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Abstract. In his paper [15] Ritt constructed a decomposition theory of poly-

nomials and described explicitly polynomial solutions of the functional equa-

tion f(p(z)) = g(q(z)). In this paper we construct a self-contained decompo-
sition theory of rational functions with at most two poles. In particular, we

give new proofs of the theorems of Ritt and of the theorem of Bilu and Tichy.

Besides, we study general properties of the equation above in the case when
f, g, p, q are holomorphic functions on compact Riemann surfaces.

1. Introduction

Let F (z) be a rational function with complex coefficients. The function F (z) is
called indecomposable if the equality F = F1 ◦ F2, where F1(z), F2(z) are rational
functions and F1 ◦ F2 denotes a superposition F1(F2(z)), implies that at least one
of the functions F1(z), F2(z) is of degree one. Clearly, any rational function F (z)
can be decomposed into a composition F = Fr ◦ Fr−1 ◦ · · · ◦ F1 of indecomposable
rational functions. We will call such decompositions maximal.

In general, a rational function may have many maximal decompositions and the
ultimate goal of the decomposition theory of rational functions is to describe a gen-
eral structure of all such decompositions up to an equivalence, where by definition
two decompositions

F = F1 ◦ F2 ◦ · · · ◦ Fr and F = G1 ◦G2 ◦ · · · ◦Gr,

which may or may not be maximal, are called equivalent if there exist Möbius
transformations µi, 1 ≤ i ≤ r − 1, such that

F1 = G1 ◦ µ1, Fi = µ−1
i−1 ◦Gi ◦ µi, 1 < i < r, and Fr = µ−1

r−1 ◦Gr.

Essentially, the unique case when this problem is completely solved is the one
investigated by Ritt in his classical paper [15] concerning the situation when F (z)
is a polynomial.

The Ritt results can be summarized as a union of two theorems usually called
the first and the second Ritt theorems (see [15] and also [18], [17] for the case when
the ground field is distinct form C). The first Ritt theorem states that any two
maximal decompositions D,E of a polynomial P (z) have an equal number of terms
and there exists a chain of decompositions Fi, 1 ≤ i ≤ s, of P (z) such that F1 = D,
Fs ∼ E, and Fi+1 is obtained from Fi, 1 ≤ i ≤ s − 1, by a change of a segment of
Fi consisting of two consecutive terms A ◦B to a new segment C ◦D such that

(1) A ◦ C = B ◦D.
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The first Ritt theorem reduces the decomposition problem of polynomials to a
description of indecomposable polynomial solutions of equation (1). The second
Ritt theorem gives such a description and states that if (1) holds and the decompo-
sitions A ◦B and C ◦D are not equivalent then there exist Möbius transformations
µ1(z), µ2(z) such that

A = µ1 ◦ Ã, B = µ1 ◦ B̃, C = C̃ ◦ µ2, D = D̃ ◦ µ2

and either
Ã ◦ B̃ ∼ Tn ◦ Tm, C̃ ◦ D̃ ∼ Tm ◦ Tn,

for the Chebyshev polynomials Tm(z), Tn(z) and GCD(n,m) = 1, or

Ã ◦ B̃ ∼ zn ◦ zmR(zn), C̃ ◦ D̃ ∼ zmRn(z) ◦ zm,
for a polynomial R(z) and GCD(n,m) = 1.

For arbitrary rational functions the first Ritt theorem fails to be true. Fur-
thermore, there exist rational functions with maximal decompositions of different
lengths. The simplest examples of this phenomenon can be constructed with the use
of rational functions f(z) which are the Galois coverings. Notice that all the func-
tions with this property were described by F. Klein in his famous book [8]. They
are related to the finite subgroups Cn, Dn, A4, S4, A5 of Aut CP1 and nowadays
can be interpreted as Belyi functions of the Platonic solids [4], [10].

The reason for the choice of these functions as possible counterexamples to the
first Ritt theorem is the fact that for such a function f(z) maximal decompositions
of f(z) correspond to maximal chains of subgroups

e = Gr ⊂ Gr−1 ⊂ ... ⊂ G0 = G,

where G is the monodromy group of f(z). Therefore, in order to find maximal
decompositions of different lengths of f it is enough to find the corresponding
chains of subgroups of G. For Cn and Dn such chains do not exist but already
for G = A4 they do. The corresponidng decompositions of different lenght of a
function f(z) were found explicitely in [5]. If f(z) is normalized to be the Belyi
function for the tetrahedron (see [10])

f(z) = −64
(z3 + 1)3

(z3 − 8)3z3
,

then these decompositions take especially simple form:

f(z) = −64
(z + 1)3

z(z − 8)3
◦ z3, f(z) = −64z3 ◦ z − 1

z2 − 4
◦ z

2 + 2
z + 1

(M. Zieve communicated to us [19] that actually these examples essentially were
mentioned already by Ritt in his paper [16] although Ritt did not write the corre-
sponding decompositions in an explicit form).

Notice that the problem of description of polynomial solutions of (1) is essentially
equivalent to the problem of description of the algebraic curves of the form

(2) A(x)−B(y) = 0

which have a factor of genus zero with one point at infinity. A more general question
of description of curves (2) having a factor of genus 0 with at most two points at
infinity is closely connected to the number theory and was studied in the papers
of Fried [6] and Bilu and Tichy [2]. In particular, in [2] an explicit list of such
curves was obtained. Another important result concerning functional equation (1),
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obtained by Avanzi and Zannier [1], gives a description of rational solutions of (1)
under condition that A(z) and B(z) are polynomials equal between themselves.
Finally, notice that the problem of description of rational solutions of (1) under
condition that C(z), D(z) are polynomials is quite simple and essentially reduces
to the Ritt theorem [14].

It turns out that a fruitful way to investigate general properties of equation (1)
is to study the structure of its possible solutions C(z), D(z) for fixed A(z), B(z). In
the first part of this paper we develop this approach in a more general context of
holomorphic functions on compact Riemann surfaces. Namely, we investigate the
equation

(3) h = f ◦ p = g ◦ q,
where f : C1 → CP1, g : C2 → CP1 are fixed holomorphic functions on fixed
Riemann surfaces C1, C2 and h : C → CP1, p : C → C1, q : C → C2 are unknown
holomorphic functions on unknown Riemann surface C. In subsection 2.1 we give
a description of the general structure of solutions of (3). We show (Theorem 2.1)
that there exists a finite number o(f, g) of solutions hj(z), pj(z), qj(z) of (3) such
that any other solution has the form

h = hj ◦ w, p = p̃ ◦ w, q = q̃ ◦ w,
where w(z) is a holomorphic function and

f ◦ p̃ ∼ f ◦ pj , g ◦ q̃ ∼ g ◦ qj .
Moreover, we describe explicitly the monodromy of hj(z) via the monodromy of
f(z), g(z).

Theorem 1 naturally distinguishes a class of pairs of holomorphic functions such
that o(f, g) = 1. We will call the pairs from this class irreducible, since if f(z), g(z)
are polynomials then the condition o(f, g) = 1 is equivalent to the condition that the
algebraic curve f(x)− g(y) = 0 is irreducible. In subsection 2.2 we give (Theorem
2.2) a topological criterion for a pair f(z), g(z) to be irreducible. As a corollary
we obtain the following result (Theorem 2.3) which generalizes the corresponding
result of Fried [7] about polynomials: if a pair of holomorphic functions f(z), g(z)
is reducible then there exist holomorphic functions f̃(z) g̃(z), p(z), q(z) such that

f = f̃ ◦ p, g = g̃ ◦ q
and the normalizations of f̃(z) and g̃(z) coincide. We also show (Theorem 2.4) that
if (3) is a double decomposition with indecomposable p(z), q(z) and the pair f(z),
g(z) is irreducible then f(z), g(z) are indecomposable.

Further, in subsection 2.3 of the first part of the paper we establish (Proposition
2.4) an important property of equation (3) in the case when f(z), g(z) are “general-
ized” polynomials that is holomorphic functions for which the preimage of infinity
contains a unique point. In particular, Proposition 2.4 implies (Corollary 2.5) that
if A(z), B(z) are “usual” polynomials of the same degree and C(z), D(z) are ratio-
nal functions such that equality (1) holds then there exist rational functions C̃(z),
D̃(z), W (z) such that

C = C̃ ◦W, D = D̃ ◦W
and C̃(z) and D̃(z) have an equal number of poles all of which are simple. This is
a generalization of a well known fact that two decompositions A ◦ C and B ◦D of
a polynomial P (z) for which degA(z) = degB(z) are equivalent.
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Finally, in subsection 2.4 we introduce a notion of a closed class of rational
function as of a subset H of C(z) such that the condition G ◦H ∈ H implies that
G ∈ H, H ∈ H. For example, for fixed k ≥ 1 the set Rk consisting of the rational
functions F (z) for which

min
z∈CP1

]{F−1{z}} ≤ k

is a closed class and the Ritt theorems can be interpreted as a decomposition theory
for the class R1. We show (Theorem 2.5) that in order to check that the first Ritt
theorem holds for all functions from a closed class H it is enough to check that it
holds for the functions from a certain subset of H related to reducible pairs from
H. This criterion is useful since the corresponding subset is considerably less than
H. For example, for the class R1 this subset turns out to be empty that implies in
particular the truth of the first Ritt for this class (Proposition 2.5).

In connection with the first Ritt theorem let us mention also the following ob-
servation which is a direct corollary of Theorem 2.4. If a rational function F (z) has
two decompositions

F1 ◦ F2 ◦ ... ◦ Fr = G1 ◦G2 ◦ ... ◦Gs
for which the conclusion of the first Ritt theorem does not hold then the algebraic
curve corresponding to the equation

(F1 ◦ F2 ◦ ... ◦ Fr−1)(x)− (G1 ◦G2 ◦ ... ◦Gr−1)(y) = 0

is necessarily reducible.
In the second part of this paper, using the results of the first part, we construct

explicitly a decomposition theory for the class R2. The reason for the investigation
of this problem is twofold. On the one hand, this is a natural generalization of
the Ritt theory. On the other hand, the decompositions of polynomials play an
important role in the polynomial moment problem (see [13], [3]) which arose recently
in connection with the “model” problem for the Poincare center-focus problem. The
corresponding moment problem for Laurent polynomials, which is related to the
Poincare problem even to a greater extent than the polynomial moment problem,
is still open and a decomposition theory for R2 can be considered as a preliminary
step in the investigation of this problem.

Clearly, the description of double decompositions (3) of functions h ∈ R2 is essen-
tially equivalent to the corresponding problem for Laurent polynomials and, since
a Laurent polynomial has at most two poles, any such decomposition is equivalent
to one of the following three decompositions:

(4) A ◦ L1 = L2 ◦ zd,

where A(z) is a polynomial and L1(z), L2(z) are Laurent polynomials,

(5) A ◦ L1 = B ◦ L2

where A(z), B(z) are polynomials and L1(z), L2(z) are Laurent polynomials, and

(6) L1 ◦ zd1 = L2 ◦ zd2 ,

where L1(z), L2(z) are Laurent polynomials.
It is easy to see however that equality (6) implies that

L1 = L ◦ zD/d1 , L2 = L ◦ zD/d2 ,
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for some Laurent polynomial L(z) and D = LCM(d1, d2). Furthermore, using
Corollary 2.5 and some reasonings involving symmetries of the sphere, we show
(Theorem 3.1) that any decompositions (4) is related either to a decomposition

zn ◦ zrL(zn) = zrLn(z) ◦ zn,
or to a decomposition

Tn ◦
1
2

(zm +
1
zm

) =
1
2

(zm +
1
zm

) ◦ zn,

where L(z) is a Laurent polynomial and Tn(z) is the nth Chebyshev polynomial.
Finally, the description of solutions of equation (5) is equivalent to the problem

of description of curves (2), having a factor of genus 0 with at most two points at
infinity, together with the corresponding parameterizations. Although the results
of Fried and of Bilu and Tichy cited above reduce this problem solely to the finding
of the corresponding parameterizations, in view of the great importance of equation
(5) we provide an independent treatment of this equation since we believe that our
method contains some new ideas which permit to simplify and clarify the existent
approach to the problem.

Our analysis of equation (5) splits into three parts. In subsection 3.2 we describe
solutions of (5) in the case when degA(z) = degB(z). Further, in subsection 3.3
using this description we reduce the general case to the one when the pair A(z),
B(z) is irreducible. Finally, in subsection 3.4 we solve (5) in the case when the pair
A(z), B(z) is irreducible. Here we propose a version of the formula for the genus g
of curve (2) which permits to analyse the condition g = 0 in a convenient way and
allows us to replace the conception of “extra” points which goes back to Ritt to a
more transparent notion.

Eventually, in the end of the paper as a direct application of the classification of
double decompositions and Theorem 2.5 we show that the first Ritt theorem extends
to the class R2. The results of the second part of the paper can be summarized in
the form of the following theorem which absorbs in particular the Ritt theorems
and the Bilu-Tichy theorem.

Theorem 1.1 Let
L = A ◦ C = B ◦D

be a double decomposition of a rational function L ∈ R2. Then either A ◦ C is
equivalent to B ◦D or there exist rational functions U, W, Ã, B̃ ∈ R2 such that

i) A = U ◦ Ã, B = U ◦ B̃, C = C̃ ◦W, D = D̃ ◦W,

ii) Ã ◦ C̃ = B̃ ◦ D̃,
and, up to a possible change of A to B and of C to D, one of the following conditions
holds:

1) Ã ◦ B̃ ∼ zn ◦ zrL(zn), C̃ ◦ D̃ ∼ zrLn(z) ◦ zn,
where L(z) is a Laurent polynomial, r ≥ 0, n ≥ 1, and GCD(n, r) = 1,

2) Ã ◦ C̃ ∼ z2 ◦ z
2 − 1
z2 + 1

S(
2z

z2 + 1
), B̃ ◦ D̃ ∼ (1− z2)S2(z) ◦ 2z

z2 + 1
,

where S(z) is a polynomial,
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3) Ã ◦ C̃ ∼ Tn ◦ Tm, B̃ ◦ D̃ ∼ Tm ◦ Tn,
where Tn(z), Tm(z) are Chebyshev polynomials, m,n ≥ 1, and GCD(n,m) = 1,

4) Ã ◦ C̃ ∼ Tn ◦
1
2

(zm +
1
zm

), B̃ ◦ D̃ ∼ 1
2

(zm +
1
zm

) ◦ zn,

where m,n ≥ 1 and GCD(n,m) = 1,

5) Ã ◦ C̃ ∼ −Tnl ◦
1
2

(εzm +
ε̄

zm
), B̃ ◦ D̃ ∼ Tml ◦

1
2

(zn +
1
zn

),

where Tnl(z), Tml(z) are Chebyshev polynomials, m,n ≥ 1, l > 1, εnl = −1, and
GCD(n,m) = 1,

6) Ã ◦ C̃ ∼ (z2 − 1)3 ◦ 3(3z4 + 4z3 − 6z2 + 4z − 1)
(3z2 − 1)2

,

B̃ ◦ D̃ ∼ (3z4 − 4z3) ◦ 4(9z6 − 9z4 + 18z3 − 15z2 + 6z − 1)
(3z2 − 1)3

.

Furthermore, if D,E are two maximal decompositions of L then there exists a
chain of decompositions Fi, 1 ≤ i ≤ s, of L such that F1 = D, Fs ∼ E, and Fi+1 is
obtained from Fi, 1 ≤ i ≤ s − 1, by a change of a segment of Fi consisting of two
consecutive terms A ◦ C to a new segment B ◦D such that A ◦ C = B ◦D.

Acknowledgments. This paper was written mostly during the visits of the author
to the Max-Planck-Institut für Mathematik in Summer 2005 and Spring 2007 and
the author would like to thank the Max-Planck-Institut for the hospitality. Besides,
the author is grateful to Y. Bilu, M. Muzychuk and M. Zieve for discussions of the
preliminary results of this paper.

2. Functional equation h = f ◦ p = g ◦ q

2.1. Fundamental system of solutions. In this subsection we establish some
general properties of the functional equation h = f ◦p = g◦q, where f : C1 → CP1,
g : C2 → CP1 are fixed holomorphic functions on fixed Riemann surfaces C1, C2

and h : C → CP1, p : C → C1, q : C → C2 are unknown holomorphic functions on
unknown Riemann surface C.

Let S ⊂ CP1 be a union of branch points of f and g and let z0 be a point
from CP1 \ S. Recall that for any collection consisting of a Riemann surface R,
holomorphic function p : R → CP1 non ramified outside of S, and a point e ∈
p−1{z0} the homomorphism of the fundamental groups

p? : π1(R \ p−1{S}, e)→ π1(CP1 \ S, z0)

is a monomorphism such that its image Γp,e is a subgroup of finite index in the group
π1(CP1\S, z0), and vice versa if Γ is a subgroup of finite index in π1(CP1\S, z0) then
there exist a Riemann surface R, a function p : R→ CP1, and a point e ∈ p−1{z0}
such that

p?(π1(R \ p−1{S}, e)) = Γ.
Furthermore, this correspondence descends to a one-to-one correspondence between
conjugacy classes of subgroup of index d in π1(CP1 \ S, z0) and equivalence classes
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of holomorphic functions of degree d non ramified outside of S, where functions
p : R → CP1 and p̃ : R̃ → CP1 are considered as equivalent if there exists an
isomorphism w : R→ R̃ such that p = p̃ ◦ w.

For p1 : R1 → CP1, e1 ∈ p−1
1 {z0} and p2 : R2 → CP1, e2 ∈ p−1

2 {z0} the groups
Γp1,e1 and Γp2,e2 coincide if and only if there exists an isomorphism w : R1 → R2

such that p1 = p2 ◦ w and w(e1) = e2. More general, the inclusion

Γp1,e1 ⊆ Γp2,e2

holds if and only if there exists a holomorphic function w : R1 → R2 such that
p1 = p2 ◦ w and w(e1) = e2 and in case if such a function exists it is defined in a
unique way.

In view of the fact that the coverings of Riemann surfaces are identified with
holomorphic functions the results above follow from the corresponding results about
coverings (see e.g. [11]).

Proposition 2.1. Let f : C1 → CP1, g : C2 → CP1 be holomorphic functions.
Then for any a ∈ f−1{z0} and b ∈ g−1{z0} there exist a holomorphic function
h : C → CP1, a point c ∈ h−1{z0}, and holomorphic functions u : C → C1,
v : C → C2 such that

(7) h = f ◦ u = g ◦ v, u(c) = a, v(c) = b.

Furthermore, the function h(z) has the following property: if

(8) h̃ = f ◦ p = g ◦ q, p(c̃) = a, q(c̃) = b

for some holomorphic function h̃ : R → CP1, point c̃ ∈ h−1{z0}, and holomorphic
functions p : R → C1, q : R → C2, then there exists a holomorphic function
w̃ : R→ C such that

(9) h̃ = h ◦ w̃, p = u ◦ w̃, q = v ◦ w̃, w̃(c̃) = c.

Proof. Indeed, it is easy to see that for the pair h : C → CP1, c ∈ h−1{z0}
corresponding to the subgroup Γf,a ∩ Γg,b equalities (7) hold. Furthermore, if
equalities (8) hold then Γh̃,c̃ ⊆ Γh,c and therefore h̃ = h ◦ w̃ for some w̃ : R → C,

such that w̃(c̃) = c. Since

(u ◦ w̃)(c̃) = a = p(c̃), (v ◦ w̃)(c̃) = b = q(c̃)

we conclude that
p = u ◦ w̃, q = v ◦ w̃. �

Fix a numeration {z1, z2, . . . , zr} of points of S and let h : R → CP1 be a
holomorphic function non ramified outside of S. For each i, 1 ≤ i ≤ r, a small loop
around βi after lifting by h(z) induces a permutation αi(h) of points of h−1{z0}.
Furthermore, the equality α1(h)α2(h) . . . αr(h) = 1 holds and the group Gh gener-
ated by αi(h), 1 ≤ i ≤ r, is transitive. The group Gh is called the monodromy group
of p(z). Clearly, the representation of αi(h), 1 ≤ i ≤ r, by elements of the symmetric
group Sd depends on the numeration of points of h−1{z0} but the conjugacy class
of the corresponding collection of permutations is well defined. Moreover, there is
a one-to-one correspondence between equivalence classes of holomorphic functions
of degree d non ramified outside of S and conjugacy classes of ordered collections
of permutations αi, 1 ≤ i ≤ r, from Sd generating a transitive permutation group
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and such that α1α2 . . . αr = 1 (see e.g. [12], Corollary 4.10). We will denote the
conjugacy class corresponding to the function h(z) by α̂(h).

Notice that if
ϕh : π1(CP1 \ S, z0)→ Gh

is a homomorphism which sends βi to αi, 1 ≤ i ≤ r, then the preimages of the
stabilizers of the elements of {1, 2, . . . , d} in Gh coincide with the groups Γh,e,
e ∈ h−1{z0}. On the other hand, if a group Γh,e for some e ∈ h−1{z0} is given then
the collection of permutations αi, 1 ≤ i ≤ r, induced on the cosets of Γh,e by βi,
1 ≤ i ≤ r, is a representative of α̂(h).

Recall that if h = f ◦p is a decomposition of a holomorphic function h : R→ CP1

of degree d into a composition of holomorphic functions p : R → C and f : C →
CP1 then the group Gh has an imprimitivity system Ω such that the collection of
permutations of blocks of Ω induced by αi(h), 1 ≤ i ≤ r, is a representative of
α̂(f). Namely, after an identification of the set h−1{z0} with the set {1, 2, . . . , d}
the blocks of Ω coincide with the preimages p−1{t} of the points t ∈ f−1{z0}.
Furthermore, two different decompositions h = f ◦ p and h = f̃ ◦ p̃, where f̃ : C̃ →
CP1 and p̃ : R→ C̃ lead to the same imprimitivity system if and only there exists
an automorphism µ : C̃ → C such that

f = f̃ ◦ µ−1, p = µ ◦ p̃.
We will call such decompositions equivalent. Vice versa, if Gh has an imprimitivity
system Ω such that the collection of permutations of blocks of Ω induced by αi(h),
1 ≤ i ≤ r, is a representative of α̂(f) then there exists a function p : R → C such
that h = f ◦p. Therefore, non-equivalent decompositions of h(z) are in a one-to-one
correspondence with imprimitivity systems of Gh.

Notice that the blocks of two imprimitivity systems Ω1 and Ω2, corresponding to
decompositions h = f1 ◦p1 and h = f2 ◦p2 for some f1 : C1 → CP1, f2 : C2 → CP1,
p1 : R→ C1, p2 : R→ C2, and containing a common element, have an intersection
of the cardinality d if and only if there exist a holomorphic function w : R→ R̃ of
degree d and holomorphic functions p1 : R̃→ C1, p2 : R̃→ C2 such that

p1 = p̃1 ◦ w, p2 = p̃2 ◦ w.
In particular, the function p(z) in a decomposition h = f ◦ p is defined by the
corresponding imprimitivity system and a choice of f(z) in a unique way up to a
composition ω ◦ p with an automorphism ω of the surface C such that f ◦ ω = f .

Notice also that the set of all blocks of Gh containing a fixed element i is in a one-
to-one correspondence with the subgroups G of Gh containing the stabilizer Gh,i of
i. Namely, if G is such a group then its orbit containing i is a block. In particular,
a function h(z) is indecomposable if and only if Gh,i is a maximal subgroup of Gh.

Let f : C1 → CP1 be a holomorphic function of degree n and g : C2 → CP1

be a holomorphic function of degree m. Fix some representatives αi(f), αi(g),
1 ≤ i ≤ s, of the classes α̂(f), α̂(g) and define permutations δ1, δ2, . . . , δr ∈ Snm as
follows: consider the set of mn elements cj1,j2 , 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ m, and set
cδi
j1,j2

= cj′1,j′2 , where

j′1 = j
αi(f)
1 , j′2 = j

αi(g)
2 , 1 ≤ i ≤ s.

It is convenient to consider cj1,j2 , 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ m, as elements of a
n × m matrix M . Then the action of the permutation δi, 1 ≤ i ≤ r, reduces to
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the permutation of rows of M in accordance with the permutation αi(f) and the
permutation of columns of M in accordance with the permutation αi(g).

In general the permutation group Γ(f, g) generated by δi, 1 ≤ i ≤ r, is not
transitive on the set cj1,j2 , 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ m. Denote by o(f, g) the number
of transitivity sets of the group Γ(f, g) and let δi(j), 1 ≤ j ≤ o(f, g), 1 ≤ i ≤ r, be
a permutation induced by the permutations δi, 1 ≤ i ≤ r, on the transitivity set
Uj , 1 ≤ j ≤ o(f, g). Since for any j, 1 ≤ j ≤ o(f, g), the equality

δ1(j)δ2(j) . . . δr(j) = 1

holds there exist holomorphic functions hj : Rj → CP1, 1 ≤ j ≤ o(f, g), such that
the collection δi(j), 1 ≤ i ≤ r, is a representative of α̂(hj).

By construction the group Gj generating by δi(j), 1 ≤ i ≤ s, is transitive and
has two imprimitivity systems Ωf (j),Ωg(j) such that the permutation of blocks
of Ωf (j) (resp. of Ωg(j)) induced by δi(j), 1 ≤ i ≤ r, is a representative of α̂(f)
(resp. of α̂(g)). Therefore, there exist holomorphic functions uj : Rj → C1 and
vj : Rj → C2 such that

(10) hj = f ◦ uj = g ◦ vj .

Theorem 2.1. Let f : C1 → CP1, g : C2 → CP1 be holomorphic functions.
Suppose that h : R→ CP1 is a holomorphic function such that

(11) h = f ◦ p = g ◦ q
for some holomorphic functions p : R → C1 and q : R → C2. Then there exists a
number j, 1 ≤ j ≤ o(f, g), and holomorphic functions w : R → Rj , p̃ : Rj → C1,
q̃ : Rj → C2, such that

(12) h = hj ◦ w, p = p̃ ◦ w, q = q̃ ◦ w
and

f ◦ p̃ ∼ f ◦ uj , g ◦ q̃ ∼ g ◦ vj .

Proof. It is enough to prove that for any choice of points a ∈ f−1{z0} and b ∈
g−1{z0} the class of permutations α̂(h) for the corresponding function h(z) from
Proposition 2.1 coincides with α̂(hj) for some j, 1 ≤ j ≤ o(f, g). On the other
hand, the last statement is equivalent to the statement that for any a ∈ f−1{z0},
b ∈ g−1{z0} there exists j, 1 ≤ j ≤ o(f, g), and an element c of the transitivity set
Uj such that the group Γf,a ∩ Γg,b is the preimage of the stabilizer Gj,c of c in the
group Gj under the homomorphism

ϕhj
: π1(CP1 \ S, z0)→ Gj .

Let l be a number which corresponds to the point a under the identification of
the set f−1{z0} with the set {1, 2, . . . , n}, k be a number which corresponds to the
point b under the identification of the set g−1{z0} with the set {1, 2, . . . ,m}, and
Uj be a transitivity set for the group Γ(f, g) containing the element cl,k. We have:

Γf,a = ϕ−1
f {Gf, l}, Γg,b = ϕ−1

g {Gf,k}.
Furthermore, if

ψ1 : Gf → Gj , ψ2 : Gg → Gj

are homomorphisms which send αi(f), 1 ≤ i ≤ r, (resp. αi(g), 1 ≤ i ≤ r,) to
αi(hj), 1 ≤ i ≤ r, then

Gf, l = ψ−1
1 {Al}, Gg,k = ψ−1

2 {Bk},
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where Al (resp. Bk) is a subgroup of Gj which transforms the set of elements
cj1,j2 ∈ Uj for which j1 = a (resp. j2 = b) to itself.

Observe now that
ψ1 ◦ ϕf = ψ2 ◦ ϕg = ϕhj

.

Therefore,
Γf,a ∩ Γg,b = (ψ1 ◦ ϕf )−1{Al} ∩ (ψ2 ◦ ϕg)−1{Bk} =

= ϕ−1
hj
{Al} ∩ ϕ−1

hj
{Bk} = ϕ−1

hj
{Al ∩Bk} = ϕ−1

hj
{Gj,c}. �

Let g(Rj) be the genus of the surface Rj , 1 ≤ j ≤ o(f, g), on which the function
hj(z) is defined. Notice that Proposition 2.1 implies in particular that if h : R →
CP1 is a holomorphic function which satisfies equation (11) for some functions
p : R → C1 and q : R → C2 then necessary g(R) ≥ minj g(Rj). In particular, if
minj g(Rj) > 0 then (11) does not have rational solutions.

Denote by

λ1 = (f1,1, f1,2, ..., f1,u1), ... , λr = (fr,1, fr,2, ..., fr,ur
)

and
µ1 = (g1,1, g1,2, ..., g1,v1), ... , µs = (gr,1, gr,2, ..., gr,vr

)

the collections of partitions of the numbers n = deg f(z) and m = deg g(z) corre-
sponding to the decompositions of the permutations αi(f), 1 ≤ i ≤ r, and αi(g),
1 ≤ i ≤ r, into products of disjoint cycles.

Proposition 2.2. The formula

(13)
r∑
i=1

ui∑
j1=1

vi∑
j2=1

GCD(fi,j1gi,j2) = (r − 2)nm+ 2− 2
o(f,g)∑
j=1

g(Rj)

holds.

Proof. Indeed, if

ν1(j) = (c1,1(j), c1,2(j), ..., c1,e1(j)(j)), ... , νr(j) = (cr,1(j), cr,2(j), ..., cr,er(j)(j))

is a collection of partitions of the number |Uj |, 1 ≤ j ≤ o(f, g), corresponding to
decompositions of the permutations αi(hj), 1 ≤ i ≤ r, into products of disjoint
cycle then by the Riemann-Hurwitz formula we have:

r∑
i=1

ei(j) = (r − 2)|Uj |+ 2− 2g(Rj)

and therefore
o(f,g)∑
j=1

r∑
i=1

ei(j) = (r − 2)mn+ 2− 2
o(f,g)∑
j=1

g(Rj).

On the other hand, it follows from the construction that the permutation δi,
1 ≤ i ≤ r, contains

ui∑
j1=1

vi∑
j2=1

GCD(fi,j1gi,j2)
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disjointed cycles and therefore
o(f,g)∑
j=1

r∑
i=1

ei(j) =
r∑
i=1

ui∑
j1=1

vi∑
j2=1

GCD(fi,j1gi,j2). �

2.2. Irreducible and reducible pairs. It follows from Theorem 2.1 that solutions
of (11) have especially simple form in the case when the group Γ(f, g) is transitive
on the set cj1,j2 , 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ m. In this case say that the pair of functions
f and g is irreducible otherwise say that it is reducible. In this subsection we study
properties of irreducible and reducible pairs.

Proposition 2.3. A pair of holomorphic functions f : C1 → CP1, g : C2 → CP1

is irreducible whenever their degrees are coprime.

Proof. Let n = deg f, m = deg g. Since the index of Γf,a ∩ Γg,b coincides with the
cardinality of the corresponding imprimitivity set Uj it is clear that the pair f, g is
irreducible if and only if for any a ∈ f−1{z0}, b ∈ g−1{z0} the equality

(14) [π1(CP1 \ S, z0) : Γf,a ∩ Γg,b] = nm

holds. Since the index of Γf,a ∩ Γg,b in π1(CP1 \ S, z0) is a multiple of the indices
of Γf,a and Γg,b in π1(CP1 \ S, z0), this index is necessary equals mn whenever n
and m are coprime.

Theorem 2.2. A pair of holomorphic functions f : C1 → CP1, g : C2 → CP1 is
irreducible if and only if for any a ∈ f−1{z0}, b ∈ g−1{z0} the equality

(15) Γf,aΓg,b = Γg,bΓf,a = π1(CP1 \ S, z0)

holds.

Proof. Since[
π1(CP1 \ S, z0) : Γf,a ∩ Γg,b

]
=
[
π1(CP1 \ S, z0) : Γg,b

] [
Γg,b : Γf,a ∩ Γg,b

]
,

the equality (14) is equivalent to the equality

(16) [Γg,b : Γf,a ∩ Γg,b] = n.

On the other hand, for any subgroups A,B of finite index in a groupG the inequality

[{A,B} : A] ≥ [B : A ∩B]

holds and the equality attains if and only if the groups A and B commute (see e.g.
[9], p. 79). Therefore,

n =
[
π1(CP1 \ S, z0) : Γf,a

]
≥ [{Γf,a,Γg,b} : Γf,a] ≥ [Γg,b : Γf,a ∩ Γg,b]

and hence equality (16) holds if and only if Γf,a and Γg,b are permutable and
equality (15) holds. �

Corollary 2.1. Let f : C1 → CP1, g : C2 → CP1 be an irreducible pair of
holomorphic functions. Then any pair of holomorphic functions f̃ : C̃1 → CP1,
g̃ : C̃2 → CP1 such that

f = f̃ ◦ p, g = g̃ ◦ q
for some holomorphic functions p : C1 → C̃1, q : C2 → C̃2 is also irreducible.
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Proof. Indeed, it follows from the inclusions

Γf,a ⊂ Γf̃ ,ã, Γg,b ⊂ Γg̃,b̃
for the corresponding subgroups that

Γf̃ ,ãΓg̃,b̃ = Γg̃,b̃Γf̃ ,ã = π1(CP1 \ S, z0). �

Recall that a holomorphic function f : C1 → CP1 is called normal if the subgroup
of Aut (C1) consisting from the automorphisms σ for which f ◦ σ = f acts transi-
tively on the set f−1{z0}. An equivalent condition is that for any a, b ∈ f−1{z0}
the equality Γf,a = Γg,b holds. For a function f : C1 → CP1 denote by N(f) its
normalization that is a normal function which corresponds to the group⋂

a∈f−1{z0}

Γf,a.

Theorem 2.3. Let f : C1 → CP1, g : C2 → CP1 be holomorphic functions.
Suppose that the pair f, g is reducible. Then there exist holomorphic functions
f1 : C̃1 → CP1, g1 : C̃2 → CP1, and u : C1 → C̃1, v : C2 → C̃2 such that

(17) f = f1 ◦ u, g = g1 ◦ v, and N(f1) = N(g1).

Proof. Without loss of generality we will assume that for any a ∈ f−1{z0}, b ∈
g−1{z0} the group C = {Γf,a,Γg,b} coincides with the group π1(CP1 \ S, z0) since
otherwise C = Γh,c for some h : C → CP1 and c ∈ h−1{z0} such that

f = h ◦ u, g = h ◦ v
for some u : C1 → C, v : C2 → C, and we can set f1 = g1 = h.

Let a ∈ f−1{z0}, b ∈ g−1{z0} and let d(f) (resp. d(g)) be a maximal number
such that there exists a chains of subgroups

Γf,a = K0 ⊂ K2 ⊂ · · · ⊂ Kd(f) = π1(CP1 \ S, z0)

(resp.
Γg,b = L0 ⊂ L2 ⊂ · · · ⊂ Ld(g) = π1(CP1 \ S, z0) ).

We use the induction on the number d = d(f) + d(g).
Consider first the case when d = 2 that is when both functions f, g are indecom-

posable. Since N(g) is a normal subgroup of π1(CP1 \ S, z0) we have:

(18) {Γf,a, N(g)} = Γf,aN(g) = N(g)Γf,a.

Furthermore, the equality d(f) = 1 implies that either

(19) {Γf,a, N(g)} = Γf,a
or

(20) {Γf,a, N(g)} = π1(CP1 \ S, z0).

The last equality however would imply that

Γf,aΓg,b = Γg,bΓf,a = π1(CP1 \ S, z0)

in contradiction with Proposition 2.2. Therefore, equality (19) holds and hence
N(g) ⊆ Γf,a. Since this inclusion holds for any a ∈ f−1{z0} we conclude that

N(g) ⊆
⋂

a∈f−1{z0}

Γf,a = N(f).

The same arguments show that N(f) ⊆ N(g). Therefore, N(g) = N(f).



PRIME AND COMPOSITE LAURENT POLYNOMIALS 13

Suppose now that the proposition is proved for all pairs with d < n and let f, g
be a pair with d = n. If N(f) = N(g) then we can set f1 = f, g1 = g so assume
that N(f) 6= N(g). Then either there exists a ∈ f−1{z0} such that

Γf,a ⊂ {Γf,a, N(g)},
or there there exists b ∈ g−1{z0} such that

Γg,b ⊂ {Γg,b, N(f)}.
Suppose that say Γf,a is a proper subgroup of the group G = {Γf,a, N(g)} for
some a ∈ f−1{z0}. Since equality (20) is impossible this implies that there exist
h : C → CP1 and c ∈ h−1{z0} such that G = Γh,c.

Observe that the groups Γh,c and Γg,b do not commute since otherwise in view
of equality (18) we would have:

Γf,aΓg,b = Γf,a(N(g)Γg,b) = (Γf,aN(g))Γg,b = Γg,b(Γf,aN(g)) =

= Γg,b(N(g)Γf,a) = (Γg,b(N(g))Γf,a = Γg,bΓf,a.
Therefore, the pair h, g is reducible. Since by construction f = h ◦ p for some
p : C1 → C and deg h(z) < deg f(z), the proposition follows now from the induction
assumption. �

Theorem 2.4. Let f : C1 → CP1, g : Cg → CP1 be an irreducible pair of
holomorphic functions and p : C → C1, q : C → C2 be indecomposable holomorphic
functions such that f ◦ p = g ◦ q. Then f(z) and g(z) are indecomposable.

Proof. Fix a point c ∈ h−1{z0}, where h = f ◦ p = g ◦ q. To the decompositions
f ◦ p and g ◦ q correspond the inclusions

Γh,c ⊂ Γf,x1 Γh,c ⊂ Γg,x2 ,

where x1 = p(c), x2 = q(c). Furthermore, it follows from the indecomposability of
p(z) and q(z) that

(21) Γh,c = Γf,x1 ∩ Γg,x2 .

In order to prove the theorem it is enough to show that if Γ ⊆ π1(CP1 \ S, z0) is a
group such that

(22) Γf,x1 ⊂ Γ

then Γ = π1(CP1 \ S, z0).
Consider the intersection

Γ1 = Γ ∩ Γg,x2 .

By Theorem 2.2
Γf,x1Γg,x2 = π1(CP1 \ S, z0).

Therefore,
Γ Γg,x2 = π1(CP1 \ S, z0).

By the statement cited in Theorem 2.2 we have:

[π1(CP1 \ S, z0) : Γf,x1 ] = [Γg,x2 : Γh,c], [π1(CP1 \ S, z0) : Γ] = [Γg,x2 : Γ1].

Therefore, (22) implies that Γh,c ⊂ Γ1. Since Γ1 ⊆ Γg,x2 it follows now from the
indecomposability of q(z) that Γ1 = Γg,x2 . Therefore, Γf,x1Γg,x2 ⊆ Γ and hence
Γ = π1(CP1 \ S, z0). �

Notice implicitly the following corollary of Theorem 2.4.
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Corollary 2.2. Suppose that a rational function f(z) has two maximal decompo-
sitions

fr ◦ fr−1 ◦ ... ◦ f1 = gs ◦ gs−1 ◦ ... ◦ g1
for which the conclusion of the first Ritt theorem does not hold. Set

fr ◦ fr−1 ◦ ... ◦ f2 =
A1(z)
B1(z)

, gs ◦ gs−1 ◦ ... ◦ g2 =
A2(z)
B2(z)

,

where A1(z), B1(z) and A2(z), B2(z) are pairs of polynomials with no common
roots. Then the algebraic curve

A1(x)B2(y)−A2(y)B1(x) = 0

is reducible. �

2.3. Double decompositions involving generalized polynomials. Say that a
holomorphic function h : C → CP1 is a generalized polynomial if h−1{∞} consists
of a unique point. The double decompositions f ◦ p = g ◦ q for which f(z), g(z) are
generalized polynomials have a number of special properties.

Corollary 2.3. If, in notation of Theorem 2.3, the functions f(z), g(z) are gener-
alized polynomials then deg f1 = deg g1.

Proof. Indeed, the group corresponding to N(f1) can obtained by a consecutive
intersection of the groups Γf1,a, a ∈ f−1

1 {z0}. Since f1 is a generalized polynomial,
it is easy to see that at each stage the permutation corresponding to the loop around
infinity of the corresponding permutation group consists of cycles of length equals
to the degree f1 only. Therefore, the same is true for N(f1). Hence N(f1) = N(g1)
implies that deg f1 = deg g1. �

Proposition 2.4. Let f : C1 → CP1, g : C2 → CP1 be generalized polynomials,
n = deg f(z), m = deg g(z). Set yf = f−1{∞}, yg = g−1{∞}, l = LCM(n,m).
Suppose that there exist holomorphic functions p : R→ C1, q : R→ C2 such that

(23) f ◦ p = g ◦ q.
Then there exist holomorphic functions w : R→ C, p̃ : C → C1, q̃ : C → C2, such
that

(24) p = p̃ ◦ w, q = q̃ ◦ w
and the following property holds: the multiplicity of any point from p̃−1{yf} equals
l/n while the multiplicity of any point from q̃−1{yg} equals l/m.

Proof. Set h = f ◦p = g ◦q. Let I (resp. J) be an imprimitivity system of the group
Gh ⊆ Sn corresponding to the decomposition h = f ◦ p (resp. h = g ◦ q) and I1

(resp. J1) be a block of I (resp. J) containing 1. The equality (24) holds for some
function w(z) of degree greater than one if and only if |I1 ∩ J1| > 1, and without
loss of generality we can assume that |I1 ∩ J1| = 1. Therefore, in order to prove the
theorem it is enough to show that if the multiplicity k of some point from h−1{∞}
with respect to h(z) is greater than l then |I1 ∩ J1| > 1.

Let σ ∈ Gh be a permutation corresponding to the loop around infinity. Consider
any cycle o from the decomposition of σ into a product of disjointed cycles. Without
loss of generality we can assume that o = (1, 2, ..., k). Since f(z) is a generalized
polynomial it is easy to see that the intersection of o with I1 consists of numbers
congruent to 1 by modulo n. Similarly, the intersection of o with J1 consists of
numbers congruent to 1 by modulo m. Therefore, if k > l then |I1 ∩ J1| > 1. �
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Corollary 2.4. Suppose that under assumptions of Proposition 2.4 the function
h = f ◦ p = g ◦ q is a generalized polynomial and deg f(z) = deg g(z). Then
f ◦ p ∼ g ◦ q.

Proof. Indeed, in this case the set p̃−1{yf} contains a unique point and the multi-
plicity of this point with respect to p̃(z) is one. Therefore p̃(z) is an automorphism.
The same is true for q̃(z). �

Let us mention explicitly the following specification of Proposition 2.4 which we
will use in the following.

Corollary 2.5. Let A(z), B(z) be polynomials of the same degree and C(z), D(z)
be rational functions such that

A ◦ C = B ◦D.
Then there exist rational functions C̃(z), D̃(z) such that

C = C̃ ◦W, D = D̃ ◦W
and C̃(z), D̃(z) have equal number of poles all of which are simple. �

2.4. Ritt classes of rational functions. Say that a family of rational functions
H is a closed class if for any f ∈ H the equality f = g ◦ h implies that g ∈ H,
h ∈ H. For example, rational functions for which

min
z∈CP1

]{f−1{z}} ≤ k,

where k ≥ 1 is a fixed number, form a closed class which we will denote by Rk.
Say that two maximal decompositions D,E of a rational function f(z) are weakly

equivalent if there exists a chain of decompositions Fi, 1 ≤ i ≤ s, of f(z) such that
F1 = D, Fs ∼ E, and Fi+1 is obtained from Fi, 1 ≤ i ≤ s − 1, by a change of a
segment of Fi consisting of two consecutive terms A ◦ B to a new segment C ◦D
such that A◦C = B ◦D. It is easy to see that this is indeed an equivalence relation
which we will denote by the symbol ∼w. Say that a closed class of rational functions
H is the Ritt class if any two maximal decompositions of any function f(z) from H
are weakly equivalent.

Finally, say that a double decomposition f ◦ p = g ◦ q is elementary if p(z),
q(z) are indecomposable and there exist no rational functions f̃(z), g̃(z), u(z) with
deg u(z) > 1 such that

f = u ◦ f̃ , g = u ◦ g̃,
and

f̃ ◦ p = g̃ ◦ q.

Theorem 2.5. Let H be a closed class of rational functions. Suppose that for any
function h ∈ H and any elementary double decomposition

h = f ◦ p = g ◦ q
such that the pair f(z), g(z) is reducible, for any choice of maximal decompositions

f = ud ◦ ud−1 ◦ · · · ◦ u1, g = vl ◦ vl−1 ◦ · · · ◦ v1
the decompositions

h = ud ◦ ud−1 ◦ · · · ◦ u1 ◦ p, h = vl ◦ vl−1 ◦ · · · ◦ v1 ◦ q
are weakly equivalent. Then H is the Ritt class.
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Proof. We use the induction on the degree of h(z). If deg h(z) = 1 then the conclu-
sion of the theorem is true.

Suppose now that deg h(z) > 1 and let

H1 : h = fr ◦ fr−1 ◦ ... ◦ f1, H2 : h = gs ◦ gs−1 ◦ ... ◦ g1
be two decompositions of a function h(z) ∈ H. Set

f = fr ◦ fr−1 ◦ ... ◦ f2, g = gs ◦ gs−1 ◦ ... ◦ g2
and consider the double decomposition

f ◦ f1 = g ◦ g1.
If this decomposition is elementary then Theorem 2.4 and the condition of the the-
orem imply that H1 and H2 are weakly equivalent. Otherwise there exist rational
functions f̃(z), g̃(z), u(z), deg u(z) > 1, such that

f = u ◦ f̃ , g = u ◦ g̃
and the double decomposition

(25) f̃ ◦ f1 = g̃ ◦ g1
is elementary.

Let

u = ul ◦ ul−1 ◦ ... ◦ u1, f̃ = f̃n ◦ f̃n−1 ◦ ... ◦ f̃1, g̃ = g̃m ◦ g̃m̃−1 ◦ ... ◦ g̃1
be some maximal decompositions of the functions u(z), f̃(z), g̃(z). By the induction
assumption

fr ◦ fr−1 ◦ ... ◦ f2 ∼w ul ◦ ul−1 ◦ ... ◦ u1 ◦ f̃n ◦ f̃n−1 ◦ ... ◦ f̃1.
Therefore, also

(26) fr ◦ fr−1 ◦ ... ◦ f2 ◦ f1 ∼w ul ◦ ul−1 ◦ ... ◦ u1 ◦ f̃n ◦ f̃n−1 ◦ ... ◦ f̃1 ◦ f1.
In a similar way we conclude that

(27) gs ◦ gs−1 ◦ ... ◦ g2 ◦ g1 ∼w ul ◦ ul−1 ◦ ... ◦ u1 ◦ g̃m ◦ g̃m̃−1 ◦ ... ◦ g̃1 ◦ g1.
Since the double decomposition (25) is elementary it follows from (26), (27) taking
into account Theorem 2.4 and the condition of the theorem that H1 ∼w H2. �

As an illustration of our approach let us prove the first Ritt theorem.

Proposition 2.5. The class R1 is the Ritt class.

Proof. Clearly, in view of Theorem 2.5 it is enough to prove that if

(28) f ◦ p = g ◦ q
is an elementary decomposition of a polynomial h(z) then the pair f(z), g(z) is
irreducible.

Assume the inverse. Then by Corollary 2.3 there exist polynomials f̃(z), g̃(z),
deg f̃ = deg g̃ > 1, and rational functions u(z), v(z) such that

f = f̃ ◦ u, g = g̃ ◦ v.
Since Corollary 2.4 implies that

f̃ ◦ (u ◦ p) ∼ g̃ ◦ (v ◦ q)
we obtain a contradiction with the assumption that (28) is elementary. �
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3. Decompositions of Laurent polynomials

3.1. Solutions of equation (4).

Lemma 3.1. Let U(z), V (z) be rational functions such that

(29) U ◦ zn = V ◦ 1
2

(z +
1
z

), n ≥ 1.

Then there exists a rational function R(z) such that

U = R ◦ 1
2

(z +
1
z

), V = R ◦ Tn.

Similarly, if
U ◦ zd1 = V ◦ zd2 , d1, d2 ≥ 1,

then there exists a rational function R(z) such that

U = R ◦ zD/d1 , V = R ◦ zD/d2 ,
where D = LCM(d1, d2).

Proof. Since the function F (z) to which correspond decompositions (29) is invariant
with respect to the automorphisms α1 : z → εz and α2 : z → 1

z it is invariant
with respect to the group generated by α1, α2 and therefore

F = R ◦ 1
2

(zm +
1
zm

)

for some rational function R(z). It follows now from

R ◦ 1
2

(zm +
1
zm

) = R ◦ 1
2

(z +
1
z

) ◦ zn = U ◦ zn,

and
R ◦ 1

2
(zm +

1
zm

) = R ◦ Tn ◦
1
2

(z +
1
z

) = V ◦ 1
2

(z +
1
z

).

that
U = R ◦ 1

2
(z +

1
z

), V = R ◦ Tn.
The proof of the second part of the lemma is similar. �

Theorem 3.1. Suppose that polynomials A(z), D(z) and Laurent polynomials L1(z),
L2(z) (which are not polynomials) satisfy the equation

(30) A ◦ L1 = L2 ◦D.
Then there exist polynomials P (z), Ã(z), D̃(z), W (z) and Laurent polynomials
L̃1(z), L̃2(z) such that

i) A = P ◦ Ã, L2 = P ◦ L̃2, L1 = L̃1 ◦W, D = D̃ ◦W,

ii) Ã ◦ L̃1 = L̃2 ◦ D̃,
and either

(31) Ã ◦ L̃1 ∼ zn ◦ zrL(zn), L̃2 ◦ D̃ ∼ zrLn(z) ◦ zn,
where L(z) is a Laurent polynomial, r ≥ 0, n ≥ 1, and GCD(r, n) = 1, or

(32) Ã ◦ L̃1 ∼ Tn ◦
1
2

(zm +
1
zm

), L̃2 ◦ D̃ ∼
1
2

(zm +
1
zm

) ◦ zn,

for some n ≥ 1, m ≥ 1, where Tn(z) is the nth Chebyshev polynomial, and
GCD(m,n) = 1.
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Proof. Without loss of generality we can assume that D(z) = zd for some d > 1.
Set ε = exp(2πi/d). We have:

(33) A ◦ L1 = L2 ◦D = L2 ◦D ◦ (εz) = A ◦ L1 ◦ (εz).

It follows from Proposition 2.4 that either

(34) L1 ◦ (εz) = µ ◦ L1

for some Möbius transformation µ(z) or, taking into account that L1(z) is a Laurent
polynomial, that

(35) L1 = (az +
b

z
) ◦ zl, L1 ◦ (εz) = (ãz +

b̃

z
) ◦ zl

for some a, b, ã, b̃ ∈ C distinct from zero and l ≥ 1.
In the first case, since µ(z) transforms infinity to infinity, we see that µ(z) is a

linear function. Furthermore, (34) implies that µ◦d = z and therefore µ(z) = ωz
for some dth root of unity ω. Comparing the coefficients of both parts of formula
(34) we see that L1(z) has the form

(36) L1(z) = zeL(zd)

for some Laurent polynomial L(z) and 0 ≤ e < d. Set g = GCD(e, d). It follows
from (33), (34) that

A ◦ (ωz) = A.

Therefore, since ω = εe, the equality

(37) A = P ◦ zd/g

holds for some polynomial P (z).
By (30), (36), (37), we have:

(38) A ◦ L1 = P ◦ zd/g ◦ ze/gL(zd/g) ◦ zg = L2 ◦ zd/g ◦ zg.
Therefore,

P ◦ zd/g ◦ ze/gL(zd/g) = L2 ◦ zd/g.
Since

P ◦ zd/g ◦ ze/gL(zd/g) = P ◦ ze/gLd/g ◦ zd/g,
this implies that

L2 = P ◦ ze/gLd/g.
Setting now

W (z) = zg, r = e/g, n = d/g

we see that equalities (31) hold.
On the other hand, if equalities (35) hold then it follows from

A ◦ (az +
b

z
) ◦ zl = L2 ◦ zd,

by Lemma 3.1 that

(39) A ◦ (az +
b

z
) = L ◦ zk/l, L2 = L ◦ zk/d

for some Laurent polynomial L(z) and k = LCM(l, d). Let w be a complex number
such that w2 = b/a. Since (39) implies that

L(wk/lz) ◦ zk/l = L((wz)k/l) = A(awz +
b

wz
) = A(2awz) ◦ 1

2
(z +

1
z

)



PRIME AND COMPOSITE LAURENT POLYNOMIALS 19

it follows from Lemma 3.1 that there exists a polynomial P (z) such that

(40) A(2awz) = P ◦ Tk/l, L(wk/lz) = P ◦ 1
2

(z +
1
z

).

The first equalities in formulas (40), (35) imply respectevely the equalities:

A = P ◦ Tk/l ◦ (z/2aw), L1 = (2awz) ◦ 1
2

(z +
1
z

) ◦ (zl/w).

Furthermore, by (39), (40)

L2 = P ◦ 1
2

(z +
1
z

) ◦ (
z

wk/l
) ◦ zk/d = P ◦ 1

2
(z +

1
z

) ◦ zk/d ◦ (
z

wd/l
).

Since
zd = (wd/lz) ◦ zk/l ◦ (zf/w),

setting
W (z) = zf/w, n = k/l, m = k/d,

where f = GCD(l, d), we see that equalities (32) hold. �

3.2. Solutions of equation (5) in the case when degA = degB.

Theorem 3.2. Suppose that polynomials A(z), B(z) of the same degree and Laurent
polynomials L1(z), L2(z) satisfy the equation

(41) A ◦ L1 = B ◦ L2.

Then either A◦L1 ∼ B ◦L2 or there exist polynomials R(z), Ã(z), B̃(z), W (z) and
Laurent polynomials L̃1(z), L̃2(z) such that

i) A = R ◦ Ã, B = R ◦ B̃, L1 = L̃1 ◦W, L2 = L̃2 ◦W,

ii) Ã ◦ L̃1 = B̃ ◦ L̃2,

and

(42) Ã ◦ L̃1 ∼ −Tn ◦
1
2

(εz +
ε̄

z
), B̃ ◦ L̃2 ∼ Tn ◦

1
2

(z +
1
z

),

where εn = −1.

Proof. It follows from Proposition 2.4 that either A ◦ L1 ∼ B ◦ L2 or

L1 = (az +
b

z
) ◦ zr, L2 = (cz +

d

z
) ◦ zr,

for some non-zero a, b, c, d ∈ C and r ≥ 1. Furthermore, in the last case, since
degA(z) = degB(z), the equality (41) implies that c = µ1a, d = µ2b for some mth
roots of unity µ1, µ2, µ1 6= µ2, where m = degA(z) = degB(z).

Let w be a solution of the equation w2 = b/a and ε be a solution of the equation
ε2 = µ2/µ1. We have:

az +
b

z
= (2awz) ◦ 1

2
(εz +

ε̄

z
) ◦ (z/εw), cz +

d

z
= (2awεµ1z) ◦

1
2

(z +
1
z

) ◦ (z/εw).

Therefore, without loss of generality we can assume that

L1 =
1
2

(εz +
ε̄

z
) ◦ (zr/εw), L2 =

1
2

(z +
1
z

) ◦ (zr/εw)

and concentrate on the equation

(43) A ◦ 1
2

(εz +
ε̄

z
) = B ◦ 1

2
(z +

1
z

).
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Let F (z) be a Laurent polynomial defined by decomposition (43). Then it follows
from

(44) F = B ◦ 1
2

(z +
1
z

)

that
F (1/z) = F (z).

Since
F = A ◦ 1

2
(εz +

ε̄

z
) = A ◦ 1

2
(z +

1
z

) ◦ (εz)

this implies that

A ◦ 1
2

(z +
1
z

) ◦ (εz) = A ◦ 1
2

(z +
1
z

) ◦ (ε/z).

On the other hand,

A ◦ 1
2

(z +
1
z

) ◦ (ε/z) = A ◦ 1
2

(z +
1
z

) ◦ (z/ε) = A ◦ 1
2

(z +
1
z

) ◦ (εz) ◦ (z/ε2).

Hence, F (z) is invariant with respect to the substitution z = z/ε2 and therefore

(45) F = L ◦ zn,
where L(z) is a Laurent polynomial and n|m equals the order of 1/ε2. It follows
now from (44), (45) by Lemma 3.1 that

(46) B = R ◦ Tn,
where R(z) is a polynomial.

Substituting (46) in (43) we obtain:

A ◦ 1
2

(z +
1
z

) ◦ (εz) = R ◦ 1
2

(zn +
1
zn

).

Furthermore, substituting in the last equality z = z/ε and using that εn = −1 we
conclude that

A ◦ 1
2

(z +
1
z

) = R ◦ −1
2

(zn +
1
zn

) = R ◦ −Tn ◦
1
2

(z +
1
z

)

and, therefore,
A = R ◦ −Tn. �

3.3. Reduction of equation (5) for reducible pairs A(z), B(z).

Theorem 3.3. Suppose that polynomials A(z), B(z) and Laurent polynomials L1(z),
L2(z) satisfy the equation

(47) A ◦ L1 = B ◦ L2.

Then either A◦L1 ∼ B ◦L2 or there exist polynomials R(z), Ã(z), B̃(z), W (z) and
Laurent polynomials L̃1(z), L̃2(z) such that

i) A = R ◦ Ã, B = R ◦ B̃, L1 = L̃1 ◦W, L2 = L̃2 ◦W,

ii) Ã ◦ L̃1 = B̃ ◦ L̃2,

and either the pair Ã(z), B̃(z) is irreducible or

(48) Ã ◦ L̃1 ∼ −Tnl ◦
1
2

(εzm +
ε̄

zm
), B̃ ◦ L̃2 ∼ Tml ◦

1
2

(zn +
1
zn

),

where l > 2, GCD(n,m) = 1, and εnl = −1.
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Proof. Without loss of generality we can assume that the pair A(z), B(z) is re-
ducible and that there exists no rational function W (z), degW (z) > 1, such that
L1 = L̃1 ◦W, L2 = L̃2 ◦W for some Laurent polynomials L̃1(z), L̃2(z).

Furthermore, it follows from Corollary 2.3 that there exist polynomials A1(z),
B1(z), degA1 = degB1 > 1, and U(z), V (z) such that

A = A1 ◦ U, B = B1 ◦ V
and the pair U(z), V (z) is irreducible. By Theorem 3.2 applied to the equality

A1 ◦ (U ◦ L1) = B1 ◦ (V ◦ L2),

either A1 ◦ (U ◦ L1) ∼ B1 ◦ (V ◦ L2), and then setting

Ã = U, B̃ = µ ◦ V, R = A1,

for some µ ∈ Aut (CP1) we arrive to the first possibility provided by the theorem,
or there exist polynomials R(z), A2(z), B2(z) such that

A1 = R ◦A2, B1 = R ◦B2,

A2 ◦ (U ◦ L1) = B2 ◦ (V ◦ L2),
and

A2 ◦ (U ◦ L1) ∼ −Tl ◦
(

1
2

(z +
1
z

) ◦ (νczd)
)
,

B2 ◦ (V ◦ L2) ∼ Tl ◦
(

1
2

(z +
1
z

) ◦ (czd)
)
,

where νl = −1, l > 1, d ≥ 1, c ∈ C. Furthermore, passing to appropriate L̃1(z),
L̃2(z) and modifying A2(z), B2(z), U(z), V (z) we can assume that

(49) U ◦ L̃1 =
1
2

(z +
1
z

) ◦ (νzd), V ◦ L̃2 =
1
2

(z +
1
z

) ◦ zd.

Applying now Theorem 3.1 to equalities (49) we obtain that

U ◦M ∼ Tn ◦
1
2

(
zd/n +

1
zd/n

)
, V ◦ L̃2 ∼ Tm ◦

1
2

(
zd/m +

1
zd/m

)
,

where M = L̃1 ◦ µz with µd = 1/ν. Therefore,

U ◦ L̃1 ∼ Tn ◦
1
2

(
εzd/n +

ε̄

zd/n

)
, V ◦ L̃2 ∼ Tm ◦

1
2

(
zd/m +

1
zd/m

)
,

for some m,n ≥ 1 and ε = (1/µ)d/n.
Furthermore, in view of the irreducibility of the pair U(z), V (z) the equality

GCD(n,m) = 1 holds. Since on the other hand the assumption about L1(z), L2(z)
implies that GCD(d/n, d/m) = 1 we conclude that d = nm and setting

Ã = A2 ◦ U, B̃ = B2 ◦ V
we obtain that

Ã ◦ L̃1 ∼ −Tnl ◦
1
2

(εzm +
ε̄

zm
), C̃ ◦ L̃2 ∼ Tml ◦

1
2

(zn +
1
zn

),

where εnl = −1.
Finally, l > 2 since if l = 2 the algebraic curve T2n(x)+T2m(y) = 0 is irreducible

as one can check using the description of the group Γ−T2n×T2m
given in Theorem

2.1. �
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3.4. Solutions of equation (5) in the case when the pair A(z), B(z) is
irreducible. In this subsection we describe solutions of equation (5) in the case
when the pair A(z), B(z) is irreducible.

First of all observe that if A(z), B(z), C(z), D(z) are rational functions satisfying
equation A ◦C = B ◦D and the pair A(z), B(z) is irreducible then the genus of the
Riemann surface on which the function h1(z) from Theorem 1 is defined necessarily
equals zero. Furthermore, it follows from the construction of h1(z) that if A(z), B(z)
are polynomials then the number of poles of h1(z) equals GCD(degA(z),degB(z)).
Therefore, the description of the solutions of equation (5) in the case when the pair
A(z), B(z) is irreducible essentially is equivalent to the description of all irreducible
pairs polynomials A(z), B(z) for which GCD(degA(z),degB(z)) ≤ 2 and the ex-
pression

g(A,B) =
o(A,B)∑
j=1

g(Rj)

from formula (13) equals 0. Besides, it is necessary to find rational functions
U(z), V (z) satisfying A◦U = B ◦V and such that degU(z) = degB(z), deg V (z) =
degA(z). However, since one can check directly that all the functions U(z), V (z)
given below satisfy these requirements we will skip the corresponding calculations.

Theorem 3.4. Suppose that polynomials A(z), B(z) and Laurent polynomials L1(z),
L2(z) satisfy equation

A ◦ L1 = B ◦ L2

and the pair A(z), B(z) is irreducible. Then there exist polynomials Ã(z), B̃(z),
rational functions L̃1(z), L̃2(z), W (z), and Möbius transformations µ1(z), µ2(z)
such that

A = µ1 ◦ Ã, B = µ2 ◦ B̃, L1 = L̃1 ◦W, L2 = L̃2 ◦W
and, up to a change of A to B and of L1 to L2, one of the following conditions
holds:

1) Ã ◦ L̃1 ∼ zn ◦ zrR(zn), B̃ ◦ L̃2 ∼ zrRn(z) ◦ zn,
where R(z) is a polynomial, r ≥ 0, n ≥ 1, and GCD(n, r) = 1,

2) Ã ◦ L̃1 ∼ Tn ◦ Tm, B̃ ◦ L̃2 ∼ Tm ◦ Tn,
where Tn(z), Tm(z) are Chebyshev polynomials, m,n ≥ 1, and GCD(n,m) = 1,

3) Ã ◦ L̃1 ∼ −T2n1 ◦
1
2

(εzm1 +
ε̄

zm1
), B̃ ◦ L̃2 ∼ T2m1 ◦

1
2

(zn1 +
1
zn1

),

where T2n1(z), T2m1(z) are Chebyshev polynomials, m1, n1 ≥ 1, ε2n1 = −1, and
GCD(n1,m1) = 1,

4) Ã ◦ L̃1 ∼ z2 ◦ z
2 − 1
z2 + 1

S(
2z

z2 + 1
), B̃ ◦ L̃2 ∼ (1− z2)S2(z) ◦ 2z

z2 + 1
,

where S(z) is a polynomial,

5) Ã ◦ L̃1 ∼ (z2 − 1)3 ◦ 3(3z4 + 4z3 − 6z2 + 4z − 1)
(3z2 − 1)2

,

B̃ ◦ L̃2 ∼ (3z4 − 4z3) ◦ 4(9z6 − 9z4 + 18z3 − 15z2 + 6z − 1)
(3z2 − 1)3

.
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The proof of this theorem is given below and consists of the following stages.
First we rewrite formula for the genus in a more convenient way and prove several
lemmas. After introducing the conception of a special point the rest of the proof
splits into two parts: when only one of polynomials A(z), B(z) has a special point
and when both A(z), B(z) have a special point.

3.4.1. Genus formula and lemmas. Working with polynomials it is convenient to
“forget” about infinite critical values in the following sense: if B(z) is a polynomial
and z1, z2, . . . , zr is a set of all critical values of B(z) then we will associate to B(z)
a collection of partitions

(b1,1, b1,2, ..., b1,q1), . . . , (bs,1, bs,2, ..., bs,qs
)

of m = degB(z) corresponding to the decompositions of the permutations αi(B),
1 ≤ i ≤ r, into products of disjoint cycles for the finite points z1, z2, . . . , zs, s = r−1,
only. We will call such a collection the passport of B(z).

In the following the set z1, z2, . . . , zs will denote a union of all finite critical values
of a pair polynomials A(z), B(z). Therefore, some of partitions above may contain
only units. We will call such partitions trivial and will denote by s(B) the number
of non-trivial partitions. Clearly, by the Riemann-Hurwitz formula we have:

(50)
s∑
i=1

qi = (s− 1)m+ 1.

Lemma 3.2. Let

(a1,1, a1,2, ..., a1,p1), . . . , (as,1, as,2, ..., as,ps
),

(b1,1, b1,2, ..., b1,q1 ), . . . , (bs,1, bs,2, ..., bs,qs)

be passports of polynomials A(z), B(z), n = degA(z), m = degB(z). Then

−2g(A,B) = GCD(m,n)− 1+

(51) +
s∑
i=1

pi∑
j1=1

ai,j1(1− qi)− 1 +
qi∑
j2=1

GCD(ai,j1bi,j2)

 .
Proof. Indeed, we have:

s∑
i=1

pi∑
j1=1

[ai,j1(1− qi)− 1] =
s∑
i=1

[n(1− qi)− pi] = ns− n
s∑
i=1

qi −
s∑
i=1

pi =

= ns− n((s− 1)m+ 1)− ((s− 1)n+ 1) = −n(s− 1)m− 1.

Therefore, the right side of formula (51) equals

−n(s− 1)m− 2 +
s∑
i=1

pi∑
j1=1

qi∑
j2=1

GCD(ai,j1bi,j2) + GCD(m,n)

Now (51) follows from (13) taking into account that r = s+ 1. �

Set

si,j1 = ai,j1(1− qi)− 1 +
qi∑
j2=1

GCD(ai,j1bi,j2),
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1 ≤ i ≤ s, 1 ≤ j1 ≤ pi. In this notation formula (51) takes the form

(52) −2g(A,B) = GCD(m,n)− 1 +
s∑
i=1

pi∑
j1=1

si,j1 .

Lemma 3.3. In the notation of Lemma 3.2 for any i, j1, 1 ≤ i ≤ s, 1 ≤ j1 ≤ pi,
the following statements hold:

a) If there exist at least three numbers bi,l1 , bi,l2 , bi,l3 , 1 ≤ l1, l2, l3 ≤ qi, which are
not divisible by ai,j1 then si,j1 ≤ −2.

b) If there exist exactly two numbers bi,l1 , bi,l2 , 1 ≤ l1, l2 ≤ qi, which are not divisible
by ai,j1 then si,j1 ≤ −1 and the equality attains if and only if

(53) GCD(ai,j1bi,l1) = GCD(ai,j1bi,l2) = ai,j1/2,

c) If there exists exactly one number bi,l1 which is not divisible by ai,j1 then

(54) si,j1 = −1 + GCD(ai,j1bi,l1).

Proof. If there exist at least three numbers bi,l1 , bi,l2 , bi,l3 , 1 ≤ l1, l2, l3 ≤ qi, which
are not divisible by ai,j1 then we have:

si,j1 = ai,j1(1− qi)− 1 +
qi∑
j2=1

j2 6=l1,l2,l3

GCD(ai,j1bi,j2) +
∑
l1,l2,l3

GCD(ai,j1bi,l1) ≤

≤ ai,j1(1− qi)− 1 + (qi − 3)ai,j1 + 3ai,j1/2 = −ai,j1/2− 1 < −1.
If there exist exactly two numbers bi,l1 , bi,l2 , 1 ≤ l1, l2 ≤ qi, which are not

divisible by ai,j1 then we have:

si,j1 = ai,j1(1− qi)− 1 +
qi∑
j2=1

j2 6=l1,l2

GCD(ai,j1bi,j2) +
∑
l1,l2

GCD(ai,j1bi,l1) ≤

≤ ai,j1(1− qi)− 1 + (qi − 2)ai,j1 + ai,j1/2 + ai,j1/2 = −1,
and the equality attains if and only if

GCD(ai,j1bi,l1) = GCD(ai,j1bi,l2) = ai,j1/2.

Finally, if there exists exactly one number bi,l1 which is not divisible by ai,j1
then we have:

si,j1 = ai,j1(1− qi)− 1 +
qi∑
j2=1
j2 6=l1

GCD(ai,j1bi,j2) + GCD(ai,j1bi,l1) =

= −1 + GCD(ai,j1bi,l1). �

Lemma 3.4. In the same notation suppose that

(55) GCD(bi1, bi2, ..., biqi
) = 1

for any i, 1 ≤ i ≤ s. Then for any i, j1, 1 ≤ i ≤ s, 1 ≤ j1 ≤ pi, we have:

a) si,j1 ≤ 0,

b) si,j1 = 0 if and only if either ai,j1 = 1 or all the numbers bi,j2 , 1 ≤ j2 ≤ qi,
except one are divisible by ai,j1 ,
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c) si,j1 = −1 if and only if ai,j1 = 2 and all the numbers bi,j2 , 1 ≤ j2 ≤ qi, except
two are even.

Proof. If ai,j1 = 1 then si,j1 = 0 so assume that ai,j1 > 1. If there exists exactly
one number bi,l1 which is not divisible by ai,j1 then in view of (55) necessarily
GCD(ai,j1bi,l1) = 1 and hence si,j1 = 0 by (54).

If there exist exactly two numbers bi,l1 , bi,l2 , 1 ≤ l1, l2 ≤ qi, which are not
divisible by ai,j1 then by Lemma 3.3 si,j1 ≤ −1 where the equality attains if and only
if (53) holds. This implies that ai,j1 = 2 since otherwise we obtain a contradiction
with (55).

Finally, if there exist at least three numbers bi,l1 , bi,l2 , bi,l3 , 1 ≤ l1, l2, l3 ≤ qi,
which are not divisible by ai,j1 then si,j1 ≤ −2 by Lemma 3.3. �

Say that a polynomial B(z) have a special point if there exists i, 1 ≤ i ≤ s, such
that

GCD(bi,1, bi,2, ..., bi,qi) > 1.

Say that a polynomial B(z) have a 1-special point (resp. a 2-special point) if there
exists i, 1 ≤ i ≤ s, such that all the numbers

bi,1, bi,2, ..., bi,qi

except one (resp. except two) are divisible by some number d > 1.

Proposition 3.1. Let B(z) be a polynomial. Then

a) B(z) may not have two special points, or one special point and one 1-special
point, or more than two 1-special points,

b) if B(z) has two 1-special points then s(B) = 2 and the corresponding non-trivial
partitions are (1, 2, . . . 2), (1, 2, . . . 2),

c) if B(z) has one 1-special point and one 2-special point then s(B) = 2 and the
corresponding non-trivial partitions are either (1, 1, 2), (1, 3) or (1, 2, 2), (1, 1, 3).

Proof. Let
(b1,1, b1,2, ..., b1,q1), . . . , (bs,1, bs,2, ..., bs,qs

)

be a collection of partitions corresponding to B(z), m = degB(z). Suppose first that
B(z) has at least two 1-special points. To be definite assume that the corresponding
indices are 1, 2 and that all (b1,1, . . . , b1,q1) but b1,1 are divisible by the number d1

and all (b2,1, . . . , b2,q2) but b2,1 are divisible by the number d2. Then

(56) q1 ≤ 1 +
m− b1,1

d1
, q2 ≤ 1 +

m− b2,1
d2

,

where the equalities attain if only if b1,j = d1 for 1 < j ≤ q1 and b2,j = d2 for
1 < j ≤ q2. Furthermore, we have:

(57)
s∑
i=1

qi ≤ q1 + q2 + (s− 2)m,

where the equality attains only if the partition (bi,1, . . . , bi,qi
) = (1, 1, . . . 1) for any

i > 2. Finally, for i = 1, 2 we have:

(58) qi ≤ 1 +
m− bi,1

di
≤ 1 +

m− 1
2
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and hence

(59) q1 + q2 ≤ 1 +m

where the equality attains only if d1 = 2, d2 = 2, b1,1 = 1, b2,1 = 1. Now (57) and
(59) imply that

(60)
s∑
i=1

qi ≤ (s− 1)m+ 1.

Since however in view of (50) in this inequality should attain equality we conclude
that in all intermediate inequalities should attain equalities and therefore s(B) = 2
and

(b1,1, . . . , b1,q1) = (1, 2, . . . 2), (b2,1, . . . , b2,q1) = (1, 2, . . . 2).

In particluar, we see that B(z) may not have more than two 1-special points.
In order to prove the first part of the proposition it is enough to observe that if

for at least one index 1 or 2, say 1, the corresponding point is special then

q1 ≤
m

d1
≤ m

2
.

Since this inequality is stronger than (58) repeating the argument above we obtain
an inequality in (60) in contradiction with (50).

Finally, suppose that the index 1 corresponds to a 1-special point while the
index 2 corresponds to a 2-special point. We will suppose that all (b2,1, . . . , b2,q2)
but b2,1, b2,2 are divisible by the number d2.

If m odd then d2 > 2 and we have:

q1 ≤ 1 +
m− b1,1

d1
≤ 1 +

m− 1
2

, q2 ≤ 2 +
m− b2,1 − b2,2

d2
≤ 2 +

m− 2
3

.

Therefore,

q1 + q2 ≤
11
6

+
5m
6
.

If m > 5 then
11
6

+
5m
6

< m+ 1

that together with (57) gives a contradiction with (50).
On the other hand, if m ≤ 5 then one can check directly that a unique possibility

for B(z) to have one 1-special point and one 2-special point is the one corresponding
to the passport

(b1,1, . . . , b1,q1) = (1, 2, 2), (b2,1, . . . , b2,q2) = (1, 1, 3).

Similarly, if m is even then d1 > 2 and we have:

q1 ≤ 1 +
m− b1,1

d1
≤ 1 +

m− 1
3

, q2 ≤ 2 +
m− b2,1 − b2,2

d2
≤ 2 +

m− 2
2

.

Therefore,

q1 + q2 ≤
5
3

+
5m
6

.

If m > 4 then
5
3

+
5m
6

< m+ 1
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and as above we obtain a contradiction with (50). On the other hand, one can
check that if m ≤ 4 then we should have:

(b1,1, . . . , b1,q1) = (1, 1, 2), (b2,1, . . . , b2,q2) = (1, 3). �

3.4.2. Proof of Theorem 3.4. Part 1. In this subsection we prove Theorem 3.4
under the assumption that at least one of polynomials A(z), B(z) does not have
special points. Without loss of generality we can suppose that this polynomial is
B(z).

Suppose first that GCD(n,m) = 1. In this case by formula (52) the condition
g(A,B) = 0 is equivalent to the condition

(61)
s∑
i=1

pi∑
j1=1

si,j1 = 0.

In view of Lemma 3.4,a this is possible if and only of si,j1 = 0, 1 ≤ i ≤ s, 1 ≤ j1 ≤ pi.
If A(z) has a unique finite critical value then Lemma 3.4,b implies that we should

have 1). Furthermore, it follows from Lemma 3.4,b and Proposition 3.1,a,b that if
the polynomial A(z) has at least two finite critical values then actually A(z) has
exactly two critical values, B(z) = Tm(z) and

(62) a1,j1 ≤ 2, a2,j2 ≤ 2, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2.

Since
p1 + p2 = (s− 1)n+ 1 = n+ 1

and
p1∑
j1=1

a1,j1 +
p2∑
j1=1

a2,j1 = 2n

it follows easily from (62) that the corresponding partitions for A(z) are either
(1, 2, 2, ..., 2), (1, 2, 2, ..., 2) or (1, 1, 2, ..., 2), (2, 2, 2, ..., 2). Therefore, taking into ac-
count a well know fact that for any polynomial P (z) with such a passport there
exist Möbius transformations µ1(z), µ2(z) such that µ1 ◦ P ◦ µ2 = Tn, we see that
in this case we arrive to 2).

Suppose now that GCD(n,m) = 2. Then the condition g(A,B) = 0 is equivalent
to the condition that one number from si,j1 , 1 ≤ i ≤ s, 1 ≤ j1 ≤ pi, equals -1 while
others equal 0. If A(z) has one critical value than it follows easily from Lemma
3.4,c that we should have 4).

On the other hand, if A(z) has at least two critical values then Lemma 3.4,
b,c and Proposition 3.1,a,c, taking into account that degB(z) is even in view of
GCD(n,m) = 2, imply that the partitions corresponding to B(z) are (1, 3), (1, 1, 2).
Furthermore, we see that for any j1, 1 ≤ j1 ≤ p1, the number a1,j1 equals 1 or 3
and that the partition (a2,1, a2,2, . . . a2,p2) contains one element equal 2 and others
equal 1.

Denote by α (resp. by β) the number of appearances of 1 (resp. of 3) in the
first partition corresponding to A(z) and by γ the number of appearance of 1 in
the second partition. We have:

α+ 3β = n, 2 + γ = n,

and, by (50)
α+ β + γ = n.
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The second and the third equations imply that α+ β = 2. This implies easily that
the partitions corresponding to A(z) are either (1, 3), (1, 1, 2) or (3, 3), (2, 1, 1, 1, 1).

It is not hard to prove however that for any polynomial R(z) with the partitions
(1, 3), (1, 1, 2) there exist Möbius transformations µ1(z), µ2(z) such that µ1◦R◦µ2 =
3z4− 4z3. Therefore, the first case is not possible since otherwise A(z) = B(z) and
the curve A(x)−B(y) = 0 is reducible. On the other hand, it is easy to check that
in the second case we should have µ1 ◦A ◦ µ2 = (z2 − 1)3.

3.4.3. Proof of Theorem 3.4. Part 2. Suppose now that both polynomials A(z)
and B(z) have special points. Then by Proposition 3.1 each of them has a unique
special point. The special points of A(z) and B(z) either coincide or are different.
In the second case without loss of generality we can assume that

(63) A = (zd1 + β1) ◦ U, B = (zd2 + β2) ◦ V,

for some β1, β2 ∈ C, β1 6= β2, and d1, d2 > 1. Since the pair A(z), B(z) is irreducible
and g(A,B) = 0 the same is true for the pair A1(z) = zd1 + β1, B1(z) = zd2 + β2

and hence

(64) g(A1, B1) = 0.

Formula (51) implies that

(65) 2− 2g(A1, B1) = d1 + d2 − d1d2 + GCD(d1, d2).

If GCD(d1, d2) = 1 then (64) is equivalent to the equality (d1−1)(1−d2) = 0 which
is impossible. On the other hand, if GCD(d1, d2) = 2 then (64) is equivalent to the
equality (d1 − 1)(1− d2) = −1 which holds if and only if d1 = d2 = 2.

Since
A1 ◦ U ◦ L1 = B1 ◦ V ◦ L2

and degA1 = degB1, using now the same reasoning as in the proof of Theorem 3.3
and taking into account the condition GCD(d1, d2) = 2 we arrive to 3).

In the case when the special points of A(z) and B(z) coincide we can assume
without loss of generality that

(66) A = zd1 ◦ U, B = zd2 ◦ V,

where

d1 = GCD(a1,1, a1,2, . . . , a1,p1) > 1, d2 = GCD(b1,1, b1,2, . . . , b1,q1) > 1,

and

(67) GCD(d1, d2) = 1

in view of the irreducibility of the pair A(z) and B(z). Without loss of generality
we may assume that

(68) degU(z) > 1, deg V (z) > 1

since otherwise Lemma 3.3 implies easily that we should have 1) or 4). Finally,
without loss of generality we can assume that m = degB(z) is greater than n =
degA(z). We will consider the cases GCD(d1,m) = 2 and GCD(d1,m) = 1 se-
parately and will show that in both cases there exist no irreducible pairs A(z), B(z)
with g(A,B) = 0.
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Case 1. Suppose first that GCD(d1,m) = 2. Then necessary GCD(n,m) = 2 and,
since

(69) xd1 −B(y) = 0

is an irreducible curve of genus zero, formula (52) and Lemma 3.3 applied to
polynomials zd1 and B(z), taking into account (67), imply that all the numbers
b1,1, b1,2, ..., b1,q1 but two, say b1,q1−1, b1,q1 , are divisible by d1 and

(70) GCD(d1, b1,q1−1) = GCD(d1, b1,q1) = 1.

Returning to polynomials A(z), B(z) we see that, since each a1,j1 , 1 ≤ j1 ≤ p1,
is divisible by d1, equality (70) implies that

s1,j1 = a1,j1(1− qi)− 1 +
qi∑
j2=1

GCD(a1,j1b1,j2) ≤

≤ −a1,j1 − 1 + GCD(a1,j1b1,q1−1) + GCD(a1,j1b1,q1) ≤
≤ −a1,j1 − 1 + a1,j1/d1 + a1,j1/d1 ≤ −a1,j1 − 1 + a1,j1/2 + a1,j1/2 ≤ −1.

Since by assumption p1 ≥ 2 and by lemma 3.4
pi∑
j1=1

si,j1 ≤ 0, 1 < i ≤ s, 1 ≤ j1 ≤ pi,

it follows now from formula (52) that g(A,B) < 0.

Case 2. If GCD(d1,m) = 1 then applying as above formula (52) and Lemma 3.3
to polynomials zd1 and B(z) we conclude that each b1,j1 , 1 ≤ j1 ≤ q1, except one,
say b1,q1 , is divisible by d1 and GCD(b1,q1 , d1) = 1.

Since each a1,j1 , 1 ≤ j1 ≤ p1, is divisible by d1, this implies that

s1,j1 = a1,j1(1− qi)− 1 +
qi∑
j2=1

GCD(a1,j1b1,j2) ≤

(71) ≤ −1 + GCD(a1,j1b1,q1) ≤ −1 + a1,j1/d1,

and hence

(72)
p1∑
j1=1

s1,j1 ≤ −p1 + n/d1.

Furthermore, since each b1,j2 , 1 ≤ j2 ≤ q1, is divisible by d2 and each b1,j2 ,
1 ≤ j2 ≤ q1, except one is divisible by d1 we have:

(q1 − 1)d1d2 + d2 ≤ m

and therefore
q1 ≤ 1 +m/d1d2 − 1/d1.

Since by (50) the inequality

(73) q1 + qi ≥ m+ 1

holds for any i, 2 ≤ i ≤ s, this implies that

(74) qi ≥ m−m/d1d2 + 1/d1.



30 F. PAKOVICH

Denote by γi the number of units among the numbers bi,j2 , 1 ≤ j2 ≤ qi. Since the
number of non units is ≤ m/2 the equality γi ≥ qi −m/2 holds and therefore (74)
implies that

(75) γi ≥ m/2−m/d1d2 + 1/d1.

For any i, j1, 2 ≤ i ≤ s, 1 ≤ j1 ≤ pi, we have:

(76) si,j1 ≤ ai,j1(1− qi)− 1 + ai,j1(qi − γi) + γi = (1− γi)(ai,j1 − 1).

Hence,
pi∑
j1=1

si,j1 ≤ (1− γi)(n− pi) ≤ (1− 1/d1 +m(1/d1d2 − 1/2))(n− pi)

in view of (75). Therefore, using (50) we obtain

(77)
s∑
i=2

pi∑
j1=1

si,j1 ≤ (1− 1/d1 +m(1/d1d2 − 1/2))(p1 − 1).

Set

S =
s∑
i=1

p1∑
j1=1

si,j1 .

By formula (52), in order to finish the proof it is enough to show that S < −1.
It follows from (72), (77) that

S ≤ −p1 + n/d1 + (1− 1/d1 +m(1/d1d2 − 1/2))(p1 − 1) <

(78) < −1 + n/d1 +m(1/d1d2 − 1/2)(p1 − 1).

If p1 ≥ 3 then (78), taking into account the assumption m ≥ n, implies that

S < −1 + n(1/d1 + 2/d1d2 − 1) ≤ −1.

If p1 = 2 then (78) implies that

S < −1 + n(1/d1 + 1/d1d2 − 1/2)

and if d1 > 2 we obtain again that S < −1. Finally, if p1 = 2, d1 = 2 butm ≥ (3/2)n
then similarly (78) implies

S < −1 + n(3/4d2 − 1/4) ≤ −1,

since in this case d2 ≥ 3 by (67).
Therefore, the only case when the proof is still not finished is the one when

p1 = 2, d1 = 2, and n ≤ m < (3/2)n. In this case switch A(z) and B(z) keeping the
same notation. This means that we should consider the case when q1 = 2, d2 = 2
and

(79) 2n/3 < m ≤ n.

In this case (73) implies that qi ≥ m− 1. Therefore, the corresponding partition of
m is either trivial or has the form (1, 1, . . . , 1, 2) and hence γi ≥ m − 2. It follows
now from (76) that

s∑
i=2

pi∑
j1=1

si,j1 ≤ (3−m)(p1 − 1) < (3− 2n/3)(p1 − 1) ≤ 3− 2n/3.
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Since in view of the condition d2 = 2 the inequality d1 ≥ 3 holds, this implies that

S < −p1 + n/d1 + 3− 2n/3 ≤ 1 + n/d1 − 2n/3 ≤ 1− n/3.
If n ≥ 6 then this inequality implies that S < −1. On the other hand, if n ≤ 5 then,
taking into account inequality (79), it is easy to see that there exist no polynomials
A(z), B(z) satisfying (66), (68) and GCD(n,m) = 1, 2. �

3.5. Proof of Theorem 1.1. Since the use of the Möbius transformations reduces
the problem of description of double decompositions of functions from H to the
similar problem for Laurent polynomial and any double decomposition of a Laurent
polynomial is equivalent to (4), (5) or (6), the first part of Theorem 1.1 follows from
Theorems 3.1, 3.3, 3.4 and Lemma 3.1. The second part follows from the proposition
below.

Proposition 3.2. The class R2 is the Ritt class.

Proof. The classification of double decompositions of functions from R2 implies
that any elementary double decomposition A◦C = B ◦D contained in R2 and such
that the pair A(z), B(z) is reducible is related via Möbius transformations to the
decomposition

−Tl ◦
1
2

(εz +
ε̄

z
) = Tl ◦

1
2

(z +
1
z

),

where εl = −1.
It follows now from Theorems 2.5 that in order to prove the proposition it is

enough to check that for any choice of maximal decompositions

−Tl = ud ◦ ud−1 ◦ · · · ◦ u1, Tl = vl ◦ vl−1 ◦ · · · ◦ v1,
the decompositions

(80) −ud ◦ ud−1 ◦ · · · ◦ u1 ◦
1
2

(εz +
ε̄

z
), vl ◦ vl−1 ◦ · · · ◦ v1 ◦

1
2

(z +
1
z

)

are weakly equivalent.
It is not hard to prove that any maximal decomposition of Tl is equivalent to

Tl = Td1 ◦ Td2 ◦ · · · ◦ Tds

where d1, d2 . . . ds are prime divisors of l such that d1d2...ds = l. This implies easily
that both decompositions (80) are weakly equivalent to some decomposition of the
form

1
2

(z +
1
z

) ◦ zd1 ◦ zd2 ◦ · · · ◦ zds . �
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