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On the resolution of points in generic position

M.P.CAVALIERE, M.E.Ross1 AND G. VALLA

Introduction.

Let k be an algebraically closed field and let X = {Py,...,P,} beasetof s > n+1
distinct points in P}, not contained in any hyperplane. We denote by I the defining ideal
of X in the polynomial ring R = k[Xj,...,X,] and by A the homogeneous coordinate ring
of X, A=R/I = @2 A:.

We say , following Geramita and Orecchia (see [GO]), that the points P;,..., P, are in

-

generic position if the Hilbert function H 4(2) := dim(A,) satisfies

Ha(t) = min {s, (n : t) } .

It is well known that almost every set of s points in P} are in generic position, in the
sense that the points in generic position in P} form a dense open set U of P} X P} x---xP}
(s times).

Now for points in generic position the integer ¢ defined by the inequalities

(n-{-t-—-l) <s< (n-l-t)
n n

coincides with the socle degree of A and with the initial degree of A, which is the minimal
degree of an hypersurface passing through the points. From this it follows that a minimal

graded free resolution for A is given by

0> R(-t—n)"@®R(-t—n+1)° — ...
—R(-t—)"@®R(-t—i+1)% 5. 5 R(-t-1D)"QR(-t)" 5 R—= A4 =0

By the particular Hilbert function of A we get a; = (":t) —sand b, =5~ ("+;_1). It
is natural to predict that almost every set of s points in generic position in P} have the
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same numerical invariants in the resolution. This leads to the following conjeéture (see [L]

and [BG]).

Minimal resolution conjecture. There ezists a not emply open subset of (P')° con-

sisting of sets of points in generic position which have the same numerical resolution.

The minimal resolution conjecture (MRC for short) has been solved for n = 2 (see [GGR]
and[GM]), for n = 3 (see [BG]) and for any n if s > (") —n or s < n + 3 (see [L] and
[GL]), while the corresponding Cohen-Macaulay type conjecture has been solved for any
n (see [TV]).

The expected integers a; and b; have been worked out by A. Lorenzini in her thesis (see
[L]) where, even if not explicitely, the following characterization can be found.

Let m be the least integer such that

t[(”:t) —s] < sm.

Then m > 1 and A has the expected numerical resolution if and only if @41 = b1 = 0.
More precisely if ;7 > m + 1, A has the wanted numerical invariants a; and b; for all ¢ > ;
if and only if a; = 0, while if j < m — 1, A has the wanted numerical invariants a; and b;
for all : < j if and only if b; = 0. '

For example, in a recent paper, Green and Lazarsfeld proved that if s =2n+ 1 —p for
some 1 < p < n, and the points are in general position then b, = 0 (see [GrL}). This gives
the right numerical invariants for the initial part of the resolution.

In this paper we prove that for a general set of points in generic position in P}, we
have a; =0 if s > (":‘) - (‘+tt_2) —i(n — i+ 2)+n+ 1 (see Theorem 2). By the above
remark this gives the expected numerical invariants for the last part of the resolution. If
we apply our result to the case 1 = 2, we get a fresh and easy proof of the MRC for the
case s > ("¥!) — n points in P}. Also, by combining our theorem with the result of Green
and Lazarsfeld which takes care of the first part of the resolution, we get the MRC for the
case s = n + 4 points in P}, Finally if we restrict ourselves to the cases t =2 and ¢t = 2,3,
then we can improve our result "by one” by showing that a; =0if s = (";L2) —n—1or
8§ = (";’3) —n — 1, thus proving the MRC in these cases too (see Theorem 7 and 8). Some

sporadic results are also discussed in the last part of the paper.
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The main result

Let k be an algebraically closed field and let {u;;},¢i=1,...,s—n—-1,5=0,...,n,
be a set of indeterminates over k. Let K be the field obtained by adjoining these in-
determinates to k. Let Qo,...,Q, be the coordinate points in P} and let us consider
the set X = {Qo,...,Qn,P1,..., Ps—n—1} where the P; are the K-rational points in P}
whose coordinates are given by P; := (uio,...,u%in). We denote by R the polynomial ring
K[X,,...,X,] and by I the defining ideal of X in R. The ring A = R/I is the homoge-
neous coordinate ring of X. It is clear that X is a set of points in generic position (see

{TV]), hence a minimal graded free resolution of A as an R-module is

0o R(—t—n)"@®R(—t—n+1)" —...
- R(-t—)"@R(-t—i+1)" = - s R(-t-1)"OR(-t)* = R— 450

where ¢ is the initial degree of A or, which is the same, the integer defined by the inequalities

(n+t—l) <s< (n+t)‘
n n

Our point of view is to prove numerical properties for the resolution of these points. Since
the validity of these properties is equivalent to the fact that certain matrices, whose entries
are monomials in the u;;/s have maximal rank, our results prove, after specialisation, that
almost every set of s points in P} which are in generic position has the corresponding
property.

Let us consider the graded R-modules Torf(4, K) which can be computed from the
minimal free resolution of A. It is clear that Tor,-R(A, K); is a finite dimensional K-vector
space whose dimension is the number of minimal generators in degree j of the i — ¢h free

graded module in the resolution. In particular we get
dimK(TorlR(A, K)egi-1) = a

and
dimy (TorP (A, K)yi) = b;

forevery:=1,...,n.



We want to compute Tor( A, K) using a resolution of K which can be obtained by the
Koszul complex of Xy,...,X,. Let V be a fixed K-vector space of dimension n + 1 and
let eg,...,e, be a K-vector base of V. The Koszul resolution of K is given by

n-41 n
0= AVO®R(-n—1) "8 AV@ R(—n) = -+ = AV@ R(=1) 2% R - K — 0

where the §; are the usual Koszul maps.
Tensoring by A and taking graded pieces, one finds that Torf{(A, K); is given by the

homology of the complex of vector spaces
i+1 H i—-1
AVRA(-t—1); = AV R A(—1); - AV A(—-1+1);.

Since A, = R, for every p <t — 1, we get that Torfz(A, K)itt—1 is the homology of the

complex
i+1 big1 ' 5:®1 i—1
AVOR,_;, =S AVQRi_1 == AVRA

PROPOSITION 1. Let ¢ be any integer, 2 < ¢ < n. With the above assumptions and

notations, we have

Torf(A, K)itt—1 = Ker(m) N Ker(6i—1)
where 7 is the canonical map in the following commutative diagram:

i+1 Sig1 i 51 i—1
AVORi.g —— AVRi-; —— AV R® A,

i ” & -1 T” Sicy  i—2
AV®Riy, —— AV®R, —— AV ®Rip

PROOF: We have TorF(A, K)ipi—1 = Ker(6; ® 1)/Im(6i11). Since Im(6ip1) = Ker(6:),

1—1
é; induces an injective map p from Tor‘R(A,K),-H_l to AV ® R;. Now 1t is easy to see
that the image of p is exactly Ker(x) N Ker(é;—1). The conclusion follows.

THEOREM 2. Let ¢ be any integer, 2 <i<n. If

t L+t —
sz(”j >—(’+t 2)—i(n—i+2)+n+1
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then a; = dimK(Tor?(A,K);.H_l) = 0.

PROOF: By the above proposition we have Torf(4, K);11—1 = Ker(r)N Ker(§;—;). Now
i—-1

it is clear that Ker(n) = A V ® Iy, hence if a € Ker(7) - we may write

a= E ej, Ao ANej_, ®F;
i={j1,.--Fim1}
with F; € I;. We have three important remarks.

1. In Fj there is no term of the form X; for every p=0,...,n.

It follows from the fact that F; must vanish on the coordinate points.

2. In F} there is no monomial of degree t in the variables X; ,...,X;, .

Let o = ej, A---Aej;_, ® M +... with M monomial of degree t in Xj,,...,X;;_,. Then
bi—1(a) = €ej,A+--Aej;_,®X;, M+... cannot be zero since to cancel ej, A+ Aej; ., @X;, M
we need in a a non zero term ej, A--- Aej_, Aep, ® X, (M/X,) with p is in the set
{71,-..74i=1}. A contradiction.

3. In F} there is no monomial of the form X]‘,_IX,, with p € {j1,...7i-1}-

If for example a = e;, A--- Aej;_, ®X;-1_1Xq + ... then §;_1(a) =ej; A+~ Aej_, ®
X3, Xy + ... cannot be zero since to cancel e;, A---Aej,_, ® X} X, we need in o a term
€j, A-+-Aeji_, Aeg® X . This is impossible by 1.

Using these three facts we see immediately that F} is the sum of

(n—{-t) _ (i_l_*—t—l)—(i—l)(n—i+2)“(n_i+2)

t 2

monomials. Thus we have ("'t"t) — (i+‘t—2) —i(n — ¢ 4+ 2) coefficients for F;. But F; must
vanish on the set {P,...,P,—n—1} which have generic coordinates; since s —n —1 >
("t - (i+i_2) —i(n —1 + 2) this implies F; = 0 and the conclusion follows.

To apply this result we recall that if m is the least integer such that

t K”:t) —s] <sm

then for any j > m + 1 the resolution has the expected numerical invariants a; and b; for
every ¢ > j if and only if a; = 0, while for j < m — 1 the resolution has the expected
numerical invariants a; and b; for every ¢ < j if and only if b; = 0.
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COROLLARY 3. Let ¢ be any integer,2<:<n. If

s> ("jt)-('+t"2)—z’(n—z‘+2)+n+1

t

then in the resolution of A we have the expected a; and by for every k > 1.

PROOF: We need only to prove that if

sz(n:'t)—('+t_2)—z‘(n—i+2)+n+1

t

then 1 > m + 1, or , which is the same, that

n+1t 1+t—2 . . t n+t
- - - S )
( . ) ( y ) i(n z+2)+n+1_t+z,_1( n )

This can be easily seen by a direct computation.

We remark that this gives for example a proof of the Cohen-Macaulay type conjecture

8> (n;l—t)_(n+:—2) —n+1.

COROLLARY 4. The MRC holds if s > ("T*) — n.

in the case

PROOF: If we apply the theorem with i = 2 we get a; = dimg(Torf(A, K)¢yq) = 0 for

5> ("j") — n. The conclusion follows.

COROLLARY 5. The MRC holds for s = n + 4 points in P}.

PROOF: Since s = n + 4 we have t = 2, hence if we apply the theorem for ¢ = 2 and
t=n—1wegeta,_; = dimK(Torf_l(A, K),)=0for s > n+ 4. On the other hand we
have n+4 = 2n+1—(n—3), hence by the result of Green and Lazersfeld we get b,_5 = 0.

This gives the conclusion.

For the next application we need to recall that a set of points in P} is said to be in
general position if no subset of n 4+ 1 points lies on an hyperplane. The following result
has been proved in [TV] and also in [L] with completely different methods.
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COROLLARY 6. Let {Py,...,P,} in P} be a set of points in generic and general position.
IFn+l<s< ("'2"2), then a, = dimy(Tor2(A,k)ny1) = 0.

PrOOF: With our assumptions we have ¢t = 2. Further we may assume that the first n4-1
points are the coordinate points. Then it follows from the argument as in the proof of the
theorem, applied to the case i = n and t = 2, that an element a € Ker(r) N Ker(bn-1) is
of the form
a = Z eo/\--*/\é;/\--*/\éj/\---/\en®/\,'jX,'Xj
0<i<j<n

where A;;X;X; € I. Since the points are in general position and s > n 4 1, there is at
least one point with all coordinates different from zero. This implies A;; = 0 for all ¢ and
j, hence a = 0.

) - ") —n-1

The cases s = ( n-1ands=(

In this section we prove the MRC for s = ("}?) —n—1and s = ("7°) —n — 1 points in
P}. We start with s = ("7?) —n — 1. Since in P} and P} the conjecture holds, we may
assume n > 4. We have t = 2 and

2[(";’2)—3] =on+1)< (";’2) —n-l=g

hence m = 1. The MRC is then a consequence of the following result.
THEOREM 7. Let s = ("“2"2) —n —1, then a; = dimg(Torf(4,K)3) = 0.
PROOF: As in the above section we have Tor.f(A,K);, = Ker(w) N Ker(é1), where §; is
the Koszul map §; : jl\V ® Ry — R3 and Ker(w) = 11\V ® I, Let a = Z?:o e; ® F; be an
element of Torf(A, K);. Then as in the proof of theorem 2 we may write

Fi= Y aipX;Xk

0<j<kLn
i#5,k

1
We get (n + 1)(;') variables {a;jx}o<j<k<n. Since a € AV @ I we get the equations
i#j,k
Fiy(Pa): > aijrugiuar =0
0<j<k<n
i#,k
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where i = 0,...,nand d=1,...,s —n ~1= (}) — 1. On the other hand a € Ker(6;)

hence

0 =61(a)= XX.'F,'=Z Z a,'ij,'Xij.

i=0 i=0 0<j<k<n
75,k
By imposing the coefficient of X, X X, to be zero for 0 < p < ¢ < r < n we get the

equations

(pgr): apgr + Ggpr + Grpg = 0.

The matrix M associated to this system of homogeneous equations has (n+1) [(3) — 1] +

("jl) rows and (n + 1)(’2‘) columns. This matrix can be described as follows

1 if (4,7,k) = (p,qs7), (¢, p:7) o1 (7,p,q)

M gen) =
((pgr),aijx) {0 otherwise

and
0 ifz#£1
M Ly = .
(Fi(Pa),aija) { Uastax £t

We need to prove that this matrix has maximal rank. We have

(n+1)[(g> —1] +n+1=(n+1)(;)

hence it will be enough to prove that we can choose n 4 1 rows among the (pgr) such that
the corresponding minor involving these and all the rows F;(Py) is non zero. We choose

the following rows:
(014),(013),(234), (123),(024), (035), . . ., (03n)

and call D the corresponding minor.

We recall that if A is a square matrix of size say v, an A-product i1s an element

(—1)"9"(")a1d(1) “+-@y4(y) Where o is a permutation of {1,2,...,v}. Thus det(A) is the
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sum of the A-products. Let A be the product of the following monomials:

my = XPXPX?
mg = X2X2XD
my = XPX2X]
my = X2XPX]
ms = XP XD X2

b = XPXIXE k=5,...,n
b = XPXEX] k=5,...,n
brs = X7 X2 X[ k=5,...,n
dy = X0 X2X}'Xp  k=5,...,n
ckj = X3XTXP k=6,....n j=5,...,k—1

The cardinality of this finite set of monomials is

54+3n-4)+(n-4)+1+--+(n-5)= (g) - 1.

Hence if we order this set as we like, we can rewrite the monomials as Mj,..., M(n)__l and
2
(3)-
A= T[] M(P).

consider the monomial

It is then clear that we get the conclusion by proving that A is a D-product which can be

obtained in a unique way with the following strategy.
2

“ can be obtained in a unique way by choosing the following

Step 1 A monomial u"u'} u

elements:

(Fi(P),amry)  (Fm(P)aman)  (Fi(P)aigm)) i#Lm

where we use the following convention

Qper forg<r
aP(Q") = f
Gprq lorr <g
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1t is clear that we must use rows F;(P)for i =0,...,n. Since on each row F;(P ) we do
not have u ;, on the row Fi(P) we must choose the element u ,u , which is on the column
@i(mr) and on F,,(P) the element u ju . which is on the column a,,(;;). At this point from
each row Fj(P) with ¢ # I, m we must pick up the element u ju , which is on the columns

Gi(im). We remark that we used in this way all the rows corresponding to the point P.

Step 2 The monomials di can be obtained in a unique way by choosing the following

elements :

(F3(P),a32x)  (Fa(P)yaser)  (Fe(P)yaria)  (Fi(P),aisx)  t# 3,4,k

It is clear that we must use the rows Fi(P) for : = 0,...,n. Further the monomial
u ; must be choosen on the rows F;(P) for all ¢ # k. Hence on the row F3(P) we must
choose or u u g, or uu j or u 4u ; which are respectively on the columns azyg, azqr and
assx. But the column agy; must be choosen for the monomial b; ;3 and the column azqx
for the monomial bt ,. Hence we must choose the entry (F3(P.),asqzx). Similarly on the
row Fy(P) we must choose or u ju r or u su & which are respectively on the columns ayqx
and a4or. But the column ay4;; must be choosen for the monomial by 3, hence we must
choose the entry (Fy(P), aszx). At this point u 5 is nomore available, hence we must pick
up from the row Fi(P) the monomial u ju 4 which corresponds to the entry (Fi(P), ax14)
and from each row Fi(P)) with ¢ # 3,4, k the monomial u qu ; which corresponds to the
entry (Fi(P.), aiax). We remark that also in this case we used all the rows corresponding
to the point P.

Step 3 We used all the columns but

Q014,103 2234, 2312, 402,503, -+ - y 2n03-

This can be easily seen by looking at the following table where on each row one can find
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the monomial and the columns used to get it.

mp : ap12 @102 a;ol

mg ! G203 Q302 aiz3

mj : o34 Q403 ai04

my : a214 G412 Q24

ms : a134 a314 ai13

bg : ag 2 & Gk o2 aiok k=35,...,n

b : as 4 k ai 3 4 aisk k=35,...,n

bes : ay gk Qg 1 2 a1k k=35,...,n

dy : a3k a49k ak14 @isk k=35,...,n

Ckj - aj2 k akgj a,-jk k=6,...,n j=5...,l€—1 '

Step 4 Conclusion

We get the conclusion by choosing the entries

((014)= 0014), ((013), a103)a ((234), a234), ((123): asiz),
((024), (1402), ((035), (1503), vy ((031’1), ang3)

which are all equal to 1.

Now we come to the case of s = ("';3) —n — 1 points in P}. Since in P% and P} the

conjecture holds, we may assume n > 4. We have ¢t = 3 and

3[(";'3>—3] =3(n+1)< (”;3) —n-1=s

hence m = 1. The MRC is then a consequence of the following result.

THEOREM 8. Let s = ("}%) —n — 1, then a = dimg(Tor{(4,K),) =0.

PROOF: By Proposition 1 we have Torf{(4,K)y = Ker(r) N Ker(6;), where & is the
1 1
Koszul map 6; : AV@® R; — Ry and Ker(r) = AV®I;. Let a = 31 je; ® F; be an
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element of Torf (A, K)s. From the remarks made in the proof of Theorem 2 we may write

Fi= Z aijenX; Xe Xy
(jlklh)es‘

where S; is the set of triplets defined by

Si={0<j<k<h<nlU{0<j=k<h<nj#i)U{0<j<k=h<nk#i).
1
Since « € AV ® Iy we get the equations

Fi(Py): Z GijkhUdiUartidn =0
(j,k,h)ES.
where: =0,...,nandd=1,...,8—n-1= ("';'3)—211—2. On the other hand a € Ker(6;)
hence
n n
0=51(a)=ZX§F}=Z Z agjth;XijXh.
i=0 =0 (j,k,h)ES:
By imposing the coefficient of X, X, X, X, to be zerofor 0 < p < ¢ < r <t < n we get the
equations
(pgrt) : pgrt + Agprt + Qrpgr + Atpgr = 0.
By imposing the coeflicient of XquX,n to be zero for 0 < p < g < r £ n we get the
equations
(ppqr) : ppgr t Ggppr + Arppg = 0.

By imposing the coefficient of X, X2X, to be zero for 0 < p < ¢ < r < n we get the
equations

(pegr) := Apger + Agpgr + Grpgg = 0.
By imposing the coefficient of X,X,X? to be zero for 0 < p < ¢ < r < n we get the
equations

(pgrr) = Qpgrr + Qgprr + Qrpgr = 0.
Finally by imposing the coefficient of X2X2 to be zero for 0 < p < ¢ < n we get the
equations

(PP9q) = Gppeq + Ggppq-
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The matrix M associated to this system of homogeneous equations has

o151 7) ()4 ()

(n+1)[(”;3) —2n—1]

columns. This matrix can be described as follows

rows and

M _ 1 lf (iij’ k? h) = (P? Q! T',t), (q:»p’ T',t) k] (T',Pa q:t) or (t:psQ1r)
(Gart)2iixn) = 0 otherwise

1 if(i!j’ka h) = (pap’Q:r)$ (Q:p)par) or (T;P;P,Q')

0 otherwise

M((ppqr),a-',-u.) = {

1 if (¢,5,k,R)=(p,q9,9,7), (g,p,q,7) or (7,p,4,9)

Mi(pagryaizan) = { 0 otherwise

M _ {1 if(45,kR)=(p,q,"7), (¢,p, 1) Or (,p,q,7)
((parr).aian) = | ¢

otherwise

1 if (¢,5,k,h) = (p,p,q,q) or (¢,p,p,9)

M((ppqq),a.';u.) = { 0 otherwise

0 if i t

M. ) =
(Fg(Pd),au ih) { udJudkudh if i =t

We need to prove that this matrix has maximal rank. We have

(n+1)[(”;3) —2n—2] +n+1=(n+1)[(n;_3) —2n—1]

hence it will be enough to prove that we can choose n + 1 rows among the (pgrt) such that
the corresponding minor involving these and all the rows F;(P;) is non zero. We choose

the following rows:
(0122), (1123), (0223), (1223), ..., (122n)

and call D the corresponding minor.
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Let us consider the following monomials of degree 3n + 3.

bij = XX 0<i<j<n
moy = XTI X X2
mez = Xg 1 X2IXI"
myy = XXX

Moz = XIZX;"'IX:;""

mii = XX XS 124, 1even
mi; = X{'HXJ?"X,?H i even, j > maz(4,1 +2)
po2 = Xg P X2 XX,
p1; = X7 XXX, i>4
pij = X! XX Xi 3 <i,iodd,j > maz(4,i +1)
c= XPXPXDX?
q13; = X XTHIXT X, j>4
qos; = Xg T X7 HIXT X, j=4
0i; = Xg M X XT X, iodd, 5<i<j<n
T0i i+1 =X§+1X?XQ_1X12 ieven, 4<t<n
siiy1; =X XIPAXIXGXS ieven, 2<i<i+l<j<n
dije = XPHXFHLXT (i,j,k) € F

where F is the set of triplets different from (1,2,3),(0,2,3),(0,1,5), 7 = 2 and the ones

used as indexes of the last 5 sets of monomials.
It is clear that the cardinality of this set of monomials is
n+1 n+1 n+1 n+3
-~ 1 - 1) = —on—
(2)+(2)6+5++(3)(n+)(3)2112
hence if we order this set as we like, we can rewrite the monomials as

M yreoy M(n;a)_2n_2
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and consider the monomial

A =[] Mi(Py).

It is then clear that we get the conclusion by proving that A is a D-product which can
be obtained in a unique way. In the following table one can find for each monomial the
entries we use to get it. The table has to be red according to the following convention. If
one finds for the monomial say M the column say a;;xs, this means that we use the entries
(Fi(P),aijkn) where P is the point choosen for M.

bij : Giij aliij
Moy - apo12 aio1z Q11
mo3 - apo23 43023 Go33
mis : a1013 Ga3013 G133
Moy @ G2123 3123 Q1233
Tﬁ:‘ t+1 - ai0i i+1 Ai+1 0§ i41 QL ¢4+1 i+1
mij : Qi i1 Qjii4l j Glijy
Poz : 20013 22012 Qlo22
Pij - a101j a;13;j anjj
Pij - Gii—1ij a;0ij5 Alijj
q13; - ajo13 ansjy
qozj - @ ;023 ajo3;j
doiy ajo1i Qloiy
c: ap123 31023 a2013 3012 ai123
dijk : Qlijk
T0ii41 ° @01 i+1 Gi4101¢ Q104 i+1
Sii+15 ¢ Q015 Git1 015 Qo1 Qlii41 5

Looking at this table it is easy to see that we used all the columns but

ap122, 21123, 22023, 23122, 24122, - - -  An122-
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Hence if we choose now the entries
(0122, a1122), (1123, a1123), (0223, az023), . - - , (1221, an122)

which are all equal to 1 we get A. The proof that this is the unique way to get A is similar,

even if more complicate, to the analogous given in theorem 7. We omit the tedious details.

Using theorem 7 we can get some sporadic solution of the MRC.
PROPOSITION 9. The MRC holds in P} ift = 2.

PROOF: Sincet = 2 we have 5 < 5 < 15. Now if s < 8 or s > 10 the conclusion follows
by Corollary 5, Corollary 4 and Theorem 7. It remains to consider the case of 9 points in
P}. We have in this case m = 2, hence we need to prove a; = b; = 0. By Theorem 2 we

have a; = 0. Hence the resolution is
0 — R(—6)% — R(—5)" — R(—4)" @ R(—-3)** - R(-3)* @ R(-2)** = R— 0

By the alternating sum of the homogeneous pieces we get a; = 6 and az = 4 + b;. The
conclusion follows if we can prove a; < 4. As in the proof of Theorem 7 we have a matrix
M with (44+1)(9-5)+ (4;'1) = 30 rows and (4 + 1)(;) = 30 columns and we need to prove
that its rank is > 26. Using the same notations as above we choose all the rows F;(Py) for
t=20,...,4and d = 1,...,4 and further the rows (013),(014), (024), (123), (134), (234).
As for the columns we delete the following four: ayp3,asi4, @413, az12. In this way we get
a square matrix D whose determinant is not zero since the monomial A = m;mom;my is
a D-product which can be obtained in a unique way. To prove this, we remark that m,,
mq, m3 and my can be obtained in a unique way using the lines Fy(P;) with: =0,...,4

and d = 1,...,4 and the columns

Qg12, 102, Gi01, 203, A302, Fi23, G034, 3403, Ti04, @214, A412, Ai24-

Now we delete the four columns a;o3, az14, @413, @312 and we get the following six columns
left: ag13, @014, @134, @213, G234, @402. As in the proof of the theorem we get the conclusion
by choosing the entries

((013), a013),((014), a014), ({134), a134), ((123), a13), ((024), aso2), ((234), aza4).
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If we pass to P§ we get the MRC for s < 9 and s > 15. For s = 11,12 and 13 we get
m = 2 and a3 = 0 by Theorem 2. As in the proof of Proposition 9 we can also prove b; =0
and we get the MRC also in these cases. For s = 10 we have m = 3, a4 = 0 by Theorem
2, by = 0 by the result of Green and Lazarsfeld but we cannot prove that b2 = 0. Finally

for s = 14 we have m = 1 and we cannot prove that ag = 0.

Some of the results here were discovered or confirmed with the help of the computer
algebra program COCOA written by A.Giovini and G.Niesi.
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