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Stability of Hermitian-Yang-Mills equation
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Abstract. We show that on a smoothly indecomposable vector bundle
over a complex surface with the trivial canonical line bundle, there are
no critical points of the Hermitian-Yang-Mills functional other than the
absolute minima.

0. Introduction. On a holomorphic hermitian vector bundle (£, L) over a compact
complex hermitian manifold M, we consider the Hermitian-Yang-Mills functional (2.11)

Y(B) = 3IF(B)I, B e A% (ge)

where |- | denotes the L?-norm of the (0,2)-part of the traceless curvature tensor. Thus the
I

zero set (or the absolute minima) of ) consists of possible other holomorphic structures
on E = |£| fixing the determinant det £. We show

THEOREM (3.3). On complex surfaces with the trivial canonical line bundle, there are no
critical points of Y other than the absolute minima, when E is smoothly indecomposable.

The complex surfaces satisfying the condition of the theorem are complex tori, K3 sur-
faces and Kodaira surfaces. Yang-Mills theory on these surfaces arc considered in [5].
Donaldson’s functional £ [4, 6] have a similar property, namely & is a critical point of £ if
and only if it is an absolute minimum or an Einstein-Hermitian metric. But his functional
is not bounded below by 0. This kind of phenomenon is not true in Yang-Mills theory (8,
2]. We expect from the above theorem that the space of Cauchy-Riemann operators (2.10)
on such surfaces are path connected (cf. {7, p. 157]). A naive idea is the following. If
v :[0,1] = A%!(ge¢) is a path joining two absolute minima, then the (negative) gradient
flow of Y gives rise to a homotopy {v:} of v fixing the end points. The integral

B(y) = [ Yons))ds

is a decreasing function of ¢. If the limit path y4, exists, then E(vy.) = 0 and hence v,
lies in the zero set of . So far, this is not carried out.

This paper is organized as follows. Although most notations are standard, e.g., as in [6],
section 1 is introduced to fix notations. In section 2, we describe Hermitian-Yang-Mills
functional. Main theorems appear only in section 3. Appendix explains the Serre duality
for semi-connections, which is used in the proof of the theorem.
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1. Connections on a Lie algebra bundle. Let g be a smooth bundle of real Lie
algebras over a smooth manifold M of dimension m. The space of differential p-forms on
M (resp. with values in g) is denoted by AP (resp. AP(g)). Then the Lic braket

[, ]:4°(s)® 4°(g) — 4°(g)
extends canonically to a map
[, ]:A47(g) @ A%(g) — APT(g)

and

[€1, &2} = —(—=1)"'P?[&2, 4]
for & € A7 (g). For ¢ € A*(g) = T, AP(g), let
ad(¢) : A*(g) — A*(g)
be the map € — [¢,¢] for € € A*(g). Then the Jacobi identity is
ad(§1)[€2, &3] = [ad(€1)é2,&a] + (=1)P1P2 {2, ad(€1)Es]
for & € APi(g).

Now we assume a Riemannian structure h on g, which is invariant in the sense that
(1.1) W[X,Y],2)=nh(X,[Y, 2]

for all X,Y,Z € A%g). We call such a pair (g,h) a metrized Lie algebra bundle. The

Ricmannian structurc /& extends canonically to a map
(1.2) h: AP(g) @ A%(g) — APHY

and the equation (1.1) becomes

(1.3) h([é1,62],63) = h(@, [€2,£3])
for &; € APi(g), or equivalently
(1.4) h(ad(&1)é2,63) + (—1)PP2h(£y, ad(£1)é3) = 0.

Now we assume that M is a compact, oriented Riemannian manifold of dimension m.
Then the Hodge * extends to a map

w1 AP(g) = AP (q).
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We have a pointwise inner product
(15) () AP(q) ® AP(g) - A7
satisfying

. (513 62) = *""(613*62)
and the global inner product
(1.6) (,):A(g)® AP(g) — R
defined by
| CRIEY TGRS

for &; € AP(g). The induced norms of {, } and (, ) will be denoted by |-| and || - |, i.e.,

(17) €= (6,6)7%, 1¢] = (€,6)'2.

The adjoint of

(1.8) ad(€) : A*(g) —» A*(q)
with respect to the inner product ( , }is denoted by ad(€)*. Then for £ € AP(g),

(1.9) ad(€)* = —(=1)™H1¥P)7 4 0d(€)«  on AY(g).

1.10. DEFINITION. A connection D on a metrized Lie algebra bundle (g, &) is an R-linear
map
D: A%g) = Al(q)

such that

(1) D(fX) = df - X + fD(X)

(2) dR(X,Y) = h(DX,Y) + h{(X, DY)

(3) D[X,Y] =[DX,Y]+ {X,DY]
forany f €C®(M) and X, Y, Z € A%(g).

A connection D on (g, h) extends in an obvious way to a map
dp : A’(g) = 47 (q).

Then dp odp is equal to the curvature tensor R of D, which is a 2-form on M with values
in the bundle Der(g) of deriviations on g.



2. Holomorphic Lie algebra bundle. In this section we assume that M is a compact
complex manifold with a hermitian metric. As in the previous section let (g,/) be a
metrized real Lie algebra bundle, where the metric A is invariant (1.1). The induced
hermitian metric on the complexified Lie algebra bundle

gc=8®C

is also denoted by h. For X = X; + /-1X, (X; € g), we define the conjugate transpose

(2.1) Xt = -X; +V=1X;.
Then X +— X' is an tnvolutive conjugate linear isomorphism on ge such that
(1) Xt=—-X ifand only if X € g
(2) (X1 YN = (Y, X) = h(X,Y)
(3) K(IX, Y], 2) = h(Y, (X1, 2]) = ~h(X, [, 2])
for X, Y, Z € g¢c.
The conjugate transpose map extends obviously to a conjugate linear isomorphism of
A*(gc) — A*(gc), which, in turn, defines an isomorphism

v

(2.2) gc ~ fc

of g¢ and its dual g¢¥. Thus for € € A*(gc) the corresponding dual element £V is
characterized by

(2.3) £V(¢) = h(8,€"), ¢ A(ge).

2.4. LEMMA. For §; € APi(ge) and £ € AP(gc),
(1) [e], 6] = ~l&, &)
) (e],6)) = (&2, 61) = (&1, 6)
(3) h(€], &0y = (~=1)PP2i(&y,61) = B(Er, E)
(4) h({1, €a], &) = (—1)PP20(Er, [E], &3]) = ~N(6, [€], 63])
(5) ad(&)* = (=1)10+D) s ad(eH) x  on A% (ge).

Now we assume that g¢ has a holomorphic structure
(2.5) 9: A%(ge) = A% (ge), B =0
such that the Lie algebra structure on each fiber varies holomorphically. In other words,

(2.6) Ol&1, &) = [061, 6] + (—1)P &, 06,)
for & € APi(gg).



2.7. PROPOSITION. Let D = 0 + 8 be the conncction on g¢ compatible with h and the
holomorphic structure. Then the isomorphism (2.2) is holomorphic if and only if

a(EN = (A(eN!
for all £ € A*(g¢). In this case,
Of&s, &2 = [061, &2] + (1) [€1, 9&2)

for any €; € APi(gc) and hence D is a connection on the metrized Lie algebra bundle in
the sense of (1.10).

PROOF: Note that (2.2) is holomorphic if and only if

BXY) = (X)), VX € A%gc)

o @EVNE) = @XN(Y), VXY € 4°gc)
o d"h(Y, X1 — h(BY, X" = (Y, (B(X)H
1.e.,

(Y, 0(X1)) = (Y, 8(X)")
l1e.,

Xty =3(x)".
This shows the first assertion. Now
h(8[X1,X2), X3) = d'h([X1, X2}, X3) — h([X1, X2],0X;3)
= —d'h(Xy, [X], X3]) + (X1, [ X2, DX5])
= —h(0X1,[X], X3]) — (X1,0[X], X3) — [X2,0X;))
= h([0X1, Xa2], X3) — h(X1, [0(X]), X3])
= h([0X1,Xa] + [X1, (XD, Xa).

This shows the second assertion. J

Note that each B € A%!(gc) defines a semi-connection or the (0,1)-part of a connection

(ct. [6])
(28) Jp =0+ ad(B): A% (gc) = A% (ge)

on g¢ such that

0pl€1,&2] = [08&1,&2) + (1)1 [&1,08E2)
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for &; € AP (gg). Put
= 1
(2.9) F(B) =9(B) + 3B, B] € A”*(gc).
Then o
Jp 0 0p = ad(F(B))
for any B € A%!(g¢) and EB(F(B)) = ( is the Bianchi identity.

Note that semi-connections 9, in general, do not define a holomorphic structure and
F(B) is the obstruction.

2.10. DEFINITION. A semi-connection Op is called a Cauchy-Riemann operator if F(B) =
0. -

2.11. DEFINITION. The functional

V: A% (gc) - R
defined by 1
B) = I = [ F(@)F

is called the Hermitian-Yang-Mills functional.

This Hermitian-Yang-Mills functional measures the integrability of semi-connections and
the zero set (or the absolute minima) consists of Cauchy-Riemann operators (2.10). Now
the first and second variational formulae are casily obtained as in the Yang-Mills theory

(3].

2.12. PROPOSITION (THE FIRST VARIATIONAL FORMULA). Let B € A%!(gc) and let
{B:} be a Il-parameter family of elements in A%!(ge) with By = B and ‘gt‘l(}.Bt =V e
A%l(g¢). Then

2 |oY(B.) = Re(Tn(V), F(B)).

2.13. COROLLARY. B € A%!(g¢) is a critical point of Y if and only if (0)*F(B) = 0.

2.14. COROLLARY. If Oy : A%l (ge) — A%%(ge) is surjective for all B € A% (g¢), then
there are no critical points of Y other than the absolute minima.

2.15. PROPOSITION (THE SECOND VARIATIONAL FORMULA). Let B € A"!(gg) be a
critical point of Y and let {B,} be a l-parameter family of clements in A% (gg) with
By = B and % |oB, =V € A% (gc). Then

(Vo ¥(Be) = Re((V, V), F(B)) + IBn(V )|
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2.16. REMARK. There is a natural identification f : A%!(ge) — A'(g) defined by
f(B) = B — B, where A!(g) is the affine space of “unitary connections.” Then the inner
product on these spaces are related by (f(By), f(B2) = 2Re(By, B2) for B; € A% (ge).

3. Main theorems. A smooth vector bundle E — M is called (smoothly) indecomposable
if it is not a direct sum of two proper subbundles. If E is indecomposable, then rk(E) <
dim(M). Recall that a unitary connection on E is said to be irreducible if the holonomy
group acts irreducibly on each fiber.

3.1. LEMMA. Let E be a smooth complex vector bundle over a connected manifold. Then
the fo]]owulg conditions are equivalent.

(1) E is smoothly indecomposable.

(2) Every unitary connection on E is irreducible.

(3) For any unitary connection on E, every parallel endomorphism of E is a constant
multiple of the identity endomorphism.

3.2. VANISHING THEOREM. Let E be a smooth indecomposable vector bundle over a
connected complex manifold M and let D" be a semi-connection on E. Then any endo-
morphism f of E such that D"(f) := D" o f — fo D" = 0 is a constant multiple of the
identity endomorphism.

PROOF: We fix any hermitian metric on F. Then there is a unique unitary connection D
. with D" as its (0,1) part. Then for any f € A°(End E),

(D" =D'(fH=0

Thus if we put f = fi + V/—1f2, where f;’s are skew-hermitian endomorphism of (E, h),
then f;’s are parallel and hence f is parallel. Thus by the lemma (3.1), f is constant. I

Now let (£, h) be a holomorphic hermitian vector bundle over a compact complex her-
mitian manifold M. We assume that the underlying smooth vector bundle E = |£] of £ is
smoothly indecomposable. Let g¢ be the bundle of trace-free endomorphisms of £. Note
that the group SL(E) of smooth endomorphisms of E with determinant 1 acts on 4%!(gg)

(0.B) v ~Bg- g~ +g0Bog.
We define the Hermatian- Yang-Mills functional

Y: A" (gc) R

by Y(B) = 3|F(B)|* as in (2.11). Then Y is invariant under the subgroup SU(E) of
SL(E). But the zero set of ) is invariant under the whole group SL(E).

3.3. THEOREM. If (£,h) is a smoothly indecomposable holomorphic hermitian vector
bundle over a hermitian complex surface M with the trivial canonical line bundle, then
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the critical points of the Hermitian-Yang-Mills functional Y are the Cauchy-Riecmann op-
erators.

Proor: It suffices to show that for any B € A% (ge¢),

(*) 9p : A% (gc) = A" (gc)

is surjective (cf. (2.14)). But by the Serre duality (B.5), the cokernel of (*) is isomorphic
to the kernel of

95 : A%(ge) — A% (ge).

Since the canonical line bundle 2 is trivial, we arc done by the vanishing theorem (3.2). |

3.4. REMARK. The trace part of End £ is not important in the above theorem. Namely,
if we consider A%!(End £) as a domain of Y, then the same conclusion is true. If we identify
AYY(End £) ~ A'(u(E)), where u(E) is the real bundle of skew hermitian endomorphisms
of (£,h), then

VI
2

1
(3.5) Y(A) = Z"Rj‘ + K47, A€ A'(w(E))
where R4 = R+dp(A)+ 3[4, A] is the curvature tensor of D+ A (D being the canonical

connection on (&, h)), Rj is the self-dualpart of R4, {4 = /—1AR 4 is the mean curvature
tensor [6], and @ is the fundamental 2-form of M. Then the first variational formula
becomes

(v,d%(Ra +V—18K,4)), vE€E Al(u(E))

Ny

dy(A)v) =
where d% is the adjoint of d4 := dp + 4 : A'(u(E)) — A*(u(E)).

APPENDIX : HODGE TIHEORY

A. Real case. Let (M, g) be a compact oriented Riemannian manifold of dimension m
and let (E, k) be a smooth Riemannian vector bundle over M of rank r. Let D be a metric
connection on E. The induced ezterior derivatives

(A.1) dp : AP(E) - AP™(E)

do not form a complex, unless E is flat, and the obstruction is the curvature Rp. The
adjoint of the operator (A.1) is denoted by

§p APTY o AP(E).
Then
(A.2 bp = —(-1)"P xdp * on A”+1(E),
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where * is the Hodge star. We put
- Ap =dpbp + épdp,
which is a self-adjoint elliptic operator, and let

HP(E) = Ker(Ap|AP(E)).

A.3. THEOREM (POINCARE DUALITY). HRL(E) ~ HJ"7(E).

Proor: Immediate consequence of (A.2). |

A.4. THEOREM. Let r be the rank of E and e(M) be the Euler characteristic of M. Then
(1) RL(E) := dim H}(E) < oo.

(2) Epmo(~1)PRL(E) =7 - e(M).
PRrooF: (1) is standard. Note that the operator

(A.5) dp +68p : A(E) - A*(E)

is a self-adjoint elliptic operator with the same kernel as Ap. Thus > (—=1)Ph? is equal to
the index of ‘
dD +6D . Aeuen(E) — AOdd(E),

and the theorem follows from the Atiyah-Singer index theorem [1]. I

The Riemannian structure 2 on E induces canonically an isomorphism
b:E— EY

onto the dual vector bundle EY of E, by lowering indices. This musical isomorphism
induces an isomorphism

b: A*(E) — A*(EY)

of A*-modules. The Riemannian structure AY on EV is the one making b an isometry.
The connection D on E induces a connection DY on EY and DV is also compatible with
hY. Thus we have

dpv : AP(EY) — APTL(EY)

and its adjoint
6pv : APTHEY) — AP(EV).

A.6. THEOREM. The musical isomorphism b : A*(E) — A*(EY) commutes with %, d and
8, 1e., ’ '

(1) b % (§) = *b(¢)



(2) bdp(§) = dpvh(¢)
(3) b6p(¢) = bpvh(€)
for any £ € AP(E).

Proor: (1) and (2) is easy. (3) follows from (1), (2) and (A.2). &

A.7. COROLLARY (POINCARE DUALITY). Hp(E) ~ Hpv(EY).

B. Complex case. Now let (M, g) be a compact complex hermitian manifold of dimension
n. Thus m = 2n is the real dimension of M. Let (E, &) be a smooth hermitian vector
bundle over M and let D = D' 4 D" be a unitary connection on E. Then

dp = 'D + d’b
and
(SD = §'D -+ 6’1’)
Now from (A.2), we have
(B.1) 8 = — x dih*, "= —wedlpy*.
We put
b= dpth +8bdp, Al = dbsh +Epdh.

They are self-adjoint elliptic operators. We put
HEHE) = Ker(Ap|AP(E))

and

HEU(E) = Ker(A'|AP(E)).

B.2. THEOREM (POINCARE DUALITY).

HEWE) ~ HL P P(E)

PROOF: Obvious from (B.1). I

B.3. THEOREM. (1) M3 (E) :=dime HZI(E) < oo
(2) For each p, E;;O(—l)qh’;jﬂ(E) = [y ch(P ® E) - todd(M).
PROOF: Similar to the proof of A.4. §

The hermitian structure h on E induces canonically a conjugate linear isomorphism
v
b:E— E
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onto the dual vector bundle EY of E and this induces a conjugate linear isomorphism

b: AP9(E) — ATP(EV).

B.4. THEOREM. For { € API(E),
(1) b (€) = *(¢)
(2) bdp(§) = dpvb(€),  bdp(€) = dpvi(§)
(3) b6p(€) = 6pvd(E),  bép(€) = dpvb(£)
Proor: This follows from theorem (A.6). [

B.5. COROLLARY (SERRE DUALITY) (1) Let D" be a semi-connection on E. Then for
any hermitian structure on E, HLI(E)Y ~ HEL"TY(EY).

(2) Let QP be the p-th extenor power of the holomorphic cotangent bundle of (M, g),
equipped with the canonical connection compatible with the hermitian structure and the

holomorphic structure, and let V be the induced connection on Q? @ E from the one on
QF and D on E. Then HRM(E) ~ H3A(Y @ E).

PRrOOF: From theorem (B.4), we have a conjugate linear isomorphism
HEWE) ~ HEL (EY).

By applying the Hodge star or the Poincaré duality (B.2), we get (1). (2) is more or less
trivial. |

If we assume that (M, g) is Kéhler, then
(B.6) V=1[A,dG] =6, —V=1[A,dp] = 6
and hence
(B.7) Ap :Ab+AI[5-

In particular, Ap preserves the bi-grade. The Laplacians A, and A, are not in general
equal and their difference is an algebraic operator

(BS) \/"—l[AvRD] = 'D - Ib)

where Rp = dp odp : AP9(E) — AP t1(B) is the curvature operator of D.

B.9. THEOREM (HODGE DECOMPOSITION). Suppose [A, Rp] =0 on A*(E). Then

HY(E)= Y, HEUE).
pte=k

The proof is obvious and we also have Lefschetz decomposition as in the ordinary case.

(cf. [9]).
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