STABILITY OF HERMITIAN-YANG-MILLS EQUATION

by

Hong-Jong Kim

Stability of Hermitian-Yang-Mills equation

Hong-Jong Kim
Department of Mathematics, Seoul National University, Seoul 151-742, Republic of Korea

Abstract

We show that on a smoothly indecomposable vector bundle over a complex surface with the trivial canonical line bundle, there are no critical points of the Ilermitian-Yang-Mills functional other than the absolute minima.

0. Introduction. On a holomorphic hermitian vector bundle (\mathcal{E}, h) over a compact complex hermitian manifold M, we consider the Hermitian-Yang-Mills functional (2.11)

$$
\left.\mathcal{Y}(B)=\frac{1}{2} \right\rvert\, F(B) \|^{2}, \quad B \in A^{0,1}\left(\mathfrak{g}_{\mathbb{C}}\right)
$$

where $\|\cdot\|$ denotes the L^{2}-norm of the $(0,2)$-part of the traceless curvature tensor. Thus the zero set (or the absolute minima) of \mathcal{Y} consists of possible other holomorphic structures on $E=|\mathcal{E}|$ fixing the determinant $\operatorname{det} \mathcal{E}$. We show

Theorem (3.3). On complex surfaces with the trivial canonical line bundle, there are no critical points of \mathcal{Y} other than the absolute minima, when E is smoothly indecomposable.

The complex surfaces satisfying the condition of the theorem are complex tori, K3 surfaces and Kodaira surfaces. Yang-Mills theory on these surfaces are considered in [5]. Donaldson's functional $\mathcal{L}[4,6]$ have a similar property, namely h is a critical point of \mathcal{L} if and only if it is an absolute minimum or an Einstein-Hermitian metric. But his functional is not bounded below by 0 . This kind of phenomenon is not true in Yang-Mills theory [8, 2]. We expect from the above theorem that the space of Cauchy-Riemann operators (2.10) on such surfaces are path connected (cf. [7, p. 157]). A naive idea is the following. If $\gamma:[0,1] \rightarrow A^{0,1}(\mathfrak{f c})$ is a path joining two absolute minima, then the (negative) gradient flow of \mathcal{Y} gives rise to a homotopy $\left\{\gamma_{t}\right\}$ of γ fixing the end points. The integral

$$
E\left(\gamma_{t}\right)=\int_{0}^{1} \mathcal{Y}\left(\gamma_{t}(s)\right) d s
$$

is a decreasing function of t. If the limit path γ_{∞} exists, then $E\left(\gamma_{\infty}\right)=0$ and hence γ_{∞} lies in the zero set of \mathcal{Y}. So far, this is not carried out.

This paper is organized as follows. Although most notations are standard, e.g., as in [6], section 1 is introduced to fix notations. In section 2, we describe Hermitian-Yang-Mills functional. Main theorems appear only in section 3. Appendix explains the Serre duality for semi-connections, which is used in the proof of the theorem.

I like to express many thanks to professors T. Mabuchi, M. Itoh, S. Bando and T. Nitta for their interests in this article and valuable comments. I am also very grateful to the Max-Planck-Institut für Mathematik for the hospitality during the preparation of this paper.

1. Connections on a Lie algebra bundle. Let \mathfrak{g} be a smooth bundle of real Lie algebras over a smooth manifold M of dimension m. The space of differential p-forms on M (resp. with values in \mathfrak{g}) is denoted by $A^{p}\left(\operatorname{resp} . A^{p}(\mathfrak{g})\right.$). Then the Lic braket

$$
[,]: A^{0}(\mathfrak{g}) \otimes A^{0}(\mathfrak{g}) \rightarrow A^{0}(\mathfrak{g})
$$

extends canonically to a map

$$
[,]: A^{p}(\mathfrak{g}) \otimes A^{q}(\mathfrak{g}) \rightarrow A^{p+q}(\mathfrak{g})
$$

and

$$
\left[\xi_{1}, \xi_{2}\right]=-(-1)^{p_{1} p_{2}}\left[\xi_{2}, \xi_{1}\right]
$$

for $\xi_{i} \in A^{p_{i}}(\mathfrak{g})$. For $\phi \in A^{*}(\mathfrak{g}):=\sum_{p=1}^{m} A^{p}(\mathfrak{g})$, let

$$
\operatorname{ad}(\phi): A^{\bullet}(\mathfrak{g}) \rightarrow A^{\bullet}(\mathfrak{g})
$$

be the $\operatorname{map} \xi \mapsto[\phi, \xi]$ for $\xi \in A^{\bullet}(\mathfrak{g})$. Then the Jacobi identity is

$$
\operatorname{ad}\left(\xi_{1}\right)\left[\xi_{2}, \xi_{3}\right]=\left[\operatorname{ad}\left(\xi_{1}\right) \xi_{2}, \xi_{3}\right]+(-1)^{p_{1} p_{2}}\left[\xi_{2}, a d\left(\xi_{1}\right) \xi_{3}\right]
$$

for $\xi_{i} \in A^{p_{i}}(\mathfrak{g})$.
Now we assume a Riemannian structure h on \mathfrak{g}, which is invariant in the sense that

$$
\begin{equation*}
h([X, Y], Z)=h(X,[Y, Z]) \tag{1.1}
\end{equation*}
$$

for all $X, Y, Z \in A^{0}(\mathfrak{g})$. We call such a pair (\mathfrak{g}, h) a metrized Lie algebra bundle. The Riemamian structure h extends canonically to a map

$$
\begin{equation*}
h: A^{p}(\mathfrak{g}) \otimes A^{q}(\mathfrak{g}) \rightarrow A^{p+q} \tag{1.2}
\end{equation*}
$$

and the equation (1.1) becomes

$$
\begin{equation*}
h\left(\left[\xi_{1}, \xi_{2}\right], \xi_{3}\right)=h\left(\xi_{1},\left[\xi_{2}, \xi_{3}\right]\right) \tag{1.3}
\end{equation*}
$$

for $\xi_{i} \in A^{p_{i}}(\mathfrak{g})$, or equivalently

$$
\begin{equation*}
h\left(a d\left(\xi_{1}\right) \xi_{2}, \xi_{3}\right)+(-1)^{p_{1} p_{2}} h\left(\xi_{2}, a d\left(\xi_{1}\right) \xi_{3}\right)=0 \tag{1.4}
\end{equation*}
$$

Now we assume that M is a compact, oriented Riemannian manifold of dimension m. Then the Hodge \star extends to a map

$$
\star: A^{p}(\mathfrak{g}) \rightarrow A^{m-p}(\mathfrak{g})
$$

We have a pointwise inner product

$$
\begin{equation*}
\langle,\rangle: A^{p}(\mathfrak{g}) \otimes A^{p}(\mathfrak{g}) \rightarrow A^{0} \tag{1.5}
\end{equation*}
$$

satisfying

$$
\left\langle\xi_{1}, \xi_{2}\right\rangle=\star h\left(\xi_{1}, \star \xi_{2}\right)
$$

and the global inner product

$$
\begin{equation*}
(,): A^{p}(\mathfrak{g}) \otimes A^{p}(\mathfrak{g}) \rightarrow \mathbf{R} \tag{1.6}
\end{equation*}
$$

defined by

$$
\left(\xi_{1}, \xi_{2}\right)=\int_{M} h\left(\xi_{1}, \star \xi_{2}\right)
$$

for $\xi_{i} \in A^{p}(\mathfrak{g})$. The induced norms of \langle,$\rangle and ($,$) will be denoted by |\cdot|$ and $\| \cdot \mid$, i.e.,

$$
\begin{equation*}
|\xi|=\langle\xi, \xi\rangle^{1 / 2}, \quad \| \xi \sharp=(\xi, \xi)^{1 / 2} \tag{1.7}
\end{equation*}
$$

The adjoint of

$$
\begin{equation*}
a d(\xi): A^{\bullet}(\mathfrak{g}) \rightarrow A^{\bullet}(\mathfrak{g}) \tag{1.8}
\end{equation*}
$$

with respect to the inner product $($,$) is denoted by \operatorname{ad}(\xi)^{*}$. Then for $\xi \in A^{p}(\mathfrak{g})$,

$$
\begin{equation*}
a d(\xi)^{*}=-(-1)^{(m+1+p) q} \star a d(\xi) \star \quad \text { on } A^{q}(\mathfrak{g}) \tag{1.9}
\end{equation*}
$$

1.10. Definition. A connection D on a metrized Lie algebra bundle (\mathfrak{g}, h) is an \mathbb{R}-linear map

$$
D: A^{0}(\mathfrak{a}) \rightarrow A^{1}(\mathfrak{g})
$$

such that
(1) $D(f X)=d f \cdot X+f D(X)$
(2) $d h(X, Y)=h(D X, Y)+h(X, D Y)$
(3) $D[X, Y]=[D X, Y]+[X, D Y]$
for any $f \in \mathcal{C}^{\infty}(M)$ and $X, Y, Z \in A^{0}(\mathfrak{g})$.
A connection D on (\mathfrak{g}, h) extends in an obvious way to a map

$$
d_{D}: A^{p}(\mathfrak{l}) \rightarrow A^{p+1}(\mathfrak{g})
$$

Then $d_{D} \circ d_{D}$ is equal to the curvature tensor R of D, which is a 2 -form on M with values in the bundle $\operatorname{Der}(\mathfrak{g})$ of deriviations on \mathfrak{g}.
2. Holomorphic Lie algebra bundle. In this section we assume that M is a compact complex manifold with a hermitian metric. As in the previous section let (\mathfrak{g}, h) be a metrized real Lie algebra bundle, where the metric h is invariant (1.1). The induced hermitian metric on the complexified Lie algebra bundle

$$
\mathfrak{g c}=\mathfrak{g} \otimes \mathbb{C}
$$

is also denoted by h. For $X=X_{1}+\sqrt{-1} X_{2}\left(X_{i} \in \mathfrak{g}\right)$, we define the conjugate transpose

$$
\begin{equation*}
X^{\dagger}=-X_{1}+\sqrt{-1} X_{2} \tag{2.1}
\end{equation*}
$$

Then $X \mapsto X^{\dagger}$ is an involutive conjugate linear isomorphism on $\mathfrak{g c}$ such that
(1) $X^{\dagger}=-X$ if and only if $X \in \mathfrak{g}$
(2) $h\left(X^{\dagger}, Y^{\dagger}\right)=h(Y, X)=\overline{h(X, Y)}$
(3) $h([X, Y], Z)=h\left(Y,\left[X^{\dagger}, Z\right]\right)=-h\left(X,\left[Y^{\dagger}, Z\right]\right)$
for $X, Y, Z \in \mathfrak{g c}$.
The conjugate transpose map extends obviously to a conjugate linear isomorphism of $A^{\bullet}(\mathfrak{g c}) \rightarrow A^{\bullet}\left(\mathfrak{g c}_{\mathrm{C}}\right)$, which, in turn, defines an isomorphism

$$
\begin{equation*}
\mathfrak{g c} \simeq \mathfrak{g} \mathbb{C}^{\vee} \tag{2.2}
\end{equation*}
$$

of $\mathfrak{g c}$ and its dual $\mathfrak{g c}{ }^{\vee}$. Thus for $\xi \in A^{\bullet}(\mathfrak{g c})$ the corresponding dual element ξ^{\vee} is characterized by

$$
\begin{equation*}
\xi^{\vee}(\phi)=h\left(\phi, \xi^{\dagger}\right), \quad \phi \in A^{\bullet}\left(\mathfrak{g}_{\mathrm{c}}\right) \tag{2.3}
\end{equation*}
$$

2.4. Lemma. For $\xi_{i} \in A^{p_{i}}\left(g_{\mathrm{c}}\right)$ and $\xi \in A^{P}(\mathbb{G C})$,
(1) $\left[\xi_{1}^{\dagger}, \xi_{2}^{\dagger}\right]=-\left[\xi_{1}, \xi_{2}\right]^{\dagger}$
(2) $\left\langle\xi_{1}^{\dagger}, \xi_{2}^{\dagger}\right\rangle=\left\langle\xi_{2}, \xi_{1}\right\rangle=\overline{\left\langle\xi_{1}, \xi_{2}\right\rangle}$
(3) $h\left(\xi_{1}^{\dagger}, \xi_{2}^{\dagger}\right)=(-1)^{p_{1} p_{2}} h\left(\xi_{2}, \xi_{1}\right)=\overline{h\left(\xi_{1}, \xi_{2}\right)}$
(4) $h\left(\left[\xi_{1}, \xi_{2}\right], \xi_{3}\right)=(-1)^{p_{1} p_{2}} h\left(\xi_{2},\left[\xi_{1}^{\dagger}, \xi_{3}\right]\right)=-h\left(\xi_{1},\left[\xi_{2}^{\dagger}, \xi_{3}\right]\right)$
(5) $a d(\xi)^{*}=(-1)^{q(p+1)} \star a d\left(\xi^{\dagger}\right) \star$ on $A^{q}\left(\mathfrak{I c}_{\mathrm{c}}\right)$.

Now we assume that gc has a holomorphic structure

$$
\begin{equation*}
\bar{\partial}: A^{0,0}\left(\mathfrak{g}_{\mathbb{C}}\right) \rightarrow A^{0,1}\left(\mathfrak{g}_{\mathbb{C}}\right), \quad \bar{\partial}^{2}=0 \tag{2.5}
\end{equation*}
$$

such that the Lie algebra structure on each fiber varies holomorphically. In other words,

$$
\begin{equation*}
\bar{\partial}\left[\xi_{1}, \xi_{2}\right]=\left[\bar{\partial} \xi_{1}, \xi_{2}\right]+(-1)^{p_{1}}\left[\xi_{1}, \bar{\partial} \xi_{2}\right] \tag{2.6}
\end{equation*}
$$

for $\xi_{i} \in A^{p_{i}}(\mathrm{gc})$.
2.7. Proposition. Let $D=\partial+\bar{\partial}$ be the conncction on $\mathfrak{g}_{\mathrm{c}}$ compatible with h and the holomorphic structure. Then the isomorphism (2.2) is holomorphic if and only if

$$
\partial\left(\xi^{\dagger}\right)=(\bar{\partial}(\xi))^{\dagger}
$$

for all $\xi \in A^{\bullet}\left(g_{\mathbf{c}}\right)$. In this case,

$$
\partial\left[\xi_{1}, \xi_{2}\right]=\left[\partial \xi_{1}, \xi_{2}\right]+(-1)^{p_{1}}\left[\xi_{1}, \partial \xi_{2}\right]
$$

for any $\xi_{i} \in A^{p_{i}}(\mathfrak{g c})$ and hence D is a connection on the metrized Lie algebra bundle in the sense of (1.10).

Proof: Note that (2.2) is holomorphic if and only if

$$
\bar{\partial}\left(X^{\vee}\right)=(\vec{\partial}(X))^{\vee}, \quad \forall X \in A^{0}(\text { gc })
$$

i.e.,

$$
\left(\bar{\partial}\left(X^{\vee}\right)\right)(Y)=(\bar{\partial}(X))^{\vee}(Y), \quad \forall X, Y \in A^{0}\left(g_{\mathrm{c}}\right)
$$

i.e.,

$$
d^{\prime \prime} h\left(Y, X^{\dagger}\right)-h\left(\bar{\partial} Y, X^{\dagger}\right)=h\left(Y,(\bar{\partial}(X))^{\dagger}\right)
$$

i.e.,

$$
h\left(Y, \partial\left(X^{\dagger}\right)\right)=h\left(Y, \bar{\partial}(X)^{\dagger}\right)
$$

i.e.,

$$
\partial\left(X^{\dagger}\right)=\bar{\partial}(X)^{\dagger}
$$

This shows the first assertion. Now

$$
\begin{aligned}
h\left(\partial\left[X_{1}, X_{2}\right], X_{3}\right) & =d^{\prime} h\left(\left[X_{1}, X_{2}\right], X_{3}\right)-h\left(\left[X_{1}, X_{2}\right], \bar{\partial} X_{3}\right) \\
& =-d^{\prime} h\left(X_{1},\left[X_{2}^{\dagger}, X_{3}\right]\right)+h\left(X_{1},\left[X_{2}, \bar{\partial} X_{3}\right]\right) \\
& =-h\left(\partial X_{1},\left[X_{2}^{\dagger}, X_{3}\right]\right)-h\left(X_{1}, \bar{\partial}\left[X_{2}^{\dagger}, X_{3}\right]-\left[X_{2}, \bar{\partial} X_{3}\right]\right) \\
& =h\left(\left[\partial X_{1}, X_{2}\right], X_{3}\right)-h\left(X_{1},\left[\bar{\partial}\left(X_{2}^{\dagger}\right), X_{3}\right]\right) \\
& =h\left(\left[\partial X_{1}, X_{2}\right]+\left[X_{1}, \bar{\partial}\left(X_{2}^{\dagger}\right)^{\dagger}\right], X_{3}\right) .
\end{aligned}
$$

This shows the second assertion.

Note that each $B \in A^{0,1}\left(g_{C}\right)$ defines a semi-connection or the (0,1)-part of a connection (cf. [6])

$$
\begin{equation*}
\bar{\partial}_{B}:=\bar{\partial}+a d(B): A^{0,0}(\mathrm{gc}) \rightarrow A^{0,1}(\mathrm{gc}) \tag{2.8}
\end{equation*}
$$

on ac such that

$$
\bar{\partial}_{B}\left[\xi_{1}, \xi_{2}\right]=\left[\bar{\partial}_{B} \xi_{1}, \xi_{2}\right]+(-1)^{p_{1}}\left[\xi_{1}, \bar{\partial}_{B} \xi_{2}\right]
$$

for $\xi_{i} \in A^{p_{i}}(g \mathbb{C})$. Put

$$
\begin{equation*}
F(B)=\bar{\partial}(B)+\frac{1}{2}[B, B] \in A^{0,2}\left(\mathfrak{g}_{\mathrm{C}}\right) \tag{2.9}
\end{equation*}
$$

Then

$$
\bar{\partial}_{B} \circ \bar{\partial}_{B}=a d(F(B))
$$

for any $B \in A^{0,1}\left(\mathfrak{g}_{\mathbb{C}}\right)$ and $\bar{\partial}_{B}(F(B))=0$ is the Bianchi identity.
Note that semi-connections $\bar{\partial}_{B}$, in general, do not define a holomorphic structure and $F(B)$ is the obstruction.
2.10. Definition. A semi-connection $\bar{\partial}_{B}$ is called a Cauchy-Riemann operator if $F(B)=$ 0.
2.11. Definition. The functional

$$
\mathcal{Y}: A^{0,1}\left(g_{\mathbf{C}}\right) \rightarrow \mathbb{R}
$$

defined by

$$
\mathcal{Y}(B)=\frac{1}{2} \sharp F(B) \|^{2}=\int_{M} \star|F(B)|^{2}
$$

is called the Hermitian-Yang-Mills functional.
This Hermitian-Yang-Mills functional measures the integrability of semi-connections and the zero set (or the absolute minima) consists of Cauchy-Ricmann operators (2.10). Now the first and second variational formulae are casily obtained as in the Yang-Mills theory [3].
2.12. Proposition (The first variational formula). Let $B \in A^{0,1}$ (ge) and let $\left\{B_{t}\right\}$ be a 1-parameter family of elements in $A^{0,1}(\mathfrak{G c})$ with $B_{0}=B$ and $\left.\frac{d}{d t}\right|_{0} B_{t}=V \in$ $A^{0,1}(\mathrm{gc})$. Then

$$
\left.\frac{d}{d t}\right|_{0} \mathcal{Y}\left(B_{t}\right)=\operatorname{Re}\left(\bar{\partial}_{B}(V), F(B)\right)
$$

2.13. Corollary. $B \in A^{0,1}\left(g_{c}\right)$ is a critical point of \mathcal{Y} if and only if $\left(\bar{\partial}_{B}\right)^{*} F(B)=0$.
2.14. Corollary. If $\bar{\partial}_{\mathfrak{B}}: A^{0,1}(\mathfrak{g c}) \rightarrow A^{0,2}(\mathfrak{g c})$ is surjective for all $B \in A^{0,1}(\mathfrak{g c})$, then there are no critical points of \mathcal{Y} other than the absolute minima.
2.15. Proposition (Tile second variational formula). Let $B \in A^{0,1}\left(g_{c}\right)$ be a critical point of \mathcal{Y} and let $\left\{B_{t}\right\}$ be a l-parancter fanily of clencnts in $A^{0,1}\left(g_{\mathbb{C}}\right)$ with $B_{0}=B$ and $\left.\frac{d}{d t}\right|_{0} B_{t}=V \in A^{0,1}(\mathrm{gc})$. Then

$$
\left.\left(\frac{d}{d t}\right)^{2}\right|_{0} \mathcal{Y}\left(B_{\imath}\right)=\operatorname{Re}([V, V], F(B))+\left\|\bar{\partial}_{B}(V)\right\|^{2}
$$

2.16. Remark. There is a natural identification $f: A^{0,1}(\mathfrak{g c}) \rightarrow A^{1}(\mathfrak{g})$ defined by $f(B)=B-B^{\dagger}$, where $A^{1}(\mathfrak{g})$ is the affine space of "unitary connections." Then the inner product on these spaces are related by $\left(f\left(B_{1}\right), f\left(B_{2}\right)=2 \operatorname{Re}\left(B_{1}, B_{2}\right)\right.$ for $B_{i} \in A^{0,1}\left(\mathfrak{g}_{\mathrm{c}}\right)$.
3. Main theorems. A smooth vector bundle $E \rightarrow M$ is called (smoothly) indecomposable if it is not a direct sum of two proper subbundles. If E is indecomposable, then $\mathrm{rk}(E) \leq$ $\operatorname{dim}(M)$. Recall that a unitary connection on E is said to be irreducible if the holonomy group acts irreducibly on each fiber.
3.1. Lemma. Let E be a smooth complex vector bundle over a connected manifold. Then the following conditions are equivalent.
(1) E is smoothly indecomposable.
(2) Every unitary connection on E is irreducible.
(3) For any unitary connection on E, evcry parallel endomorphism of E is a constant multiple of the identity endomorphism.
3.2. Vanishing theorem. Let E be a smooth indecomposable vector bundle over a connected complex manifold M and let $D^{\prime \prime}$ be a semi-connection on E. Then any endomorphism f of E such that $D^{\prime \prime}(f):=D^{\prime \prime} \circ f-f \circ D^{\prime \prime}=0$ is a constant multiple of the identity endomorphism.

Proof: We fix any hermitian metric on E. Then there is a unique unitary connection D with $D^{\prime \prime}$ as its $(0,1)$ part. Then for any $f \in A^{0}(\operatorname{End} E)$,

$$
\left(D^{\prime \prime} f\right)^{\dagger}=D^{\prime}\left(f^{\dagger}\right)=0
$$

Thus if we put $f=f_{1}+\sqrt{-1} f_{2}$, where f_{i} 's are skew-hermitian endomorphism of (E, h), then f_{i} 's are parallel and hence f is parallel. Thus by the lemma (3.1), f is constant.

Now let (\mathcal{E}, h) be a holomorphic hermitian vector bundle over a compact complex hermitian manifold M. We assume that the underlying smooth vector bundle $E=|\mathcal{E}|$ of \mathcal{E} is smoothly indecomposable. Let $\mathfrak{g c}$ be the bundle of trace-free endomorphisms of \mathcal{E}. Note that the group $\mathrm{SL}(E)$ of smooth endomorphisms of E with determinant 1 acts on $A^{0,1}\left(\mathfrak{g C}_{\mathbb{C}}\right)$:

$$
(g, B) \mapsto-\bar{\partial} g \cdot g^{-1}+g \circ B \circ g^{-1} .
$$

We define the Hermitian-Yang-Mills functional

$$
\mathcal{Y}: A^{0,1}(\mathfrak{g c}) \rightarrow \mathbb{F}
$$

by $\left.\mathcal{Y}(B)=\frac{1}{2} \right\rvert\, F(B) \|^{2}$ as in (2.11). Then \mathcal{Y} is invariant under the subgroup $\operatorname{SU}(E)$ of $\operatorname{SL}(E)$. But the zero set of \mathcal{Y} is invariant under the whole group $\operatorname{SL}(E)$.
3.3. Theorem. If (\mathcal{E}, h) is a smoothly indecomposable holomorphic hermitian vector bundle over a hermitian complex surface M with the trivial canonical line bundle, then
the critical points of the Hermitian-Yang-Mills functional \mathcal{Y} are the Cauchy-Ricmann operators.
Proof: It suffices to show that for any $B \in A^{0,1}(\mathfrak{f c})$,

$$
\begin{equation*}
\bar{\partial}_{B}: A^{0,1}(\mathfrak{g c}) \rightarrow A^{0,2}(\mathfrak{g c}) \tag{*}
\end{equation*}
$$

is surjective (cf. (2.14)). But by the Serre duality (B.5), the cokernel of (*) is isomorphic to the kernel of

$$
\bar{\partial}_{B}: A^{2,0}\left(\mathfrak{g}_{\mathbb{C}}\right) \rightarrow A^{2,1}\left(\mathfrak{g}_{\mathbb{C}}\right)
$$

Since the canonical line bundle Ω^{2} is trivial, we are done by the vanishing theorem (3.2).
3.4. Remark. The trace part of End \mathcal{E} is not important in the above theorem. Namely, if we consider $A^{0,1}(\operatorname{End} \mathcal{E})$ as a domain of \mathcal{Y}, then the same conclusion is true. If we identify $A^{0,1}($ End $\mathcal{E}) \simeq A^{1}(u(E))$, where $u(E)$ is the real bundle of skew hermitian endomorphisms of (\mathcal{E}, h), then

$$
\begin{equation*}
\mathcal{Y}(A)=\frac{1}{4}\left\|R_{A}^{+}+\frac{\sqrt{-1}}{2} \Phi K_{A}\right\|^{2}, \quad A \in A^{1}(u(E)) \tag{3.5}
\end{equation*}
$$

where $R_{A}=R+d_{D}(A)+\frac{1}{2}[A, A]$ is the curvature tensor of $D+A$ (D being the canonical connection on $(\mathcal{E}, h)), R_{A}^{+}$is the self-dual part of $R_{A}, K_{A}=\sqrt{-1} \Lambda R_{A}$ is the mean curvature tensor [6], and Φ is the fundamental 2 -form of M. Then the first variational formula becomes

$$
d \mathcal{Y}(A)(v)=\frac{1}{4}\left(v, d_{A}^{*}\left(R_{A}+\sqrt{-1} \Phi K_{A}\right)\right), \quad v \in A^{1}(u(E))
$$

where d_{A}^{*} is the adjoint of $d_{A}:=d_{D}+A: A^{1}(u(E)) \rightarrow A^{2}(u(E))$.

Arpendix : Hodge tieory

A. Real case. Let (M, g) be a compact oriented Riemannian manifold of dimension m and let (E, h) be a smooth Riemannian vector bundle over M of rank r. Let D be a metric connection on E. The induced exterior derivatives

$$
\begin{equation*}
d_{D}: A^{p}(E) \rightarrow A^{p+1}(E) \tag{A.1}
\end{equation*}
$$

do not form a complex, unless E is flat, and the obstruction is the curvature R_{D}. The adjoint of the operator (A.1) is denoted by

$$
\delta_{D}: A^{p+1} \rightarrow A^{p}(E)
$$

Then

$$
\begin{equation*}
\delta_{D}=-(-1)^{m p} \star d_{D} \star \quad \text { on } A^{p+1}(E) \tag{A.2}
\end{equation*}
$$

where \star is the Hodge star. We put

$$
\Delta_{D}=d_{D} \delta_{D}+\delta_{D} d_{D}
$$

which is a self-adjoint elliptic operator, and let

$$
H_{D}^{p}(E)=K e r\left(\Delta_{D} \mid A^{p}(E)\right) .
$$

A.3. Theorem (Poincaré duality). $H_{D}^{p}(E) \simeq H_{D}^{m-p}(E)$.

Proof: Immediate consequence of (A.2).
A.4. Theorem. Let r be the rank of E and $e(M)$ be the Euler characteristic of M. Then
(1) $h_{D}^{p}(E):=\operatorname{dim} H_{D}^{p}(E)<\infty$.
(2) $\sum_{p=0}^{m}(-1)^{p} h_{D}^{p}(E)=r \cdot e(M)$.

Proof: (1) is standard. Note that the operator

$$
\begin{equation*}
d_{D}+\delta_{D}: A^{\bullet}(E) \rightarrow A^{\bullet}(E) \tag{A.5}
\end{equation*}
$$

is a self-adjoint elliptic operator with the same kernel as Δ_{D}. Thus $\sum(-1)^{p} h^{p}$ is equal to the index of

$$
d_{D}+\delta_{D}: A^{\text {even }}(E) \rightarrow A^{\text {odd }}(E)
$$

and the theorem follows from the Atiyah-Singer index theorem [1].

The Riemannian structure h on E induces canonically an isomorphism

$$
b: E \rightarrow E^{\vee}
$$

onto the dual vector bundle E^{\vee} of E, by lowering indices. This musical isomorphism induces an isomorphism

$$
b: A^{\bullet}(E) \rightarrow A^{\bullet}\left(E^{\vee}\right)
$$

of A^{\bullet}-modules. The Riemannian structure h^{\vee} on E^{\vee} is the one making b an isometry.
The connection D on E induces a connection D^{\vee} on E^{\vee} and D^{\vee} is also compatible with h^{v}. Thus we have

$$
d_{D^{\vee}}: A^{p}\left(E^{\vee}\right) \rightarrow A^{p+1}\left(E^{\vee}\right)
$$

and its adjoint

$$
\delta_{D^{\vee}}: A^{p+1}\left(E^{\vee}\right) \rightarrow A^{p}\left(E^{\vee}\right)
$$

A.6. Theorem. The musical isomorphism $b: A^{\bullet}(E) \rightarrow A^{\bullet}\left(E^{\vee}\right)$ commutes with \star, d and δ, i.e.,
(1) $b \star(\xi)=\star b(\xi)$
(2) $b d_{D}(\xi)=d_{D} \vee b(\xi)$
(3) $b \delta_{D}(\xi)=\delta_{D^{\vee}} b(\xi)$
for any $\xi \in A^{p}(E)$.
Proof: (1) and (2) is easy. (3) follows from (1), (2) and (A.2).
A.7. Corollary (Poincaré duality). $H_{D}^{p}(E) \simeq H_{D^{\vee}}^{p}\left(E^{\vee}\right)$.
B. Complex case. Now let (M, g) be a compact complex hermitian manifold of dimension n. Thus $m=2 n$ is the real dimension of M. Let (E, h) be a smooth hermitian vector bundle over M and let $D=D^{\prime}+D^{\prime \prime}$ be a unitary connection on E. Then

$$
d_{D}=d_{D}^{\prime}+d_{D}^{\prime \prime}
$$

and

$$
\delta_{D}=\delta_{D}^{\prime}+\delta_{D}^{\prime \prime}
$$

Now from (A.2), we have

$$
\begin{equation*}
\delta_{D}^{\prime}=-\star d_{D}^{\prime \prime}, \quad \delta_{D}^{\prime \prime}=-\star d_{D}^{\prime} \star \tag{B.1}
\end{equation*}
$$

We put

$$
\Delta_{D}^{\prime}=d_{D}^{\prime} \delta_{D}^{\prime}+\delta_{D}^{\prime} d_{D}^{\prime}, \quad \Delta_{D}^{\prime \prime}=d_{D}^{\prime \prime} \delta_{D}^{\prime \prime}+\delta_{D}^{\prime \prime} d_{D}^{\prime \prime}
$$

They are self-adjoint elliptic operators. We put

$$
H_{D^{\prime}}^{p, q}(E)=K e r\left(\Delta_{D}^{\prime} \mid A^{p, q}(E)\right)
$$

and

$$
H_{D^{\prime \prime}}^{p_{1}^{\prime \prime}}(E)=\operatorname{Ker}\left(\Delta_{D}^{\prime \prime} \mid A^{p, q}(E)\right)
$$

B.2. Timeorem (Poincaré duality).

$$
H_{D^{\prime}}^{p, q}(E) \simeq H_{D^{\prime \prime}}^{n-q, n-p}(E)
$$

Proof: Obvious from (B.1).

B.3. Theorem. (1) $h_{D^{\prime \prime}}^{p, q}(E):=\operatorname{dim}_{\mathbb{C}} H_{D, \prime}^{p, q}(E)<\infty$

(2) For each $p, \sum_{q=0}^{n}(-1)^{q} h_{D^{\prime \prime}}^{p, q}(E)=\int_{M} \operatorname{ch}\left(\Omega^{p} \otimes E\right) \cdot \operatorname{todd}(M)$.

Proof: Similar to the proof of A.4.
The hermitian structure h on E induces canonically a conjugate linear isomorphism

$$
b: E \rightarrow E^{\vee}
$$

onto the dual vector bundle E^{\vee} of E and this induces a conjugate linear isomorphism

$$
b: A^{p, q}(E) \rightarrow A^{q, p}\left(E^{\vee}\right) .
$$

B.4. Theorem. For $\xi \in A^{p, q}(E)$,
(1) $b \star(\xi)=\star b(\xi)$
(2) $b d_{D}^{\prime}(\xi)=d_{D^{\vee}}^{\prime \prime} b(\xi), \quad b d_{D}^{\prime \prime}(\xi)=d_{D^{\vee}}^{\prime} b(\xi)$
(3) $b \delta_{D}^{\prime}(\xi)=\delta_{D \vee}^{\prime \prime} b(\xi), \quad b \delta_{D}^{\prime \prime}(\xi)=\delta_{D \vee}^{\prime} b(\xi)$

Proof: This follows from theorem (A.6).
B.5. Corollary (Serre duality). (1) Let $D^{\prime \prime}$ be a semi-connection on E. Then for any hermitian structure on $E, H_{D^{\prime \prime}}^{p, q}(E)^{\vee} \simeq H_{D^{\vee}, n^{n-q}}^{n-p}\left(E^{\vee}\right)$.
(2) Let Ω^{p} be the p-th exterior power of the holomorphic cotangent bundle of (M, g), equipped with the canonical connection compatible with the hermitian structure and the holomorphic structure, and let ∇ be the induced connection on $\Omega^{p} \otimes E$ from the one on Ω^{p} and D on E. Then $H_{D^{\prime \prime}}^{p, q}(E) \simeq H_{\nabla^{\prime \prime}}^{0, \eta}\left(\Omega^{p} \otimes E\right)$.
Proof: From theorem (B.4), we have a conjugate linear isomorphism

$$
H_{D^{\prime \prime}}^{p, q}(E) \simeq H_{D}^{q, p}\left(E^{\vee}\right)
$$

By applying the Hodge star or the Poincare duality (B.2), we get (1). (2) is more or less trivial.

If we assume that (M, g) is Kähler, then

$$
\begin{equation*}
\sqrt{-1}\left[\Lambda, d_{D}^{\prime \prime}\right]=\delta_{D}^{\prime}, \quad-\sqrt{-1}\left[\Lambda, c_{D}^{\prime}\right]=\delta_{D}^{\prime \prime} \tag{B.C}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\Delta_{D}=\Delta_{D}^{\prime}+\Delta_{D}^{\prime \prime} \tag{B.7}
\end{equation*}
$$

In particular, Δ_{D} preserves the bi-grade. The Laplacians Δ_{D}^{\prime} and $\Delta_{D}^{\prime \prime}$ are not in general equal and their difference is an algebraic operator

$$
\begin{equation*}
\sqrt{-1}\left[\Lambda, R_{D}\right]=\Delta_{D}^{\prime}-\Delta_{D}^{\prime \prime} \tag{B.8}
\end{equation*}
$$

where $R_{D}=d_{D} \circ d_{D}: A^{p, q}(E) \rightarrow A^{p+1, q+1}(E)$ is the curvature operator of D.
B.9. Theorem (Hodge Decomposition). Suppose $\left[\Lambda, R_{D}\right]=0$ on $A^{k}(E)$. Then

$$
H_{D}^{k}(E)=\sum_{p+q=k} H_{D^{\prime \prime}}^{p, q}(E)
$$

The proof is obvious and we also have Lefschetz decomposition as in the ordinary case. (cf. [9]).

References

1. Atiyah, M. F., Singer, I. M., The index of elliptic operators. III, Ann. Math. 87 (1968), 546-604.
2. Bor, G., Montgomery, R., $S O(3)$ invariant Yang-Mills fields which are not self-dual, preprint, 1989.
3. Bourguignon, J. P., Lawson, H. B., Jr., Stability and the isolation phenomena for Yang-Mills fields, Commun. Math. Phys. 79 (1981), 189-230.
4. Donaldson, S. K., Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. (3) 50 (1985), 1-26.
5. Itoh, M., Yang-Mills connections over a complex surface and harmonic curvalure, Compositio Math. 62 (1987), 95-106.
6. Kobayashi, S., "Differential Geometry of Complex Vector Bundles," Publ. of the Math. Soc. of Japan 15, Iwanami Shoten and Princeton Univ. Press, Tokyo, 1987.
7. Mukai, S., Moduli of vector bundles on K3 surfaces and symplectic manifolds, Sugaku Expositions 1 (1988), 139-174.
8. Sibner, L.M., Sibner, R.J., Uhlenbeck, K. K., Solutions to Yang-Mills equation that are not self-dual, Proc. Natl. Acad. Sci. USA 86 (1989), 8610-8613.
9. Wells, R. O., "Differential Analysis on Complex Manifolds," GTM 65, Springer, New York, 1980.

Keywords. holomorphic vector bundles, Hermitian-Yang-Mills equation
1980 Mathematics subject classifications: (1985 revision) 32G05, 53C05, 53C55

