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On the resolution of points in generic position

M.P.CAVALIERE, M.E.RosSI AND G. VALLA

Introduction.

Let k be an algebraically closed field and let X = {PI, ... ,P,,} be a set of s 2:: n + 1

distinct points in Pi:, not contained in auy hyperplane. We denote by I the defining ideal

of X in the polynomial ring R = k[Xo, ••• , X n] and by A the homogeneous coordinate ring

of X, A = R/I = ffi~oAi.

We say , following Geramita and Orecchia (see [GOJ), that the points PI, . .. , P" are in

generic position if the Hilbert function HA(t) := dimk(At) satisfies .,

.
It is weIl known that almost every set of s points in P k are in generic position, in the

sense that the points in generic position in P kform a dense open set U of Pi: x P kx·· . x Pk"

( s times).

Now for points in generic position the integer t defined by the inequalities

coincides with the soele degree of A and with the initial degree of A, which is the minimal

degree of an hypersurface passing through the points. From this it follows that a minimal

graded free resolution for A is given by

o -+ R( -t - n )bn ffi R(-t - n + 1)4 n -+ .

~ R(-t - i)bi ffi R(-t - i + 1)4 i -+ -+ R(-t - 1)b1 E9 R( _t)41 -+ R -+ A --+ 0

Ey the paiticular Hilbert function of A we get al = (n;t) - s and bn = S - (n+~-I). It

is natural to predict that almost every set of s points in generic position in Pi: have the
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same numerical invariants in the resolution. This leads to the following conjecture (see [L]

and [BG]).

Minimal resolution conjecture. There exiJt,.., a not empty open subset 0/ (PJ:Y con­

sisting 0/ se~ 0/ points in generic po.!ition which have the .!ame numerical resolution.

The minimal resolution conjecture (MRC for short) has been solved for n = 2 (see [GGR]

and[GM]), for n = 3 (see [BG]) and for any n if s 2:: (n~t) - n or s ~ n + 3 (see [L] and

[GL]), while the corresponding Cohen-Macaulay type conjecture has been solved for any

n (see [TV)).

The expected integers ai and bi have been worked out by A. Lorenzini in her thesis (see

[L)) where, even if not explicitely, the following characterization can be fotmd.

Let m be the least integer such that

Then m 2:: 1 and A has the expected numerical resolution if and only if am +l = bm - 1 = O.

More precisely if j 2:: m + 1, A has the wanted numerical invariants ai and bi for all i 2:: j

if and only if aj = 0, while if j ~ m - 1, A has the wanted numerical invariants aj and bi

for all i ~ j if and only if bj = O.

For example, in arecent paper, Green and Lazarsfeld proved that if s = 2n + 1 - P for

some 1 ~ p ~ n, and the points are in general position then bp = 0 (see [GrLJ). This gives

the right numerical invariants for the initial part of the resolution.

In this paper we prove that for a general set of points in generic position in P k, we

have ai = 0 if s 2:: (n~t) - (i+~-2) - i(n - i + 2) + n + 1 (see Theorem 2). By the above

remark this gives the expected numerical invanants for the last part of the resolution. H

we apply our result to the case i = 2, we get a fresh and easy proof of the MRC for the

case s 2:: (n~t) ~ n points in Pi:. Also, by combining our theorem with the result of Green

and Lazarsfeld which takes care of the first part of the resolution, we get the MRC for the

case s = n +4 points in Pi:. Finally if we restriet ourselves to the cases i = 2 and t = 2,3,

then we can improve our result "by one" by showing that a2 = 0 if s = (nt2
) - n - 1 or

s = (n~3) - n -1, thus proving the MRC in these cases tao (see Theorem 7 and 8). Some

sporadic results are also discussed in the last part of the paper.

2



The main result

Let k be an algebraically closed field and let {Uij}, i = 1, ... , ~ - n - 1, j = 0, ... , n,

be a set of indetenninates over k. Let K be the field obtained by adjoining these in-

determinates to k. Let Qo, , Qn be the coordinate points in PK and let us consider

the set X = {Qo, ... ,Qn,Pt, ,PlI - n- 1 } where the Pi are the K-rational points i!1 P I(
whose coordinates are given by Pi := (UiO' ... ,Uin). We denote by R the polynomial ring

[«Xo, ... , X n ] and by I the defining ideal of X in R. The ring A = R/I is the homoge­

neous coordinate ring of X. It is clear that X is a set of points in generic position (see

{TV]) , hence a minimal graded free resolution of A as an R·module is

o-+ R(-t - n)bn"ffi R(-t - n + 1)4n -+ .

-+ R(-t - i)b i ffi R(-t - i + 1)4 i -+ -+ R(-t - 1)b1 ffi R( _t)4 t -+ R -+ A -+ 0

where t is the initial degree of A or, which is the same, the integer defined by the inequalities

Dur point of view is to prove numerical properties for the resolution of these points. Since

the ~dity of these properties is equivalent to the fact that certain matrices, whose entries

are monomials in the UijfS have maximal rank, our results prove, after specialisation, that

almost every set of s points in P k which are in generic position has the corresponding

property.

Let us consider the graded R-modules Torfl(A, K) which can be computed from the

minimal free resolution of A. It is clear that Torr(A, [()j is a finite dimensional [(-vector

space whose dimension is the nwnber of minimal generators in degree j of the i - th free

graded module in the resolution. In particular we get

and

for every i = 1, ... ,no
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We want to compute Tor{l(A, K) using a resolution of K which can be obtained by the

Koszul complex of X o, ... , X n . Let V be a fixed K-vector space of dimension n + 1 and

let eo, ... ,en be a K-vector base of V. The Koszul resolution of K is given by

n+l 6n +1 n 61o-+ i\. V \&I R(-n - 1) ---+ i\.V 0 R( - n) -+ ... -+ i\.V 0 R( -1) ---+ R -+ K -+ 0

where the Oi are the usual Koszul maps.

Tensoring by A and taking graded pieces, one finds that Tor{l(A, K)j is given by the

homology of the complex of vector spaces

i+l i i-I
i\. V 0 A(-i - l)j -+ AV 0 A( -i)j -+ A V 0 A(-i + l)j.

Since Ap = R" for every p :::; t - 1, we get that Torf(A, K)i+t-l is the homology of the

complex

PROPOSITION 1. Let i be any integer, 2 :::; i :::; n. With the above assumptions and

notations, we have

wbere 7r is the canonicaI map in tbe following commutative cliagram:

i+I 6i+l i 6j@I i-I
i\. V <9 R t - 2 I i\.V 0 R t - 1 I A V0A t

11 lW
i 6j i-I 6i-l i-2
AV <9 R t - 1 I AV0Rt I A V 0 R t+I

PROOF: We have Torf(A,K)i+t-l = I{er(oi 01)/Im(bi+I)' Since Im(oi+l) = Ker(8d,
i-I

bi induces an injective map p from Torf(A, I<)i+t-l to A V 0 R t. Now it is easy to see

that the image of p is exactly K er(rr) n I(er(bi-I)' The conclusion folIows.

THEOREM 2. Let i be any integer, 2 ~ i :::; n. H

(
n + t) (i +t- 2)

S ;::: t - t - i(n - i + 2) + n + 1
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then ai = dimK(Torf(A, K)i+t-l) = O.

PROOF: Ey the above proposition we have Tor~(A, K)i+t-l = K er(?i) n K er(Si-I). Now
i-I

it is clear that Ker(?i) = A V @[t, hence if a E Ker(?i):we may write

0'= '""' e' /\ ... /\ e '. 0 F·W Jl 11-1 J

j={il,...ii-d

with Pj E [t. We have three important remarks.

1. In Pj there is no tenn of the form X; for every p = 0, ... , n.

It follows from the fact that Fj must vanish on the coordinate points.

2. In Pj there is no monomial of degree t in the variables X j 1 , ••• , X ji _ I •

Let 0' = eil /\ ... /\ eii_l 0 M + with M monomial of degree t in XiI" .. , Xii_I' Then

Si-l(a) = eh/\" ·/\eii_l @XitM+ cannot be zero since to cancel ej2/\·· ·Aeji_I C9XJtM

we need in a a non zero term ej2 /\ ... /\ eji_l /\ ep ® Xit (M/ X p ) with p is in the set

{jI , ... j i-I}. A contradiction.

3. In Fj there is no monomial of the fonn X;-l X q with p E {jI, ... ji-l}.

H for example a = eil /\ ... /\ eji_l ® Xi;l X q + ... then Si-l(a) = eh /\ ... /\ eii_l ®

XlI X q + ... cannot be zero since to cancel ej2 /\ ... /\ ej;_l ® XlI X q \ve need in a a term

eh /\ ... /\ eii _l A eq ® XiI' This is impossible by 1.

Using these three facts we see immediately that Fj is the surn of

(
n +t) (i -1+t-1) (. )( . ) ( . )t - t - t-1 n-t+2 - n-t+2

monomials. Thus we have (ntt) - (i+~-2) - i(n - i + 2) coefficients for Pj • But F j fiust

vamsh on the set {PI, ... ,PlJ - n - l } which have generic coordinates; since s - n - 1 >
(ni t

) - e+~-2) - i(n - i + 2) this implies Pj = 0 and the conclusion follows.

Ta apply trus result we recall that if m ia the least integer such that

then for auy j ~ m + 1 the resolution has the expected numerical invariants ai and bi for

every i ~ j if and only if aj = 0, while for j ~ m - 1 the resolution has the expected

numerical invariants ai and bi for every i ~ j if and only if bj = O.
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COROLLARY 3. Let i be any integer, 2 ~ i ~ n. H

(
n + t) (i + t - 2) '( , )82:: t - t -t n-z+2 +n+1

then in tbe resolution of A we have the expected ak and bk for every k 2:: i,

PROOF: We need only to prove that if

(
n +t) (i +t-2) '( , 2) 182:: t - t -zn-t+ +n+

then i 2:: m + 1, or , which is the same, that

(n+ t) _(i +t-2) _i (n _ i + 2) + n +12:: ~ (n + t) .
t t t+z-l n

This can be easily seen by a direct computation.

We remark that this gives for example a proof of the Cohen-Macaulay type conjecture

in the case

> (n+t) (n+t-2)8 - -n+1.- t t

COROLLARY 4. The MRC holds if s 2:: (ni t
) - n.

PROOF: If we apply the theorem with i = 2 we get a2 = dimK(Tor:(A, Kh+l) = 0 for

s > (ni t
) - n. The conclusion follows.

COROLLARY 5. The MRC holds for s = n +4 points in Pi:.

PROOF: Since 8 = n + 4 we have t = 2, hence if we apply the theorem for t = 2 and

i = n - 1 we get an-l = dimK(Tor~_l (A, ]()n) = 0 for s 2:: n + 4. On the other hand we

have n +4 = 2n +1 - (n - 3), hence by the result of Green and Lazersfeld we get bn - 3 = 0,

This gives the conclusion.

For the next application we need to recall that a set of points in Pi: is said to be in

general position if no subset of n + 1 points lies on an hyperplane. The following result

has been proved in (TV] and also in [L] with completely different methods.
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COROLLARY 6. Let {PI, . .. ,P,,} in Pt be a set of points in generic and general position.

Hn + 1 < s < (n~2), tben an = dimk(Tor~(A, k)n+l) = O.

PROOF: With our assumptions we have t = 2. Further we may assume that the first n +1

points are the coordinate points. Then it follows from the argument as in the proof of the

theorem, applied to the case i = n and t = 2, that an element Q' E K er(1r) nK er(On-I) is

of the form

Q = L eo 1\ ... 1\ ei 1\ ... 1\ ej 1\ ... 1\ en 0 AijXiXj
0:5 i <j:5n

where AijXiXj E 12 , Since the points are in general position and s > n + 1, there is at

least one point with all coordinates different from zero. This implies Aij = 0 for all i and

j, hence Q' = O.

In this section we prove the MRC for s = (nt2
) - n - 1 and s = (n;3) - n -1 points in

Pi:. We start with s = (n~2) - n - 1. Since in Pi and P~ the conjecture holds, we may

assume n ~ 4. We have t = 2 and

hence m = 1. The MRC is then a consequence of the following result.

THEOREM 7. Let s = (n~2) - n -1, tben a2 = dimK(Torr(A, K)3) = O.

PROOF: As in the above section we have Torf'( A, K)3 = K er(1r) n !(er(01), where 01 IS

1 1
the Koszul map 01 : AV 0 R2 -+ R 3 and K er(1r) = AV ® 12 , Let Q' = 2:7=0 ei 0 Fi be an

element of Tor:(A, !()3' Then as in the proof of theorem 2 we may write

Fi = L aijkXjXk .

0:5j<k:5 n
i:;i j, k

1

We get (n + 1)(;) variables {aijk}O$j<k$n. Since Q' E AV 012 we get the equations
i:;ij,k

L aijkUdjUdk = 0
0:5j<k:5 n

i:;ij,k
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where i = 0, ... ,n and d = 1, ... , S - n - 1 = (~) - 1. On the other hand a E !{er(81 )

hence
n n

o= 81(0) = LXiFi = L L aijkXiXjXk.
i=O i=O O:5i<k:5n

i#j,k

By imposing the coefficient of XpXqXr to be zero for 0 ::; p < q < r ::; n we get the

equations

(pqr) : apqr + aqpr + arpq = O.

The matrix M associated to this system of homogeneous equations has (n + 1) [(~) - 1] +
(nt1

) rows and (n + 1) (~) columns. This matrix cau be described as follows

M r a.. = {I if (i,j,k) = (p,q,r), (q,p,r) or (r,p,q)
((Pq ), 1)11:) 0 otherwise

and

ifi#t

if i = t

We need to prove that this matrix has maximal rank. We have

hence it will be enough to prove that we can choose n + 1 rows among the (pqr) such that

the corresponding minor involving these and all the rows Fi(Pd ) is non zero. We choose

the following rows:

(014), (013), (234), (123), (024), (035), ... , (03n)

and call D the corresponding minor.

We recall that if A is a square matrix of size say v, an A-product is an element

( -1 )"gn(oo) a1 00(1) ... a v oo(v) where a is a permutation of {I, 2, ... , v}. Thus det(A) is the
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SUffi of the A-products. Let ~ be the product of the following monomials:

ml =X~xrXi

m2 =X~X;X;

m3 = x~xix;

m4 = X;X;X;
ms = XfX;X~

bk1 = x~xixr
bk2 = X;X;Xr
bk3 = XfXixr
dk= x1xix:-1Xr

Ckj = xix;xr

k =5, ,n

k =5, ,n

k =5, ,n

k = 5, ,n

k = 6, ,n j = 5, ... , k-1

The cardinality of this finite set of monomials is

5+3(n-4)+(n-4)+1+···+(n-5)= (;)-1.
Hence if we order this set as we like, we can rewrite the monomials as Mb' .. , M(;)_l and

consider the monomial
(;)-1

ß = rr Mi(Pd·
i=l

It is then clear that we get the conclusion by proving that ~ is a D-product which can be

obtained in a unique way with the following strategy.

Step 1 A monomial u jU~m u~r can be obtained in a unique way by choosing the following

elements:

i t 1,m

where we use the following convention

for q < r

for r < q
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It is clear that we fiuSt use rows Fi(P.) for i = 0, ... , n. Since on each row Fi(P.) we do

not have U.i, on the row F,(P,) we must choose the element U.mU. r which is on the eolumn

a'(mr) and on Fm(P,) the element U.lU. r which is on the eolumn am{lr)' At this point from

eaeh row Fi(P,) with i ~ I, m we fiUSt pick up the element U.IU. m whieh is on the columns

ai(lm)' We remark that we used in this way all the rows corresponding to the point p.,

Step 2 The monomials dk can be obtained in a unique way by choosing the following

elements:

i ~ 3,4, k.

It is clear that we must use the rows Fi(P,) for i = 0, ... , n. Further the monomial

U.k must be choosen on the rows Fi(P,) for all i ~ k. Hence on the row F3 (P,) we must

choose or U.I U.k, or U.2U.k or U,4U.k which are respeetively on the eolumns a3Ik, a32k and

a34k. Eut the column a31J: fiust be choosen for the monomial bk 3 and the column a34k

for the monomial b,l; 2' Henee we must choose the entry (F3(P,), a32k). Similaxly on the

row F4 (P.) we must ehoose or U.I U.k or U.2U.k whieh are respectively on the columns a4Ik

and a42k. Eut the column a4I,1; must be choosen for the monomial bk 3, hence we must

choose the entry (F4(P,), a42k). At this point U.2 is nomore available, hence we must pick

up from the row Fk(P,) the monomial U.I U,4 which corresponds to the entry (Fk(P,), akl4)

and from each row Fi(P.) with i ':f 3,4, k the monomial U,4U.k whieh corresponds to the

entry (Fi(P.), ai4k). We remark that also in this case we used all the rows corresponding

to the point p.,

Step 3 We used all the columns hut

This ean be easily seen by looking at the following table where on each row one ean find
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the monomial and the columns used to get it.

ml : a012 al02 aiOI

m2 : a203 aa02 ai23

ma: a034 a403 ai04

m4 : a214 a412 ai24

ms: a134 a314 ai13

bk1 : ao 2 k ak 0 2 ai 0 k k = 5, ... ,n

bk2 : aa 4 k ak 3 4 ai a k k = 5, ... ,n

bk3 : al 2 k ak 1 2 ai 1 k k = 5, ... ,n

d k : aa2k a42k ak14 ai4k k = 5, .. . ,n

Ckj : aj 2 k aA: 2 j ai j k k = 6, ... ,n j=5 ... ,k-1

Step 4 Conclusion

We get the conclusion by choosing the entries

((014), aOI4)' ((013), al0a), ((234), a234), ((123), a312),

((024), a402), ((035), aso3),." ,((03n), an o3)

which are all equal to 1.

Now we come to the case of j = (n1 3
) - n - 1 points in Pi:. Since in Pi and Pt the

conjecture holds, we may asswne n ~ 4. We have t = 3 and

hence m = 1. The MRC is then a consequence of the following result.

THEOREM 8. Let j = (n1 3
) - n - 1, then a2 = dimK(Torf(A, K)4) = 0.

PROOF: By Proposition 1 we have Tor:(A,K)4 = J{er(7r) n Ker(OI)' where 01 is the
1 1

Koszul map 81 : AV 0 R 3 -+ ~ and Ker(1r) = AV 01a. Let a = L:~=o ei 0 Pi be an
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element of Tor:(A, K)4. From the remarks made in the proof of Theorem 2 we may write

F i = L aijkhXjXkXh

(j,k,h)eSi

where Si is the set of triplets defined by

Si := {O ::; j < k < h ::; n} U {O ::; j = k < h ::; n,j #= i} U {O ::; j < k = h ::; n, k #= i}.

1
Since a E AV ® 13 we get the equations

L aijkhUdjUdkUdh = 0
(j,k,h)eSi

where i = 0, ... , n and d = 1, ... , s-n-1 = (n~3) -2n-2. On the other hand a E ]{er(oI)

hence
n n

0= olea) = LXiFi = L L aijkhXiXjXkXh.
i=O i::=O (j,k,h)eSj

By imposing the coefficient of XpXqXrX t to be zero for 0 ::; p < q < r < t ::; n we get the

equations

(pqrt) : apqrt + aqprt + urpqt + Utpqr = O.

By imposing the coefficient of X;XqXr to be zero for 0 ~ p < q < r < n we get the

equations

(ppqr) : a ppqr + u qppr + arppq = O.

By imposing the coeffi.cient of XpX;Xr to be zero for 0 ~ p < q < r < n we get the

equations

(pqqr) := apqqr + aqpqr + arpqq = O.

By imposing the coefficient of XpXq ..Y; to be zero for 0 ~ p < q < r ~ n we get the

equations

(pqrr) := a pqrr + aqprr + arpqr = O.

Finally by imposing the coefficient of ..Y;X; to be zero for 0 ::; p < q ::; n we get the

equations

(ppqq) := a ppqq +Uqppq '

12



The matrix M associated to this system of homogeneous equations has

rows and

columns. This matrix can be described as follows

_{I if (i,j, k, h) = (p, q, r, t), (q,p, r, t) , (r,p, q, t) or (t, p, q, r)
M«pqrt),aij Irh) - 0 th .o erwlse

if(i,j,k,h) = (p,p,q,r), (q,p,p,r) or (r,p,p,q)

otherwise

if (i, j, k, h) = (p, q, q, r), (q, p, q, r) or (r, p, q, q)

otherwise

if (i,j, k, h) = (p, q, r, r), (q,p, r, r) or (r,p, q, r)

otherwise

_{I if (i, j, k, h) = (p, p, q, q) or (q, p, p, q)
M«ppqq),aijlrh) - 0 otherwise

{
0 if i =f t

M(FdPd),aiju) = 'f' t
'Udj'UdkUdh 1 t =

We need to prove that this matrix has maximal rank. We have

hence it will be enough to prove that we can choose n + 1 rows among the (pqrt) such that

the corresponding minor involving these and all the rows Fi(Pd ) is non zero. We choose

the following rows:

(0122),(1123),(0223),(1223), ... ,(122n)

and call D the corresponding minor.
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Let us consider the following monomials of degree 3n + 3.

b.. - x2n+1Xn+2
I) - i j

X n+1X2nX2
mOl = 0 1 2

m - X n+1X 2X 2n
03 - 0 2 3

X 2Xn+1x2n
m13 = 0 I 3

X 2xn+lx2n
m23 = 1 2 3

X n +l x 2n X2ffii i+l = i i+1 0

X n+lx2nx2
ffiij = i j i+1

X n+IX2n-IX2 v
P02= 0 2 1,,(1..3

X n+l x 2nx XP1j = 1 . j 0 3

X n+1 x 2nx XPij = i j 0 i-I

C = XfX;X;}(5

X n+1xn+1xnxq13j = 1 3 j 0

X n+1xn+lxnxQ03j = 0 3 j 2

X n+lXn+1xnx
qOij = 0 i j 1

X n+lxnxn X2rOi i+l = 0 i i+l I

X n-Ixn-2xnx3x3Si i+l j = i i+l j 0 I

d .. - Xn+IXn+lXn+l
I)k - i j k

O~i<j~n

i ;::: 4, i even

i even, j ;::: max(4,i + 2)

j;:::4

3 ~ i,i odd,j ;::: max(4,i + 1)

'>4J -

j;:::4

i odd, 5 ::; i < j ::; n

i even, 4 ~ i < n

i even, 2 :s; i < i + 1 < j ::; n

(i,j,k) E F

where F is the set of triplets different from (1,2,3), (0, 2,3), (0, 1,j), j 2: 2 and the ones

used as indexes of the last 5 sets of monomials.

It is clear that the cardinality of this set of monomials is

(n+ 1) (n + 1) (n + 1) (n + 3)2 + 2 - 6 + 5 + 1 + 3 - (n + 1) = 3 - 2n - 2

hence if we order this set as we like, we can rewrite the monomials as
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and consider the monomial

It is then clear that we get the conclusion by proving that .D. is a D-product which can

be obtained in a unique way. In the following table one can find for each monomial the

entries we use to get it. The table has to be red according to the following convention. If

one finds for the monomial say M the column say aijkh, this means that we use the entries

(Fi (P, ), aijk h) W here P, is the point choosen for M.

bij : aiijj a'iij

mOl: aOO12 a1012 alO11

m03 : a0023 a3023 a'033

m13 : a1013 a3013 a1133

m23 : a2123 a3123 a'233

mi i+1 : aiOi i+1 ai+1 Oi i+1 a,i i+1 i+1

mij: aii i+1 j aji i+1 j a'ijj

P02 : aOO13 a2012 alO22

Plj : a101j aj13j aUjj

Pij : ai i-I ij ajOij a'ijj

q13j : aj013 a'13j

q03j : aj023 alO3j

qOij : ajOli alOij

c: a0123 a1023 a2013 a3012 a1123

dijk : a'ijk

TOi i+1 : aiOl i+1 ai+1 01 i alOi i+1

Si i+1 j : aiOlj ai+1 01j ajOli a,i i+1 j

Looking at this tahle it is easy to see that we used all the COlU11ll1S hut
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Hence if we choose now the entries

(0122, a1122), (1123, a1123), (0223, a2023),'" ,(122n, a n 122)

which are all equal to 1 we get .6.. The proof that this is the unique way to get .6. is similar,

even if more complicate, to the analogous given in theorem 7. We omit the temous details.

Using theorem 7 we can get some sporamc solution of the MRC.

PROPOSITION 9. The MRC holds in Pt jf t = 2.

PROOF: Since t = 2 we have 5 ~ s < 15. Now if s ~ 8 or s 2:: 10 the conclusion follows

by Corollary 5, Corollary 4 and Theorem 7. It remains to consider the case of 9 points in

Pt. We have in this case m = 2, hence we need to prove a3 = b1 = O. Ey Theorem 2 we

have a3 = O. Hence the resolution is

By the alternating sum of the homogeneous pieces we get al = 6 and a2 = 4 + b1 • The

conclusion follows if we can prove a2 ~ 4. As in the proof of Theorem 7 we have a matrix

M with (4+1)(9-5)+ e~l) = 30 rows and (4+1)(~) = 30 colunms and we need to prove

that its rank is 2: 26. Using the same notations as above we choose all the rows Fi(Pd) for

i = 0, ... ,4 and d = 1, ... ,4 and further the rows (013), (014), (024), (123), (134), (234).

As for the columns we delete the following four: al03, a314, a413, a312' In this way we get

a square matrix D whose determinant is not zero since the monomial .6. = mlm2m3m4 is

a D-product which can be obtained in a unique way. To prove this, we remark that ml,

m2, m3 and m4 can be 0 btained in a unique way using the !ines Fi (Pd) with i = 0, ... , 4

and d = 1, ... ,4 and the colunms

Now we delete the four columns al03, a314, a413, a312 and we get the following six columns

left: a013, a014, a134, a213, a234, a402' As in the proof of the theorem we get the conclusion

by choosing the entries

((013), a013), ((014), aOI4), ((134), a134), ((123), a213), ((024), a402), ((234), a234)'
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H we pass to P% we get the MRC for 8 ~ 9 and 8 2:: 15. For 8 = 11,12 and 13 we get

m = 2 and a3 = 0 by Theorem 2. As in the proof of Proposition 9 we can also prove b1 = 0

and we get the MRC also in these cases. For 8 = 10 we have m = 3, a4 = 0 by Theorem

2, b1 = 0 by the result of Green and Lazarsfeld but we cannot prove that b2 = O. Finally

for s = 14 we have m = 1 and we cannot prove that a2 = O.

Some of the results here were discovered or confirmed with the help of the computer

algebra program COCOA written by A.Giovini and G.Niesi.
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