
STABILITY OF HERMITIAN-YANG-MILLS EQUATION

by

Hong-Jong Kim

Max-Planck-Institut
für Mathematik
Gottfried-elaren-Str. 26
5300 Bonn 3
Federal Republic of Germany

MPI/90 - 21

Seoul National University
Department of Mathematics
Seoul151-742
Republic of Korea



Stability of Herlnitian-Yang-Mills equation

HONG-J ONG !{U,l

Department of lvlathematics, Seoul National University, Seoul 151-742, Repuhlic of I<orea

Abstract. Wc show that on a smoolhly indccomposablc vcctor bundlc
over a complex surface with the trivial canonical line bundlc, therc are
110 crilicnl points or thc lIermitinll- Ynng-t\'lills fUllclional other tlmll thc
absolute minima.

o. Introd uctiOll. On a hololnorphic hcnnitian vcctor bundle ([, h) over a compact
complex hermitiall manifold AI.!, we consicler the Hennitian-Yang-Mills functional (2.11)

,vhere 1·1 denotes the L2 -nonn of thc (O,2)-part of thc traceless curvaturc tensor. Thus the
zero set (or the absolute nlinima) of y consists of possiblc other holoI11orphic structures
on E = lEI fixing the deternunant det E. vVc show

THEOREM (3.3). Oll cOlnplcx surfaccs l\ritll tlle trivial canollicaJ line bundle, tlJere are no
critical points of y otllcr than tlle absolute Ininima, whcn E is slnootll]Y indecOD1])Osable.

The conlplex sUlfaces satisfying the condi tion of the theorenl are cOlnplex tori, K3 sur­
faces and I(odaira sUlfaces. Yang-rvlills thcory on these surfaces are considered in (5).
Donaldson's functional L [4, 6) have a similar property, namely h is a critical point of L if
and only if it is an absolute IninimUlll or an Einstein-Hermitian metric. But his functional
is not bounded be10w by 0. This kind of phenolnenon is not true in Yang-ß1ills theory [8,
2). \Ve expect froln the above theorelll that the spacc of Cauchy-Riemann operators (2.10)
on such surlaces are path connectcd (cf. (7, p. 157]). A naive idea is the following. If
, : [0,1] ~ A 0,1 (Oe) is a puth joining two absolute l11inilna, then the (negative) gradient
flow of Y gives risc to a hOl110topy {,d of , fixing thc end points. The integral

is a decreasing fWlction of t. If the liInit path '00 exists, then E( (00) = 0 and hence '00
lies in the zero set of y. So far, this is not carried out.

This paper is organized as follows. Although Inost notations are standard, e.g., as in [6],
section 1 is introduced to fix notations. In section 2, we describe Hermitian-Yang-!vIills
functional. rvlain theorellls nppear only in scction 3. Appendix cxplains the Serre duality
for selni-conncctions, which is used in the proof of the theoreln.
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1. Connections on a Lie algebra bundle. Let g be a smooth bundle of real Lie
algebras over a smooth manifold At[ of dimension 111. The space of differential p-forms qn
].,t[ (resp. with values in .0) is denoted by AP (rcsp. AP(g)). Then the Lic braket

extends canonically to a map

and
[~1,~2] = -(-1)PIP][~2,~1]

for ~i E APi (g). Für r/; E A -( g) := Z=;~l AP(g), let

ader/;) : A-(g) -+ A-(g)

be the map ~ ~ [r/;,~] for ~ E A-(g). Then the Jacobi identity is

for ~i E APi (g).
No\v \ve assume a Riemannian structure h on g, which is invariant in the sense that

(1.1 )

for all X, Y, Z E AO(g). We call such a pair (g, h) a metrized Lie algebra bundle. The
n.icrllannian structurc hextends canonically to a nutp

(1.2)

and the equation (1.1) beconles

(1.3)

for ~i E APi (.0), or equivalently

(1.4)

Now \ve assunle that lvI is a corupact, oriented lliernannian ruanifolcl of diluension 7n.
Then the Hoclgc * extcnds to a nUl.p
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vVe have a pointwise inner product

(1.5)

satisfying

and the global inner product

(1.6)

defined by

( , ) : AP(g) 0 AP(g) -. AO

for ~i E AP(g). The induced norms of ( , ) and ( , ) will be denoted by 1 . 1 and 11 . J, i.e.,

(1.7)

The adjoint of

(1.8)

with respect to the inner procluct ( , ) is denoted by ad(e)*. Then for ~ E AP(g),

(1.9)

1.10. DEFINITION. A connection D on a 111etrizcd Lie algebra bundle (g, h) is an IR-linear
map

such that

(1) D(IX) = df . X + I D(JY)
(2) d heX, Y') = h(DX, y~Y+ heX, Dl!")

(3) D[X, Y] = [DX, Y] + [X, DY]

for any I E CCX}(l\f) and X, Y, Z E A0(0).

A connection D on (0, h) extends in an obvious way to a Inap

Then d D 0 dD is equal to the C1Lrvature tcn30r R of D, which is a 2-forn1 on lVI with values
in the bWldle Der(g) of deriviatiolls on g.,
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2. Holo1110rphic Lie algebra bundle. In this section we assume that M is a cOlnpact
complex manifold \vith a hermitian Inetric. As in the previous section let (g, h) be a
metrized real Lie algebra bundle, where the metric h is invariant (1.1). The induced
hermitian metric on the conlplexificd Lic algebra bundle

ge = g 0 C

is also denoted by h. For X = -'Y1 + AX2 (-'Y i E g), we defille the conjugate tran~pose

(2.1)

Then X t--+ )~t is an invol'Utive conjugate linear iso7norphism on {Je such that

(1) X t = - X if and only if X E g

(2) h(-,yt, I,pt) = h(YP

, X) = h( ..Y, Y)

(3) h([-,Y, Y"], Z) = h(Y, [-,yt, Z]) = -h(-,Y, [yt 1 Z])

for X, Y, Z E {Je.

The conjugate transpose map extends obviously to a conjugate linear isomorphism of
A-(Oe) -T A-({Je), \vhich, in turn, defines an isomorphism

(2.2) v
Be ~ Be

of Sc and its dual Sc v. Thus for ~ E A -(Oe) the corresponding dual element ~v 15

characterized by

(2.3)

2.4. LE11MA. For ~i E APi (ge) alld ~ E AP(Oc),

(1) [~L~J] = -[~1,e2]f

(2) (~:,~J) = (e2l~d = (~1,(2)

(3) h(~L~J) = (-1)PIP2h(e2,~1) = h(el,e2)

(4) h([el,e2],e3) = (-I)P1P2 h(e2,[eJ,e3]) = -h(el,[eJ,e3])
(5) adce)'" = (_I)q(p+l) *ad(e t ) * Oll Aq(Oe).

Now \ve assume that .oe has a holomorphic structure

(2.5)

such that the Lie algebra structure on each fiber varies holoITIorrhically. In other words,

(2.6)

for ei E AJli ({Je).
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2.7. PROPOSITION. Let D = 8 + Ei be t}le cOIlncction on fte compatible lvith hand thc
holomorphic structure. Tllen tlle isolnolpllism (2.2) is hololnorphic if and only iE

for a11 eE A -(ge). In tllis case,

for any ei E APi (Ce) and 11ence D is a connection on thc metrized Lie algebra bundle in
tlle sense of (1.10).

PROOF: Note that (2.2) is holornorphic if and only if

l.e.,

l.e.,
d" h(Y, X t ) - h(8Y,)( t) = h(Y, (o(X))t)

l.e.,

l.e.,

This shows the first assertion. Now

h(8[X!,X2J,X3 ) = d'h([X!,X2 ],X3 ) - h([.X'l,-'\2],DX3 )

= -d' h(X l , [}{J, X 3 J) +h(X!, [X2 , DX3 ])

= -h(8"Yl, [XJ,X3 ]) - h(X!, D[XJ ,X3 ] - [X2 , DX3 J)

= h([8X1 , ..X"2],X3 ) - heX!, [8(XJ),X3 J)

= h([8X1 , X 2 ] + [Xl, D(..YJ)t), X 3 ).

This shows the second assertion. I

Note that each B E AO'!(9c) defines a semi-conneciion or the (O,l)-part of a connection
(cf. [6])

(2.8)

Oll Oe such tImt
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for ~i E APi (oe). Put

(2.9)

Then

F(B) = a(B) + ~[B,Bl E AO,2(gC).

aB 0 aB = ad(F(B))

for any B E AO,I(ge) and 8B(F(B)) = 0 is the Bianchi identity.

Note that semi-connections an, in general, do not define a holomorphic structurc arid
F(B) is the obstruction.

2.10. DEFINITION. A semi-connection aB is called a Cauchy-Riemann operator if F( B) =
O.

2.11. DEFINITION. The functional

defined by

Y(B) = -2
1
~F(B)~2 = { *IF(B)]2J!IJ

is called the H ermitian- Yang-Mills functional.

This Hermitian-Yang-Mills functional 111eaSUres thc integrability of selui-connections and
the zero set (01' the absolute lllininla) consists of Cauchy-Riclnann operators (2.10). Now
the first al1d second variatiol1al fOl'lnulae are casily obtainccl as in the Yang-Mills theory
[3].

2.12. PROPOSITION (TUE FIRST VAflIATIONAL FORMULA). Let B E AO,I(ge) and let
{Bd be a 1-paranleter fWllily of eleUlcllts in AO,I(ge) Witll Ba = Band i]oBt = V E
AD,I (ge). Then

d -
dt laY(Bd = Re(an(V), F(B)).

2.13. COROLLARY. BE A O,I(ge) is a critical point ofY ifand only if(aB)*F(B) = O.

2.14. COROLLARY. 1f813 : AO,l(Oe) ~ A O,2(OC) is sU1jective for a11 B E AO,l(OC), tllen
tilere are 110 critical points of Y other tilan tlJe absolute Inininla.

2.15. PROPOSITION (TUE SECOND VARIATIONAL FORMULA). Let B E AO,1(ge) be a
cri tical p Oill t of Y (lll(/ let {Bt} bc a 1-p;u·;.unc tel' fa111ily oE clCUlen ts i11 A 0 ,1 (g C ) wi th
B o = B and tt loBt = V· E AO,1(9c). Tilen

(~)2IoY(B,) = Re([V, VJ,F(B)) + IIDD(VW,
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2.16. RE11ARK. There is a natural identification f : A 0,1 (Oe) -t A l (0) defin:ed by
f (B) = B - B t, where A l ( g) is the affi ne space of "uni t ary connections." Then the inner
product on these spaces a.re related by (f(B 1 ),f(B2 ) = 2Re(Bl,B2 ) for Bi E AO,l(gC).

3. Main theoreills. A smooth vector bundle E -t J.\1 is called (smoothly) indecomposab"te
if it is not a direct surn of two proper subbundles. If E is indccon1posable, then rk( E) ::;
dim(Al). Recall that a unitary connection on E is said to be irrcducible if the holonomy
group acts irreducibly on each fiber.

3.1. LEMMA. Let E be a SlllOOt}l conlplex vector bundle over a connected manifold. Then
t}le follO'willg conditiollS are cquivalcllt.

(1) E is slnootilly illdecoIll]Josable.
(2) Every unitruy connection Oll E is irreducible.
(3) For any wlitaLy cOllnection on E, eVCIY parallel endOllJOlvllisln oE E is a constant

multiple of the identity endomorphisln.

3.2. VANISHING THEOREM. Let E be a SlllOOth indecomposable vector bWJdle over a
connected complex ma.llifold ]vI Rlld let D" bc a selni-conncctioll on E. Then any endo­
morphism f of E such t"hat D"(f) := D" 0 f - f 0 D" = 0 is a constant multiple of tlle
identi ty endomorp}lism.

PnOOF: VVe fix any hennitian 111etric on E. Then there is a unique unitary connection D
. with D" as its (0,1) part. Then for any ! E AO(End E),

Thus if we put f = 11 + Fil2l whcre !/s are skew-hcrnlitiaJ1 endoIllorphism of (E, h),
then fi'8 ure parallel and hence f is parallel. Thus by the leIllIna (3.1), f is const.unt. I

Now let (E, h) be a holornorphic hern1itian vector bundle over a cornpact complex her­
nütian rnanifold ]vI. \iVc. assullle that thc underlying Sillooth vcctor bundle E = lEI of E is
smoothly indeconlposable. Let 9c be the bundle of trace-free endorllorphislllS of E. Note
that the group SL(E) of smooth endorl1orphisIllS of E with detenninant 1 acts on AO,1(9c)

\iVe define the Hermitian- Yang-Mills functional

by Y(B) = ~IF(B)112 as in (2.11). Then Y is invariant under the subgroup SU(E) of
SL(E). But the zero set of Y is invariant uncler thc whole group SL(E).

3.3. THEOREM. If (E, h) is a SlllOOtllly illdccolnposablc }lolo11JOrp]lic }lcrmitiall vector
bWldle over a ]lenni timl cOlnplex surface lvI witll the trivial canonical lille bundle, tllell
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tlle cri tical points of tllc Henllitian-lrallg-lvIills fUIlctional Y are thc Cauchy-llicmann op­
erators.

PROOF: It suffices to show that for any B E AO,1(.oC),

(*)

is surjective (cf. (2.14). But by thc Scrre duality (B.5), the eokernel of (*) is isomorphie
to the kernel of

Since the canouicalline bUlldlc 0 2 is tri vial, wc are dOlle by thc vUllishillg theorcrn (3.2). I

3.4. RE11 A RK. The t race part of Eud [ is not in1portant in t he above theOfClTI. Nall1ely,
if we consider A0,1 (End E) as a dOluain of Y, thcn thc SUlnc conclusion is true. If we identify
A.O,1 (End E) ~ A l

( U ( E) ), w here u (E) is the real bundle of skew henni tian endolnorphisms
of (t", h), then

(3.5)

\vhere RA = R + dD (A) + ~ [A, A] is the curvature tensor of D +A (D being the canonical
connection on (E, h), R~ is the self-dualpart of RA, !(A = RARA is the mean curvature
tensor [6], and <I> is the fundamental 2-fonn of Al. Then thc first variational forn1lIla
becolnes

dY(A)(v) = ~(v,dA(RA + v'=l<PJ(A)), v E A1(u(E))

where dA is the adjaint of dA := dD + A: A1(u(E» ---+ A2(u(E».

ApPENDIX: f!ODGE TlIEOlty

A. Real case. Let (lvI, g) be a con1pact oriented Rielnannian Inanifolcl of dilnension ln

and let (E, h) be a smooth Riemannian vector bundle aver lvI of rank r. Let D be a lnetric
connection on E. The incluced exterior derivatives

(A.l)

da not fonn a complex) unless E is Rat, and the obstruction is the curvature R D . The
adjoint of the operator (A.l) i5 denoted by

Then

(A.2) OD = -(-l)'flP *dD*
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where * is the Hodge star. vVe put

which is a self-adjoint elliptic operator, and let

HfJ(E) = I(er(~DIAP(E)).

A.3. THEOREM (POINCARE DUALITV). Hß(E) ~ H~l-P(E).

PROOF: Inunediatc conscqucnce of (A.2). I

A.4. THEOREM. Let r be tlle rank oE E and e(1vI) be tlle Euler characteristic oE M. Tllen
(1) h'lJ(E) := diln Hb(E) < 00.

(2) L:;o(-l)Ph~(E) = T' e(M).

PROOF: (1) is standard. Note that the operator

(A.5)

is a self-adjoint ellip ti c operator wi th the sanle kernel as ~D. Thus L:(-1 )P hP is equal to
the index of

dD + OD : Aeven(E) ~ AOdd(E),

and the theorenl follows froln the Atiyah-Singer index theorenl [1]. I

The Rieluannian stnlcture h on Einduces cananically an isomorphislu

anto the dual vector bunclIc E V of E, by lowcring indices. This musical isomorphism
induces an isomorphism

of ..4.. -luodules. The llieluullnian structure hv on E V is thc one rnaking !J an isometry.
The connection D on Einduces a connection D V on E V and D V is also GOlupatible with

hv. Thus we have

and its adjoint

A.6. TUEORE11. Tlle nlusicaJ isomolpllism P: A· (E) ~ A· (E V
) conlmute.s ·with *, d and

8, i.c.,
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(2) bdD(~) = dDv b(~)

(3) bOD(~) = oDvb(~)

for any ~ E AP(E).

P ROOF: (1) and (2) is easy. (3) follows from (1) l (2) and (A.2). I

A.7. COROLLARY (POINCARE DUALITY). Hß(E) ~ Hßv(E V
).

B. 'Complex·case. Now let (M, g) he a compact complex hennitian I11anifold of dirnension
n. Thus m = 2n is the real dinlension of lvI. Let (E, h) be a smooth hermitian vector
bundle over lvI und let D = D' + D" be a unitary connection on E. Then

dD = d'n + d'h

and

Now fronl (A.2), we havc

(B.1)

\~Te put
A" _ d" eil + ~If 1"UD - DUV UD( D·

They are self-adjoint elliptic operators. vVe put

nud

B.2. THEOREM (POINCARE DUALITV).

PROOF: Obvious froIn (B.1). I

B.3. THEOREM. (1) h1Jj?/(E) := dirne HtJ/~(E) < 00

(2) Far eac11 p, 2:;=o(-1)qh~7,(E) = JivE ch(np 0 E) . todd(M).

PROOF: SiInilar to thc proof of A.4. I

The hernlitian structure h on Einduces canonically fL conjugatc linear isolllorphisln
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pd'b(~) = dov p(~)

pbö(e) = bDV b(e)

onto the dual vector bWldle E V of E and this induces a conjugate linear isolllarphisll1

B.4. THEOREM. For eE AP,q(E),

(1) P* (e) = *p(~)

(2) pd'o(~) = d'bv p( ~),
(3) PD~(e) = D'Dv p(e),

PROOF: This follows from theareln (A.6). I

B.5. COROLLARY (SERRE DUALITY). (1) Let D" be a semi-connection on E. Then for
aJ1Y llcnnitiaJl structure on E, Hf:;,~(E)V ~ H';;~f"n-q(EV).

(2) Let !1P be the p-th exterior power oE tlle llolonlolpllic cotangent bundle oE (111, g),
equipped \vith tlIe canonical connection compatible \vith tlle llennitian structure and tlIe
llolonlolpllic structure, and let V' be the induced cOllnectioll 011 !1P ® E fron] the Olle on
!1v and D 011 E. Tllcn H:}~(E) ~ H~,~(!1P ® E).

PROOF: From theorem (B.4), we have a conjugate linear isolllorphislll

By applying the Hodge star 01' the Poincare duality (B.2), \ve get (1). (2) is ll10re 01' less
trivial. I

If we assume that (M, g) is I(ähler 1 t hen

(D.G)

and hence

(D.7)

In particular) 6. D preserves the bi-grade. The Laplacians 6.0 and 6. 'b are not in general
equal and their difference is an algebraic operator

(B.S) H[A,RDJ = 6.'0 - 6.~,

where RD = dD 0 dD : AP,q(E) --t AP+l,q+l(E) is the curvature operator of D.

B.9. THEOREM (HODGE DEC011POSITION). Suppose [A,RDJ = 0. on Ak(E). TllCn

H~(E) = L H'li~(E).
p+q=k

Thc proof is obvious ane!. we also huve Lefschetz decomposition a.s in the ordinary case.
(cf. [9J).
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