STABILITY OF HERMITIAN-YANG-MILLS EQUATION

by

Hong-Jong Kim

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany Seoul National University Department of Mathematics Seoul 151-742 Republic of Korea

. .

.

Stability of Hermitian-Yang-Mills equation

Hong-Jong Kim

Department of Mathematics, Seoul National University, Seoul 151-742, Republic of Korea

Abstract. We show that on a smoothly indecomposable vector bundle over a complex surface with the trivial canonical line bundle, there are no critical points of the Hermitian-Yang-Mills functional other than the absolute minima.

0. Introduction. On a holomorphic hermitian vector bundle (\mathcal{E}, h) over a compact complex hermitian manifold M, we consider the Hermitian-Yang-Mills functional (2.11)

$$\mathcal{Y}(B) = \frac{1}{2} \|F(B)\|^2, \quad B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}}),$$

where $|\cdot|$ denotes the L^2 -norm of the (0,2)-part of the traceless curvature tensor. Thus the zero set (or the absolute minima) of \mathcal{Y} consists of possible other holomorphic structures on $E = |\mathcal{E}|$ fixing the determinant det \mathcal{E} . We show

THEOREM (3.3). On complex surfaces with the trivial canonical line bundle, there are no critical points of \mathcal{Y} other than the absolute minima, when E is smoothly indecomposable.

The complex surfaces satisfying the condition of the theorem are complex tori, K3 surfaces and Kodaira surfaces. Yang-Mills theory on these surfaces are considered in [5]. Donaldson's functional \mathcal{L} [4, 6] have a similar property, namely h is a critical point of \mathcal{L} if and only if it is an absolute minimum or an Einstein-Hermitian metric. But his functional is not bounded below by 0. This kind of phenomenon is not true in Yang-Mills theory [8, 2]. We expect from the above theorem that the space of Cauchy-Riemann operators (2.10) on such surfaces are path connected (cf. [7, p. 157]). A naive idea is the following. If $\gamma : [0,1] \rightarrow A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ is a path joining two absolute minima, then the (negative) gradient flow of \mathcal{Y} gives rise to a homotopy $\{\gamma_t\}$ of γ fixing the end points. The integral

$$E(\gamma_t) = \int_0^1 \mathcal{Y}(\gamma_t(s)) \, ds$$

is a decreasing function of t. If the limit path γ_{∞} exists, then $E(\gamma_{\infty}) = 0$ and hence γ_{∞} lies in the zero set of \mathcal{Y} . So far, this is not carried out.

This paper is organized as follows. Although most notations are standard, e.g., as in [6], section 1 is introduced to fix notations. In section 2, we describe Hermitian-Yang-Mills functional. Main theorems appear only in section 3. Appendix explains the Serre duality for semi-connections, which is used in the proof of the theorem.

I like to express many thanks to professors T. Mabuchi, M. Itoh, S. Bando and T. Nitta for their interests in this article and valuable comments. I am also very grateful to the Max-Planck-Institut für Mathematik for the hospitality during the preparation of this paper.

1. Connections on a Lie algebra bundle. Let \mathfrak{g} be a smooth bundle of real Lie algebras over a smooth manifold M of dimension m. The space of differential p-forms on M (resp. with values in \mathfrak{g}) is denoted by A^p (resp. $A^p(\mathfrak{g})$). Then the Lie braket

$$[,]: A^0(\mathfrak{g}) \otimes A^0(\mathfrak{g}) \to A^0(\mathfrak{g})$$

extends canonically to a map

$$[,]: A^p(\mathfrak{g}) \otimes A^q(\mathfrak{g}) \to A^{p+q}(\mathfrak{g})$$

and

$$[\xi_1,\xi_2] = -(-1)^{p_1 p_2}[\xi_2,\xi_1]$$

for $\xi_i \in A^{p_i}(\mathfrak{g})$. For $\phi \in A^{\bullet}(\mathfrak{g}) := \sum_{p=1}^m A^p(\mathfrak{g})$, let

$$ad(\phi): A^{\bullet}(\mathfrak{g}) \to A^{\bullet}(\mathfrak{g})$$

be the map $\xi \mapsto [\phi, \xi]$ for $\xi \in A^{\bullet}(\mathfrak{g})$. Then the Jacobi identity is

$$ad(\xi_1)[\xi_2,\xi_3] = [ad(\xi_1)\xi_2,\xi_3] + (-1)^{p_1p_2}[\xi_2,ad(\xi_1)\xi_3]$$

for $\xi_i \in A^{p_i}(\mathfrak{g})$.

Now we assume a Riemannian structure h on \mathfrak{g} , which is *invariant* in the sense that

(1.1)
$$h([X,Y],Z) = h(X,[Y,Z])$$

for all $X, Y, Z \in A^0(\mathfrak{g})$. We call such a pair (\mathfrak{g}, h) a metrized Lie algebra bundle. The Riemannian structure h extends canonically to a map

$$(1.2) h: A^p(\mathfrak{g}) \otimes A^q(\mathfrak{g}) \to A^{p+q}$$

and the equation (1.1) becomes

(1.3)
$$h([\xi_1,\xi_2],\xi_3) = h(\xi_1,[\xi_2,\xi_3])$$

for $\xi_i \in A^{p_i}(\mathfrak{g})$, or equivalently

(1.4)
$$h(ad(\xi_1)\xi_2,\xi_3) + (-1)^{p_1p_2}h(\xi_2,ad(\xi_1)\xi_3) = 0.$$

Now we assume that M is a compact, oriented Riemannian manifold of dimension m. Then the Hodge \star extends to a map

$$\star: A^p(\mathfrak{g}) \to A^{m-p}(\mathfrak{g}).$$

We have a pointwise inner product

$$(1.5) \qquad \langle , \rangle : A^p(\mathfrak{g}) \otimes A^p(\mathfrak{g}) \to A^0$$

satisfying

$$\langle \xi_1, \xi_2 \rangle = \star h(\xi_1, \star \xi_2)$$

and the global inner product

(1.6)
$$(\ ,\): A^p(\mathfrak{g}) \otimes A^p(\mathfrak{g}) \to \mathbf{R}$$

defined by

$$(\xi_1,\xi_2) = \int_M h(\xi_1,\star\xi_2)$$

for $\xi_i \in A^p(\mathfrak{g})$. The induced norms of \langle , \rangle and (,) will be denoted by $| \cdot |$ and $|| \cdot |$, i.e.,

(1.7)
$$|\xi| = \langle \xi, \xi \rangle^{1/2}, \quad |\xi| = (\xi, \xi)^{1/2}.$$

The adjoint of

(1.8)
$$ad(\xi): A^{\bullet}(\mathfrak{g}) \to A^{\bullet}(\mathfrak{g})$$

with respect to the inner product (,) is denoted by $ad(\xi)^*$. Then for $\xi \in A^p(\mathfrak{g})$,

(1.9)
$$ad(\xi)^* = -(-1)^{(m+1+p)q} \star ad(\xi) \star \quad \text{on } A^q(\mathfrak{g}).$$

1.10. DEFINITION. A connection D on a metrized Lie algebra bundle (\mathfrak{g}, h) is an \mathbb{R} -linear map

$$D: A^0(\mathfrak{g}) \to A^1(\mathfrak{g})$$

such that

(1)
$$D(fX) = df \cdot X + fD(X)$$

(2) $dh(X, Y) = h(DX, Y) + h(X, DY)$
(3) $D[X, Y] = [DX, Y] + [X, DY]$

for any $f \in \mathcal{C}^{\infty}(M)$ and $X, Y, Z \in A^{0}(\mathfrak{g})$.

A connection D on (\mathfrak{g}, h) extends in an obvious way to a map

$$d_D: A^p(\mathfrak{g}) \to A^{p+1}(\mathfrak{g}).$$

Then $d_D \circ d_D$ is equal to the *curvature tensor* R of D, which is a 2-form on M with values in the bundle $Der(\mathfrak{g})$ of derivations on \mathfrak{g} .

2. Holomorphic Lie algebra bundle. In this section we assume that M is a compact complex manifold with a hermitian metric. As in the previous section let (\mathfrak{g}, h) be a metrized real Lie algebra bundle, where the metric h is invariant (1.1). The induced hermitian metric on the complexified Lie algebra bundle

$$\mathfrak{g}_{\mathbf{C}} = \mathfrak{g} \otimes \mathbb{C}$$

is also denoted by h. For $X = X_1 + \sqrt{-1}X_2$ ($X_i \in \mathfrak{g}$), we define the conjugate transpose

(2.1)
$$X^{\dagger} = -X_1 + \sqrt{-1}X_2.$$

Then $X \mapsto X^{\dagger}$ is an involutive conjugate linear isomorphism on $\mathfrak{g}_{\mathbb{C}}$ such that

- (1) $X^{\dagger} = -X$ if and only if $X \in \mathfrak{g}$
- (2) $h(X^{\dagger}, Y^{\dagger}) = h(Y, X) = \overline{h(X, Y)}$
- (3) $h([X, Y], Z) = h(Y, [X^{\dagger}, Z]) = -h(X, [Y^{\dagger}, Z])$

for $X, Y, Z \in \mathfrak{g}_{\mathbb{C}}$.

The conjugate transpose map extends obviously to a conjugate linear isomorphism of $A^{\bullet}(\mathfrak{g}_{\mathbb{C}}) \to A^{\bullet}(\mathfrak{g}_{\mathbb{C}})$, which, in turn, defines an isomorphism

$$\mathfrak{g}_{\mathbf{C}}\simeq\mathfrak{g}_{\mathbf{C}}^{\vee}$$

of $\mathfrak{g}_{\mathbb{C}}$ and its dual $\mathfrak{g}_{\mathbb{C}}^{\vee}$. Thus for $\xi \in A^{\bullet}(\mathfrak{g}_{\mathbb{C}})$ the corresponding dual element ξ^{\vee} is characterized by

(2.3)
$$\xi^{\vee}(\phi) = h(\phi, \xi^{\dagger}), \quad \phi \in A^{\bullet}(\mathfrak{g}_{\mathbb{C}}).$$

2.4. LEMMA. For $\xi_i \in A^{p_i}(\mathfrak{g}_{\mathbb{C}})$ and $\xi \in A^p(\mathfrak{g}_{\mathbb{C}})$, (1) $[\xi_1^{\dagger}, \xi_2^{\dagger}] = -[\xi_1, \xi_2]^{\dagger}$ (2) $\langle \xi_1^{\dagger}, \xi_2^{\dagger} \rangle = \langle \xi_2, \xi_1 \rangle = \overline{\langle \xi_1, \xi_2 \rangle}$ (3) $h(\xi_1^{\dagger}, \xi_2^{\dagger}) = (-1)^{p_1 p_2} h(\xi_2, \xi_1) = \overline{h(\xi_1, \xi_2)}$ (4) $h([\xi_1, \xi_2], \xi_3) = (-1)^{p_1 p_2} h(\xi_2, [\xi_1^{\dagger}, \xi_3]) = -h(\xi_1, [\xi_2^{\dagger}, \xi_3])$ (5) $ad(\xi)^* = (-1)^{q(p+1)} * ad(\xi^{\dagger}) * \text{ on } A^q(\mathfrak{g}_{\mathbb{C}}).$

Now we assume that $\mathfrak{g}_{\mathbf{C}}$ has a holomorphic structure

(2.5)
$$\overline{\partial}: A^{0,0}(\mathfrak{g}_{\mathbb{C}}) \to A^{0,1}(\mathfrak{g}_{\mathbb{C}}), \quad \overline{\partial}^2 = 0$$

such that the Lie algebra structure on each fiber varies holomorphically. In other words,

(2.6)
$$\overline{\partial}[\xi_1,\xi_2] = [\overline{\partial}\xi_1,\xi_2] + (-1)^{p_1}[\xi_1,\overline{\partial}\xi_2]$$

for $\xi_i \in A^{p_i}(\mathfrak{g}_{\mathbb{C}})$.

2.7. PROPOSITION. Let $D = \partial + \overline{\partial}$ be the connection on $\mathfrak{g}_{\mathbb{C}}$ compatible with h and the holomorphic structure. Then the isomorphism (2.2) is holomorphic if and only if

$$\partial(\xi^{\dagger}) = (\overline{\partial}(\xi))^{\dagger}$$

for all $\xi \in A^{\bullet}(\mathfrak{g}_{\mathbb{C}})$. In this case,

$$\partial[\xi_1,\xi_2] = [\partial\xi_1,\xi_2] + (-1)^{p_1}[\xi_1,\partial\xi_2]$$

for any $\xi_i \in A^{p_i}(\mathfrak{g}_{\mathbb{C}})$ and hence D is a connection on the metrized Lie algebra bundle in the sense of (1.10).

PROOF: Note that (2.2) is holomorphic if and only if

$$\overline{\partial}(X^{\vee}) = (\overline{\partial}(X))^{\vee}, \quad \forall X \in A^0(\mathfrak{g}_{\mathbb{C}})$$

i.e.,

$$(\overline{\partial}(X^{\vee}))(Y) = (\overline{\partial}(X))^{\vee}(Y), \quad \forall X, Y \in A^{0}(\mathfrak{g}_{\mathbb{C}})$$

i.e.,

$$d''h(Y,X^{\dagger}) - h(\overline{\partial}Y,X^{\dagger}) = h(Y,(\overline{\partial}(X))^{\dagger})$$

i.e.,

$$h(Y, \partial(X^{\dagger})) = h(Y, \overline{\partial}(X)^{\dagger})$$

i.e.,

$$\partial(X^{\dagger}) = \overline{\partial}(X)^{\dagger}.$$

This shows the first assertion. Now

$$\begin{aligned} h(\partial[X_1, X_2], X_3) &= d'h([X_1, X_2], X_3) - h([X_1, X_2], \overline{\partial}X_3) \\ &= -d'h(X_1, [X_2^{\dagger}, X_3]) + h(X_1, [X_2, \overline{\partial}X_3]) \\ &= -h(\partial X_1, [X_2^{\dagger}, X_3]) - h(X_1, \overline{\partial}[X_2^{\dagger}, X_3] - [X_2, \overline{\partial}X_3]) \\ &= h([\partial X_1, X_2], X_3) - h(X_1, [\overline{\partial}(X_2^{\dagger}), X_3]) \\ &= h([\partial X_1, X_2] + [X_1, \overline{\partial}(X_2^{\dagger})^{\dagger}], X_3). \end{aligned}$$

This shows the second assertion.

Note that each $B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ defines a *semi-connection* or the (0,1)-part of a connection (cf. [6])

(2.8)
$$\overline{\partial}_B := \overline{\partial} + ad(B) : A^{0,0}(\mathfrak{g}_{\mathbb{C}}) \to A^{0,1}(\mathfrak{g}_{\mathbb{C}})$$

on $\mathfrak{g}_{\mathbf{C}}$ such that

$$\overline{\partial}_B[\xi_1,\xi_2] = [\overline{\partial}_B\xi_1,\xi_2] + (-1)^{p_1}[\xi_1,\overline{\partial}_B\xi_2]$$

for $\xi_i \in A^{p_i}(\mathfrak{g}_{\mathbb{C}})$. Put

(2.9)
$$F(B) = \overline{\partial}(B) + \frac{1}{2}[B,B] \in A^{0,2}(\mathfrak{g}_{\mathbb{C}}).$$

Then

$$\overline{\partial}_B \circ \overline{\partial}_B = ad(F(B))$$

for any $B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ and $\overline{\partial}_B(F(B)) = 0$ is the Bianchi identity.

Note that semi-connections $\overline{\partial}_B$, in general, do not define a holomorphic structure and F(B) is the obstruction.

2.10. DEFINITION. A semi-connection $\overline{\partial}_B$ is called a *Cauchy-Riemann operator* if F(B) = 0.

2.11. DEFINITION. The functional

$$\mathcal{Y}: A^{0,1}(\mathfrak{g}_{\mathbf{C}}) \to \mathbf{R}$$

defined by

$$\mathcal{Y}(B) = \frac{1}{2} \|F(B)\|^2 = \int_M \star |F(B)|^2$$

is called the Hermitian-Yang-Mills functional.

This Hermitian-Yang-Mills functional measures the integrability of semi-connections and the zero set (or the absolute minima) consists of Cauchy-Riemann operators (2.10). Now the first and second variational formulae are easily obtained as in the Yang-Mills theory [3].

2.12. PROPOSITION (THE FIRST VARIATIONAL FORMULA). Let $B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ and let $\{B_t\}$ be a 1-parameter family of elements in $A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ with $B_0 = B$ and $\frac{d}{dt}|_0 B_t = V \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$. Then

$$\frac{d}{dt}|_{0}\mathcal{Y}(B_{t}) = Re(\overline{\partial}_{B}(V), F(B)).$$

2.13. COROLLARY. $B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ is a critical point of \mathcal{Y} if and only if $(\overline{\partial}_B)^* F(B) = 0$.

2.14. COROLLARY. If $\overline{\partial}_{\mathcal{B}} : A^{0,1}(\mathfrak{g}_{\mathbb{C}}) \to A^{0,2}(\mathfrak{g}_{\mathbb{C}})$ is surjective for all $B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$, then there are no critical points of \mathcal{Y} other than the absolute minima.

2.15. PROPOSITION (THE SECOND VARIATIONAL FORMULA). Let $B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ be a critical point of \mathcal{Y} and let $\{B_t\}$ be a 1-parameter family of elements in $A^{0,1}(\mathfrak{g}_{\mathbb{C}})$ with $B_0 = B$ and $\frac{d}{dt}|_0 B_t = V \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$. Then

$$\left(\frac{d}{dt}\right)^2|_{\mathfrak{o}}\mathcal{Y}(B_t) = Re([V,V],F(B)) + \|\overline{\partial}_B(V)\|^2.$$

2.16. REMARK. There is a natural identification $f : A^{0,1}(\mathfrak{g}_{\mathbb{C}}) \to A^1(\mathfrak{g})$ defined by $f(B) = B - B^{\dagger}$, where $A^1(\mathfrak{g})$ is the affine space of "unitary connections." Then the inner product on these spaces are related by $(f(B_1), f(B_2) = 2Re(B_1, B_2)$ for $B_i \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$.

3. Main theorems. A smooth vector bundle $E \to M$ is called (smoothly) indecomposable if it is not a direct sum of two proper subbundles. If E is indecomposable, then $rk(E) \leq \dim(M)$. Recall that a unitary connection on E is said to be *irreducible* if the holonomy group acts irreducibly on each fiber.

3.1. LEMMA. Let E be a smooth complex vector bundle over a connected manifold. Then the following conditions are equivalent.

(1) E is smoothly indecomposable.

(2) Every unitary connection on E is irreducible.

(3) For any unitary connection on E, every parallel endomorphism of E is a constant multiple of the identity endomorphism.

3.2. VANISHING THEOREM. Let E be a smooth indecomposable vector bundle over a connected complex manifold M and let D'' be a semi-connection on E. Then any endomorphism f of E such that $D''(f) := D'' \circ f - f \circ D'' = 0$ is a constant multiple of the identity endomorphism.

PROOF: We fix any hermitian metric on E. Then there is a unique unitary connection D, with D'' as its (0,1) part. Then for any $f \in A^0(\operatorname{End} E)$,

$$(D''f)^{\dagger} = D'(f^{\dagger}) = 0.$$

Thus if we put $f = f_1 + \sqrt{-1}f_2$, where f_i 's are skew-hermitian endomorphism of (E, h), then f_i 's are parallel and hence f is parallel. Thus by the lemma (3.1), f is constant.

Now let (\mathcal{E}, h) be a holomorphic hermitian vector bundle over a compact complex hermitian manifold M. We assume that the underlying smooth vector bundle $E = |\mathcal{E}|$ of \mathcal{E} is smoothly indecomposable. Let $\mathfrak{g}_{\mathbb{C}}$ be the bundle of trace-free endomorphisms of \mathcal{E} . Note that the group SL(E) of smooth endomorphisms of E with determinant 1 acts on $A^{0,1}(\mathfrak{g}_{\mathbb{C}})$

 $(g, B) \mapsto -\overline{\partial}g \cdot g^{-1} + g \circ B \circ g^{-1}.$

We define the Hermitian-Yang-Mills functional

$$\mathcal{Y}: A^{0,1}(\mathfrak{g}_{\mathbf{C}}) \to \mathbb{R}$$

by $\mathcal{Y}(B) = \frac{1}{2} \|F(B)\|^2$ as in (2.11). Then \mathcal{Y} is invariant under the subgroup SU(E) of SL(E). But the zero set of \mathcal{Y} is invariant under the whole group SL(E).

3.3. THEOREM. If (\mathcal{E}, h) is a smoothly indecomposable holomorphic hermitian vector bundle over a hermitian complex surface M with the trivial canonical line bundle, then the critical points of the Hermitian-Yang-Mills functional \mathcal{Y} are the Cauchy-Riemann operators.

PROOF: It suffices to show that for any $B \in A^{0,1}(\mathfrak{g}_{\mathbb{C}})$,

(*)
$$\overline{\partial}_B : A^{0,1}(\mathfrak{g}_{\mathbb{C}}) \to A^{0,2}(\mathfrak{g}_{\mathbb{C}})$$

is surjective (cf. (2.14)). But by the Serre duality (B.5), the cokernel of (*) is isomorphic to the kernel of

$$\overline{\partial}_B: A^{2,0}(\mathfrak{g}_{\mathbb{C}}) \to A^{2,1}(\mathfrak{g}_{\mathbb{C}}).$$

Since the canonical line bundle Ω^2 is trivial, we are done by the vanishing theorem (3.2).

3.4. REMARK. The trace part of End \mathcal{E} is not important in the above theorem. Namely, if we consider $A^{0,1}(\operatorname{End} \mathcal{E})$ as a domain of \mathcal{Y} , then the same conclusion is true. If we identify $A^{0,1}(\operatorname{End} \mathcal{E}) \simeq A^1(u(E))$, where u(E) is the real bundle of skew hermitian endomorphisms of (\mathcal{E}, h) , then

(3.5)
$$\mathcal{Y}(A) = \frac{1}{4} \| R_A^+ + \frac{\sqrt{-1}}{2} \Phi K_A \|^2, \quad A \in A^1(u(E))$$

where $R_A = R + d_D(A) + \frac{1}{2}[A, A]$ is the curvature tensor of D + A (*D* being the canonical connection on (\mathcal{E}, h)), R_A^+ is the self-dual part of R_A , $K_A = \sqrt{-1}\Lambda R_A$ is the mean curvature tensor [6], and Φ is the fundamental 2-form of *M*. Then the first variational formula becomes

$$d\mathcal{Y}(A)(v) = \frac{1}{4}(v, d_A^*(R_A + \sqrt{-1}\Phi K_A)), \quad v \in A^1(u(E))$$

where d_A^* is the adjoint of $d_A := d_D + A : A^1(u(E)) \to A^2(u(E))$.

APPENDIX : HODGE THEORY

A. Real case. Let (M, g) be a compact oriented Riemannian manifold of dimension m and let (E, h) be a smooth Riemannian vector bundle over M of rank r. Let D be a metric connection on E. The induced exterior derivatives

(A.1)
$$d_D: A^p(E) \to A^{p+1}(E)$$

do not form a complex, unless E is flat, and the obstruction is the curvature R_D . The adjoint of the operator (A.1) is denoted by

$$\delta_D: A^{p+1} \to A^p(E).$$

Then

(A.2)
$$\delta_D = -(-1)^{mp} \star d_D \star \quad \text{on } A^{p+1}(E),$$

where \star is the Hodge star. We put

$$\Delta_D = d_D \delta_D + \delta_D d_D,$$

which is a self-adjoint elliptic operator, and let

$$H_D^p(E) = Ker(\Delta_D | A^p(E)).$$

A.3. THEOREM (POINCARÉ DUALITY). $H_D^p(E) \simeq H_D^{m-p}(E)$.

PROOF: Immediate consequence of (A.2).

A.4. THEOREM. Let r be the rank of E and e(M) be the Euler characteristic of M. Then (1) $h_D^p(E) := \dim H_D^p(E) < \infty$.

(2)
$$\sum_{p=0}^{m} (-1)^p h_D^p(E) = r \cdot e(M).$$

PROOF: (1) is standard. Note that the operator

(A.5)
$$d_D + \delta_D : A^{\bullet}(E) \to A^{\bullet}(E)$$

is a self-adjoint elliptic operator with the same kernel as Δ_D . Thus $\sum (-1)^p h^p$ is equal to the index of

$$d_D + \delta_D : A^{even}(E) \to A^{odd}(E),$$

and the theorem follows from the Atiyah-Singer index theorem [1].

The Riemannian structure h on E induces canonically an isomorphism

$$b: E \to E^{\vee}$$

onto the dual vector bundle E^{\vee} of E, by *lowering indices*. This *musical isomorphism* induces an isomorphism

$$b: A^{\bullet}(E) \to A^{\bullet}(E^{\vee})$$

of A^{\bullet} -modules. The Riemannian structure h^{\vee} on E^{\vee} is the one making \flat an isometry.

The connection D on E induces a connection D^{\vee} on E^{\vee} and D^{\vee} is also compatible with h^{\vee} . Thus we have

$$d_{D^{\vee}}: A^p(E^{\vee}) \to A^{p+1}(E^{\vee})$$

and its adjoint

$$\delta_{D^{\vee}}: A^{p+1}(E^{\vee}) \to A^p(E^{\vee}).$$

A.6. THEOREM. The musical isomorphism $\flat : A^{\bullet}(E) \to A^{\bullet}(E^{\vee})$ commutes with \star , d and δ , i.e.,

(1) $\flat \star (\xi) = \star \flat(\xi)$

(2) $bd_D(\xi) = d_{D^{\vee}}b(\xi)$ (3) $b\delta_D(\xi) = \delta_{D^{\vee}}b(\xi)$

for any $\xi \in A^p(E)$.

PROOF: (1) and (2) is easy. (3) follows from (1), (2) and (A.2).

A.7. COROLLARY (POINCARÉ DUALITY). $H_D^p(E) \simeq H_{D^{\vee}}^p(E^{\vee}).$

B. Complex case. Now let (M, g) be a compact complex hermitian manifold of dimension n. Thus m = 2n is the real dimension of M. Let (E, h) be a smooth hermitian vector bundle over M and let D = D' + D'' be a unitary connection on E. Then

$$d_D = d'_D + d''_D$$

and

$$\delta_D = \delta'_D + \delta''_D.$$

Now from (A.2), we have

(B.1)
$$\delta'_D = -\star d''_D \star, \qquad \delta''_D = -\star d'_D \star.$$

We put

$$\Delta'_D = d'_D \delta'_D + \delta'_D d'_D, \qquad \Delta''_D = d''_D \delta''_D + \delta''_D d''_D.$$

They are self-adjoint elliptic operators. We put

$$H_{D'}^{p,q}(E) = Ker(\Delta'_D | A^{p,q}(E))$$

and

$$H^{p,q}_{D''}(E) = Ker(\Delta''_D | A^{p,q}(E)).$$

B.2. THEOREM (POINCARÉ DUALITY).

$$H_{D'}^{p,q}(E) \simeq H_{D''}^{n-q,n-p}(E)$$

PROOF: Obvious from (B.1).

B.3. THEOREM. (1) $h_{D''}^{p,q}(E) := \dim_{\mathbb{C}} H_{D''}^{p,q}(E) < \infty$ (2) For each $p, \sum_{q=0}^{n} (-1)^{q} h_{D''}^{p,q}(E) = \int_{M} ch(\Omega^{p} \otimes E) \cdot todd(M).$

PROOF: Similar to the proof of A.4.

The hermitian structure h on E induces canonically a *conjugate* linear isomorphism

$$\flat: E \to E^{\lor}$$

onto the dual vector bundle E^{\vee} of E and this induces a conjugate linear isomorphism

$$\flat: A^{p,q}(E) \to A^{q,p}(E^{\vee}).$$

B.4. THEOREM. For $\xi \in A^{p,q}(E)$,

$$(1) \flat \star (\xi) = \star \flat(\xi)$$

$$(2) \flat d'_D(\xi) = d'_{D^{\vee}} \flat(\xi), \qquad \flat d''_D(\xi) = d'_{D^{\vee}} \flat(\xi)$$

$$(3) \flat \delta'_D(\xi) = \delta''_{D^{\vee}} \flat(\xi), \qquad \flat \delta''_D(\xi) = \delta'_{D^{\vee}} \flat(\xi)$$

PROOF: This follows from theorem (A.6).

B.5. COROLLARY (SERRE DUALITY). (1) Let D'' be a semi-connection on E. Then for any hermitian structure on E, $H^{p,q}_{D''}(E)^{\vee} \simeq H^{n-p,n-q}_{D^{\vee}''}(E^{\vee})$.

(2) Let Ω^p be the p-th exterior power of the holomorphic cotangent bundle of (M,g), equipped with the canonical connection compatible with the hermitian structure and the holomorphic structure, and let ∇ be the induced connection on $\Omega^p \otimes E$ from the one on Ω^p and D on E. Then $H^{p,q}_{D''}(E) \simeq H^{0,q}_{\nabla''}(\Omega^p \otimes E)$.

PROOF: From theorem (B.4), we have a conjugate linear isomorphism

$$H^{p,q}_{D''}(E) \simeq H^{q,p}_{D^{\vee}}(E^{\vee}).$$

By applying the Hodge star or the Poincaré duality (B.2), we get (1). (2) is more or less trivial. \blacksquare

If we assume that (M, g) is Kähler, then

(B.6)
$$\sqrt{-1}[\Lambda, d'_D] = \delta'_D, \quad -\sqrt{-1}[\Lambda, d'_D] = \delta''_D$$

and hence

(B.7)
$$\Delta_D = \Delta'_D + \Delta''_D.$$

In particular, Δ_D preserves the bi-grade. The Laplacians Δ'_D and Δ''_D are not in general equal and their difference is an algebraic operator

(B.8)
$$\sqrt{-1}[\Lambda, R_D] = \Delta'_D - \Delta''_D,$$

where $R_D = d_D \circ d_D : A^{p,q}(E) \to A^{p+1,q+1}(E)$ is the curvature operator of D. B.9. THEOREM (HODGE DECOMPOSITION). Suppose $[\Lambda, R_D] = 0$ on $A^k(E)$. Then

$$H_D^k(E) = \sum_{p+q=k} H_{D''}^{p,q}(E).$$

The proof is obvious and we also have Lefschetz decomposition as in the ordinary case. (cf. [9]).

References

- 1. Atiyah, M. F., Singer, I. M., The index of elliptic operators. III, Ann. Math. 87 (1968), 546-664.
- 2. Bor, G., Montgomery, R., SO(3) invariant Yang-Mills fields which are not self-dual, preprint, 1989.
- 3. Bourguignon, J. P., Lawson, H. B., Jr., Stability and the isolation phenomena for Yang-Mills fields, Commun. Math. Phys. 79 (1981), 189-230.
- 4. Donaldson, S. K., Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. (3) 50 (1985), 1-26.
- 5. Itoh, M., Yang-Mills connections over a complex surface and harmonic curvature, Compositio Math. 62 (1987), 95-106.
- 6. Kobayashi, S., "Differential Geometry of Complex Vector Bundles," Publ. of the Math. Soc. of Japan 15, Iwanami Shoten and Princeton Univ. Press, Tokyo, 1987.
- 7. Mukai, S., Moduli of vector bundles on K3 surfaces and symplectic manifolds, Sugaku Expositions 1 (1988), 139-174.
- 8. Sibner, L.M., Sibner, R.J., Uhlenbeck, K. K., Solutions to Yang-Mills equation that are not self-dual, Proc. Natl. Acad. Sci. USA 86 (1989), 8610-8613.
- 9. Wells, R. O., "Differential Analysis on Complex Manifolds," GTM 65, Springer, New York, 1980.

Keywords. holomorphic vector bundles, Hermitian-Yang-Mills equation 1980 Mathematics subject classifications: (1985 revision) 32G05, 53C05, 53C55