q) as

m̂ JN(K; q) = qN/2JN(K; q) , ˆ̀JN(K; q) = JN+1(K; q) . (26)

Thus, an equation
Â(ˆ̀, m̂; q) JN(K; q) = 0 (27)

becomes a recursion relation.
Luckily, Garoufalidis and Le [14, 15] had already discovered that colored Jones polyno-

mials obey such recursions, and Garoufalidis had conjectured that the recursion operators
reduce to the A-polynomial in the classical limit q → 1. We now have a way of unambigu-
ously quantizing Â-polynomials directly in complex Chern-Simons theory, and all tests so
far show that they are exactly the same5 operators appearing in JN(K; q) recursions. A
similar exact relation between compact and complex partition functions (rather than just
the operators that annihilate them) has yet to be fully understood; the analytic continuation
that takes JN(K; q) to Z(M ;u; ~) is highly subtle.

4.2 Lifting quantum Teichmüller theory

We have already discussed the fact that Chern-Simons theory with complex gauge group
SL(2,C) provides a quantization of 3d hyperbolic geometry. Thus, one might think of it
as a 3d lift of 2d quantum Teichmüller theory, which quantizes 2d hyperbolic geometry on
surfaces.

For example, in 2d quantum Teichmüller theory [16, 17], one quantizes the space PΣ of
hyperbolic metrics on a surface Σ, obtaining an infinite-dimensional Hilbert space HΣ. The
quantization is done with respect to the Weil-Petersson symplectic form ωWP on PΣ. Then
one asks how elements ϕ of the mapping class group of Σ act on HΣ.

The question of mapping class group is answered in Chern-Simons theory by considering
3-manifolds that are mapping cylinders, twisted by ϕ : Mϕ = Σ ×ϕ I. Topologically, this

4More commonly, the integer label N of the colored Jones polynomials is associated to the dimension of
a representation of SU(2) that “colors” the knot. This description is equivalent to fixing discrete boundary
conditions at the knot, as in (25).

5With one well understood caveat; interested readers are referred to Section 2 of [4] for further discussion.
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manifold is just a cylinder, but we choose boundary conditions at the two ends of the interval
I in a manner consistent with the twisting. (For example, if Σ = T 2 and φ = S, we would
fix the meridian at one end of T 2 × I and the longitude at the other end.) Since the total
boundary of Mϕ is Σ t Σ, the Chern-Simons partition function Z(Mϕ) — depending on
boundary conditions at both ends — is an element of6 H∗Σ ⊗HΣ, and it naturally provides
an isomorphism

Z(Mϕ) : HΣ
∼−→ HΣ . (28)

This isomorphism is the sought after mapping class group action. Moreover, the quantized
Lagrangian L̂Mϕ that annihilates Z(Mϕ) provides a corresponding isomorphism in the alge-
bra of operators on HΣ.

More generally, Chern-Simons theory provides a map HΣ → HΣ′ associated to any 3d
cobordism M between surfaces Σ and Σ′. In fact, it must do so in order to be a good TQFT
(topological quantum field theory). The relation between Chern-Simons and Teichmüller
theories was first discussed in [18]; explicit details of partition functions and cobordisms in
the present SL(2,C) setting appear in [5, 19, 20].

4.3 K-theory and quantization

Quantization of the A-polynomial Â(ˆ̀, m̂; q), and quantization of more general Lagrangians,
may have applications and implications in many other disciplines.

Algebraically, quantization is closely related to K-theory of function fields. Specifically,
one can think of ` and m as two rational functions on the classical A-polynomial curve
LM = {A(`,m) = 0}. There is a strong physical constraint on the form the A-polynomial
can take in order for it to be quantizable — the constraint is essentially equivalent to the
integral (9) being well defined. It then turns out (cf. [6]) that this physical constraint is
equivalent to the class {`,m} being torsion in the K-theory group K2(LM).

Another method for quantizing curves, which was presented earlier in this Arbeitstagung
by G. Borot, is the “topological recursion” of Eynard and Orantin [21]. The topological
recursion can take an abstract curve A(`,m) = 0 (not necessarily the A-polynomial of any
knot) and compute an operator Â(`,m; q) order by order in ~ = log(q). It is widely believed
that this quantization should be the same as the one given by Chern-Simons theory, and
this idea has recently been investigated in [22, 23, 6].

4.4 Modularity?

Finally, we hope that complex Chern-Simons theory will provide a window into the modu-
lar behavior of quantum topological invariants. There have been many hints that various
versions or limits of Chern-Simons theory should be modular — starting with the work of
Lawrence and Zagier 11 years ago [24], and leading up to Zagier’s recent discoveries of “quan-
tum modular forms” [25]. Further modularity for colored Jones polynomials was discussed
at this Arbeitstagung by S. Garoufalidis.

6Implicit in this statement is the fact that the Hilbert space of Chern-Simons theory is the same as
quantum Teichmüller space. This turns out to be the case! In particular, Chern-Simons phase spaces P∂M

are complexifications of classical Teichmüller spaces PΣ, and the form (8), generalized to arbitrary surfaces
Σ, is just an analytic continuation of the Weil-Petersson form.
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In complex Chern-Simons theory, it has been shown quite generally that the partition
functions always have a symmetry [4, 5]

Z(M ;u; ~) = Z(M ; 2πi
~ u;−4π2

~ ) . (29)

Upon associating ~ ∼ τ (up to a scaling), this should be reminiscent of a Jacobi-type modular
S transformation (z, τ)→ (z/τ,−1/τ). Usually, S is generator of the modular group whose
action is nontrivial (on, say, Jacobi forms); the action of T : τ → τ + 1 is very easy to
see. In constrast, in complex Chern-Simons theory, the situation is maximally reversed: S
is immediate, but T is not a symmetry of the partition function at all. Whether Z(M) can
be modified or redefined in some way so as to make it fully modular is still an open and
interesting question.

5 Rudiments of quantization

In the remainder of these notes, let me give a brief taste of how quantization and computa-
tions actually work. The basic idea is to take a potentially complicated 3-manifold M and
cut it into ideal tetrahedra,

M  
N⋃

i=1

∆i . (30)

Then each tetrahedron ∆i is quantized in a canonical way, obtaining both a partition function
Z(∆i) and an operator Â∆i

that annihilates it; and the tetrahedra are glued back together
appropriately to produce the partition function and operator(s) associated to M . This
method of cutting and gluing uses the basic properties of Chern-Simons theory as a TQFT.

Such a construction applies to a wide class of 3-manifolds. In [4], I recently showed how
to use it for any knot or link complements in S3 aside from the unknot.7 In upcoming work
[20] with D. Gaiotto, S. Gukov, and R. van der Veen, the construction will be extended to
3-manifolds with arbitrary Riemann surface boundaries.

Let me consider then a single ideal tetrahedron ∆. Topologically, it is best to think of
it as a tetrahedron whose vertices have been truncated (Figure 2). In terms of hyperbolic
geometry, the vertices lie off at infinity, at the boundary of hyperbolic three-space, and are
not part of the tetrahedron itself. Several of these ideal tetrahedra can be glued together
to form any knot complement M (aside from the unknot), where little truncated vertex
boundaries come together to form the torus boundary of M . For example, the figure-eight
knot complement can be decomposed into two ideal tetrahedra.8

The hyperbolic (or SL(2,C) structure) on an ideal tetrahedron can be described in
terms of three complex parameters z, z′, z′′. These are complexified dihedral angles (in fact,
exp[torsion + i(angle)]) on pairs of opposite edges, as in Figure 2, and satisfy

zz′z′′ = −1 (31)

7A slightly different cutting and gluing construction in much the same spirit, based on [26], was first used
in [2] to obtain Chern-Simons partition functions.

8The idea of 3d ideal hyperbolic triangulations was pioneered by W. Thurston.
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Figure 2: An ideal hyperbolic tetrahedron, with vertices truncated

and
z + z′−1 − 1 = 0 (⇔ z′ + z′′−1 − 1 = 0 ⇔ z′′ + z−1 − 1 = 0 ) . (32)

Therefore, only a single one of the z, z′, z′′ is truly independent. I claim that the space of flat
SL(2,C) connections on the boundary of a tetrahedron should be constrained by the first
equation:

P∂∆ ' {(z, z′, z′′) ∈ (C∗)3 | zz′z′′ = −1} , (33)

whereas the space of flat connections that can extend from the boundary to the bulk9 is cut
out by the second equation:

L∆ = {z + z′−1 − 1 = 0} ⊂ P∂∆ . (34)

This is a Lagrangian submanifold with respect to the symplectic structure

ω∂∆ =
dz

z
∧ dz

′

z′
. (35)

In order to quantize, z, z′, z′′ should be promoted to operators ẑ, ẑ′, ẑ′′ that q-commute,

ẑẑ′ = qẑ′ẑ , ẑ′ẑ′′ = qẑ′′ẑ′ , ẑ′′ẑ = qẑẑ′′ , (q = e~) (36)

and have satisfy a central constraint ẑẑ′ẑ′′ = −q. Moreover, the classical Lagrangian L∆

should be promoted to an operator L̂∆ = ẑ+ ẑ′−1− 1 that annihilates the partition function
of a tetrahedron:

(ẑ + ẑ′−1 − 1)Z(∆;Z ′; ~) = 0 , (37)

where Z ′ := log(z′) is the equivalent of the meridian boundary parameter “u” for an ideal
tetrahedron, and we define an action ẑ′Z(Z ′) = eZ

′Z(Z ′), while ẑZ(Z ′) = Z(Z ′ + ~). It is
fairly easy to see that a solution to (37) (that also happens to satisfy the symmetry (29)) is

Z(∆;Z ′; ~) = Φ~(−Z ′ + iπ + ~
2
) . (38)

Thus, the partition function of an ideal tetrahedron is precisely a quantum dilogarithm
function.

9To be completely rigorous: P∂∆ is the moduli space of SL(2,C) structures on ∂∆ viewed as a three-
punctures sphere, with a requirement that the holonomy at each puncture be unipotent. The Lagrangian
L∆ then describes the subset of connections whose holonomy at the punctures is trivial.
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The partition function has several wonderful properties, including invariance under cyclic
permutations z → z′ → z′′ → z, which is clearly a symmetry of the phase space P∂∆ and
the Lagrangian L∆. These are discussed in [4].

The most important and interesting part of the quantization construction is the gluing
of tetrahedra together to form a nontrivial 3-manifold, and unfortunately there is no time to
do justice to it presently. Details of this gluing are also discussed in [4]. Very roughly, gluing
involves a generalized symplectic reduction, both classically and quantum mechanically. For
example, the phase space P∂M for a glued manifold is the symplectic reduction of a product
of phase spaces P∂∆1×· · ·×P∂∆n for component tetrahedra. Classically, this basically follows
from the work of Neumann and Zagier [8]. A product of classical Lagrangians L∆i

can be
pulled through the symplectic reduction to yield a Lagrangian LM ⊂ P∂M for M , as can
quantum Lagrangians and quantum partition functions. The final result is an operator ÂM
and a partition function Z(M) that it annihilates; and because individual tetrahedra have
Z(∆i) equal to quantum dilogarithms (38), the total partition function Z(M) generically
becomes an integral of a product of quantum dilogarithms. All ordering ambiguities and
factors of ‘q’ in the operator ÂM are completely and uniquely fixed by requiring that the
final answer is independent of how a 3-manifold M is actually triangulated — i.e. that the
final answer is a topological invariant of M , precisely as complex Chern-Simons theory should
provide.
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ON MULTIPLE ZETA VALUES

It is a great pleasure, and no small honour, to give this talk on the occasion of Don Zagier’s 60th
birthday. I shall report on the recent proof of some conjectures on multiple zeta values, in which Don
played a crucial role.

1. INTRODUCTION

Let n1, . . . , nr−1 ≥ 1, nr ≥ 2 be integers. Themultiple zeta valueis defined by

(1.1) ζ(n1, . . . , nr) =
∑

0<k1<...<kr

1

kn1
1 . . . knr

r
∈ R .

Theweightof a tuple(n1, . . . , nr) is the quantityn1 + . . .+nr, its depthis the integerr. These numbers
were first defined by Euler forr = 2, and were popularized by Don Zagier in the 90’s, who discovered
that they satisfy vast numbers of relations. For example, there area priori 213 = 8192 such numbers in
weight15, but in reality they form a vector space overQ of dimension at most28.

Let Z denote theQ-vector space spanned by the numbers(1.1). It is relatively easy to show thatZ is
closed under multiplication. The purpose of this talk is to outline a proof of the following two theorems:

Theorem 1. The periods of mixed Tate motives overZ lie in Z[2iπ−1].

An obvious question is whether there is a vector space (or algebra) basis forZ overQ, and one can
try to write down a conjectural basis in each weight and low depth. There were good reasons for thinking
(see§3.2) that such a basis might have consisted of the set ofζ(n1, . . . , nr)π

2m, where allni are odd.
This approach is quickly scuppered by the existence of exceptional relations such as

(1.2) 28 ζ(3, 9) + 150 ζ(5, 7) + 168 ζ(7, 5) =
5197

691
ζ(12) .

It is the first in an infinite series of identities amongst double zetas which were discovered by Gangl,
Kaneko and Zagier, and are related to the period polynomialsfor cusp forms of weightk for PSL(2, Z).
This is the first inkling of the shadow cast by the world of elliptic motives on the multiple zeta values. In
order to circumvent this problem, one can instead try to find aconjectural basis inhighdepth, and indeed
this had previously done by M. Hoffman in 1997, who conjectured the following theorem:

Theorem 2. Every multiple zeta value of weightN is aQ-linear combination of

{ζ(a1, . . . , ar) : whereai = 2 or 3 , anda1 + . . . + ar = N} .

Theorems 1 and 2 are proved simultaneously using motivic multiple zeta values, which are closely
related to the motivic fundamental group ofP1\{0, 1, ∞}. Deligne has recently proved analogous results
for P1\{0, µN , ∞}, whereµN is the group ofN th roots of unity andN = 2, 3, 4, 6, 8. The situation is
rather different, since for these exceptional values ofN , exotic relations such as(1.2) do not arise.

2. MZV’ S AS PERIODS

In order to see why multiple zeta values are periods, consider the following example:

(2.1) ζ(2) =

∫

0≤t1≤t2≤1

dt1
1 − t2

dt2
t2

(Leibniz)

It is a period of the moduli space of genus0 curves with5 marked points:

M0,5 =
(
P1\{0, 1, ∞} × P1\{0, 1, ∞}

)
\∆

Date: 29 June 2011.
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where∆ denotes the diagonal. Its real points are pictured here.

0 ∞1

0

1

∞
B1 A1 A2 B2

A3

B3

A4

Let

ω =
dt1

1 − t1

dt2
t2

∈ Ω2(M0,5) ,

which has singularities contained inA =
⋃4

i=1 Ai, and let

X = {0 ≤ t1 ≤ t2 ≤ 1} ⊂ P1 × P1

whose boundary is contained inB =
⋃3

i=1 Bi. They define (co-)homology classes:

[ω] ∈ H2
DR(P1 × P1\A)

[X ] ∈ H2,B(P1 × P1, B) ∼= H2(P1 × P1, B)∨

As a first approximation, one would like to consider the motive H2(P1 × P1\A, B\B ∩ A) which is of
mixed Tate type. However, for technical reasons (the boundary of X meets the boundary ofA at the
points(0, 0) and(1, 1)) this is not the correct object. Instead, one must consider

M = H2(M0,5\A′, B′\B′ ∩ A′)

whereM0,5 is the blow-up ofP1 × P1 in (x, x), wherex = 0, 1, ∞, andA′, B′ are slightly larger sets
of boundary divisors which include the exceptional divisors. One verifies this time that[ω] ∈ MDR and
[X ] ∈ M∨

B . Thus the integral(2.1), and hence the numberζ(2), is a period ofM .

Idea 1: Replace the numberζ(2) ∈ R with the tripleζm(2)
def
= (M, [ω], [X ]), or ‘motivic ζ(2)’. The

periodζ(2) can be retrieved from this data simply by integrating[ω] over[X ], by(2.1)

2.1. Generalization. In general, letε1, . . . , εn ∈ {0, 1}, whereε1 = 1 andεn = 0. Let

(2.2) I(0; ε1, . . . , εn; 1) =

∫

0≤t1≤...≤tn≤1

dt1
t1 − ε1

. . .
dtn

tn − εn
.

It was observed by Kontsevich that (recallnr ≥ 2):

ζ(n1, . . . , nr) = (−1)rI(0; 10n1−110n2−1 . . . 10nr−1; 1)

where0k denotes a sequence ofk consecutive zeros. IfN = n1 + . . . + nr, then Goncharov and Manin
showed as a consequence that(2.2) is a period ofHN+3(M0,N+3\A, B\(A ∩ B)), whereA, B are
unions of distinct boundary divisors ofM0,N+3, the Deligne-Mumford compactification ofM0,N+3, and
furthermore that this defines an element in the categoryMT (Z) of mixed Tate motives overZ.

2.2. Regularization. One can defineI(ε0; ε1, . . . , εn; εn+1) for any εi ∈ {0, 1}, where the integral
(2.2) formally diverges. It is easily expressible as aZ-linear combination of multiple zeta values(1.1).
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3. MIXED TATE MOTIVES

3.1. Structure of MT (Z). Let MT (Z) denote the category of mixed Tate motives overZ. It is an
abelian tensor category whose simple objects are the Tate motivesQ(n), indexed byn ∈ Z, and which
have weight−2n. The structure ofMT (Z) is determined by the data:

(3.1) Ext1MT (Z)(Q(0), Q(n)) ∼=
{

Q if n ≥ 3 is odd,
0 otherwise,

and the fact that theExt2’s vanish. The dimensions(3.1) come from Borel’s computation of the ranks
of the rational algebraicK-theory ofQ. A better way to think about it is to observe thatMT (Z) is a
Tannakian category with a canonical fiber functor. ThusMT (Z) is equivalent to the category of repre-
sentations of an affine group schemeGMT overQ, which is a semi-direct product

(3.2) GMT
∼= GU ⋊ Gm ,

whereGU is the prounipotent algebraic group overQ whose Lie algebra is the free Lie algebra with one
generatorσ2n+1 in degree−(2n + 1). The generators correspond to(3.1), and the freeness follows from
the vanishing of theExt2’s. A variant of Idea 1 is the following rough statement:

Idea 2: A period, e.g. a multiple zeta value, defines a function onGU .

3.2. Functions on the motivic Galois group. Let AMT denote the graded ring of affine functions on
GU overQ. It is a commutative graded Hopf algebra. It follows from theremarks above thatAMT is
non-canonically isomorphic to the cofree Hopf algebra on cogeneratorsf2r+1 in degree2r + 1 ≥ 3:

AMT ∼= Q〈f3, f5, f7, . . .〉 .

This has a basis consisting of non-commutative words in thefodd’s. The multiplication onAMT is given
by the shuffle product, and the coproduct∆ : AMT → AMT ⊗Q AMT is given by deconcatenation:

∆(fi1 . . . fir ) =
r∑

k=0

fi1 . . . fik
⊗ fik+1

. . . fir

Define the following trivial comodule overAMT :

(3.3) HMT+ = AMT ⊗Q Q[f2] ,

wheref2 is of degree 2, and commutes with thefodd. We also write the coaction:

∆ : HMT+ −→ AMT ⊗Q HMT+ .

It is determined by its restriction toAMT and the formula∆(f2) = 1 ⊗ f2. If we setdk = dimQ HMT+

k ,
then one readily verifies thatd0 = 1, d1 = 0, d2 = 1, and

(3.4) dk = dk−2 + dk−3 for k ≥ 3 .

Here, a subscript (e.g.Zk, HMT+

k ) denotes the subspace spanned by elements of weightk.

Example 3. HMT+

8 is of dimension 4, spanned byf5f3, f3f5, f2
3 f2, andf4

2 . Compare the spaceZ8 of
MZV’s of weight 8, which is spanned byζ(3, 5), ζ(3)ζ(5), ζ(3)2ζ(2), andζ(8).

4. MOTIVIC MULTIPLE ZETA VALUES

The idea is to lift the multiple zeta valuesζ(n1, . . . , nr) to motivic versionsζm(n1, . . . , nr), in such a
way that the standard relations hold. Using the theory of themotivic fundamental group ofP1\{0, 1, ∞},
one can show that there exists a graded algebraH, generated by elements

Im(ε0; ε1, . . . , εn; εn+1) ∈ H for all ε0, . . . , εn+1 ∈ {0, 1} ,
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which we call motivic iterated integrals, such that all the usual properties of iterated integrals hold (shuffle
product, reflection formulae, etc). There is a well-defined map called theperiod,

per : H → R
Im(ε0; ε1, . . . , εn; εn+1) → Im(ε0; ε1, . . . , εn; εn+1) .

We define themotivic multiple zeta valueto beζm(n1, . . . , nr) = (−1)rIm(0; 10n1−1 . . . 10nr−1; 1). Its
period isζ(n1, . . . , nr). The coalgebraH admits a coaction ofAMT which we describe in§5 .

Proposition 4. There is a non-canonical embedding of algebra-comodules over AMT

(4.1) H →֒ HMT+

which mapsζm(2) to f2, andζm(2n + 1) to f2n+1 for all n ≥ 1.

The motivic formalism is very powerful. For instance, the proposition immediately implies that

dimQ Zk ≤ dimQ Hk ≤ dimQ HMT+

k = dk

where the numbersdk are defined by(3.4). This upper bound was first proved independently by Gon-
charov and Terasoma, proving one half of Zagier’s conjecture, which states thatdimQ Zk = dk.

5. THE COACTION

What we gain in passing to motivic multiple zeta values is thecoaction ofAMT . Let A = H/ζm(2),
and denote the quotient map byπ : H → A. The following formula is a refinement of a formula due to
Goncharov, which is in turn dual to a formula computed by Y. Ihara many years earlier.

Proposition 5. The coaction∆ : H → A ⊗Q H can be computed explicitly as follows. For any
a0, . . . , an+1 ∈ {0, 1}, the image of a generator∆ Im(a0; a1, . . . , an; an+1) is given by

(5.1)
∑

i0<i1<...<ik<ik+1

π
( k∏

p=0

Im(aip ; aip+1, . . , aip+1−1; aip+1)
)

⊗ Im(a0; ai1 , . . , aik
; an+1)

where the sum is over indices satisfyingi0 = 0 andik+1 = n + 1, and all0 ≤ k ≤ n. The left-hand side
of the coproduct is viewed moduloζm(2). Note thatIm(a; b) is defined to be1 for all a, b ∈ {0, 1}.

The following diagram illustrates a typical term in the formula:

ε8ε0

ε7ε1

ε6ε2

ε5ε3

ε4

π
(
Im(ε0; ε1, ε2; ε3)I

m(ε3; ε4, ε5; ε6)I
m(ε6; ε7; ε8)

)
⊗ Im(ε0; ε3, ε6; ε8)

6. THE HOFFMAN BASIS

Main Theorem 6.1. The following elements are linearly independent:

(6.1) {ζm(a1, . . . , ar), whereai = 2 or 3} ⊂ H .
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Let H2,3 denote theQ-linear span of the elements(6.1). We have

(6.2) H2,3 ⊆ H ⊆ HMT+

The main theorem implies that

dimQ H2,3
N = #{(a1, . . . , ar) : ai = 2 or 3 anda1 + . . . + ar = N}

The number on the right-hand side is clearly equal to the integerdN = dimQ HMT+

N , by (3.4). It follows

thatdimQ H2,3
N = dimQ HMT+

N and we have equalities in(6.2). There are two consequences:

Corollary 6. H2,3 = H. In other words, every motivic multiple zeta valueζm(n1, . . . , nr) is aQ-linear
combination of elements of the form(6.1) with indices2 or 3.

By taking the period map, this implies that every multiple zeta value is aQ-linear combination of
Hoffman elements, and hence implies theorem2.

Corollary 7. H = HMT+ .

Equivalently, the category of mixed Tate motives overZ is spanned by the motivic fundamental group
of P1\{0, 1, ∞}, as conjectured by Deligne and Ihara. On taking the period map, it implies theorem1.

7. SOME IDEAS OF THE PROOF OF THE MAIN THEOREM

(1) Introduce thelevel filtrationonH2,3, defined by

FℓH2,3 = Q〈ζm(a1, . . . , an) : ai = 2 or 3, and at mostℓ indicesai = 3〉 .

The proof of the independence of(6.1) is by induction on the level.

(2) Surprisingly, the subspaceH2,3, and the level filtration, are motivic. In other words:

∆ : FℓH2,3 → A ⊗Q FℓH2,3 .

(3) The formula(5.1) for the coaction is unwieldy and complicated. It is considerably simplified if
one passes to the infinitesimal coaction. For this, letL = A>0/A>0A>0, and set

(7.1) D : H ∆−→ A ⊗Q H −→ L ⊗Q H
(4) Analyze what happens in levels0 and1. In level 0, we haveF0H2,3 = {ζm(2, . . . , 2)} . One

shows thatζm(2, . . . , 2︸ ︷︷ ︸
n

) = 6n

(n+1)!ζ
m(2)n and so maps to 0 inA. In level 1, the elements are

F1H2,3 = {ζm(2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

)}

One shows that there exist constantsca,b ∈ Q andαi ∈ Q such that

ζm(2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

) = ca,bζ
m(2a + 2b + 3) +

a+b∑

i=1

αiζ
m(2i + 1)ζm( 2, . . . , 2︸ ︷︷ ︸

2(a+b+1−i)

)

Thecoefficientsca,b have to be computed analytically: see§8 for this part of the story.
(5) Look at the infinitesimal coaction on the associated graded of H2,3 for the level filtration. In

each weightN , and levelℓ, (7.1) defines an operatorwhich lowers the level:

DN,ℓ : grF
ℓ H2,3

N −→
⊕

i≥1

grF
ℓ−1 H2,3

N−2i−1

The bulk of the work consists in showing thatDN,ℓ is injective. This follows from2-adic proper-
ties of the coefficientsca,b, which follow from Zagier’s theorem. Theorem 6.1 follows from the
injectivity of theDN,ℓ: take a non-trivial relation between the elements(6.1) which is of minimal
level. ApplyingDN,ℓ gives a non-trivial relation of smaller level, which gives acontradiction.
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8. ZAGIER’ S THEOREM

To see why the coaction alone is insufficient to determine thefull structure of the motivic multiple
zeta values, consider the following example in weight5. The vector spaceHMT+

5 is spanned by two
elements:f5, andf3f2, and likewiseH5 is also of dimension two, spanned byζm(5) andζm(3)ζm(2).
The Hoffman elements of weight 5 areζm(2, 3) andζm(3, 2), so we know that

ζm(3, 2) = c32 ζm(5) + d32 ζm(3)ζm(2)

ζm(2, 3) = c23 ζm(5) + d23 ζm(3)ζm(2)

for some coefficientsc23, c32, d23, d32 ∈ Q. The coaction tells us thatd23 = 3, d32 = −2 but gives us no
information about the coefficientsc23, c32. They can be computed by taking a regulator map.

Thus to determinec23, for example, take the period map, which gives:

c23 =
ζ(2, 3) − 3 ζ(3)ζ(2)

ζ(5)
=

−11

2
.

By a similar computation, one can show thatc32 = 9/2. The injectivity ofD5,1 in this case is equivalent
to the invertibility of the following matrix:

(
c32 d32

c23 d23

)
=

(
9
2 −2

−11
2 3

)

8.1. Zagier’s theorem. The missing ingredient is provided by the following theorem.

Theorem 8. (Don Zagier 2010). Leta, b ≥ 0. Then

ζ(2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

) = 2
a+b+1∑

r=1

(−1)r
((

2r

2a + 2

)
−

(
1 − 2−2r

)( 2r

2b + 1

))
ζ(2r + 1) ζ(2, . . . , 2︸ ︷︷ ︸

a+b+1−r

) .

His proof is quite remarkable. First he defines the two generating series

F (x, y) =
∑

a, b≥0

(−1)a+b+1Z(a, b)x2a+2 y2b+1

F ∗(x, y) =
∑

a, b≥0

(−1)a+b+1Z∗(a, b)x2a+2y2b+1 ,

whereZ(a, b) denotes the left-hand side of the equation in theorem 8, andZ∗(a, b) is the right-hand
side. He then shows: first, that the generating functionF (x, y) can be expressed as the product of a sine
function and the derivative of an3F2-hypergeometric function, and second, that the generatingfunction
F ∗(x, y) is a linear combination of fourteen functions which are products of the sine function and a
digamma function. These two expressions are seemingly totally unrelated. Nevertheless, he shows that

• F (x, x) = F ∗(x, x) for all x ∈ C
• F (n, y) = F ∗(n, y) for all n ∈ N andy ∈ C
• F (x, n) = F ∗(x, n) for all n ∈ N andx ∈ C

The last two identities are completely non-trivial. Finally, by bounding the growth of the functions
F (x, y) andF ∗(x, y), one can show using a variant of the Phragmén-Lindelöf theorem that these prop-
erties are enough to conclude thatF (x, y) = F ∗(x, y) for all x, y ∈ C, which completes the proof.
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Average rank?

Q: What is the rank of elliptic curves on average?

In order to ask this question more precisely, we need a natural way
to measure the size of elliptic curves, so that we can order them by
size.

We use the simplest such measure, called the naive height, which
is basically a measure of the size of the coefficients of the defining
equation of the elliptic curve.
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A canonical representation of rational elliptic curves

To define the naive height, we use the following

Fact: Any elliptic curve E over Q is isomorphic to a cubic curve
in the plane of the form

EA,B : y2 = x3 + Ax + B.

In fact, any E/Q is isomorphic to a unique EA,B such that

for all primes p, p4 | A ⇒ p6 - B.

The reason is: if p4 | A and p6 | B, then EA,B
∼= EA/p4,B/p6 via

x 7→ p2x ′ and y 7→ p3y ′.
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The height of an elliptic curve

Thus we have a canonical representation of any E/Q as

EA,B : y2 = x3 + Ax + B.

We may thus define the height of E by the size of the coefficients
of the defining equation.

If E = EA,B , then H(EA,B) := max{4|A|3, 27B2}. This is called the
(naive) height of E .

The naive height is essentially the exponential of what is called the
“Faltings height”.

Another related measure of the size of EA,B is called the discriminant
∆(EA,B) := −4A3 − 27B2.

Finally, there is a measure of size called the conductor N(E ) of E .

These various measures are conjectured to be about the same order
of magnitude for all but a negligible proportion of elliptic curves!
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Average rank

Q: If all elliptic curves over Q are ordered by their heights (or dis-
criminants, etc.), what is the average size of the rank?

Conjecture (Goldfeld, Katz-Sarnak): 1/2. (More precisely, one
expects 50% of curves to have rank 0, and 50% to have rank 1.)

However, previously this average has not even been known to be
finite (let alone 1/2)! (at least not unconditionally!)

Computations do not currently give much support to the conjecture
either.

It was observed by Brumer and McGuinness in their 1990 computa-
tions that rank 2 curves seem to occur surprisingly often, and with
increasing frequency! These computations were extended recently
by Bektemirov, Stein, and Watkins:
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All Curves Ordered By Conductor

The average rank of all curves of conductor ≤ 108 is 0.8664 . . ..

A graph of the average rank as a function:

0.70

0.87

0.78

100000 10000000050050000

We created this graph by computing the average rank of curves

of conductor up to n · 105 for 1 ≤ n ≤ 1000.
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A special family

In a well-known work, Zagier and Kramarz (1987) did rank compu-
tations in the family of elliptic curves Ek : x3 + y3 = m.

They found that this apparent overabundance of rank 2 and higher
rank curves is even more pronounced in this family!

Manjul Bhargava Princeton University Arbeitstagung for Don MPI, BonnAverage sizes of Selmer groups and ranks of elliptic curves

GRH + BSD

The first theoretical result, towards the boundedness of average rank
of all elliptic curves, are due to Brumer.

In 1992, Brumer showed that the Generalized Riemann Hypothesis
(GRH) and the Birch and Swinnerton-Dyer Conjecture (BSD) to-
gether imply that the average rank is bounded. (in fact, bounded
by 2.3.)

In 2004, Heath-brown (still assuming GRH + BSD) improved this
to average rank ≤ 2.0.

In 2009, Young further improved this (again assuming GRH + BSD)
to ≤ 25

14 ≈ 1.79.
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The main theorem

Theorem. When elliptic curves E/Q are ordered by height, the
average rank is bounded; in fact, it is bounded by 1.5.

We prove something stronger, namely:

Theorem. The same is true for the 2-Selmer rank, i.e., the average
2-Selmer rank is bounded by 1.5.

Recall that the 2-Selmer group S (2)(E ) of an elliptic curve E/Q fits
into an exact sequence

0→ E (Q)/2E (Q)→ S (2)(E )→XE [2]→ 0.

So r2(S (2)(E )) = r2(E (Q)[2])+r2(XE [2])+r(E ) ≤ 1.5 on average.

We actually prove something even stronger, namely:

Theorem. When elliptic curves E/Q are ordered by height, the
average size of the 2-Selmer group S (2)(E ) is exactly 3.
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The main theorem

Theorem. When elliptic curves E/Q are ordered by height, the
average rank is bounded; in fact, it is bounded by 1.5.

We prove something stronger, namely:

Theorem. The same is true for the 2-Selmer rank, i.e., the average
2-Selmer rank is bounded by 1.5.

Recall that the 2-Selmer group S (2)(E ) of an elliptic curve E/Q fits
into an exact sequence

0→ E (Q)/2E (Q)→ S (2)(E )→XE [2]→ 0.

So r2(S (2)(E )) = r2(E (Q)[2])+r2(XE [2])+r(E ) ≤ 1.5 on average.

We actually prove something even stronger, namely:

Theorem. When all elliptic curves E/Q in any family defined by
finitely many congruence conditions are ordered by height, the av-
erage size of the 2-Selmer group S (2)(E ) is exactly 3.
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Proof of theorem

To get a hold of 2-Selmer groups of elliptic curves, we use a cor-
respondence between 2-Selmer elements and integral binary quartic
forms, which was first introduced and used in the original computa-
tions of Birch and Swinnerton-Dyer.

To state the result, recall that the action of GL2(Z) on binary quar-
tic forms, by linear substitution of variable, has two independent
polynomial invariants, traditionally denoted I and J, respectively.
The invariant I has degree 2 and the invariant J has degree 3 in the
coefficients of the binary quartic form.

Theorem. (Birch & Swinnerton-Dyer) There is an injective map
from S (2)(EA,B) to the set of GL2(Z)-equivalence classes of integral
binary quartic forms having invariants I =−24·3·A and J = −24·3·B.

BSD’s theorem yields an efficient method for rank computations of
elliptic curves. This method has been further refined by Cremona,
and implemented in his well-known mwrank program.
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Counting binary forms

Disquisitiones Arithmeticae (1801)

Binary quadratic form:

Q(x , y) = ax2 + bxy + cy2 (a, b, c ∈ Z)

SL2(Z) acts on the set of binary quadratic forms (by linear substi-
tution).

Disc(Q) = b2 − 4ac. (unique SL2-polynomial invariant)

It is known that there are only finitely many SL2(Z)-equivalence
classes of binary quadratic forms with given value of discriminant D.

How many classes hD are there with discriminant D, or with D at
most X ?

Theorem. (Gauss 1801/Mertens 1874/Siegel 1944)

∑

−X<D<0

hD ∼
π

18
· X 3/2;

∑

0<D<X

hD log εD ∼
π2

18
· X 3/2.
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Counting binary forms: cubic forms

The next natural case is that of binary cubic forms
f (x , y) = ax3 + bx2y + cxy2 + dy3, a, b, c , d ∈ Z.

GL2(Z) acts naturally on such forms.

There is again just one polynomial invariant for this action, namely
the discriminant Disc(f ) of f , given by

Disc(f ) = b2c2 + 18abcd − 4ac3 − 4b3d − 27a2d2.

As before there exist only finitely many GL2(Z)-equivalence classes
of binary cubic forms with given value of discriminant D.

How many classes h(D) of irreducible binary cubic forms are there
with discriminant D, or with D at most X ?

Theorem. (Davenport 1951)

∑

−X<D<0

h(D) ∼ π2

24
· X ;

∑

0<D<X

h(D) ∼ π2

72
· X .
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Counting binary forms: quartic forms

The next natural case is that of binary quartic forms f (x , y) =
ax4 + bx3y + cx2y2 + dxy3 + ey4, a, b, c , d , e ∈ Z.

GL2(Z) again acts on these forms by linear substitution.

There are now two polynomial invariants for this action, traditionally
denoted I and J, where:

I (f ) = 12ae − 3bd + c2,

J(f ) = 72ace + 9bcd − 27ad2 − 27eb2 − 2c3.

Again, if you fix both I and J, then there exist only finitely many
GL2(Z)-equivalence classes of integral binary quartic forms having
this value of (I , J).

On average, how many classes hI ,J of irreducible binary quartic forms
are there having given invariants I and J? Equivalently, how many
equivalence classes of binary quartic forms are there having bounded
I and J?

Manjul Bhargava Princeton University Arbeitstagung for Don MPI, BonnAverage sizes of Selmer groups and ranks of elliptic curves



Counting binary quartic forms

We define the height H(f ) of a binary quartic form f by:

H(f ) := H(I , J) := max{|I 3|, J2/4}
How many equivalence classes of quartics f have H(f ) < X ?

Works of Julia, Cremona, Stoll, Yukie, Yang each imply that this
number is O(X 5/6+ε). Almost any reduction theory method implies
this immediately.

Theorem.

(a)
∑

H(I ,J)<X
Disc(I ,J)>0

h(I , J) ∼ 12

135
ζ(2) · X 5/6;

(b)
∑

H(I ,J)<X
Disc(I ,J)<0

h(I , J) ∼ 32

135
ζ(2) · X 5/6.

How many classes do we get per (I , J)?
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Eligible (I , J)

We say that a pair (I , J) ∈ Z × Z is eligible if it occurs as the
invariants of some integer binary quartic form. In fact, the set of
eligible (I , J) is defined purely by congruences.

These congruence conditions are:

(a) I ≡ 0 (mod 3) and J ≡ 0 (mod 27),

(b) I ≡ 1 (mod 9) and J ≡ ±2 (mod 27),

(c) I ≡ 4 (mod 9) and J ≡ ±16 (mod 27),

(d) I ≡ 7 (mod 9) and J ≡ ±7 (mod 27).

The number of eligible (I , J) having height less than X is thus a
constant times X 5/6. (In fact, 8

27 · X 5/6.)
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The average number of binary quartic forms per (I , J)

We may thus average the number of GL2(Z)-orbits of binary quartics
over eligible pairs (I , J).

Theorem.

(a) The average number of positive discriminant binary quartic
forms per eligible (I , J) is 3ζ(2)/2.

(b) The average number of negative discriminant binary quartic
forms per eligible (I , J) is ζ(2).

The analogous theorems can be proven for equivalence classes of
binary quartic forms satisfying any desired finite set of congruence
conditions.
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Back to elliptic curves!

To prove the main theorem, about the average size of the 2-Selmer
group being 3:

Given A,B ∈ Z, choose an integral binary quartic form f for
each element of S (2)(EA,B), such that

y2 = f (x) gives the desired 2-covering over Q;

the invariants (I (f ), J(f )) agree with the invariants (A,B) of
the elliptic curve (at least away from 2 and 3);

The construction of such a set of binary quartic forms follows
from the work of Birch and Swinnerton-Dyer.

Count these integral binary quartic forms. These are defined
by infinitely many congruence conditions, so a sieve has to be
performed. A uniformity estimate must be proven to perform
this sieve, and that is by far the most technical part of this
work. It involves counting integral points in much bigger
spaces than binary quartic forms!
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Average Size of 2-Selmer

In particular, we must count points of bounded invariants in a certain
nonreductive coregular space of dimension 12.

Once this count is performed, the uniformity estimate proven, and
then the sieve carried out, we finally obtain:

Theorem. When all elliptic curves E/Q (in any family defined
by finitely many congruence conditions) are ordered by height, the
average size of the 2-Selmer group S (2)(E ) is 3.

Corollary. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the av-
erage rank is at most 1.5.
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What about 3-Selmer?
We may also determine the average size of the 3-Selmer group of
elliptic curves!

The set of 3-Selmer elements of elliptic curves is parametrized by 3-
coverings, which may in turn be parametrized by appropriate GL3(Q)-
orbits of integer ternary cubic forms. (This follows from a result of
Cassels.)

The analogous “minimization” results of BSD over the integers have
been proven by Cremona, Fisher, and Stoll in this case.

Proceeding in an analogous way (though now the dimension of the
basic space is much bigger!), we show:

Theorem. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the mean
size of S (3)(E ) is 4.

Corollary. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the av-
erage rank is less than 1.17.
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Some consequences

Consider the family F of elliptic curves E that satisfy the following
mild conditions.

The curve E and its twist by −1 both have additive reduction
at 2.

The j-invariant of the curve E is a 2-adic unit.

The curve E has good ordinary reduction at 3.

The odd part of the discriminant of E is squarefree and
congruent to 1 mod 4.

It is easy to show that curves satisfying these conditions consist of
a positive proportion of all elliptic curves.

Furthermore, our results about 3-Selmer also apply to this family.

Suppose E ∈ F . Then E twisted by −1 is also in F , and fur-
thermore, the analytic root numbers of E and its twist by −1 are
different. Therefore, exactly half the root numbers of curves in F
are +1.
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Parity of p-Selmer rank

A recent result of Tim and Vladimir Dokchitser states that the parity
of the p-Selmer rank of E is even iff the root number of E is +1!

Combining this with the fact that the 3-Selmer average is at most
4 in any family (e.g., F), we are able to prove:

Theorem. When all elliptic curves E/Q are ordered by height, a
positive proportion of them have rank 0.

Indeed, as the average number of 3-Selmer elements of curves in F
is at most 4, it is not possible for all the curves with even 3-Selmer
rank to have rank greater than 0. At least half of them must have
rank 0!

A similar argument gives:

Theorem. Assume X(E ) is finite for all E . When all elliptic
curves E/Q are ordered by height, a positive proportion of them
have rank 1.
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Nonvanishing of elliptic curve L-functions

What about analytic rank?

A recent result of Skinner–Urban states that if the L-function of an
elliptic curve E vanishes at s = 1 and E has good ordinary reduction
at 3, then the 3-Selmer group of E is nontrivial.

Combining this with the fact that the 3-Selmer average is at most
4 in any family (e.g., F), we are able to prove:

Theorem. When all elliptic curves E/Q are ordered by height, a
positive proportion of them have analytic rank 0; that is, a positive
proportion of elliptic curves have nonvanishing L-function at s = 1.

Corollary. A positive proportion of elliptic curves satisfy BSD.
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What about 4-Selmer and 5-Selmer?

Elements in 4-Selmer and 5-Selmer groups of elliptic curves can be
mapped to integer points, up to equivalence, having the correspond-
ing invariants in the spaces

Z2 ⊗ Sym2(Z4) and Z5 ⊗ ∧2Z5,

respectively. (This again can be deduced from work of Cassels,
Cremona–Fisher–Stoll, and Fisher.)

Counting points in these spaces should thus similarly lead to the
analogous results for 4-Selmer and 5-Selmer. However, cusps are
extremely complicated. (These spaces are 20- and 50-dimensional,
respectively, with about 1000 cuspidal regions to deal with!)
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What about 4-Selmer and 5-Selmer?

Dealing with these issues, we are finally able to prove:

Theorem. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the mean
size of S (4)(E ) is 7.

Theorem. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the mean
size of S (5)(E ) is 6.

Using the last theorem, together with a more careful analysis of
changing of root numbers under twisting, we can now prove:

Corollary. When all elliptic curves E/Q are ordered by height, the
average rank is less than 1.
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Some extensions

Similar counting techniques applied to various other (coregular) spaces
lead to densities of other data associated to elliptic curves and re-
lated algebraic and geometric objects.

There are at least 50 such spaces that parametrize genus one curves
with extra data.

There are also several further spaces of forms that parametrize var-
ious data corresponding to higher genus curves and higher dimen-
sional varieties.

This allows one to compute average Selmer group sizes, and thus
bound average ranks, for various families of elliptic curves with
marked points, and also for Jacobians of various families of higher
genus curves (joint work with Wei Ho and Dick Gross respectively).

Manjul Bhargava Princeton University Arbeitstagung for Don MPI, BonnAverage sizes of Selmer groups and ranks of elliptic curves



Last week: What about special families like Don’s?

Note that the Zagier–Kramarz family

x3 + y3 = m ∼ y2 = x3 − 432m2

is contained in the larger family of curves

Ek : y2 = x3 + k

having j-invariant zero.

There is a rational 3-isogeny φ : Ek → E−27k . Is there an expected
size of the associated Selmer group?
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Last week: What about special families like Don’s?

In joint work with Elkies, we recently proved:

Theorem. As the elliptic curves Ek vary (k → ∞), the average
size c of the φ-Selmer group exists.

We are in the midst of determining the value of c explicitly. (We have
c ≈ 2.)

This theorem, a root number analysis, and the results of Dokchitser–
Dokchitser then imply

Corollary. The average rank of the curves Ek is less than one.

Corollary. A positive proportion of the curves Ek have rank zero.
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Last week: What about special families like Don’s?

However, Zagier–Kramarz considered only the curves

x3 + y3 = m ∼ y2 = x3 − 432m2.

In general, we can consider ED,m : y2 = x3 + Dm2 for any fixed D,
with m varying.

There is a geometric method (joint work w/ Shnidman) that allows
one to treat the φ-Selmer group for these cubic twist families. We
prove:

Theorem. The average size of the φ-Selmer group S (φ)(ED,m) is

{
<∞ if D 6= −432

∞ if D = −432.

!!!
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Wishes to Don

Happy Birthday!!!!!
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SPECIAL VALUES OF RANKIN–SELBERG L-FUNCTIONS

A. RAGHURAM

Abstract. This write-up is the abstract for my talk on 30th June at the 2011-Arbeitstagung.

1. A cohomological approach to critical values

A classical theorem due to Manin and Shimura (independently) says that to a primitive holo-
morphic cusp form ϕ of weight k on the upper half plane, one can attach two numbers u±(ϕ) such
that for any integer m with 1 ≤ m ≤ k − 1 and any Dirichlet character χ one has

L(m,ϕ, χ) ∼ (2πi)mu±(ϕ)G(χ).

Here G(χ) is the Gauß sum of χ, ± = εmεχ := (−1)mχ(−1), and by ∼ one means up to quantities
in a suitable rationality field; which here is the field generated by the Fourier coefficients of ϕ and
the values of χ.

The same theorem can be rephrased in a ‘neo-classical’ language as follows: Let Π be a coho-
mological cuspidal automorphic representation of GL2(AQ). One can attach two numbers p±(Π),
which may be called Betti-Whittaker periods of Π, which capture, up to powers of (2πi), the
possibly transcendental parts of the critical values of the standard L-function L(s,Π).

(1) If s = 1/2 is critical, then L(1/2,Π) ∼ (2πi)d∞p+(Π).
(2) For any critical point s = 1/2 +m, and any finite order Hecke character χ we have

L(1/2 +m,Π) ∼ (2πi)d∞+mp±(Π)G(χ).

This reformulation suggests that there are three aspects to proving algebraicity results on critical
values:

I. Identify periods; such as p±(Π). Often these periods arise via a comparison of two entirely
different rational structures on the same representation space.

II. Prove period relations; such as pε(Π⊗ χ) ∼ pεεχ(Π)G(χ) for any algebraic Hecke character.
III. Prove a theorem for one critical value; such as for L(1/2,Π). This step usually involves

giving a cohomological interpretation to some analytic theory of L-functions.

2. Ratios of critical values for Rankin-Selberg L-functions
(Joint work with Günter Harder)

Observe the following consequence of Manin/Shimura’s result. Given ϕ, there exists Ω(ϕ) ∈ C×
such that for 1 ≤ m ≤ k − 2 we have

Λ(m,ϕ, χ)

Λ(m+ 1, ϕ, χ)
∼ Ω(ϕ)εmεχ

with εm = (−1)m and εχ = χ(−1). Such a result can be generalized to ratios of critical values for
Rankin-Selberg L-functions for GLn ×GLn′ with n-even and n′-odd.

Date: July 4, 2011.
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2 A. RAGHURAM

2.1. The relative periods. Let σf ∈ Coh(GLn, λ), by which we mean that σf is a GLn(Af )-

summand of the inner cohomology H•! (SGLn , Eλ) of a locally symmetric space SGLn of GLn with
coefficients in a sheaf Eλ coming from an algebraic absolutely irreducible finite-dimensional repre-
sentation of GLn over Q. Assume n is even. Suppose σf is the finite part of a cuspidal automorphic
representation σ of GLn(AQ), then one knows that σf appears twice in the inner cohomology for

degree • = bn := n2/4. Denote these two copies by σ±f . There are two intertwining operators

between σ±f ; one concerning inner cohomology and this is defined over the rationality field of σf ,

and the other using a transcendental description over C of cuspidal cohomology. Comparing these
we get a relative period Ω(σf ).

2.2. Period relations. By analyzing the behaviour of cohomology groups under Tate-twists of
the coefficient system, one can prove the relation: Ω(σf ⊗ | |m) ∼ Ω(σf )εm .

2.3. The main theorem. Let σf ∈ Coh(GLn, λ) and σ′f ∈ Coh(GLn′ , λ′). Assume that n is even

and n′ is odd. Let m = 1/2 + m0 ∈ 1/2 + Z be a half-integer such that both m and m + 1 are
critical for L(s, σf × σ′vf ). Then the complex number

1

Ω(σf )εmεσ′

Λ(m,σf × σ′vf )

Λ(m+ 1, σf × σ′vf )

is algebraic, and is equivariant under the action of the automorphism group of C. Here εσ′ is a sign
determined by σ′, εm = (−1)m0 and Λ(s, σf × σ′vf ) is the completed Rankin–Selberg L-function. In
particular,

Λ(m,σf × σ′vf )

Λ(m+ 1, σf × σ′vf )
∼ Ω(σf )εmεσ′ ,

where, by ∼, we mean up to an element of any number field containing the rationality fields Q(σf )
and Q(σ′f ).

2.4. Eisenstein cohomology. Our main tool to proving such a result on ratios of critical values
is the theory of Eisenstein cohomology. Put N = n + n′. This theory gives a description of the
image of the total cohomology H•(SGLN , Eµ) in the cohomology H•(∂SGLN , Eµ) of the Borel-Serre
boundary ∂SGLN . This boundary is stratified as ∂SGLN = ∪P∂PSGLN for P -running through a
suitable class of parabolic subgroups of GLN . Let P = P(n,n′) be a maximal parabolic subgroup
with Levi quotient GLn ×GLn′ and let Q = P(n′,n) be its associate parabolic. The result on ratios
of critical values falls out of a cohomological interpretation to Langlands’s constant term theorem
by considering the image of H•(SGLN , Eµ) in H•(∂PSGLN , Eµ)⊕H•(∂QSGLN , Eµ), where some very
interesting Weyl-group combinatorics forces us to look at

(1) cohomology degree • = (N2 − 1)/4 = n2/4 + (n′2 − 1)/4 + nn′/2; and
(2) highest weight µ which is built out of the weights λ and λ′.

∗ ∗ ∗ ∗ ∗ ∗ ∗



Motivic Fundamental Groups
and Integral Points

Majid Hadian

Introduction

This short note is an extended abstract of a lecture given by the author at the Math-
ematische Arbeitstagung 2011, Bonn, Germany. Our goal is to give a brief exposition
on the theory of motivic fundamental groups and their application to Diophantine ge-
ometry. Being so, we try to avoid technicalities and sometimes we are even inaccurate
to some extend. Interested readers can find solid and more detailed treatments in [5],
[6], and [4].

1 Motivic Fundamental Groups ...

Let k be a number field and fix an embedding k ⊂ C of k into the field of complex
numbers. Let k̄ be the algebraic closure of k in C and denote the absolute Galois
group Gal(k̄/k) by Gk. There are different natural cohomology functors defined on
the category Vark of algebraic varieties over k. Let X be an object in Vark, and for
simplicity assume that X is the complement of a strict normal crossing divisor in a
smooth projective variety X (resolution of singularities is available in characteristic
zero). One can consider:

• the singular cohomology H∗s (X(C),Z) of the associated complex variety X(C),
which is formed of Z-modules;

• the étale cohomology H∗ét(Xk̄,Qp) of Xk̄ := X ⊗k k̄, which is formed of Qp-vector
spaces equipped with canonical Galois action by Gk;

• the algebraic de Rham cohomology H∗dR(X,OX) of X, which is formed of k-vector
spaces equipped with Hodge filtration and Frobenius action (the Frobenius action
is induced from comparing with the crystalline cohomology).

The very interesting fact is that these cohomology functors are not independent, and
can be compared after suitable extension of scalars. Now, the general yoga of motives,
roughly speaking, begins by the following question proposed by Grothendieck. Is there
a universal cohomology functor H∗M (called motivic cohomology) which gives rise to all
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the above cohomology functors as different realizations? There is a huge literature in
the direction of this question and we are not going to go into it. Instead, we are going
to consider the analogue question concerning the unipotent fundamental group.

Note that there are various constructions of the unipotent fundamental group of X
parallel to the above cohomology theories (one should of course fix a base point which
is denoted by ∗ in the sequel). Namely, one can consider:

• the Malčev completion of the topological fundamental group of the complex va-
riety X(C), which is a pro-unipotent algebraic group scheme over Q and will be
denoted by πtop

1 (X, ∗);

• the étale unipotent fundamental group of Xk̄, whose category of representations
is the category of unipotent smooth p-adic étale sheaves over Xk̄ and will be
denoted by πét

1 (X, ∗). πét
1 (X, ∗) is a pro-unipotent algebraic group scheme over

Qp and admits a canonical Galois action by Gk.

• the de Rham unipotent fundamental group, whose category of representations
is the category of vector bundles over X equipped with unipotent integrable
connection with logarithmic poles at the divisor X \X. The de Rham unipotent
fundamental group, which is a pro-unipotent algebraic group scheme over k, will
be denoted by πdR

1 (X, ∗) and can be furnished with Hodge filtration and Frobenius
action.

All these fundamental groups, being pro-unipotent, admit exhaustive descending
central series. The associated algebraic quotients will be denoted by an extra super-
script, which shows the unipotent level of the quotient. Now, one can raise the similar
question and ask whether or not there exists a universal unipotent fundamental group
which encompasses all these versions as different realizations. Although, one expects
to have an affirmative answer in general, it is only verified in the case where X is a
unirational variety. The idea of constructing the motivic unipotent fundamental group,
denoted by πM

1 (X, ∗) from now on, for a unirational variety is as follows:
First of all, since any unirational variety admits a dominant morphism from an open

subscheme of a projective space PN and unipotent group schemes over fields of charac-
teristic zero are torsion free, one reduces to the case of open subschemes of PN . Then,
by taking a generic hyperplane section by a line in PN and using Lefschetz hyperplane
section theorem, one reduces to the case of a punctured projective line. Finally, for
a punctured projective line, one can explicitly construct the motivic unipotent funda-
mental group as a pro-unipotent group scheme over the Tannakian category of mixed
Tate motives (see [2]).

2 ... and Integral Points

Now we want to show how motivic unipotent fundamental groups can be applied in
Diophantine geometry. For motivation, let us recall an idea, due to Chabauty, which
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leads to a partial solution for Mordell’s conjecture (see [1]). Roughly speaking, the
idea is as follows. Let C be a smooth projective hyperbolic curve over the number field
k, and let j : C → J be the Abel-Jacobi map from C to its Jacobian. Now, if the
arithmetic rank of J is strictly less that its dimension, one can find a nonzero invariant
differential 1-form ω on J which vanishes on all but finitely many k-rational points.
The pullback j∗(ω) of such a form is a nonzero 1-form on C which vanishes on all but
finitely many k-rational points. But this shows the finiteness of C(k).

This reduces Mordell’s conjecture for a smooth projective hyperbolic curve C, to
finding a tower of étale coverings Cn � C whose genus grows faster than the arithmetic
rank of Jacobian. Although this project is never accomplished and Mordell’s conjecture
has been solved by Faltings by a very deep study of Galois representations associated
to Abelian varieties, Kim has picked Chabauty’s idea up more recently, and developed
a non-abelian version of it, which seems to be very interesting and powerful (see [7]).
Let us briefly sketch Kim’s idea in the case of a punctured projective line (for the
positive genus case, see [3]).

Let S be a finite set of finite places of k, OS be the ring of S-integers in k, and let
X be a punctured projective line over OS (to avoid empty statements, assume that the
number of punctures is at least three). Let T be the saturation of S, consisting of all
finite places of k whose residue characteristic appears as the residue characteristic of
at least one place in S. Finally, fix a finite place v of k in the complement of T and
denote the residue characteristic of v by p. Let kv be the completion of k at v and Ov

be the normalization of Zp in kv.
We want to show that the Diophantine set X(OS) is finite. If it is empty, there is

nothing to show, otherwise fix a base point x ∈ X(OS). Now by studying étale and de
Rham path torsors for the curves Xk and Xkv , and by comparing the étale and the de
Rham versions using higher dimensional p-adic Hodge theory, one obtains the following
commutative diagram:

(πdR,n
1 /F 0)(kv)

=

''

X(OT )◦ i //

p
gl,(n)
ét

��

Xkv(Ov) ∩D◦1(xv)

p
(n)
dR

OOOO

p
loc,(n)
ét

��

// Wkv/Qp(πdR,n
1 /F 0)(Qp)

ctt

H1(GT , π
ét,n
1 )(Qp)

res // H1(Gv, π
ét,n
1 )(Qp)

Let us explain the notations in the above diagram. The maps denoted by the letter p
are different versions of the period map, constructed by studying the variation of the
path torsor when one varies the end point of the path. The map i is the inclusion
map and the map c is the comparison map which can be constructed by p-adic Hodge
theory techniques. Gv denotes the absolute Galois group of the local field kv, and GT is
the absolute Galois group of the maximal extension kT of k unramified outside T . The
map “res” is the usual restriction map between Galois cohomologies. D◦1(xv) denotes

3



the open p-adic unit disk in Xkv , centered at the point xv induced by the base point x.
X(OT )◦ is the intersection of X(OT ) and D◦1(xv). F

• denotes the Hodge filtration on
the de Rham fundamental group, and finally, Wkv/Qp is the Weil restriction functor.

Very crucial are the following properties of the maps appeared in the above diagram.
The comparison map c is induced by an algebraic map which is injective and whose
image is Zariski close, and the de Rham period map p

(n)
dR is induced by a p-adic analytic

map whose image is Zariski dense. Using these properties and the commutativity of the
above diagram, one can reduce the finiteness of X(OT ) to a strict inequality between
dimensions of the global and the local Galois cohomologies appeared in the last row of
the above diagram. This can be thought of as the non-abelian version of Chabauty’s
hypothesis.

In order to proceed further, in the above line of ideas, one needs to estimate the
dimension of the global Galois cohomology in the above diagram. But this is a very
hard problem. Alternatively, we suggest to use the motivicity of unipotent fundamen-
tal group and path torsors to replace this global Galois cohomologies with motivic
cohomologies of X, which can be related to rational K-groups of the base number
field k (see [5] or [6]). Following these ideas, and using Borel’s calculation of rational
K-groups of number fields, we obtain a motivic proof of the following special case of
Siegel’s finiteness theorem for S-integral points:

Theorem 1. Let X be the punctured projective line with d ≥ 3 punctures, and let k be
a totally real number field of degree at most d− 1. Then X(OS) is finite.

Remark 2. Using the motivic version of Lefschetz hyperplane section theorem, the
above result can be generalized to higher dimensional unirational varieties, which gives
nondensity of S-integral points for such varieties in the p-adic topology (see [5] or [6]).
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UNIVERSAL ELLIPTIC COHOMOLOGY AND
MODULAR FORMS

PETER TEICHNER, AFTER HOPKINS, MILLER AND LURIE

This unexpected talk at the Arbeitstagung 2011 was about the ho-
motopy groups of the spectrum tmf of topological modular forms. Its
existence was proven by Hopkins and Miller [H], with a conceptual in-
terpretation in terms of derived algebraic geometry given later by Lurie
[L]. The references [T, G, H, L] contain excellent surveys on the topic,
that’s why these notes are very brief.

Let Mell be the Deligne-Mumford moduli stack of (pointed) elliptic
curves with nodal singularities (over arbitrary commutative rings). It
comes equipped with the determinant line bundle ω and the global
sections

MFk := H0(Mell;ω
⊗k)

are the integral modular forms of weight k. Deligne computed this ring
to be presented as follows:

MF∗ = Z[c4, c6,∆]/c34 − c26 = 123 ·∆
where ck have weight k and ∆ is the discriminant whose non-vanishing
characterizes smooth elliptic curves. The following result was attrib-
uted to Hopkins, Miller and Goerss in [L].

Theorem 1. There exists a sheaf O of commutative ring spectra on
the Deligne-Mumford stack Mell, characterized up to homotopy by the
following properties:

(1) π0(O) are the functions on Mell, π2k+1(O) = 0 and
(2) π2k(O) ∼= ω⊗k as sheaves of π0(O)-modules on Mell.

Definition 2. The commutative ring spectrum tmf of topological mod-
ular forms is defined as the global sections of (Mell,O). It turns out to
be connective, i.e. πk(tmf) = 0 for k < 0.

By construction, there is a descent spectral sequence, converging to
the homotopy groups of tmf:

Hs(Mell; πt(O)) =⇒ πt−s(tmf)

The indexing is compatible with that of the Adams spectral sequence,
even though the E2-term is purely algebraic. The edge homomorphism

1



2 PETER TEICHNER, AFTER HOPKINS, MILLER AND LURIE

is given by maps

e2k : π2k(tmf)→ MFk

SinceMell has no higher cohomology away from 6, these maps become
isomorphisms after tensoring with Z[1/6]. From the above presenta-
tion, it follows that MF∗ is torsionfree and as a consequence, π∗(tmf)
only has pn-torsion for the primes p = 2 and 3.

Amazingly, this torsion is completely known and most of it comes
from the unit map u : S0 → tmf of ring spectra. For summaries of
these computations, see [B] or Henriques’ article in [T]. For example,

• The unit u induces isomorphisms πk(S0) → torsπk(tmf) for
k = 1, 2, . . . , 24.
• c6 and c4c6 generate the cokernel (Z/2)2 of the edge homomor-

phism up to dimension 23 (in particular, c4 and 2c6 are in its
image).
• 24 is the smallest multiple of ∆ in the image of e24 and 24 is

also the smallest power of ∆ in the image of the edge homo-
morphism.
• There is a unique class P ∈ π242(tmf) with e242(D) = ∆24.

Multiplication by P induces a “periodicity” isomorphism

tors πk(tmf) ∼= torsπk+242(tmf) for k ≥ 0

Inverting P leads to the spectrum TMF whose homotopy groups are
242-periodic. This is the spectrum that Stolz and the author [ST]
believe to give the classifying space of super symmetric Euclidean field
theories of dimension 2|1. One reason is that the partition function of
such a theory is a weak integral modular form, just like the image of
the edge homomorphism on π∗(TMF).

The above statements follow from a complete knowledge of the dif-
ferentials in the descent spectral sequence. These cannot be derived
algebraically but come from a comparison with the Adams-Novikov
spectral sequence as follows.

One can formulate Quillen’s result on the relation between (1-dim. )
formal groups and unitary bordism by saying that the Hopf algebroid
MU∗MU represents the stack Mfg of formal groups (over arbitrary
commutative rings). In particular, this leads to an isomorphism

Hs(Mfg;ω
⊗t) ∼= Exts,2tMU∗ MU(MU∗,MU∗)

The right hand side is the E2-term of the Adams-Novikov spectral
sequence converging to π2t−s(S0), whereas the left hand side can be
compared to the E2-term of the above descent spectral sequence: The
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formal groups associated to elliptic curves lead to a stack morphism
Mell →Mfg that’s covered by a morphism of line bundles ω.

By playing out the two E2-terms and the homotopy theoretic knowl-
egde of the differentials in the Adams-Novikov spectral sequence, one
arrives at quite a miraculous computation of all differentials in the
descent spectral sequence and hence at a complete understanding of
π∗(tmf).

IfG is a compact Lie group of dimension n, its right invariant framing
gives an element in framed bordism Ωfr

n
∼= πn(S0). One of the nice

features of tmf is the fact that many of these elements map nontrivially
under the unit map to πn(tmf) [H]. In fact, the map u∗ : Ωfr

∗ → π∗(tmf)
factors through the string orientation map

σ : ΩString
∗ → π∗(tmf)

which gives the Witten genus ΦW after composition with the edge ho-
momorphism to MF∗, e ◦ σ = ΦW . Recall that a manifold X is string
if it is spin and has vanishing characteristic class p1

2
(TX) ∈ H4(X).

The Witten genus [W] of a closed string manifold X is the partition
function of a Euclidean field theory of super dimension 2|1, the so called
super symmetric Sigma model ofX. This field theory is mathematically
only defined on the classical level (where it actually is conformal and
extends to all genera), the quantization requires a (yet non-existent)
measure on the space of maps from a complex elliptic curve to X. In
our approach to Euclidean field theories [ST], we hope to circumvent
this measure by cutting the torus into finer and finer triangles and and
using the locality (or gluing) properties of the field theory to get a well
defined partition function. This would then lead to a string orientation,
strengthening our conjectured relation between Euclidean field theories
and TMF.

To get a mathematically defined expression, Witten used the circle
action on the free loop space LX to compute this partition function
via the S1-equivariant index theorem (non-existent in this infinite di-
mensional setting) which predicts a localization to the fixed point set
X. A well defined genus with values in Q[[q]] resulted for all oriented
manifolds. For a spin manifold X, the coefficients are indices of twisted
Dirac operators and hence the Witten genus of X lies in Z[[q]]. Don
Zagier1 showed in [Z] that this power series is the q-expansion of a
modular form if p1(X) is torsion, completing the existence proof for
the map

ΦW : ΩString
∗ → MF∗

1Happy Birthday, Don
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It is believed that the string orientation σ (which refines ΦW to include
interesting torsion information) is induced by a map of commutative
ring spectra on the Thom spectrum for string manifolds:

MString→ tmf

Important partial results have been obtained in [AHS] via the theorem
of the cube.

It is proposed in [L] that such a ring map can be constructed canoni-
cally from the interpretation of the structure sheafO in terms of derived
(oriented) elliptic curves and the resulting 2-equivariance properties of
tmf. Such a characterization of maps of commutative ring spectra into
tmf would be very exciting, also in view of our conjectured relation to
super symmetric Euclidean field theories.
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MOCK EICHLER–SHIMURA RELATIONS

MARTIN RAUM

We establish a connection between two seemingly disparate topics and tech-
niques: mock modular forms (holomorphic parts of holomorphic Maaß forms) and
noncritical values of L-functions of cusp forms.

Given a cuspidal weight k modular form f ∈ Sk for SL2(Z), Choie and Diamantis
deduced a function rf,2 playing the role of a generating function for the noncritical
values of the L-function associated to f . More precisely, the Taylor expansion at
z ↘ 0 equals

∞∑

m=0

ik+m (m+ k − 1)!m!

(k − 1)(2π)m+k
Lf (k +m).

This function can be incorporated into Eichler cohomology after adding a sim-
ple, nonholomorphic correction term r̃f,2. This correction term is an almost holo-
morphic polynomial in the sense of Kaneko-Zagier. The powers of y that occur,
moreover, have only negative exponents and can be thus considered purely non-
holomorphic. Denoting the completion r̂f,2 := rf,2 + r̃f,2, a first theorem that we
prove says

r̂f,2
∣∣
k

(1 + S) = r̂f,2
∣∣
k

(1 + U + U2) = 0.

The slash action f |k γ(z) = (cz + d)−kf((az + b)/(cz + d)) is the usual one, and
the matrices S =

(
0 −1
1 0

)
and U =

(
1 −1
1 0

)
are generators of SL2(Z). That is, the

completed generating function r̂f,2 satisfies the Eichler–Shirmura relations.

This observation leads us to the next definition. We write Vk−2 for the space of
polynomials in z of degree less than or equal to k − 2. The space

Wk,2 :=
{
P : H→ C : ξk(P) ∈ Vk−2; P|k (1 + S) = P

∣∣
k

(1 + U + U2) = 0
}
.

Definition. A holomorphic function p2 : H→ C is called a mock period function
if there exists a p̃2 ∈ ⊕k−1

j=1y
−jVk−2 such that

p2 + p̃2 ∈Wk,2.

A desirable statement would be that any of these function can be completed to
Eichler cocycle. This is actually not quite possible, since, denoting the space of
holomorphic functions on H by O(H), the Eichler cohomology H1(SL2(Z), O(H))

vanishes by a theorem of Knopp. The best possible that we can hope for, though,
turns out to be true:

Theorem. Every P ∈Wk,2 can be written as

P = r̂f,2 + r̂∗g,2 + aF |k (S − 1)

for unique f, g ∈ Sk and an F ∈ O(H). Here, r̂∗g,2 is a completed mock period
function associated rg(−X).

work joint with Kathrin Bringmann and Nikolaos Diamantis.
1
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A reformulation of this theorem reveals the striking analogy with the now clas-
sical Eichler-Shimura theorem. Set

Uk,2 :=
(
O(H) +

{
f ∈ ⊕k−1

j=1y
−jVk−2 : ξk(f) ∈ Vk−2

})
∩ {f : H→ C; f |k T = f}.

Theorem. The map φ : Sk ⊕ Sk →Wk,2 defined by

φ(f, g) := r̂f,2 + r̂∗g,2

induces an isomorphism

φ̄ : Sk ⊕ Sk
∼=R Wk,2/Vk,2,

where Vk,2 := Uk,2

∣∣
k

(S − 1).

The study of mock period function is intimately connected to the study of sesqui-
harmonic function, first used in work by Duke and Imamoḡlu. We write ∆k for the
weight k Laplacian and ξk := 2iyk∂z · for the usual elliptic ξ-operator.

Definition. A real-analytic function F : H → C is called a sesquiharmonic Maaß
form of weight k, if the following conditions are satisfied:
i) We have for all γ ∈ SL2(Z) that F|k γ = F .
ii) We have that ξk∆k(F) = 0.
iii) The function F has at most linear exponential growth at infinity.

In the world of mock modular forms, period polynomials arise as deformation
deficits under (S−1) of the holomorphic parts of harmonic (weak) Maaß forms. The
behavior of sesquiharmonic modular forms parallels this. Their Fourier expansion
can be split into a holomorphic, a harmonic and a nonharmonic part:

F(z) =
∑

n�−∞
a(n)qn +

∑

n�−∞
b(n)Γ(1− k, 4πny)q−n +

∑

n>0

c(n)Γk−1(4πny)qn

for any F satisfying ∂k−1z ξkF ∈ Sk. Here,

Γs(y) :=

∫ ∞

y

Γ(s, t)t−set
dt

t
.

Denoting the middle part of that Fourier expansion by F+−, we find that the
deformation deficit F+−∣∣

k
(S−1) is a completed mock period function, establishing

the connection announced at the beginning.

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: MRaum@mpim-bonn.mpg.de
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