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Working with
Weighted Complete Intersections.

A. R. Fletcher.

1 Introduction.
This article contains the following:
I A presentation of the basic definitions, theorems and techniques of weighted complete
intersections, along with many examples. This information was collected from a variety of
sources (mainly [WPS]) but also includes some original results.
II Lists of various types of weighted complete intersections of dimensions 1, 2 and 3, i.e. with
cyclic quotient canonical isolated singularities.
Weighted complete intersections occur naturally in many disguises. Enriques‘ famous example
of a surface of general type such that ¢4, 1s not birational can be expressed as the weighted
complete intersection Sy in P(1,1,2,5).

For certain classes of variety V' of general type (e.g. minimal surfaces of general type) the
canonical maps ¢, : V — V, for large enough n, are birational onto the canonical model V.
Define the canonical ring Ry by

Ry = @HH(V,nKv).

n>0

The ring Ry is known to be finitely generated in these cases, although not necessarily in degree
1. So V = Spec Ry is a subvariety of some weighted projective space.

These weighted complete intersections are similar to the complete intersections of normal
projective space P™ but are usually singular and hence have some pathologies.

However these weighted complete intersections are still very easy to visualise and to work
with; their basic invariants are calculated using combinatorics. So they form a large quagmire of
good examples. This article sets out to familarise the reader with weighted complete intersections
and to give certain combinatoric conditions for their important properties. Some of these are
already known (see [Da], [Di], {Du], [WPS], etc.) but some are new. This constitutes Chapter L.

In Chapter II we present various lists of weighted complete intersections of dimension 1,
2 and 3; all with at worst cyclic quotient isolated canonical singularities. The canonical 3-fold
weighted complete intersections are interesting since they are all canonical models (see [R1],
[R2], [R4, section 2.5]) and hence are of interest for classification purposes as well as in their own
right. These were all calculated using a set of combinatoric conditions and a computer. We also
give a complete list of the 95 families of weighted hypersurface K3 surfaces (see [R1, section
4.5]) found by Reid in 1979 after a long hand calculation. We also calculate the corresponding
singularities.

Another method originally used by Reid to produce examples of K3 surfaces is to be found
in section IL.8. It is used to produce canonically and anti-canonically embedded canonical 3-folds.
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From the Poincar€ series of the graded ring corresponding to a weighted complete intersection,
the degrees of the generators and the relations can be determined. This technique uses repeated
differencing to evaluate the power series. Using the Riemann-Roch formula for canonical 3-folds
(see section I1.7) a Poincaré series can be produced from a list (or record) of invariants, which
we hope will correspond to either a canonically or an anti-canonically embedded canonical 3-
fold. Clearly there will be a large number of rejected records and hence this is very hit and
miss. However in practice it works very well.
This article started life as the third chapter of my Ph.D. thesis [F2] and grew.

2 Acknowledgements.

I would like to thank Miles Reid for all his help and A. Dimca and A. Parusinski for many
useful conversations. My thanks to Maria Iano and Duncan Dicks for reading through previous
versions and suggesting changes. I would also thank all those at the Mathematics Institute,
University of Warwick, the mathematics department of the University of Leicester, and the Max-
Planck-Institut fiir Mathematik, Bonn. I am grateful to Prof. Hirzebruch and the institute for the
invitation and their kind hospitality.

3 Notation.
All varieties will be assumed to be quasi-projective over an algebraically closed field k of
characteristic zero. Let V be such a variety, of dimension m.
k* is the multiplicative group of nonzero elements of k.
Z, Q are the rings of integers and rational numbers respectively.
Z. is the Abelian group {0,1,...,» — 1} under addition modulo r.
Z7 is the group of units of Z, under multiplication modulo r.
{a,..., b, ..., c} is a list with the element b omitted.
A™ is affine m-space.
P™ is projective m-space.
P(ag,...,am) is used to denote the weighted projective space with weighting ao, ..., an. When
there is no ambiguity this will be denoted simply by P.
V0 is the nonsingular locus of V.
Qv is the sheaf of regular functions on V.
Q} = @, is the sheaf of regular 1-forms on V°.
v = A"Qy,, is the sheaf of regular n-forms on V°.

wy = QF is the sheaf of regular canonical differentials on V°.
Ky is the canonical divisor corresponding to wy = Oy (Iy).
Let £ be a coherent sheaf on V. Then

hi(£) = hi(V, L) = dim HY(V, L),

X(£) = ¥ i(~1)'hi(L)

and ¢, is the rational map corresponding to the sheaf L.

Let D be a Cartier divisor on V. Then

hi(D) = bi(Ov(D)),

x(D) = 3{(=1)'h*(Ov(D)).



Working with Weighted Complete Intersections. -3-

and ¢p is the rational map corresponding to the sheaf Oy (D).
In particular ¢, is called the n** canonical map.
py(V) = h®(wvy) is the geometric genus of V.

P.(V) = h%(w®") is the n'® plurigenus of V. For negative n these are referred to as the
anti-plurigenera.

The words smooth and non-singular will be used interchangeably.
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I

Weighted complete intersections.

1.1 Preamble.

In this chapter we give a brief summary of the facts about weighted complete intersections
along with many examples. We also prove necessary and sufficient conditions for a weighted
hypersurface X4 in P(aq, ..., a,) to be quasismooth and well-formed.

Sections 1.2 and 1.3 recap the main definitions and theorems about weighted projective
spaces and weighted complete intersections. Section 1.4 sets out various facts about the co-
homology of weighted complete intersections. Section 1.5 contains necessary and sufficient
conditions for quasismoothness in the hypersurface and codimension 2 cases. Information about
cyclic quotient canonical singularities in dimensions 1, 2 and 3 is to be found in section 1.6,
along with two technical lemmas used to count points of intersection along singular strata of P.
Examples of how to calculate the singularities of various weighted complete intersections are
included in section L.7.

1.2 Definitions and theorems on weighted projective spaces.
We start by reviewing some definitions and notation concerned with weighted complete
intersections. :
1.2.1 Definition. Let aq, ..., a, be positive intégcrs and define S = S(ao,...,an) to be the
graded polynomial ring k[zo,...,z,], graded by degz; = a;. The weighted projective space
P(ao,...,ax) is defined by
P{ag,...,an) = Proj §

1.2.2 Note. Let zy, ..., £, be affine coordinates on A™*! and let the group k* act via;
Alzo, ..., 2n) = (A%zq,..., A" z,).

Then P(ay, ...,a,) is the quotient (A™*! — 0) / k*. Under this group action zyo, ..., =, are the
homogeneous coordinates on P(ay,...,as). Clearly P(aq,...,a,) is a rational n-dimensional
projective variety.
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L.2.3 Affine coordinate pieces.
Let {zo, ...,z } be the homogeneous coordinates on P(ay, ..., a,). The affine piece z; # 0
is isomorphic to A™ / Z,,. Let € be a primitive a;'" root of unity. The group acts via:

. a. -
Zj €7 25

for all j # ¢, on the coordinates {zo,..., i,...,z,} of A™; here z; is thought of as z; / {/z;.
Compare this with the case of P™ where the affine coordinates on z; # 0 are z; = =;/z;.
1.2.4 Examples.
@ P"=P(1,..,1).
(i) Consider P(1,1,2) with homogeneous coordinates u, v and w. The affine piece w = 1 is
A?/Z, with group action

U+ —Uu
v b= -7
The coordinate ring R is given by:
R = k[u,v]%

= k[u?,v?, uv]
=k[z,y,2]/(zy — 2*).

So P(1,1,2) is the projective completion of the ordinary quadratic cone zy = 2% in A%
1.2.5 Lemma. For all positive integers q¢ we have

Proj S(ao, ...,an) = Proj S(qaq,...,qaxs).

Proof. This follows from the fact that the 2 graded rings are isomorphic.
O

From [EGA, Proposition 2.4.7] (also see [Hart, Exercise I1.5.13]) we have:

1.2.6 Lemma. Let S be a graded ring and define the truncation SO = @ ., Sym to be
the graded subring with m't graded part S,m. Then there exists a canonical isomorphism
Proj S{9 = Proj S.

This is called the g-tuple Veronese embedding, and is used in the proof of the following:
1.2.7 Lemma. Let ay, ..., an be positive integers with no common factor. If ¢ = hef(ay, ..., an)
then

Proj S(ao,...,an) = Proj S(ap,a1/q,...,a,/q)

Proof. Define 5" = P, 5, Sgm With the same grading as S. So §' = S(@), By the previous
lemma we have Proj S’ = Proj S.

Suppose z5°...z%» is a monomial of degree mgq for any m. Hence pg ag + ... +pran = gm,
and so ¢q | pg ag. As the {a;} have no common factor, ¢ | po. Hence z, only appears in S’ as
z4. Thus §' = k[z{, z1, ..., z,], which is isomorphic to S(gao, a1, ..., an). Therefore

Proj S(ag,...,a,) & Proj §' = Proj S(ag,a1/q,...,an/q)
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]

1.2.8 Quasi-reflections. Let G be a finite group acting on a variety X. A quasi-reflection is
any element of G whose fixed locus is a hyperplane. No singularities are produced by the action
of any group generated by quasi-reflections.

The cancelling which occurs in Lemma 1.2.7 is nothing more than the elimination of quasi-
reflections from the actions of each Z,; on the corresponding affine coordinate piece.

This lemma leads to the following corollary from [WPS, 1.3.1] (see also [De, Proposition
1.3D:
1.2.9 Corollary. P(ag,...,a,) = P(by, ..., b,) for some {b;} such that for each ¢

hef(bg, ey biy oy bn) = 1.

Proof. By Lemma 1.2.5 we can cancel any common factor of the {a;}. By renumbering as
necessary and by repeated applications of Lemma 1.2.7 we can reduce P(ay,...,ap) to the case
P(bo,...,bn). A maximum of n + 1 applications of Lemma 1.2.7 are required.

D

1.2.10 Examples.
() P(a,b) = P! for all a and b.
Gi) P(2,3,3) = P(2,1,1). ‘
(i) Let f = z° + y® + 22 € K[z,y,2] with weights 6, 10 and 15 respectively. Define
X : (f =0) C P =P(6,10,15). By the previous lemma P & P2,

P(6,10,15) = P(6,2,3) = P(3,1,3) = P(1,1,1)
The monomials transform as:
(2%,9%, 7)) = (2,4, 2%) - (2,9%,2) = (2,9, 2)

Thus X CP 2 (z+y+2z=0)C P2=P! C P2 Of course the coordinate rings of the
affine cones (see I1.2.14) over X C P and P! C P? are not isomorphic.
In view of Corollary 1.2.9 we make the following:

1.2.11 Definition. The expression P(ay, ..., as) is well-formed if for each ¢

hef(ag, ..., diy.ovyan) = 1.

L2.12 The quotient map.
Let T = k[yo, ..., ¥n], where the {y;} all have weight 1, and so P® = Proj T. Consider
the inclusion map S — T given by:
Ti y:-"'

for all z. This induces a quotient map ¢ : P™ — P. In terms of the coordinates {Y;} on P"

vty n

(Yo e Ya] 10 Y30, ., Y20
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The map P" — P is a ramified Galois covering with Galois group €D, Z,;.
1.2.13 Definition. Let r > 0, a4, ..., a, be integers and let z, ..., z, be coordinates on A™.
Suppose that Z, acts on A™ via:

Ty — 6“‘1:,'

for all 4, where € a primitive r*" root of unity. A singularity @ € X is of type L(ay,...,as) if
(X, Q) is isomorphic to an analytic neighbourhood of (A", 0)/Z,.

1.2.14 Notation. Write P; € P for the point [0, ...,0, 1,0, ..., 0], where the 1 is in the ! position.
We will call P; a vertex, the 1-dimensional toric stratum P;P; an edge, etc.. The fundamental
simplex (i.e. the union of all the coordinate hyperplanes Pg...Is,-...Pﬂ) will be denoted by A.
1.2.15 The singular locus P,;,, of P,

Define h; ;... = hef(ai,aj,...). The vertex P; is a singularity of type al'_(ag, vy @iy ey Q).
This singularity is not necessarily isolated. Each generic point P of the edge F; P; has an analytic
neighbourhood P € U which is analytically isomorphic to (0,Q) € A! x Y, where @ € Y is
a singularity of type -h}—j(ao,...,di, vey @y vy @y). Similar results hold for higher dimensional
toric strata. The singulai‘itics only occur on the fundamental simplex A.

Notice that codimp(P 4ing) > 2.

1.3 Definitions and theorems on weighted complete intersections.

The first few definitions come from [WPS].
I.3.1 Definition. Let X be a closed subvariety of a weighted projective space P, and let
p: A" —0 — P be the canonical projection. The punctured affine cone C% over X is given
by Cx =p~(X), and the affine cone Cx over X is the completion of C% in A™HL.

Notice that k™ acts on C% to give X = C%/k™.
1.3.2 Lemma. C% has no isolated singularities.

Proof. If P € C% is singular then every point on the same fibre of the k*-action will be singular.
O

I.3.3 Definition. X in P(ay,...,a,) is quasismooth of dimension m if its affine cone Cx is
smooth of dimension m + 1 outside its vertex 0.

When X C P is quasismooth the singularities of X" are due to the k*-action and hence are
cyclic quotient singularities. Notice that this definition is not equivalent to the smoothness of
the inverse image o~ (X') under the quotient map of section 1.2.12 (e.g. X3 in P(2,3,5)).

Another important fact ((WPS, Theorem 3.1.6}) is that a quasi-smooth subvariety X of P
is a V-variety (i.e. a complex space which is locally isomorphic to the quotient of a complex
manifold by a finite group of holomorphic automorphisms). This is used later to define the
canonical sheaf of X, which is usually singular.

1.3.4 Definition. Let I be a homogeneous ideal of the graded ring S and define X to be:
X1 =Proj S/ICP

Suppose furthermore that I is generated by a regular sequence {f;} of homogeneous elements
of S. X1 C P is called a weighted complete intersection of multidegree {d; = degf;}. In this
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case, we denote by Xy, a4, in P = P{ay, ..., a,) a sufficiently general element of the family
of all weighted complete intersections of multidegree {d;}.

Xa,,....d. in P(ag,...,a,) is of dimension n — c. In general we will write Cq, .. 4. in
P(ag,...,ac+1) for a dimension 1 complete intersection and Sg,, . 4. in P(ao, ..., ac42) for a
surface.

1.3.5 Definition. X; in P(ayg, ...,a,) will be said to be a linear cone if d = a; for some @ (ie.
the defining equation f can be writen as f = z; + ¢).

[

Clearly X4 in P(aqo,...,a,) in this case is isomorphic to P(aq, ..., d;, ..., an).
1.3.6 Examples.
(i) X46 in P(4,5,6,7,23) is a general element in the family of all degree 46 hypersurfaces in
P(4,5,6,7,23).
(i) Xgin P(1,1,1,1,4) is a double cover of P? branched along a smooth octic surface.
1.3.7 The coefficient convention.
When a general polynomial of a given weighted homogeneous degree occurs in a calculation
then it will usually be written without the non-zero coefficients. For example the defining
polynomial for X, in P(1,1,1) is:

f= coz? + azy+czz + C3y2 +cuyz + cs2?
and will be simply written as:
f=al4zy+zz+y:+yz+2°

1.3.8 The canonical sheaf wx.
All weighted complete intersections (and weighed projective spaces) are V-manifolds (i.e.
locally are quotients of A™ by a finite group action) and so the dualizing sheaf wx is given by:

wx &'i*on

where ¢ : X% — X is the inclusion of the smooth part X° into X. This sheaf is a divisorial
sheaf (see [R1, appendix to section 1, Theorem 7]) and can be written as:

wx g(’lx(Kx)

where K x is a Q-Cartier divisor (i.e. r Ky is a Cartier divisor for some nonzero integer r). In
fact K x|xo is Cartier.

For the general definition of the canonical sheaf for varieties with at worst canonical sin-
gularities see [R4, section 1.4].

We now introduce an important concept which was not mentioned (and possibly missed)
by Dolgachev in {WPS].
1.3.9 Definition. A subvariety X C P of codimension ¢ is well-formed if the expression for P
is well-formed (see Definition 1.2.11) and X contains no codimension ¢ + 1 singular stratum of
P. .
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This means that any codimension 1 stratum of X is either non-singular on P, or an inter-
section X N.S, where S is a codimension 1 stratum of P, i.e. codimx(X NP,ing) > 2.

L.3.10 Well-formedness for hypersurfaces.
The hypersurface X, in P(aq,...,a,) is well-formed if and only if
(1) hef(ao, ..., di, ..., dj, ...,an) | d
(2) hef(aq, ..., diyyan) =1
for all distinct ¢, j.
1.3.11 Well-formedness in codimension 2.
The codimension 2 weighted complete intersection Xy, 4, in P(aq, ..., a,) is well-formed
if and only if
(1) for all distinct ¢, j and k, with h = hcf(ay,...,dy, ..., dj, ..., d%, ..., a,), either 2 | dy or
h|ds,
(2) for all distinct ¢ and j, with & = hef(ao, ..., di, ..., d}, ..., an), then h | dy and h | da,
(3) for all ¢ hef(ag, ..., d;,...,ay) = 1.
1.3.12 Well-formedness in higher codimensions.
The above conditions can be generalised to higher codimensions. X4, . 4. in P(ay,...,a,)
is well-formed if and only if
(1) P(ao,...,a,) is well-formed
(2) for all 4 = 1,...,c the highest common factor of any (n — 1 — ¢ + p) of the {a;} must
divide at least u of the {d;}.
1.3.13 Note. Dimca also defines well-formedness (see [Di]) under a different name. He gives
the following equivalent set of arithmetic conditions in the quasismooth case. Define:

m(h) = |{i: k| a;}|
k(R) = |{i: h|di}|
g(h) = dim X + 1 — m(h) + k(h)

for all A € Z. Then the quasismooth weighted complete intersection X4, . 4. in P(ao,...,a;,)
is well-formed if and only if ¢(p) > 2 for all primes p. This follows from a theorem essentially
due to Hamm (see [Di, Proposition 2]).

In fact a weighted complete intersection (not necessarily quasismooth) is well-formed if
and only if ¢(h) > 2 for all integers h > 2. This is easy to show from the conditions in section
1.3.12.

1.3.14 The adjunction formula.

If Xq,,. a. in P(ag,...,a,) is well-formed and quasismooth thenwx = Ox (> d; =3 a;)
(see [WPS, Theorem 3.3.4]). We define the amplitude to be this difference of sums, and will
usually be denoted by .

1.3.15 Note. The adjunction formula does not hold if the weighted complete intersection is not
well-formed. We give two examples in dimensions 1 and 2 respectively.

(i) Consider the curve Cy in P(1,2,3). Let D C P? be the curve 0 ~!(C) where o : P? — P
is the quotient map (see section 1.2.12). Then the curve D is non-singular of degree 7 and
so is of genus 15. By Hurwitz Theorem (see [Hart, Corollary 1V.2.4]) we calculate that
¢(C) =1 and so we = O¢. This contradicts the adjunction formula since the amplitude is
1.
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(i) An example in dimension 2 is the surface Sy in P(1,2,2,3). A quick calculation shows that
this surface is both quasismooth and non-singular. If it is well-formed then the amplitude
o =1 and so K% = 4. This contradicts the fact that K% € Z whenever S is non-singular.
In fact Sy in P is a smooth K3 surface.

1.3.16 Well-formedness in dimensions greater than 2.
However we find that well-formedness only needs to be checked in dimensions 1 and 2.

We have the following generalisation of a proposition due to Dimca (see [Di, Proposition 6]).

L.3.17 Theorem. Let X = X3, . 4, in P(ay,...,a,) be a quasismooth weighted complete

intersection of dimension greater than 2. Then

either (i) X is well-formed

or (it) X is the intersection of a linear cone with other hypersurfaces (i.e. a; = dy for some
tand \).

1.3.18 Note.

(1) In case (ii) the weighted complete intersection is isomorphic to an intersection of lower
codimension, ie. X, ; , in P(ao,...,d;i,...,as) or possibly a weighted projective
space.

(2) Cases (i) and (ii) are not mutally exclusive. Consider the hypersurface X, in P(1,1,1,1,2)

b) Y b )
given by
f=z+ Za:,-a:j.
%)

This is both a linear cone and well-formed, and is, of course, isomorphic to P3,
We need a preliminary result.

L3.19 Lemma. Ler Z be the affine variety of all points P which satisfy the determinantal
condition:
g1(P) ... 97"(P)

<k

rank : :
ge(P) = g2 (P)
where { gf } are general weighted homogeneous non-zero polynomials. If Z is non-empty then
codimZ < (m — k)(c— k).

This is an elementary fact (see [ACGH, P. §3]).
Proof of Theroem 1.3.17. Let X = (fy,..., fc}) C P = P(ao,...,a,). Suppose that P is well-
formed and assume that X is quasismooth with dim X > 3 but not well-formed. So there is a
singular stratum II of P such that codimx(IIN X) < 1.

If codimx(IINX) = 0 then X C II and so X is contained in some coordinate hyperplane.
Thus some of the defining polynomials are of the form f) = z; for some A and :. So X is the

intersection of at least one linear cone with other hypersurfaces.
So assume that codimx(II N X) = 1. By reordering we can assume that

fI:(:rk=...=.7:n=0)CP

for some k. Let IT = p~'TI ¢ A™*+! — {0}, where p : A"+ —{0} — P is the natural projection.
Since codimxII =1 then k¥ = dim Il =n —c. As II is a fixed component of C'x then we can
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write the {f1} as:

n higher order terms
. igher r
fA=Zmig;\(mo,..-,$k—1)+{ In Tg,...,Tn }

i=k

foral A=1,...,c
Define Mp to be the matrix

0f1/0zo(P)  0f1/02a(P)
Mp = ( : : ) .

afc/aZDo(P) e afc/axn(P)
Singular points on Cx occur whenever rank Mp < ¢. Consider this matrix restricted to II:

0,...,0 g§(P) . g5(P)
Mpen = D ;

0,...,0 g7 (P) - 92(P)

So P € IT N Cx is singular whenever rank (gf) < c¢—1. Let Z be just this set.
If Z is empty then, in particular, 0 ¢ Z. As the entries of M p are all weighted homogeneous
polynomials, they must all be of degree 0. Thus, using the coefficient convention 1.3.7,

fr= Z _— { higher order terms }

in rg,...,Toy

for all A =1,...,¢c. So X is the intersection of a linear cone with other hypersurfaces.
So assume that Z is non-empty. By the previous lemma, codimZ < n —k —c+ 2.
Remembering that k¥ = n — ¢ we have

dmZ2k—-(n—k—-c+2)=n—-c-2=dimX -22>1.

So Z — {0} is non-empty and thus Cx is not smooth away from the origin, a contradiction.

O

L.4 Cohomology of weighted complete intersections.
From [WPS, section 3.4.3] we have:

I.4.1 Lemma. Let X = (f1,...,f.) C P(aq,...,a,) be a well-formed quasismooth weighted
projective complete intersection. Let A be the graded ring S(ao, ...,an)/(f1, ..., fc) and A, be
the n'? graded part of A. Then

| A ifi=0
Hi (X, Ox(n)) & {0 fi=1,.., dmX —1
Acpee ifi=dimX
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for all n € Z.

In particular if S is a well-formed quasismooth weighted projective complete intersection
of dimension 2 then the following are equivalent:
(i) S is a K3 surface.
(i) wg = Og.
(iii) the amplitude oo =3, dy — >, a; =0.
For hypersurfaces we have the following result due to Steenbrink [S]:
1.4.2 Theorem. Let X be the weighted hypersurface Xq in P(ao, ..., a,) with defining equation
fand o =d— 3% a;. Then the Hodge structure is given by:

0 ifi+3#n—1landi#;
1 fitj#n—landi=j
K (X)) = dinlk(i(ﬂ“”ﬁLl ifitj=n—landi#j

81 )jd+a

dim, (5(00,---,an)

) +1 fi+j=n—1landi=j
! Jd+a

where 8y = (0f/0x;)i=0,... n is the Jacobian ideal of f.
Proof. This follows from [WPS, section 4] and duality.

O

1.4.3 Note. The above formula satisfies the duality relations h*/ = k9 = A»~1=4"~1=J for all
1 and 7 because

dirmy (S(ao,...,an)) — dimy, (S(ao,...,an)) .
Oy jd+ao 4 (n=1-j)d+a

1.4.4 The Euler number.
The Euler number e(V) of a variety V is defined by

o(V) = S (—1) (V).

For a smooth curve C we have ¢(C') = —deg K¢ = 2 — 2¢. For a surface S, with at worst Du
Val singularities of types {Qn,;}: where @ = A, B or E, we have Noether’s formula:

12x(0s) = K& +e(S) + > _ni.

In particular the case of a K3 surface .S with Du Val singualrities of types {Qy,}: gives that
h11(S)=20—3.n; and so e(S) =24 - 5, n;.

When X is a well-formed quasismooth weighted hypersurface of dimension 3 most of the
Hodge numbers cancel or are zero and so

e(X) = 2(1 — hM2(X)).



Working with Weighted Complete Intersections. -13-

L4.5 Examples.
(i) The hypersurface S3 in P(1,1,1,2) has Euler number 5. There are two ways to check this.
(a) It is easy to see that this surface has exactly one singularity, which is of type %(1, 1)
(ie. of Du Val type A;). Also the amplitude is -2 and K% = (—2)?- 3 = 6. By
Noether’s formula we have e(S;3) = 5.
(b) Alternatively, the Hodge numbers are simple to calculate. Let w, , y and z be
generators of weights 1, 1, 1 and 2 respectively in 5(1,1,1,2). Then

k
Rt = djm( 2 2[w,2$,y,z] ) =2.
(w ’I Jy 1w+$+y) 1

Thus the Hodge structure is:

j=0 1 0 0
j=1 0 3 0
G =2 0 0 1

Thus e(S3) = 1+3+1 = 5.
(ii) The hypersurface X0 in P(1,1,1,2,5) has the following Hodge structure.

hiJ i=0 i=1 i=2 i=3
=0 1 0 0 1
j=1 0 1 145 0
j=2 0 145 , 1 0
i=3 1 0 0 1

Let v, w, z, y and z be generators of weights 1, 1, 1, 2 and 5 respectively in 5(1,1,1,2,5). The

only hard Hodge number is h1'?(X) = dimy (z—'.fﬂ;'fr@—j) = 145. This gives an Euler
vELWELEL Y E) fap

number of —288.

1.5 Quasismoothness.

In this section we prove conditions for quasismoothness for hypersurfaces and codimension
2 weighted complete intersections.

First we consider the problem of a hypersurface.

L5.1 Theorem. The general hypersurface Xq in P = P(ao, ...,an) of degree d, where n > 1
is quasismooth if and only if
either (1) there exists a variable x; for some i of weight d (i.e. X is a linear cone)

or (2) for every non-empty subset I = {ig,...,ix_1} of {0,...,n}

either (a) there exists a monomial z}' = &[°..a7* 7" of degree d,

mo,u

. . M
or (b) for u = 1,...,k, there exist monomials z;*z., = z;
degree d, where {e,} are k distinct elements.

Mek-1,u
T 5T, of

1.5.2 Note. If X, is a linear cone then f can be written as f = z; + ¢ for some z; and X,
is clearly quasismooth. So we need only consider the case where f is not linear in any of the
variables (i.e. degz; = a; # d for all 7).
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Proof. Assume that X4 in P is not a linear cone. Let F' be the linear system of all homogeneous
polynomials of degree d with respect to the weights a;. Let f € F be a sufficiently general
polynomial. Define X4 : (f =0) C P.

C% _i, Antt —0

! !

X; — P

Note that the point 0 is a base point and is usually singular; as this point does not lie in
C% this does not affect quasismoothness. By Bertini’s Theorem (see [Hart, Remark 111.10.9.2])
the only singularities of the general C% lie on the base locus of the linear system F. Any
component of the base locus is just a coordinate k-plane for some £ = 0,...,n. So the general
hypersurface Xg4 is quasismooth if and only if the general hypersurface C% is non-singular at
each point of its intersection with every coordinate k-plane contained in the base locus.

Let II be a coordinate k-plane for some k£ = 1,...,n. By renumbering, assume that II is

given by zx = ... = =, = 0, corresponding to the subset I = {0,...,k — 1}. Let II° C II be the
open toric stratum where zg, ..., £_; are non-zero. Expand f in terms of the coordinates zj,
vy Tyl

In Tg,...,Tn

- higher order t
f=h(zo,...;zk-1) + Z zigi(Zo, .y Tho1) + { 1§1ICT Orcet terms } .
i=k

Assume that one of conditions (a) and (b) hold for I. If (a) holds (i.e. h is non-zero)
then IT is not part of the base locus, and so by Bertini’s Theorem II° contains no singular
points. Geometrically this means that C% intersects II° transversally and so I1° is normal to the
hypersurface at the points of intersection.

Assume that only (b) holds. So h = 0 and II C C%. By (b) there are at least k of the g,
which are non-zero. Singular points occur exactly on the locus Z = ();(¢: = 0) C II°, which is
an intersection of at least k free linear systems on II°. Thus dimZ < 0. As Z is a quasicone,
it is at worst the origin (compare Lemma 1.3.2). Therefore C% is non-singular along 11°.

As one of these two conditions holds for every non-empty subset I, C'% is non-singular.

Conversely assume that conditions (a) and (b) do not hold for all I. Let I be a subset for
which these two conditions fail. Without loss of generality assume that I = {0,...,k — 1}. Let

IT be the corresponding coordinate k-plane zx = ... = z, = 0. As (a) and (b) do not hold
" higher order terms
f = Zk z;gi(zo, ey Th—1) + { in Tk, ..., Tn }
1=

and at most & — 1 of the g; are non-zero.

As above, singular points occur exactly on the intersection Z = ()5 (¢; = 0) NII. Since
there are at most k — 1 of the g; which are non-zero, dimZ > k — (k= 1) = 1. Thus Z is
non-empty and so C¥% is singular on II.
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Therefore conditions (a) and (b) are both sufficient and necessary for quasismoothness
when X in not a linear cone.

L.5.3 Note.

(i) The only quasismooth cones are the linear cones. Suppose a variable z; does not occur in
the defining equation f. So Cx = Cx/ x A! where X' : (f =0) C P(aq,...,di, .., an).
Suppose that Cx+ has a singularity at the origin. Thus C'x: x A has a line of singularities
along 0 x A'; a contradiction. So C'x- is non-singular at the origin and so f must be linear
in a variable; this is the linear cone case.

(ii) Without loss of generality we can assume in (b) that e, € {0,...,n} — I, since otherwise
this is condition (a). . 7

(iii) For 2|I| 2 n + 1 condition (b) implies condition (a), since there are simply not enough
variables z;.

(iv) Condition (b), with |I| = 1, of the theorem gives that for all < = 0,...,n there must exist a
monomial z?z,,, for some e;, of degree d. This is equivalent to requiring that C'% is smooth
along the coordinate axes (i.e. Xy is quasismooth at the vertices) and is in practice the most
substantial case. Weighted hyperspaces (and polynomials) which satisfy this condition will
be said to be semi-quasismooth.

(v) Cx contains no coordinate stratum of dimension > (n -+ 1)/2 except possibly in the linear
cone case.

So we have the following corollaries for curves, surfaces and 3-folds.

I.5.4 Corollary. The curve Cy in P(ag, a1, az2), where d > a;, is quasismooth if and only if the

following hold for all i:

(1) there exists a monomial z7 ., for some e;, of degree d.

(2) there exists a monomial of degree d which does not involve z;.

Proof. Since d > q; for all z, X is not a linear cone. Conditions (1) and (2) come from
considering the conditions of the above theorem for |I| =1 and [I| = 2 respectively.
O

The proofs of the following corollaries are similar to the above.
I.5.5 Corollary. The surface Sq in P(aq, ..., a3), where d > a;, is quasismooth if and only if
the following hold:
(1) for all 1 there exists a monomial x7z., for some e; of degree d.
(2) for all distinct 1, 3

either there exists a monomial ="z of degree d,
or there exist monomials =;*z7 'z, and z*z
eq are distinct.

(3) there exists a monomial of degree d which does not involve z;.

ma

i ' Te, Of degree d such that e, and

1.5.6 Corollary. The 3-fold X4 in P(aq, ...,a4), where d > a;, is quasismooth if and only if
the following hold:
(1) for all @ there exists a monomial z7x.; of degree d.
(2) for all distinct 1, 3
either there exists a monomial = x7 of degree d,
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my
Tj

mz

or there exist monomials z'x i

ez are distinct.
(3) there exists a monomial of degree d which does not involve either z; or x;.

T, and x?x" *z,., of degree d such that e, and

In the codimension 2 case we have:

L5.7 Theorem. Suppose the general codimension 2 weighted complete intersection X4, 4, in
P = P(ao, ..., an), where n > 2, of multidegree {d,,d,} is not the intersection of a linear cone
with another hypersurface. Xy, 4, in P is quasismooth if and only if for each nonempty subset
I={ip,....,126 — 1} of {0, ...,n} one of the following holds:

(a) there exists a monomial = L ! of degree d, and there exists a monomial ?’f’ of degree d;
(b) there exists @ monomial ! of degree d,, and for p = 1,....,k — 1 there exist monomials

?J"‘“zemu of degree dj, where {en} are k — 1 distinct elements.
(c) there exists a monomial =¥ of degree ds, and for 1 = 1,....k — 1 there exist monomials

x?’f"' Te,,u Of degree dy, where {e,} are k — 1 distinct elements

(d) for p = 1,..., k, there exist monomials a:?l Tel of degree dy, and a:f[ Te2 of degree d,,

such that {e } are k distinct elements, {¢3} are k distinct elements and {e
at least k + 1 distinct elements.

L, €2} contains

Proof. Let F; and F; be linear systems of all homogeneous polynomials of degrees d; and d;
respectively with respect to the weights ay, ..., a,. Let f; € Fy and f; € F, be sufficiently
general polynomials. Define

X =Xd1,dn : (fl = f2 = 0) CP.
We have the following commutative diagram:

C% i, At —0

! l

X = P

The only singularities that can occur in the general member of the family occur on the
coordinate strata. So as in the proof of quasismoothness for hypersurfaces, X is quasismooth if
and only if C% is smooth along all the coordinate strata.

Assume that one of conditions (a), (b), (c) or (d) holds for each nonempty subset I. Let
IT be a coordinate k-plane for some k. By renumbering, we can assume that II is given by
Ty = ... = z, = 0, corresponding to the subset I = {0,...,k — 1}. As before let II° be the
open toric strata where zo, ..., x—; are all nonzero. Expand both f; and f, in terms of the
coordinates zg, ..., Tn:

n
; high der t
fr=ha(zo, oy Tr—1) + Z z:9\(To, ey Th—1) + { 1gher order erms}

£ mazg,...,Ty
=k

for A=1,2.
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Suppose (a) holds. So h; and h, are non-zero on II°. If either h; or ho involves only
one monomial then TI° N C% is empty. This includes the case when k¥ = 1. So without loss
of generality assume that h; and h, each involve at least 2 monomials and hence k& > 2. TI°
is not part of the base locus of F| or F;. By Bertini’s Theorem (f; = 0) and (f; = 0) are
non-singular on II°. Since (hy = 0) and (hy = 0) are free linear systems on II°, (h; = 0) and
(h, = 0) intersect transversatly. Thus, at each point of (h; = hy = 0) N II°, there exist two
distinct normals. Therefore C% is non-singular along I1°.

Suppose (b) holds. So h; is non-zero and there are at least k — 1 of the {g}} which are
non-zero. So ITI? is not part of the base locus for Fy, and so by Bertini’s Theorem we have that
(f1 = 0) is non-singular on II°. Singular points occur exactly on the locus

Z = (h1=0)( (gt =0) CTI°,

1

which is an intersection of at least k — 1 free linear systems on (h; = 0) NII° Thus dim Z <0
and hence is at worst the origin. Therefore C% is non-singular along II°.
The case where condition (c¢) holds is similar to the case for condition (b).
Suppose that only condition (d) holds. We have
n
: higher order terms
f;=;x;gi(xo,...,$k-1)+ { gin Tkyey Tn }

for A = 1,2. The normal directions, perpendicular to the plane II, to the hypersurfaces are
(gf,...,g7) and (g%, ..., ¢3). Define the matrix Mp by

[ d5(P) .. g7(P)
Mp = ( g5(P) ... g2(P) ) '

Singular points occur exactly on the locus Z = {P : rank Mp < 1}. As there are at least
k monomials of the form z%z, of degree dy, at least k of the {¢i} are non-zero. As these
are free on II°, each row of the matrix Mp is non-zero for each P € II°. Furthermore this
matrix for any P € Z has at least £ + 1 non-zero columns, since there are at least £ + 1 distinct
elements in {e},e2}. By renumbering we can assume that the first £ + 1 columns of M are
not identically zero on II°,

Fix P € II°. Without loss of generality we can assume that gf(P) # 0. If g5(P) = 0
then gi(P) # O for some i > k, and so M” has rank 2. In this case P € C% is non-singular.
Suppose that g5(P) # 0. Define a = g¥(P), b = g&(P) and

Zp = ((agh(Q) — bgi(Q) = 0) C TI°.

i>k

Notice that P € Zp if and only if rank Mp < 1, which is equivalent to P € C% being singular.
Since Zp is the intersection of k free linear systems on I1°, dim Zp < 0 and so Zp is at
worst the origin. In particular P ¢ Zp and hence P € C% is non-singular. Therefore C% is
non-singular along I1°.
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As one of these four conditions holds for every non-empty subset I, C'} is non-singular.
Conversely assume that none of the conditions (a), (b), (c) or (d) hold for some non-empty
subset I. Without loss of generality we can assume that I = {0,...,k — 1}. Let II be the
corresponding coordinate plane z; = ... = £, = 0. There are three cases:
() II ¢ Cx,, So hy is non-zero and there are at most k — 2 of the {g3} which are non-zero.
The singular points are exactly the locus Z = (h; = 0) ﬂ‘-(g{, = 0). However

dmZ2>2k~-(k-2)—-1=1

and so Z contains more than the origin. Thus C% is singular along II.
(ii) II ¢ Cx,, Similarly in this case C% is singular along IL
(iii) I C Cx,, NCx,, In this case both hy and h, are identically zero. So

i : higher order t
f,\ — Z $;’Q‘R($0, ---,351;—1) + { lg €r order erms}
=k

N gy .y Ty

for A =1, 2. As condition (d) does not hold, one of two cases occurs:
either (1) for some A there are at most k—1 of the {g} } which are non-zero. Thus the intersection
Zx =(),(g} = 0) has dimension at least 1 and so these {g} } have a common solution.

Therefore the matrix k( ) P)
g7 (P) ... gt (P )
Mp = :
P (9%(1’) o g3 (P)

has rank less than 2 for some P € Z, and hence C% is singular along II.
or (2) there are at most k distinct elements in {e},e%}. Thus there are at most k non-zero
columns in the matrix Mp. Let Z = {P : rank Mp < 1}. Therefore

dim Z > k—(k—1)=1

and so contains more than just the origin. Therefore C% is singular along II.
So if one of these four conditions are not satisfied for every subset I then C% is singular.

O

1.5.8 Corollary. Suppose Xa, 4, in P is quasismooth and is not the intersection of a linear cone
with another hypersurface. We have the following:
(i) Every variable z; occurs in at least one of the defining equations.
(ii) All but at most one variable are in both equations.
(iii} If z; does not appear in one defining equation then there exists a monomial =" occurring
in the other equation.

Proof.
(i) This follows from the previous theorem with |I| = 1.
(i1) Suppose, after renumbering, that z, and z; are not involved in f;. Then none of the
conditions can hold for I = {0, 1}, a contradiction.
(iii) Suppose that z; does not appear in f,. Conditions (a), (b) and (d) cannot hold and so there
must be a monomial = of degree d». Geomertrically if one of the hypersurfaces is singular
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along a coordinate axis, because the equation f; does not involve that variable, then the
other hypersurface cannot pass through that axis.

1.6 Cyclic singularities and counting points.

In this section we give combinatorial conditions for cyclic quotient singularities to be
isolated and canonical (see [R4, Definition 1.1] for the definitions of canonical and terminal
singularities). The last two lemmas of this section are used to count the number of intersections
along 1 and 2 dimensional strata. We also give an alternative proof of the first of these lemmas
in terms of the Minkowski mixed volume of integral polyhedra.

1.6.1 Lemma. A canonical curve point is smooth.

This is clear since canonical singularities are normal. For dimension 2 we have:

1.6.2 Lemma. The following are equivalent:

(1) @ in S is a cyclic quotient canonical surface singularity.
(2) Q is of type L(a, —a) for some index v and a coprime to r.
(3) Q is of type =(1,—1) for some index r.

The above singularities are Du Val singularities of type A,_;.
For 3-folds we have the following due to White, Morrison, Stevens, Danilov and Frumkin:

I.6.3 Lemma. The following are equivalent:

(1) S is an isolated cyclic quotient terminal 3-fold singularity.

(2) S is of type %(bo,bl,bz ), for some positive integers r, bg, by, by, with r > 2, r and b;
coprime and r | b; + b; for a pair of distinct 1, j.

(3) S is of the form 1(1,—1,b) for some r > 2 and b coprime to r.

The following two lemmas are very useful for calculating the number and arrangement of

singularities on a complete intersection.
1.6.4 Lemma. Let x and y be of weight ao and a, respectively, where hef(ag, a1) = 1. Suppose
f(z,y) is a homogeneous polynomial of degree d, semi-quasismooth (see Note 1.5.3(iv)) and
sufficiently general. Let Py = [1,0] and P, = [0,1). Then X4 : (f = 0) in P(aq,ay) is a finite
set and:

(i) P;isin Xqifandonly ifa; fd fori =01,

(ii) there are exactly | —%| other points in X .

agai

Proof. Notice that z%! /y*° is an invariant of the group action of k* on A% — 0 which defines
P(ao,a;). There are four cases:
(i) ao | d and a, | d. Then f is of the form

f=ate 4 4yl

written using the coefficient convention (see section 1.3.7). So

f B 3? d/ﬂoﬂl
ylar — \ g8 +otl
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which has exactly 0—a roots.
(i) ap fdand a; | d. Since Xy is semi-quasismooth, f is of the form

f= y(:c(d—ﬂl)/ﬂo +..+ y(d—al)/ai).

The solution y = 0 gives the point Py.

a (d_al)/aaal
- (i)
= —= + ...+ 1.
yd/tll yS

This has exactly n = -4-:2& roots. So d = nagay + a;. As ag fd then ap > 1, and so

ay; < aga;. Thus n = |_a°a1_|
(iii) ao | d and a; fd. Similar to (ii).
(IV) ap ,rd and a, /rd

f — Iy(m(d—ao—al)/ao + o+ y(d—ao——al)/al)

So the two vertices Py and P, are solutions. Also

a~ (d—ao—a1)/eo a1
_f _ (il.) +.. 41,

Iyd/al .yg

which has exactly n = 4=22=21 roots on P — {P), P;}. So d = naga; + (ao + a1). As

apga

ag fdand a; fd then ap,a; > 2 and not both equal to 2. Thus

agay = (ap —1)(a1 = 1) =1+ ag + a1a0 + a1.

Therefore n = Laoalj

O

1.6.5 Lemma. Let zo, 1 and z, have weights ag, a, and a,, where hcf(ag,a1,a2) = 1. Let
f and g be sufficiently general semi-quasismooth homogeneous polynomials in k(zo, 21, z;] of
degrees d and e respectively. Suppose that X4, : (f = 0,9 =0) in P(ao, ay, az) is a finite set.
Let

n; ; be the number of points of X4 . along the edge P;P;,

ki ; = hef(aq, aj),

n; be the number of points at the vertex P; (i.e. n; =0,1),

N be the number of points in P — A.

Then:
apg a1 aq Z Z ,J + N

i>j 1.7

1.6.6 Note.
(1) X4, in P is not automatically finite (consider Xy o in P(1,2,4)).
(2) Similar results hold for higher codimensions and involve induction on the dimension.
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(3) Notice that Lemma 1.6.4 can be deduced from the above (consider Xg4; in P(ap, a;,1)).
(4) This also has connections with the Minkowski mixed volumes of Newton polyhedra (see
after proof).

Proof. Let 0 : P? — P be the quotient map defined in section 1.2.12. Let F = o*f and
G = o*g. Since X, is finite, V(F) and V(G) have no common components. By Bézout’s
theorem Y = V(F,G) in P2 consists of exactly de points counted with multiplicity.

The restriction of ¢ to P2 — A is agajaz-to-1, onto P — A. As there are N points on
P — A this accounts for agajas N points on P? — A,

The restriction of o to the line Q;Q; is a;a;/h; j-to-1, onto P; P;. Without loss of generality
assume that h; ; | d but that h; ; Je. Let k be such that {z,7,k} = {0,1,2}. Notice that z | g,
or else there would exist a monomial ::c?:cg- of degree e, contradicting h; ; fe. Then f and ¢
are of the form:

f = mznmj + :B;‘nﬂ:,' + ...
g=xx(z} +2T +..).
Thus F' and G are of the form:
F=XMXT 4 X2Y9X8H + ..
G=X (X5 + X% +..).

We localise F' and G by setting X; = 1, to give the corresponding affine equations F and G.
Let [X;, X;, Xi] = [1,£,0] be a point of intersection along the line @;Q;. The multiplicity p
of the intersection is given by:

p=mult(F,G,[1,¢£,0])

= mult(F, G, (£,0))

= mult(X' + X% + .., X+, (£,0))

= mult(X;' + ..., X3*,(0,0))

= a’k
where X| = X; —¢£. So this line contributes (n; jax)a;a;/h; ; points (counted with multiplicity)
to Bézout’s theorem. ,

Consider the vertex Q;. If P; is contained in X then a; fd and a; fe. As X is semi-

quasismooth, a; | d — a; and a; | e — a; for distinct 7, 7, and k. So f and g are of the

form:
f=zlz;+ ..

g=zl'TE + ...

Thus:
F= X,-"“"XJ- + ...

G = X:na‘Xk + ...

The intersection multiplicity p at Q); is:

p=mult(F,G,Q;).
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Localising at X; = 1 gives:

p = mult(F,G,(0,0))
= mult(X 7 + ..., X* +...,(0,0))

= ajag.

Clearly X7 and X* are the smallest degree monomials in F and G. So this gives a contribution
of a FAET.
Combining the above gives:

n; j4;Qi 0
de = E n;ajay + E I 207 L Nagagag,

distinct i,j,k i>], k#ij i
which rearranges to give the formula in the lemma.

O

An alternative proof of the above two lemmas is via Newton polyhedra and the Minkowski
mixed volume (see both [Be] and [Ku]).

1.6.7 Definition. An integral polyhedron S is a polyhedron in R™ with vertices in Z". The n-
dimensional volume of .S will be denoted by V,,(5), where the volume of the unit parallelepiped
is 1.

1.6.8 Definition. For each m = (m,,...,m,) € Z" define

m my m
Tt =rt.x

Let f € k[zy, 2", ...,zn, 2] be a Laurent polynomial. Then

where all but a finite number of the {c,,} are zero. The Newton polyhedron Newton(f) of f is
the convex hull of {m € Z" : ¢, # 0}, and is an integral polyhedron.

L6.9 Definition. Let § = {S; : ¢« = 1,...,n} be a set of integral polyhedra. The Minkowski
mixed volume V(S) of S is given by:

V(E) = (=)D ValS) + (—1)" 72D Val(Si+ 55) + o+ Va(S1 + o+ Sn)
i>j
where S; + 5; = {si +s; : 8; € Si,s; € S;}.
This is the classical formula up to a multiple of n!
Let 7" be the n-dimensional torus (k*)". This corresponds to the open toric stratum
in P. Let F be a system of n sufficiently general Laurent polynomials {f; : T" — k} with

corresponding Newton polyhedra § = {S;}. The roots of these n polynomials in T™ are isolated.
Let L(F) be the number of such roots, counted with multiplicity. Then [Be, Theorem A} gives:

L(F)=V(S).
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1.6.10 Alternative proof of Lemma 1.6.4. Let 7" be the torus zoz; # 0 in P = P(ag, a1).
Suppose that aq, a1 I d. Then f = xg/ao + ot :I:tlt/al. So

Ny = Newton(f) = [(d/ao,0),(0,d/a1)],

where [P, Q] denotes the line segment in Z? from P to'Q. So V4(N¢) + 1 is the number of
integral points on Ny, i.e. the number of solutions to

{(e, Y€ Z? : @ 20,8 >0,aa0 + fay = d}.

For a solution (a,f) we have a = (d — fa1)/a0 € Z, ie. d = Ba; mod a;. As ag
and a; are coprime, then a, is invertible modulo ag, with inverse s. So § = ds mod ay, ie.
B = ds 4+ nag for some n. Also 0 < # < d/a,y. So

—E$n<d ds

agp “apa  ap

— —

There are -%- + 1 such solutions. Thus f has %~ roots on the torus " in P,
Similarly when ag f d, etc..

Lemma 1.6.5 can be proved using analogous methods.

1.7 Determination of singularities on weighted complete intersections.

In this section we shall determine the singularities of three weighted complete intersections,
presenting the calculations in detail. These examples are a good introduction to the theorems giv-
ing arithmetic conditions for weighted complete intersections to have at worst isolated canonical
singularities.

1.7.1 The surface § = S3¢ in P(7,8,9,12).

We shall see that this surface has four singularities, one each of type A;, Az, Ag and A;.
The Euler number of such a K3 surface is 6, which is the lowest Euler number found in any of
the lists of weighted complete intersection K3 surfaces.

Let w, z, y and z be the homogeneous coordinates on P = P(7, 8,9, 12) of weights 7, 8,
9 and 12 respectively. Let f be a general polynomial of homogeneous degree 36. Using the
coefficient convention (see section 1.3.7) we have:

f=wiz + 2%z +y* + z® + others.

So S is well-formed and, by Theorem 1.5.1, is quasismooth. So the singularities of S arise
only due to the singularities of P and occur only on the edges and vertices of P. Consider the
vertices.
Py: f contains no monomial of the form w"™ for any n and so Py € 5. Consider the affine
piece (w = 1). The point Py € S looks like:

(F=f(L,z,p,2) =z +... = 0) C A/e
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where ¢ is a primitive 7'M root of unity and acts on the coordinates of A® via:

.’L‘P—)EBIB=GZL'

y - €y =€’y

zZ— 6122 =S 652.

Notice that 8f /dz = w* + ... is non-zero at Py. By the Inverse Function Theorem y
and z are local coordinates around P, € S. This gives a singularity of type 1(2,5),
which is Du Val of type As.

Again f contains no monomial of type =" and so P; € 5. As above, this gives a Du
Val singularity of type A7.

Since f contains the monomials y* and z* then P, P; ¢ S.

There are only two singular edges in P, Py Py which is analytically isomorphic to k* x 1(3,1)
and P, P; which is k* x 3(2,1).

P1P32

P2P3Z

Since fip,p, = 2%z + 2 = 2(z® + 2%) then S does not contain the edge Py P;. As
z # 0 and z # 0 on the edge P, P, then the affine piece (z = 1) contains all of the
intersection points. Since (8f /0z)|,=1 = z* + ... is non-zero then w and y are local
coordinates on S at each of the points of SN P, Ps. This is clear geometrically since
S is a general element of all degree 36 hypersurfaces and so it must cross this line
transversally. Thus each point is a singularity, which is analytically locally isomorphic
to A%/e where the coordinates of A% are w and y and € is a 4*" root acting via:

W e7w=53w

Yy Eg'y = €Y.

This gives a Du Val singularity of type As.

We must now count the number of intersection points on this edge. Each point
of the intersection is given by the equation z3 4 2% = 0 in P(8,12). This is just X4
in P(8,12), i.e. Xg in P(2,3). Either from first principles or from Lemma 1.6.4 we
can see that this is exactly one point.

As above, there is exacltly one Du Val singularity, which is of type A, along this
edge.

1.7.2 The 3-fold X = X4 in P(4,5,6,7,23).
The hypersurface X46 in P(4, 5,6, 7,23) has the following singularities:

3 of type 2(1,1,1),
1 of type i(3,1,1
1 of type i(4,1,2
1 of type (5,1,1

1 of type §(6,1,3 .

?

)
),
)
)

The singularities are checked as follows. Let v, w, z, y and z be the homogeneous coordinates
of P =P(4,5,6,7,23) of weights 4, 5, 6, 7 and 23 respectively. Let f be a general polynomial
of homogeneous degree 46. Then f (using the coefficient convention) is of the form:

f=vYz+wlz+2Tv+ ySv + 2% + others.
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This is well-formed and quasismooth (see Theorem 1.5.1). So the singularities of the hypersurface
occur only on the edges and at the vertices of P. Consider the vertices in reverse order:

P4:

Pgl

Pz:

P]Z
P()Z

Since f contains the monomial z? with a non-zero coefficient, f(Ps) # 0 and so
Py & Xye.

There is no monomial of the form y” for any n in f, and so Py € X46. Consider the
affine piece (y = 1). P; € X,¢ looks like:

(f=f('v,lU,$,1,Z)=v+n_ =0) CA.4/E

where ¢ is a primitive 7** root of unity and acts as:
v e4v,

w— 65‘11),

T ez,

Al 6232.

Notice that 8f/8v = y® + ... is non-zero at P;. By the Inverse Function Theorem w,
z and z are local coordinates on X4 around Py € X4¢. Thus the singularity here is
of type 1(5,6,23). This is equivalent to (6,1, 3), which is terminal.

Again there is no monomial of the form z™ for any n in f, and so P, € X,6. Consider
the affine piece (x = 1). P; € X4¢ looks like:

(f:f(v,w,l,l,z)zv—}-...:[]) C A'/e

where ¢ is a primitive 6'" root of unity and acts as:
v €'y,

w - Sw,

y ey,

2 = 6232.

Notice that 8f /8v = z” + ... is non-zero at Ps. By the Inverse Function Theorem, w,
y and z are local coordinates on X4¢ around P, € X4. Thus the singularity here is
of type %(5,7,23). This is equivalent to ¢(5,1, 1), which is terminal.

Py € Xy is locally f = 2 +... = 0 and gives a terminal singularity of type £(4,1,2).
Py € X4 is locally f = z+... = 0 and gives a terminal singularity of type £(3,1,1).

Consider the edges of P. An edge P;P; is singular if and only if h = hcf(ai,a;) # 1. In which
case it is analytically equivalent to k* x +(ao, ..., di, ..., dj, ...,as). So only the edge PP is
singular and looks like k* x 2(1,1,1). Since 2 = hcf(4,6) | 46, the hypersurface does not
contain this line. Lemma 1.6.4 is used on X, in P(4,6), after cancelling the common factor,
to give three points of intersection. Alternatively,

fIPoP2 = ungG(U‘?I) = uzg3(u3a$2)>
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where ¢3¢ and g3 are polynomials of degree 36 and 3 respectively. There are exactly three solu-
tions to g3 = 0, and so there are three points of intersection. So X4¢ crosses Py P transversally
and hence there are three singularities, each of type 2(1,1,1), along Py P;.

1.7.3 The 3-fold X, 4 in P(2,3,4,5,6,7).

The family X, 14 in P(2,3,4,5,6,7) is an anticanonically embedded Fano 3-fold with
only the following isolated terminal singularities: 1 of type §(4,1,2), 2 of type 3(2,1,1) and 7
of type 3(1,1,1). '

The singularities are checked as follows. Let u, v, w, =, y and z be the homogeneous
coordinates of weights 2, 3, 4, 5, 6 and 7 respectively. Let f, ¢ be homogeneous polynomials
of degrees 12 and 14 respectively. Then X = (f =g = 0) C P = P(2,3,4,5,6,7).

Consider the vertices of the weighted projective space P. Since 5 12 and 5 f 14, P; € X.
So

f=xz*u+..

g = z?w + ...

Thus {v,y, z} are local coordinates around P;, which is therefore a singularity of type 1(3,6,7),
ie. $(4,1,2). There are no other vertices contained in X.
Consider the 1-dimensional loci of P.
PyPy: h =hcf(2,4) =2 and
f=ub+wd+ ..
g=u7+w2y+...

So the local coordinates are {v, z, z} and the singularities are of type %(1, 1,1). There
are three such intersection points (by Lemma 1.6.4 applied to X¢ in P(1,2)).
PyPs: Likewise h = hef(2,6) = 2 and

f=u6+y2+...'
g=u7+u5w+y2u+...

(f = 0) in P(1,3) is two points by Lemma 1.6.4. So there are two singularities, each
of type 3(1,1,1), along Po Py,

P,P;: There is exactly one singularity, which is of type £(1,1,1), on this line.

P, Py This time h = hef(3,6) = 3 and

f=v"+y>+..
g=v4u+y2u+...

So there are two of type %(1,—1,1) on P, Py.
Consider the only singular 2-dimensional locus, Py P, Py, of P where h = hcf(2,4,6) = 2. By
Lemma 1.6.5, there are seven intersection points (some of which have already been counted), all
of type (1,1,1).
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IT

Lists of various weighted complete intersections.

I1.1 Preamble.

The aim of this chapter is to produce lists of hypersurface and codimension 2 weighted
complete intersections of dimension at most 3 with at worst isolated canonical singularities. We
present various theorems giving conbinatoric conditions-on the weights and degrees of such
intersections. From these conditions we can produce lists of intersections {along with their

corresponding singularities). In most cases a computer was used for its speed and inability to
become bored.

Sections I1.2 and II.3 treat the cases of dimension 1 and 2 respectively; and give corre-
sponding lists. Section 1.4 deals with the 3-fold case (both hypersurfaces and codimension 2)
and sections I1.5 and II.6 deal with the particular cases of canonical 3-folds and Q-Fano 3-folds
respectively. Section II.7 gives an alternative method for producing canonically and anticancni-
cally embedded 3-fold complete intersections using the Poincaré series of a ring.

IL.2 Weighted curve hypersurfaces.
I1.2.1 Theorem. A weighted curve complete intersection is smooth if and only if it is quasismooth.

Proof. Any 1-dimensional cyclic quotient singularity is of type %(a) for some coprime r and a.
Let z be the coordinate on A'. The group Z, acts via:

T ez
where ¢ is a primitive 7*? root of unity. So
A'/Z, = Spec k[z]%" = Spec k[z"] 2 Spec k[z] = A

So this is non-singular. Notice that this group action is just a quasi-reflection (see section 1.2.8).

H
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From [O&W, Corollary 3.5] we have a formula for the genus of dimension 1 hypersurfaces.

I1.2.2 Theorem. Let Cy4 in P(ag, a1, ay) be a non-singular curve. Then the genus g is given
by:

_dz hef(ai, aj) ZM _q

1
9=7
a.

2 >3 aid; =0 !

Gpayaz

I1.2.3 Theorem. A weighted curve Cy in P(aq,ay,a2) is well-formed, not a linear cone and
quasismooth if and only if for each i the following three conditions hold:
(1) a; < d,
(2) a;ild,
and (3) hcf(ai, a;) =1 for all distinct 1, 3.

Proof. C is well-formed if and only if a; | d for all ¢ and hef(a;,a;) = 1 for all distinct 2, 7
(see section 1.3.10). These are conditions (2) and (3).

Suppose C'is not a linear cone and quasismooth. Then conditions (1) holds. Also a; | d—a.
for some e. But this is already satisfied by condition (2).

The converse follows immediately from conditions (1), (2) and (3).

o

I1.2.4 Smooth weighted curve hypersurfaces with amplitude o = d — " a; = 0.
We list the only smooth weighted curves of codimension 1 with o = 0 satisfying the above
conditions.

Curve D
C; in P(1,1,1) 3P
Cqin P(1,1,2) 2P
Ces in P(1,2,3) P

All are elliptic curves (i.e. ¢ =1 and w = O¢) and are given by ProjRc where R is:

Rg = @) B(Oc(nD)),

n>0

and D is given in the above table.

I1.2.5 The calculation. The above curves are the only ones satisfying the conditions of Theorem

I[1.2.3. This is demomstrated as follows.
Order the {a;} by ag < a; < a,. conditions (2) and (3) of Theorem IL2.3 give agaia; | d.

Letdzx\az. As « = 0 then 3(12 2(10 +a; + ap =d=Aa2. SOAS3(16 )\=2,3).

(i) A =2. Soapay | 2. Either (ag,ay) = (1,1) (i.e. Cyin P(1,1,2)) or (ag,a1) = (1,2) (i.e.

Cﬁ in P(1,2,3)).

(i) A =3. So apa, | 3. Either (ap,a;) = (1,1) (ie. Cs in P(1,1,1)) or (ap,a1) = (1,3) in
which case a3 = 2 < a,, a contradiction.

I1.2.6 The ring Rc. Consider an elliptic curve C and the divisor D = 2P, where P is any

point on C. By Riemann-Roch,

R’(nD) — h'(nD) = deg(nD) + (1 — g).
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As D> K =0, then h'(nD)=0forall n > 1. Also ¢ =1 and so
R°(nD) = deg(nD) = 2n.

Thus h°(D) = 2 and h°(2D) = 4. Let zo,z; be a basis for H*(D). Then zZ, zoz; and =z} are
linearly independent elements of H°(2D). As h°(2D) = 4 then there exists an extra element y
of degree 4.

Consider the map:

¢ : (D)@ H((n — 1)D) — H*(nD).

Notice that zo and z; have no common base points. By the base-point-free pencil trick (see
[ACGH, p. 126]),
Ker¢, = H°((n — 1)D — D) = H*((n — 2)D)

which has dimension 2(n — 2). Also H°(D) ® H°((n — 1)D) has dimension 2.2(n — 1). So
dim Im ¢, = 2n, and hence ¢,, is onto for all n > 2. This means that H°(nD) is generated by
H°(D) and H((n — 1)D).

So we have the following table of bases for the H%(nD).

n h%(nD) monomials

1 2 Tp, T31.

2 4 T3, zoz1, 23, v.

3 6 a:g, :n%:nl, :cozg, :c:i’, oY, T1Y.

4 8 T3, T3z, vial, zo73, 23, 2y, Toz1y, 2Py, Y.

Notice that H°(4D) has dimension 8, but there are 9 monomials. Since ¢, is onto then the
first eight in the list are linear independent. So there must be a relation of the form:

=49 + vha(zo, z1) — ga(z0, 1),

where he and g4 are homogeneous polynomials of degrees 4 and 2 respectively.
The number N,, of monomials in H’(nD) is given by:

vemren ] 24

Suppose that f was the only relation, then the dimension of the module generated by the
monomials of degree n is N,, — 1.N,_4 = 2n, which is the same as ho(nD).

So the ring R is k[zo, z1,y]/(f), where z; has weight 1 and y has weight 2, i.e. the curve
is C4 in P(1,1,2). This technique should be compared to that in [M, Lecture 1, p. 17 - 21] and
to Weierstrass normal form.

I1.2.7 Smooth weighted curve hypersurfaces with amplitude a =d -} a; = 1.

There are only two such curves which satisfy the conditions of Theorem 11.2.3:

curve genus we
Cs in P(1,1,1) 3 Oc(1)
Cs in P(1,1,3) 2 Oc(1)
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These were calculated in a similar way to those of section I1.2.5 and the genera by the formula
in Theorem I1.2.2.

I1.3 Weighted surface complete intersections.

In this section we give necessary and sufficient conditions for surface weighted complete
intersections of codimension 1 and 2 to be quasismooth, well-formed and have at worst canonical
singularities. We also include lists of such intersections.

I1.3.1 Theorem. Let S;in P = P(ao,a1,az,as) be a general hypersurface of degree d and let
a=d— 3 a;. Sqis quasi-smooth, well-formed with at worst canonical quotient singularities
and is not a linear cone if and only if all the following hold:
(1) For all 1,
(i) d > a;.
(ii) there exists e such that a; | d — a. (i.e. there exists a monomial «?z, of degree d).
(iii) there exists a monomial of degree d which does not involve x;.
(iv) if ai fd, then a; | a.
(2) For all distinct 1, j, with h = hcf(a;, a;), then
(i) h|d.
(ii) h | a.
(iti) one of the following holds:
either there exists a monomial ="z} of degree d,
or there exist monomials w?‘m?"ze, and x?’x;.’";cc, of degree d such that e; and
e are distinct.
(3) For all distinct ¢, 3, k, hef(a;,a;,a8) = 1.

I1.3.2 Note. Since the hypersurface is well-formed then wg = Og(a).

Proof. Let f be a general homogeneous polynomial of degree d in variables z, ..., z3; define
Sq:(f=0)CP.

S4 is quasismooth and not a linear cone if and only if conditions (1¢), (1i), (12i:) and
(2122) hold (see Corollary 1.5.5).

Suppose furthermore that conditions (1iv), (21), (2:2) and (3) hold. As S, is quasismooth
the only singularities are due to the k*-action and hence are cyclic quotient singularities on the
fundamental simplex A C P. By condition (3) only vertices and edges need be checked.

Consider P; € S4. By renumbering we can assume that 7 = 0. So ao [ d. Condition
(122) gives that there exists an e # 0 such that ag | d — a.. Without loss of generality we can
assume that e = 1. So f is of the form f = zfz; +.... Thus 3f/0z; is non-zero at Py. By the
Inverse Function Theorem x, and z3 are local coordinates. So Py € S, is of type alo(ag,ag).
However d = ap + ... + a3 + « and so ag | az + a3 + . By condition (1iv), ag | a2 + as.
Let A = hcf(ag,ay). So h | a3 and hence, by condition (3), h = 1. Therefore Py € Sy is a
canonical singularity.

Consider the edge P;P;. Again by renumbering assume that : = 0 and 7 = 1. f restricted

to Po P is:
f=> =gl
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where the sum is taken over the set {(n,m) : nag + ma; = d}. If ay fd then ay | d — a, for
some e # 0. If e # 1 then h = hef(ag,a1) | a. and by condition (4) h = 1. Then PP, is
non-singular. So assume that either ao | d or ap | d — a;. Hence f is not identically zero on
P, Py, and so Sq N PyPy is finite. Each point in this intersection is of type £(az,a3). Since
d=uag+..4+a3+cand h | @ then h | az + a3. Also hef(h,a;) = 1. Thus each point is
canonical.

Therefore Sy in P has at worst canonical singularities.

Conversely assume that Sy is quasismooth, well-formed, not a linear cone and has at worst
only canonical singularities. Suppose a; [ d. By renumbering we can assume that z = 0. So
Py € 54 and a¢ | d — a. for some e. Without loss of generality assume that e = 1. As above
the singularity at Py € Sy is of type a—lo-(az, a3). Since this is canonical we have aq | az + as
and so ag | . This is condition (1iv).

Suppose h = hcf(a;, a;). By renumbering assume that ¢ = 0 and j = 1. As 5, is well-
formed then A | d, which is condition (2i). So Py P, N S, is a finite intersection, where each
point is of type (az,as). This is canonical and so h | a. This is condition (2iz).

Suppose h = hef(a,,a;,ar). Without loss of generality assume that ¢ = 0, 7 = 1 and
k = 2. Let b’ = hcf(ag,a1). So k' | d. Hence the line Py P, contains singularities of type
+(az,a3). As these are canonical h = hef(h', az) = 1. This is condition (3).

]

11.3.3 Reid’s 95 codimension 1 K3 surfaces.

In 1979, Reid produced the list of all families of codimension 1 weighted K3 surfaces; 95
in all (see [R1, section 4.5]). The full list follows along with their respective singularities.

Weighted K3 surface  Singularities Weighted K3 surface  Singularities
X4 in P(l, 1, 1,1) X5 in P(l, 1,1,2) Al

Xs in P(1,1,1,3) Xein P(1,1,2,2)  3xA,

X;in P(1,1,2,3) A, 4, Xgin P(1,1,2,4)  2xA,

Xsin P(1,2,2,3)  4xA,, A, Xoin P(1,1,3,4) A,

Xg in P(1,2,3,3) Al, 3XA2 X10 in P(l, 1,3, 5) Ag

X10 in P(1,2,2, 5) SXAl X](] in P(1,2,3,4) 2XA1, Ag, A3
X11 in P(1,2,3,5) A], Ag, A4 X12 in P(1,1,4,6) A]

X12 in P(1,2,3,6) 2XA1, 2><A2 X12 in P(1,2,4,5) 3XA1, A4
X12 in P(1,3,4,4) 3XA3 X]z in P(2,2,3,5) 6><A1, A.;
X1z in P(2,3,3,4)  3xA;, 4x4, Xi3in P(1,3,4,5)  Ag, As, A
X14in P(1,2,4,7)  3xA;5, As X1ain P(2,2,3,7)  Tx A, A
X14 in P(2,3,4, 5) BXAI, AQ, Ag, A4 X15 in‘P(1,2, 5,7) A], As

X15 in P(1,3,4,7) A;;, Ag X15 in P(1,3,5,6) ZXAQ, A5
X5 in P(2,3,5,5) A, 3xAq X15in P(3,3,4,5)  5xAs, A;
.X]ﬁ in P(1,2,5,8) 2XA1, A4 XIG in P(1,3,4’8) Ag, 2)(/'13
X]s in P(1,4,5,6) A], A4, A5 X16 in P(2,3,4,7) 4><A1, A2, As
A]'{ n P(2,3,5,7) Al, A2, A4, Ag Xlg in P(1,2,6,9) SXAI, Az
X13 in P(1,3,5,9) 2><A2, A4 X]g in P(1,4,6,7) Ag, Al, Ag
X5 in P(2,3,4,9)  4xA;, 2xA,, A Xigin P(2,3,5,8)  2xA1, As, A
X1sin P(3,4,5,6)  3xAy, As, A1, Ay Xioin P(3,4,5,7) Ay, Az, Ag, Ag
X0 in P(1,4,5,10)  A;, 2x A, Xz0in P(2,3,5,10)  2xA;, Az, 2x A,
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X25 in P(4, 5, 7, 9)
X, in P(2,3,8,13)
Xa7 in P(2,5,9,11)
ng in P(]., 4, 9, 14)
X,s in P(4,6,7,11)
X30 in P(l, 6, 8, 15)
Xgo in P(2, 6, 7, 15)
X0 in P(4,5,6,15)
X3, in P(2,5,9,16)
X33 in P(3,5,11,14)
X34 in P(4, 6, 7, 17)
Xs6 in P(3,4,11,18)
Xas in P(3,5,11,19)
X4 in P(5,7,8,20)
X, in P(2,5,14,21)
X4 in P(4,5,13,22)
X5 in P(7,8,10,25)
Xeg in P(5,6,22,33)

A. R. Fletcher.

SxA;, Ag

Ag, 2x As, Ay
A4s AT

3XA2, A4, As
AS: Alv AS
2)(142, Ag
2XA1, 2XA2, As
2)(./-12, 2XA3, A4
4XA2, A], Aﬂ
A3v AG) AS
3XA1, Az, Aq
Ay, A4, Ao

A1, As

2XA1, As, A]O
Ay, Az, Ay
5XA1, Ag, As
Aa, 2XA1, 2x Aq, A2
2XA1, A4, Ag
A4, Al3

A3, 2XA1, A5, Aﬁ
ZXA‘Z, Al, AIO
A?s A4, AIO

2x Ay, Ag, Az
3XA1, A4, Ae
Ay, Ay, Arz

As, A7, A1, A4
A4: Al, A29 Alﬂ

Xo0 in P(2,5,6,7)
Xgl in P(1,3,7, 10)
le in P(2,3,7, 9)
X22 in P(1,3,7, 11)
X22 in P(2,4,5, 11)
Xy in P(1,6,8,9)
.}L24 in P(2, 3,8, 11)
.}L24 in P(3,4,7, 10)
X4 in P(4,5,6,9)
.X25 in P(l, 5, 7, 13)
Xg6 1in P(Z, 5, 6, 13)

Xa7 in P(5, 6, 7, 9)
ng in P(3,4, 7, 14)
.X30 in P(1,4, 10, 15)
X;0 in P(2,3,10,15)
X3 1n P(3,4, 10, 13)
Xao in P(5, 6, 8, 11)
X32 in P(4, 5, 7, 16)
Xa4 in P(3,4,10,17)
X33 in P(l, 5, 12, 18)
ng in P(7, 8, 9, 12)
Xas in P(5,6,8,19)
X42 in P(l, 6, 14,21)
X42 in P(3,4, 14:, 21)
X5 in P(3,5,16,24)
Xs4 in P(4,5,18,27)

3XA1, A5, AG
Ay

Al, 2)(/12, Ag
Ay, Ae

5XA1, Ag, A4
Ay, Az, Ag
3)(1‘11, A]o

Ay, A, Ay
2XA1, A4, Ag, Ag
Ay, As

4><A1, A_4, As
As, As, Az, As
Ag, A], 2>(A5
Az, A1, Ay
3IxA,, 2xA,, Ay
Asz, A1, A1g

Ay, A7, Ay
2XA3, A4, Aﬁ
Ay, Az, Ay, Ay
Ay, As

Ag, A7, Az, Ag
A4, A5a A]: A?
Alv A2: Aﬁ
2XA2, Ag, A], As
2XA2, A4, A'f
Az, Ay, Ag, Ag

However there are not so many dimension 2 weighted hypersurfaces with wg = Og(£1):

11.3.4 Theorem. There are exactly three families of dimension 2 weighted hypersurfaces with at
worst canonical singularities and ws =2 Os(1), and exactly three families with wg = Og(—1),
a=1 . a = —1
Ss in P(1,1,1,1) S; in P(1,1,1,1)
Se in P(1,1,1,2) S1in P(1,1,1,2)
Ss in P(1,1,1,4) S in P(1,1,2,3)

I1.3.5 Note. These families are all non-singular.

Proof. Condition (2i:) of Theorem I1.3.1 is very strong when « = +1 and forces the a; to
be pairwise coprime. Similarly condition (1:v) forces a; | d for each . So agajazas | d and
d=ay+..+a3+a Order az > a2 > a; > ap > 1 and let d = Aa;. Thus agaya; | A and
(A—l)a;, =ag+ ...+ a+ .

Suppose & = 1. Then 2a; < Aay = ap + ...+ a3 +1 < 5a3. So 2 < A < 5. Running
through the possible values of A:
(l) A=25. So agQi14a2 | 5. If a; =1 then ag =1 (lc 5,5 in P(l,l,l,l)). If a; = 5 then a3z = 2,

a contradiction.

(i) A =4. So agaiaz | 4. If ay = 1 then a4 = %, a contradiction. If a; = 2 then a4 = £, a
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contradiction. If ay = 4 then a4 = %, a contradiction.
(iii) A = 3. So apajaz | 3. If a; = 1 then a4y = 2 (i.e. S in P(1,1,1,2)). If a; = 3 then a4 = 3,
a contradiction.
(iv) A =2, So apajay | 2. If ag = 1then ay =4 (ie. Sgin P(1,1,1,4)). If a; =2 then ag = -,f;,
a contradiction.
So there are exactly three families.
Suppose that &« = —1. Then 2a3 < daz3 = agp + ... + a3 — 1 < 6az. Thus 2 < A < 6,
As above this gives rise to the following families: S3 in P(1,1,1,1) in the case A = 3, Sy in
P(1,1,1,2) and Sg in P(1,1,2,3) in the case A = 2.
O

Consider the case of codimension 2 complete intersections.

.3.6 Theorem. Suppose S = Sq, 4, in P = P(ag,...,a4) is quasismooth and is not the
intersection of a linear cone with another hypersurface. Let a = > dy — > a;. S is well-
formed and has at worst canonical singularities if and only if the following hold:
(1) for all ¢, if a; [ di and a; [d, then a; | c.
(2) for all distinct © and j, with h = hcf{ai, a;), one of the following occurs:
(a) h|dy and h | ds,
(b) h|dy, h fdy and h | «, or
(c) h fdy, h|dy and h | a.
(3) for all distinct ¢, j and k, with b = hef(ai,aj,ax), h|dy, h|dy and h | .
(4) for all distinct 1, j, k and I, h = hcf(a;,aj,ax,a1) =1

I1.3.7 Note. Since the hypersurface is well-formed we have that wg = Og(a).

Proof. Let f; and f, be sufficiently general homogeneous polynomials of degrees d; and
dy respectively, in the variables zg, .., 4 with respect to the weights ao, ..., ag. Define
Si(fl =0,f2=0)CP.
Since S is quasismooth the only singularities are due to the k*-action and hence are all
cyclic quotient singularities occurring on the fundamental simplex A.
Assume conditions (1), ..., (4) hold. By conditions (2), (3) and (4) S is well-formed. By
condition (4) only the vertices, edges and faces of A need be considered.
Suppose P; € S. By renumbering we can assume that : = 0. So ay [ d; and a¢ [ d».
As S is quasismooth (and using I = {0} in Theorem 1.5.7) there exist monomials z3z., and
zg' T, of degrees d; and d,, where e; # e;. By renumbering we can write e; = 1 and e3 = 2.
So f; and f, are of the form:
hH = :c(')':cl + ...
fao=zgz2+ ...

Thus 8f1/0z; and O f; /Ox, are non-zero at Py. By the Inverse Function Theorem, z3 and x4 are
local coordinates around Py. Hence Po € S'is of type 5-(as,a4). Asdi+dz = ao+...+as+a
and ao | « then ag | a3 + a4. Let A = hef(ap,a3). So A | ay and, by condition (3), h | d;.
Since deg(z§z1) = dy, h | a; and so, by condition (4), h = 1. Thus P, € S is canonical.
Consider the edge P;P;. By renumbering we can assume that ¢ = 0 and 7 = 1. Let
h = hcf(ag,ay). Notice that Py Py C Xg, if and only if A fdy for A = 0,1. By condition (2),
h | dx for some A. Without loss of generality assume that & | d;. There are 2 cases:
(@) h|dy. PyPyN{fx=0)is a finite set of points for A = 0,1. Thus PP, NS = 0.
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(b) h f d;. In this case no monomial of the form zgz]" of degree d; exists (or else h | dy).
From Theorem II1.3.7 (with I = {0,1}) there exists a monomial z§z]*z. of degree ds,
where e # 0,1. By renumbering we can assume that ¢ = 2. Thus f> is of the form:

— RN
fz =TyTy T2 + ...

and 8f;/0z, is non-zero on Py Py N S. By the Inverse Function Theorem, z3 and z4 are

local coordinates around each point of Py P, NS and so each is of type '};((13, a4). Condition

(2b) gives h | @ and 50 h | a3 4 a4. Let A’ = hef(h,a;3). So &' | a4 and thus by condition

(4) h' = 1. Thus these points are canonical.

Therefore S has at worst canonical points along Py P;.

Consider the face P;P;Py. As before assume ¢ = 0, j = 1 and & = 2. By condition (3)
h = hef(ag,a1,a;) | dy and h | dy. So PoP, P, intersects S transversally. Each point in the
intersection is of type }(as,a4). As k| o, h | a3 + a4. By condition (4) hef(h, a3) = 1. Thus
these points are canonical.

Therefore conditions (1), ..., (4) are sufficient.

Conversely assume that S is well-formed and has at worst canonical singularities. Suppose
a; fd; and a; f d;. By renumbering assume z = 0. Thus P, € S. Since S is quasismooth
there exist 2 monomials zgz,., and zf'z., of degrees d; and dz, where e; # es. Without loss
of generality we can assume that e; = 1 and e; = 2. As before we find that P, € S is of type
;%(ag, aq). As this is canonical ao | a3 + a4 and so ag | @. This is condition (1).

Suppose h = hcf(a;, a;) for distinct 2 and j. As usual we can renumber such that : = 0
and j = 1. As S is well-formed then h | dy for some A. Suppose h | dy. If h | d; then this
is condition (2a). So assume that h J d;. As above each point of Py P; N S is isolated and of
type +(as,as). Thus k| a3 + a4 and so h | . This is condition (2b). Likewise for the case
when k| dy but b fdy. This gives condition (2c).

Suppose h = hcf(a;,a;, ax) for distinct 7, j and k. Renumber such that i =0, j = 1 and
k = 2. As S is well-formed then h | d) and & | d;. Thus Py Py P, N S is a finite number of
points, all of type +(as,as). As these are canonical h | a3 + a4 and so % | . This is condition
(3). Also hcf(h,a3) = hef(h,as) = 1, which is condition (4).

So these conditions are necessary.

O

I1.3.8 Codimension 2 Weighted K3 Surfaces.

There are 84 families of codimension 2 quasismooth, well-formed K3 surfaces with only
canonical singularities and 3 a; < 100. These were found by means of a computer search
program.

Weighted K3 surfaces Singularities Weighted K3 surfaces Singularities
X2’3 in P(l,l,l,l,l) X3,3 in P(1,1,1,1,2) Al

Xsqin P(1,1,1,2,2) 2 x A X44in P(1,1,1,2,3) 4,

.X4’4 in P(1,1,2,2,2) 4 x Al X4'5 in P(1,1,2,2, 3) 2 X Al, AQ
Xe6in P(1,1,2,3,3) 2 x A, Xy in P(1,2,2,2,3) 6 x A

X5,6 in P(1,1,2,3,4) Al, Aa X56 in P(]. 2,2,3,3) 3 x Al, 2 x AQ
X5 6 in P(1,1,2,3,5) A4 Xeﬁ in P(]. 2,2,3,4) 4 x A], A3
XS,G in P(1,2,3,3, 3) 4 x A2 Xﬁ’ﬁ n P(2 2,2,3,3) 9 x Al



Xe.7in P(1,2,2,3,5)
X in P(1,1,3,4,5)
Xes in P(1,2,3,4,4)
ngg in P(1,2,3,4,5)
Xe 10 in P(1,2,3,5,5)
Xso in P(1,2,3,4,7)
Xg,g in P(2,3,3,4,5)

-XB,IO in P(l, 2,4,5,6)
Xg 10 in P(2,3,4,4,5)
X 10 in P(1,3,4,5,6)
Xg 10 in P(2,3,4,5,5)
Xa,lg in P(Z, 3,4, 5,6)

XlO,]l in P(2, 3, 4, 5, 7)
X10,12 in P(]., 3, 5, 6, 7)
X10,12 in P(2, 3, 4, 5, 8)
XlD 12 iI‘l P(2,4,5,5,6)
X10,12 in P(3,4, 4,5,6)
X10‘14 in P(l, 2, 5, 7, 9)
Xl[],lci in P(2, 4,5,6, 7)
X12,13 in P(3, 4,5 6,7)
X12’14 in P(]., 4, 6, 7, 8)
X12’14 in P(2, 3, 5, 7, 9)
X12,14 in P(‘l, 4, 5 6, 7)
X12‘15 in P(3, 4, 5,6, 9)
Xu,]s in P(2,5, 6 7 8)
X14,15 in P(2, 5, 6, 7, 9)
X145 in P(3,5,6,7,8)
-X14,16 in P(B, 4, 5, 7, 11)
X15,16 in P(2,3, 5,8, 13)
X1418 in P(2,3,7,9,11)
X120 in P(4,5,6,7,10)
X115 in P(4,6,7,8,9)
X]B,gg in P(4, 5, 7, 9, 13)
Xlg,gg in P(2, 5,9 1
X13,30 in P(6,8, 9 1
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3 x Al: A4

Ay

2 x Ay,2 x Az
Ay, Az, Ay

2 x A4

2 x Al: A6

2 x A1,3 x Ag, A4
3 x A], A5

4 XAI,Az,ZX A3
A-2v A31 AS

2 XA},A3,2X A4
4 x Ay, 2 X AQ,A4
2 x A}, AQ, A3, As
2 x Ag, AG

3 x A], Aa, A7

5 x A1,2 x A4

2 X Ag,3 X A;, Ay
Ag

5 x Al, Ag, A.5

2 X AQ, Al, A4, As
Ay, As, Ar

A2! Adv AB

3 x A3,2 )(AI,A4
3 x Ag, A.l, AB

4 x Ay, Ay, Ag

2 X Ay, As, As

2 x Az, As, A7

A’2’ Aéi A]O

2 x Al, A]g

2 X A, Ajg

2 X Ay, 2 x Ay, Ag

2XA1, 2)(A3, AQ, Aﬁ A]B,?O in P(4

Ag, A2

1,13) Aq, Ars

X5,7 in P(1,2 3,3 4)
XG,B in P(]., 2, 3, 3, 5)
X5 in P(2,2,3,3,4)
X7,3 in P(1,2, 3,4, 5)
XG,]O in P(2,2,3,4,5)
Xg,g in P(1,3,4, 4, 5)
X3’10 in P(1,2,3,5,7)
X3’10 in P(1,3,4,5,5)
X9,10 in P(1,2,3,5,8)
XQ,IO in P(2,2,3,5 7)
Xg,lg in P(1,3,4,5,7)
Xo12 in P(2,3,4,5,7)
Xlg,lg in P(1,3,4,5,9)
X10,12‘in P(1,4, ,6)
X]g 12 in P(2
A]g 12 in P(3
Xn 12 in P(].
X]g 14 in P(2

2

1

~

-
-
~

~
-
~

XlO 15 in P(

X12,14 in P(1,

)ng 14 in P(2
X12 14 in P(3
Xlg 15 in P(l
X12,15 in P(3,
A14 ,15 in P(2
..X14,15 in P(3
X14,16 m P(l
X14,15 in P(4
A]s ,16 in P(3
A14 ,18 in P(2
Xlﬁ ,18 in P(].
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X18,20 iI‘l P(5,
Xzo ,21 in P(3

I1.4 Weighted 3-fold complete intersections.
This section gives the corresponding conditions and lists for 3-folds.

I1.4.1 Theorem. Let Xg be a general hypersurface in P = P(aq, ...

-35-

Al, 2 X A'), A3
2 x Ag, A4

6 x Al, 2 X Az
2 X Al, Ag, A4
7 % Al, Aa

2 % A3, A4

Ag, As

Az, 2 x A.4
Als AT

S X Ah Aﬁ
Ay, As

3 x Ay, Ay, As
Az, Ag

A], 2 x As

2 X A4, As

4 X Aq, Ag
Al’ A‘h Aﬁ

Ay, 2 X Ag
Ay, Ag, A7
AIO

4 x Al, Ag
A4, 2 X As
Als AIO

Aa, AG» A?

Ay, Az, Ann
Az, Ag, Ao

Ay, Ag

Al, 2)(14.3, A4, A5
2 X Ag, Alg

5 x Al, Az, AT
Al’ A2! A9

2 X A], AQ, A]g
Az, As, Aro

0 17) A], AIG
0 15) 2XA1, 2XA2, A',r, A4 X24 ,30 in P(S 9 10 12 15) A], A3, Ag, Az, Ay

yag)andlet o =d—3 a;.

Then Xy is quasismooth with only isolated terminal quotient singularities and is not a linear

cone if and only if all the
(1) For all 1,

Sfollowing hold:
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(i) d> a;.

(ii) there exists a monomial ™z, of degree d (i.e. there exists e such that a; | d — a.).
(iii) if a; [d, there exists an m # 1, e such that a; | ap, + .

(2) For all distinct 1, j, with h = hcf(a;, a;), then

(i) h|d

(ii) there exists an m # 1, j such that h | am + a.
(iii) one of the following holds:

either there exists a monomial ="z} of degree d,
or there exist monomials 'z} z., and z{*x} *z., of degree d such that e,
and eq are distinct.
(iv) there exists a monomial of degree d which does not involve z; or z;.

(3) For all distinct 1, j, k, hef(a;,a5,a8) = 1.

I1.4.2 Note. Since the hypersurface is quasismooth and of dimension 3 then it is well-formed,
and sowx = Ox(a).

Proof. Let f be a general homogeneous polynomial of degree d in variables zq, ..., £3; define
Xa: (f = 0) Cc P.

X4 is quasismooth and not a linear cone (and therefore well-formed) if and only if conditions
(1%), (1ez), (22), (2t2), (2¢v) and (3) hold (see Corollary 1.5.6). By calculating the types of
the singularities on Xy we can show that conditions (1z:4), (22), (2¢2) and (3) are equivalent to
these singularities being terminal; the combinatorial conditions for which are found in Lemma
1.6.3.

Suppose furthermore that conditions (14:z), (2¢), (2i7) and (3) hold. As X, is quasismooth
the only singularities are due to the k*-action and hence are cyclic quotient singularities on the
fundamental simplex A C P. By condition (3) only vertices and edges need be checked.

Consider P; € X4. 'By renumbering we can assume that z = 0. So ao fd. By condition
(17) there exists an e # 0 such that ag¢ | d ~ a.. Without loss of generality we can assume
that e = 1. So f is of the form f = zf§z; + ... Thus 0f/0z; is nonzero at Py;. By the
Inverse Function Theorem z,, x3 and x4 are local coordinates around P,. So Py € X, is of
type al—o(ag, as,aq). However d = ag + ...+ a4+« and s0 ag | a2 + a4 + a. By condition (1v),
ap | a+am, for some m = 2,3, 4. Without loss of generality assume m = 2. By condition (1:v),
ag | ag + a4. Let b = hef(ag,a3). So h | a3 and hence, by condition (3), h = 1. Therefore
P, € X, is a terminal singularity.

Consider the edge P;P;. Again by renumbering assume that z = 0 and 7 = 1. f restricted

to Py P is:
f=Y zfal

where the sum is taken over the set {(n,m) : nag + ma; = d}. If ay fd then ap | d — a,

for some e £ 0. If e # 1 then h = hcf(ap,a1) | a. and by condition (4) h = 1. Then Fy P

is nonsingular. So assume that either aq | d or ap | d — a;. Hence f is not identically zero

on PyPy, and so Xg N Py P, is finite. Each point in this intersection is of type +(az,as,as).

By condition (2i7) h | o 4+ a,, for some m = 2,3,4. By renumbering assume m = 2. Since

d=ag+ ..+ as+«, then h | ag + a4. Also hef(h, a3) = 1. Thus each point is terminal.
Therefore Xy in P has at worst terminal singularities.
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Conversely assume that X; is quasismooth, not a linear cone and has at worst only terminal
singularities. Suppose a; [ d. By renumbering we can assume that : = 0. So P, € X and
ag | d—a. for some e. Without loss of generality assume that e = 1. As above the singularity at
Py € Xgq is of type ai(ag,ag, as). Since this is terminal we have, after renumbering, aq | az+as
and so ap | @ + ap, for some m. This is condition (1w).

Suppose h = hcf(a;, ;). By renumbering assume that = 0 and j = 1. As X is well-
formed then 4 | d, which is condition (2:). So Py Py N X, is a finite intersection, where each
point is of type :(az,as,as). This is terminal and so h | & + am for m = 2,3,4. This is
condition (2:z).

Suppose h = hcf(a;, aj,ar). Without loss of generality assume that : = 0, j = 1 and
k = 2. Let h' = hcf(ag,ay). So h' | d. Hence the line Py P; contains singularities of type
4 (az,a3,a4). As these are terminal A = hef(h', a3) = 1. This is condition (3).

[

I1.4.3 Theorem. There are exactly four families of quasismooth 3-fold weighted hypersurfaces
with only terminal isolated quotient singularities and wy = Oy

X5 in P(1,1,1,1,1)

Xs in P(1,1,1,1,2)

Xe inP(1,1,1,1,4)

X1 in P(1,1,1,2,5)

Notice that the above are all non-singular.

Proof. As Kx = Ox then o = 0. Suppose h = hcf(a;, a;) # 1 for distinct 2, 3. By Theorem
I1.4.1 (2:2) there exists an m 3 z,j such that k | a,, + a. However @ = 0 and so k| an. By
(3) h =1, a contradiction. Hence a; and a; are coprime for distinct z, j.

Suppose that a; f d. Then there exists an m # i,e; such that a; | am + a. Thus
a; = hef(a;, a,,) = 1, contradicting a; fd. Thus a; | d for all :.

Order the {a;} such that ay > ... 2 ag. S0 5a4 > d > 2a4. Let d = Aay. Thus A =2,3,4
or 5. As the {a;} are pairwise coprime then agajazazas | d and so apajazasz | A. Also
ag + ... + a3 = (A — 1)ay. There are four cases:

(l) A = 5. Either (ag,al,ag,a;:,) = (1,1,1,1) giving ay =1 (16 X5 in P(l,l,l,l,l)) or

(ao,al, ag,ag) = (1, 1,1,5) giving ay = 2 < a;.

(iil) A=4. So A —1 =3 and divides ag + ... + a3. There are three possibilities:
@ (ao,a1,az,a3)=(1,1,1,1), giving 3 | 4.
(b) (@o,a1,az,as) =(1,1,1,2), giving 3 | 5,
©) (ag,a1,az,a3) = (1,1,1,4), giving 3| 7.

All of these possibilities give contradictions.

(iii) A = 3. Either (ao,a1,a2,a3) = (1,1,1,1) giving a4 = 2 (i.e. X in P(1,1,1,1,2)), or

(ag, a1, az,a3) = (1,1,1,3) giving as = 3, contradicting the coprime condition.

(iv) A = 2. Either (ag,ay,a2,a3) = (1,1,1,1) giving a4 = 4 (i.e. X5 in P(1,1,1,1,4)), or

(ao,al, asq, (1.3) = (1, 1, 1, 2) g'iVil"lg aq = ) (lc Xm.in P(l, 1, 1, 2, 5))

[l

Consider the case of codimension 2 complete intersections.

I1.4.4 Theorem.  Suppose X = Xy, 4, in P = Play,...,as) is quasismooth and not the
intersection of a linear cone with another hypersurface. Let o = 5 dy — > a;. X has at worst
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terminal singularities if and only if the following hold:

(1) for all 1, if a; J dy and a; [ d; then there exists e,, eq and m such that a; | d — a.,,
a; | dy — a, and a; | @ + an,, where {i,e1,eq, m} are distinct.

(2) for all distinct © and 3, with h = hcf(ai, a;), at least one of the following occurs:
(a) h|dyand h | d,,
(b) h|dy, h fd2 and h | « + ap, for some m # 1,3, or
(c) h fdi, h|dy and h | a + an, for some m #1,3.

(3) for all distinct 1, j and k, with h = hef(ai,aj,ar), h | dy, h | d2 and h | a + a for some
m#z,7, k.

(4) for all distinct 1, j, k and I, h = hef(a;,a;,ax,a) = 1.

I1.4.5 Note. Since X is quasismooth, of dimension 3 and not the intersect of a linear cone with
other hypersurfaces then X is well-formed. Thus wx = Ox(a).

Proof. Let f; and f, be sufficiently general homogeneous polynomials of degrees d; and
d, respectively, in the variables g, .., z4 with respect to the weights ag, ..., a4. Define
X:(fi=0,f2=0)CP.

Since X is quasismooth the only singularities are due to the k*-action and hence are all
cyclic quotient singularities occurring on the fundamental simplex A.

Assume conditions (1), ..., (4) hold. By condition (4) only the vertices, edges and faces of
A need be considered.

Suppose P; € X. By renumbering we can assume that : = 0. So ap fd; and ag fds. By
condition (1), there exist monomials z;'z., and z3z., of degrees di and d,, where e; # es.
Note that this is really quasismoothness. By renumbering we can write e; = 1 and e; = 2. So
f1 and f; are of the form:

fi=zgiz + ..
fz = I32$2 + ...

Thus 3f, /0z, and 8f;/0z, are non-zero at Py. By the Inverse Function Theorem, z3, z4 and
zx are local coordinates. Hence Py € X is of type aio(ag,a4, ax). By condition (1) ag | @ +am
for some m # 0,1, 2. Without loss of generality assume m = 3. Asdy +dz =ap+... +as + o
then ap | as + as. Let h = hcf(ag,aq). So h | as and, by condition (3), h | di. Since
deg z§z, = dy, h | a; and so, by condition (4), 2 = 1. Thus P, € X is terminal.
Consider the edge P;P;. By renumbering we can assume that ¢ = 0 and j = 1. Let
h = hcf(ap,a;). Notice that PoPy C Xg, if and only if » } dx for A = 0,1. By condition (2),
h | dx for some A. Without loss of generality assume that 4 | d,. There are two cases:
(@) h|ds. PoPyN(fy=0)is a finite set of points for A = 0,1. Thus PP, N X =§.
(b) h [ d;. In this case no monomial of the form zj°z]" of degree d; exists (or else h | dy).
From Theorem 1.5.7 (with I = {0,1}) there exists a monomial z;°z]'z. of degree do,
where e £ 0,1. By renumbering we can assume that e = 2. Thus f; is of the form:

f'z = .’Bgu.'c?l.'ﬂg + ...
and Jfz/0z; is non-zero on Py P; N X. By the Inverse Function Theorem, z3, z4 and z5

are local coordinates and so each point of Py Py N X is of type %(03, aq,as). Condition
(2b) gives h | a + a,, for some m # 0,1,2. Assume that m = 3, and hense % | ay4 + as.
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Let ' = hcf(h,a4). So h | a4 and thus by condition (4) A = 1. Thus these points are

terminal.

Therefore X has at worst terminal points along Py P;.

Consider the face P;P;P;. As before assume : = 0, 7 = 1 and k = 2. By condition (3)
h = hcf(ag,a1,a2) | di and h | d2. So Py P P, intersects X transversally. Each point in the
intersection is of type 3(a3,a4,as). As h | a +an, for some m # 0,1,2, after renumbering,
h | as + a4. By condition (4) hef(h, a3) = 1. Thus these points are terminal.

Therefore condition (1), ..., (4) are sufficient.

Conversely assume that X has at worst terminal singularities. Suppose a; fd; and a; [ d,.
By renumbering assume : = 0. Thus Py € X. Since X is quasismooth there exist 2 monomials
zfz., and zg'z,, of degrees dy and d,, where e; # e2. This gives the first part of condition
(1). Without loss of generality we can assume that e; = 1 and e; = 2. As before we find that
Py € X is of type -51-;(a3,a4,a5). As this is terminal, after renumbering, ag | a3 + a4 and so
ap | o + as. This is condition (1).

Suppose h = hcf(a;, a;) for distinct ¢ and j. As usual we can renumber such that ¢ = 0
and 3 = 1. As X is well-formed then h | dx for some A. Suppose h | dy. If h | d; then this
is condition (2a). So assume that h [ d;. As above each point of Py P, N X is isolated and of
type +(as,as,as). After renumbering, | as + a4 and so k| o + as. This is condition (2b).
Likewise for the case when h | d; but h f d;. This gives condition (2¢).

Suppose h = hcf(a;, aj, ax) for distinct ¢, j and k. Renumber such that : = 0, j = 1 and
k = 2. Since X is well-formed h | d; and & | d2. Py Py P, N X is a finite number of points, all
of type 3(as,as,as). As these are terminal, after renumbering, h | a3 + a4 and so h | o + as.
This is condition (3). Condition (4) follows from the fact that hef(h, a3) = hef(h,a4) = 1.

So these conditions are necessary.

O

I1.4.6 Codimension 2 weighted 3-fold complete intersection with trivial canonical bundle,
The four families of 3-fold codimension 2 quasismooth complete intersections with at worst
terminal singularities, wx = Ox and ) _ a; < 100 are:

Xp4in P(1,1,1,1,1,1)
X34 in P(1,1,1,1,1,1)
_)L34 in P(1,1,1,1,1,2)
X44in P(1,1,1,1,2,2)

Again the above are all non-singular and were found using a computer search based on the
conditions of Theorem 11.4.4.

I1.5 Canonically embedded weighted 3-folds.

I1.5.1 Canonically embedded 3-fold weighted hypersurfaces.
There are 23 families of 3-fold quasismooth weighted hypersurfaces with only terminal
isolated quotient singularities with wy = Ox(1) and }_ a; < 100.
Hypersurface. K% p, Singularities.
XeinP(1,1,1,1,1) 6
X7in P(1,1,1,1,2) 712
Xgin P(1,1,1,2,2) 2

(SN RN O



Xy in P(1,1,1,2, 3)
1

~a

~a

X18 in P(2
ng m P(2
X21 in P(l
Xa2 in P(1,
Xas in P(1,
ng in P(3 8)

.ng in P(2 3 4 53 15)
X0 in P(3,4,5.7,20)
X4 in P(4,5,6,7,23)

32
2
5/6
1
1/2
1/3
12
1/6
1/3
2/15
1/6
1/20
1/30
1/20
1/12
1/30
1/120
1/60 0O
17210 0
1/420 0

3
4
2
3
2
1
2
1
2
1
1
0
0
1
1
1
0
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%(1’_1)1)
5 x %(1,—1,1), 3(1,-1,1)
2 x ?(1,—1,1)
3 x ?(1,—1,1)
6 x ?(1,-1,1), 4 x 3(1,-1,1)
7 X 5(1,—'1,1)
1(1,-1,1), 5 x %(1,—1,1)
2 x %(1,*1,1 , g(l,——l,l)
4 x ?(1,—1,1), 5(1,-1,1), £(1,~-1,2)
9 x ?(1,-1,1), 2 X %(1,4,1)
4 x ?(1,—1,1), 6 x 3(1,—-1,1), %(1,—1,1), 1(1,-1,2)
5 x 3(1,-1,1), 3(1,-1,1), 4 x £(1,-1,2)
%(1:_111)’ % 17"_1:2)
5 x %(1,—1,1), %(1 -1,1), 3(1,-1,1)
F(L-L1), 31 -L1), 11,01,
3(1 -1,1), 3 x l(1 -1 1), 5(1 -1,2), 3(1,~1,3)
Tx3(1,-1,1), 2x (1, 1 y1), 3(1,-1,1), 2 x $(1,-1,2)
F(L-L1, 2% 3(1,-1,1), 2 % 3(1,-1,2), $(1,-1,2)
z(1,—1,1),3><-;-(1,—1,1),§(1,—1,2),%(1,—1,1),;(1,—1,3)

I1.5.2 Conjecture. This list was produced using a computer program. In fact the program was
run much further but produced no more examples. I conjecture that the lists in this section and
in sections I1.5.3, I1.6.5, and I1.6.6 are complete lists, and not limited by > a; < 100.
I1.5.3 Interesting Example. The family X46 in P(4,5,6,7,23) has p,, P, and P; all zero.
It is interesting to find canonical 3-folds with as many of their first plurigenera equal to zero
as possible (see also [F1, section 4.9]). This is the best such weighted complete intersections
example found in these lists.

IL.5.4 Canonically embedded codimension 2 weighted 3-folds.

There are 59 families of 3-fold codimension 2 weighted complete intersections satisfying
the conditions of Theorem I1.4.4 with wyx = Ox (1) and Y a; < 100.

Complete Intersection
.X25 in P(]. 1 1 1,1 1)

.X34 in P(]. 1,1,1 1,1)
X3,5 in P(1,1,1,1,1,2)
X,4in P(1,1,1,1,1,2)
A36 in P(1,1,1,1,2,2)
..X45 in P(1,1,1,1,2,2)
Xy gin P(1,1,1,1,1,4)
Xa6in P(1,1,1,1,2,3)
X4,6 in P(1,1,1,2,2,2)
X3 8 in P(1,1,1,1,2,4)
)L4’7 in P(1,1,1,2,2,3)
Xs¢in P(1,1,1,2,2,3)
XG,B in P(1,1,1,2,3,3)

K3
10
12
15/2

Dy

WWwWLhwhhrahbhuiunhod

Singularities.

Cam Wanme

,—1,1)
7_111)
,1),2 %
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= X X
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et
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x
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2(1,-1,1)

=
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X5 in P(1,1,2,2,2,3)
XG,G in P(1,1,2, 2,2 3)
X310 in P(1,1,1,2,2,5)
Xi1oin P(1,1,2,2,3,3)
Xs7 in P(1,1,2,2,3,3)
X4’10 in P(l, 1, ]., ,3,5)
X4,10 in P(]., 1,2,2,2, 5)
Xs,s in P(1,1,2,2, )
Xs,s in P(1,2, 2,2, )
Xs,g in P(1,1,2 3
ijg in P(1,2, 2,3, )
X4’12 in P(].,
Xs 10 in P(].,
Xs ,10 in P(l
Xs ,10 in P(].
X4 14 in P(l
.Xﬁ 12 in P(].
..Xg 10 in P(l
Ag 12 in P(l
Ae 12 in P(2
.Xﬁ 13 in P(l
Xg 10 in P(l
}xs 14 in P(].
)&.8 12 in P(].
)tﬁ ,14 in P(2
}xalg IIIP(2 3O, Q0
XGIS lnP( 37 1Yy Ey
A.s 186 in P(]. 2, B
X10’12 m P(]. 2, y ,5,6)
X]()’lz in P(2,2 3 4 5} 5)
X10,12 in P(2’3 3: 4') 4,5)
X3’15 in P(2, 3,3 4 5 5)
X6,18 in P(1,2, 3,3,5,9)
Xﬁ]]s in P(2, 2,3,3,4,9)
X014 in P(2,2,3,4,5,7)
Xs’go in P(l, 2, 3,4,5, 10)
Xl2,14 in P(2)3: 41 4)577)
Xy215 in P(1,3,4,5,6,7)
X10'13 in P(2,3,4,5,6,7)
X416 in P(2,3,4,5,6,7)
Xg,gg in P(2, 3,4 4,5 11)
X125 in P(2,3,4,5,6,9)
X12,18 in P(314, 4: 5’ 6) 7)
X021 in P(3,4,5,5,6,7)

1%
» T
1
™
s |

]

~a

1,2,2,3
1,2,3,3
2,2,2,3
2,2,3,3
2,2,2,3
2,2,3,4
2,2,3,4
2,3,3,4
2,3,3,3
2,3,3,4
2,3,3,4
2,2,3,4
2,3,4,4
2,2,3,3
2,3,3,4

3,3,4

3,3,4

1

~

-

B}

Yy

-

b

L ]

)

Y

4/3
32
32

1
7/6
4/3

1

1
2/3
3/4
1/2
2/3
2/3
112
5/12
1/3
3/10
13
1/4
1/6
13/60
1/4
1/4
1/5
1/6
2/15
1/12
1/6
1/6
1/10
1/12
1/15
2/15
1/12
1/12
1/10
120
1/14
1/28
4/105
1/30
1/30
3/140
1/60
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X12,21 mP(3a :5a 3 ! ) 1/70 0

%(1, 1 -1,1), 3 x I(l ~1,2)
X128 in P(3,4,5,6,7,14) 1/105 0 (1,-1,

1,
)2x1(1,~1,1),2% 1

I1.6 Q-Fano 3-folds.

In [R4, section 4.3] Reid conjectures that if X is a Q-Fano 3-fold then Ox(—Kx) has a
global section. This is false as shown by the following example:
I1.6.1 Example.

The family X414 in P(2,3,4,5,6,7) is an anticanonically embedded Fano 3-fold with
only the following isolated terminal singularities: 1 of type 1(4,1,2), 2 of type $(2,1,1) and 7
of type 1(1,1,1). These singularities were determined eariler.

Since it is quasismooth and of dimension 3, wyx = Ox(—1) and K} = —&. By an
unpublished result of Barlow (see [R4, Corollary 10.3]) we have

ry —1
ExcX)= Y 8~ _24x(0x)
singularities Q e
where rq is the index of the singularity Q of type 7-(1,-1,bq). So Kx.c = -2 <o,

However O x(—Kx) = Ox(1) has no global sectlons
Experimentation leads to the following:

I1.6.2 Conjecture, Every weighted hypersurface Q-Fano 3-fold X, with canonical singularities,
has a global section of w3!.

This is clear in one particular case.

I1.6.3 Lemma. Consider X4 in P(aq, ...,a4) be a family of Q-Fano 3-folds with only isolated
terminal singularities. Suppose also that ag < ... < a4 and a4 [ d. Then wyx' has a global
section.

Proof. As a4 [ d, the vertex P, is contained in X. The condition for a terminal singularity
at P; gives that there exists an a,, such that a4 | am + a. S0 aym = payg + (—a) for some
integer u. Since « < 0 and a4 > ap,, then p < 0. Thus deg(mg_“)
dim H*(Ox(—a)) > 1. But HO(w5!

Zm,m) = —a and so
) = H(Ox(~«)), and so w3' has a global section.
U

Notice that when a = —1, there exists a generator z; with deg (z;) = 1,1i.e. ag = 1.

11.6.4 Lemma. There is a bijection between the following:
(i) the set of families of quasismooth, well-formed weighted surface hypersurfaces Sy in
P(ay,..., as) with only canonical singularities and trivial canonical class.
(ii) the set of families of quasismooth weighted 3-folds hypersurfaces Xg in P(1,a4,...,a4)
with only terminal singularities and wx = Ox(-1).

Proof. Suppose that S; in P = P(ay, ..., a4 ) is a K3 surface, with at worst canonical singularities.
By comparing the conditions in Theorems I1.3.1 and I1.4.1 it is clear that the conditions of the
latter are satisfied for X = X4in P(1,q,...,an). Thus X is quasismooth with at worst terminal
singularities.

(1,-1,1),2x3(1, -1,

2)
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Conversely suppose Xg4 in P(1,ay,...,a,) is quasismooth and has at worst terminal sin-
gularities. It can be seen from Theorems IL3.1 and I1.4.1 that only condition (1z:) of Theorem
I1.3.1 needs proof (the others being either trivially satisfied or equivalent in both the surface and
the 3-fold case).

Set ap = 1 and consider a; for i £ 0. Suppose that condition (1:z) does not hold. So
a; fd—a, forall e =1,...,4. In particular a; Jfd. Thus a; | d — ap, 1. a; | d — 1. Since
a; fd then Theorem I1.4.1 (17v) gives that there exists an m 3 0, ¢ such that a; | a,, — 1. Hence
ai | (d—-1) —(am — 1), i.e. a; | d — am, a contradiction. So a; | d — a,. for some e # 0,1,
which is condition (1:2) of Theorem IL.3.1.

O

I1.6.5 Note. Each singularity on the K3 surface is of type i(a,—a) for some r and a, with
respect to some pair of the coordinates z,, ..., 4. Forming the comresponding Q-Fano 3-fold
results in an extra local coordinate zo at each singularity, which is thus of type 1(a,—a,1). A
similar result holds for higher codimensions. '
I1.6.6 List of anti-canonically embedded (Q-Fano) weighted 3-folds.

The previous lemma gives a bijection between Reid’s list of 95 families of weighted K3
surfaces (see section I1.3.3 or [R4, section 4.5]) and the 95 families of quasismooth weighted

hypersurface Q-Fano 3-folds, with « = —1 and }_ a; < 100. These were found by a computer
search and are listed below. '

Hypersurface. K% Singularities. ;

X,4in P(1,1,1,1,1) -4 /

Xy in P(1,1,1,1,2) -512 1(1,-1,1) |

X in P(1,1,1,1,3) -2

X in P(1,1,1,2,2) 312 3 x #(1,-1,1)

X7in P(1,1,1,2,3) -7/6 3(1,-1,1), 3(1,-1,1)

Xgin P(1,1,1,2,4) -1 2 x 3(1,-1,1)

XeinP(1,1,2,2,3) 23  4xi(1,-1.1), 51,~1,1)

Xein P(1,1,1,3,4) -3/4 i(1,-1,1) )

X, in P(1,1,2,3,3) -1 %(1,-1,1), 3 x 3(1,-1,1)

X]o in P(1,1,1,3,5) -2/3 3(1,—1,1)

X0in P(1,1,2,2,5) -1R2 5x 3(1,-1,1)

Xy in P(1,1,2,3,4)  -5/12 2 x %(1, -1,1), $(1,-1,1), 3(1,-1,1)

§11 %n gg’i'i’i’g; '}/12/30 %Eis—:vi;' %(13_1)1)’ %(17_112)
12 1In 4, L, 4, - 2{H—4

X1, in P(1,1,2,3,6) -1/3 2 x z(1,-1,1), 2 x 3(1,-1,1)

X1z in P(1,1,2,4,5)  -3/10 3 x %(1, -1,1), 1(1,-1,1)

X2in P(1,1,3,4,4) -1/4 3 x 3(1,-1,1)

Xi2in P(1,2,2,3,5) -1/5 6 X %(1,—1,1), $(1,-1,2)

X12in P(1,2,3,3,4)  -1/6 3 x 3(1,-1,1), 4 x £(1,-1,1)

X3 in P(1,1,3,4,5)  -13/60  1(1,-1,1), (1,-1,1), 3(1,-1,1)

X4 in P(1,1,2,4,7)  -1/4 3 x 2(1,-1,1), (1,-1,1)

X inP(12.23.7) -6  7xi1-11) i1 -1.1)

X in P(1,2.3,4,5) /60 3 x i(1,—1,1), }1,-1,1), 1(1,=1,1), 1(1,~1,2)

X5 in P(1,1,2,5,7)  -3/14 3(1,-1,1), $(1,-1,3)
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. _ -1,2
X5 in P(1,1,3,4,7)  -5/28 (L L), 7 (1 )1 1
15 1 16 2% 1(1,<1,1), 1(1,-1,1)
X5 in P(1,1,3,5,6) 112y 1),3 x (1, -1,2)
X5 in P(1,2,3,5,5)  -1/10  3(1,=1,1),3 x ¢ )
. 1125 % 3(1,-1,1), (1,1,
X5 in PEL3:§’§’§% 1/5 2 X 1(1 ~1,1), %(1,—1,2)
Xi6 in P(1,1,2,5, i 11 211 ’2x—1—1,1)
Xy in P(1,1,3,4,8)  -1/6 ?(}’_i’ﬁ’ 11, 1(1 1), 1(1,-1,1)
Xy6in P(1,1,4,5,6)  -2/15 E( 1(1,-1,1), 3(1,-1,1), ¥(1,-1,2)
X inP(L2,3,47) 201 4 x 30, 11,211, 1(1,51,2), 11, -1,3)
X POLRSST) 210 5L, —1,1), 4(1,-1,1)
X in P(1,1,2,6,9)  -1/6 X ?( b3 3
; 215 2 x 3(1,-1,1), 5(1,-1,
Xy in P(1,1,3,5,9) 11 3_1 1 1(1 -1,1), %(1,—1:1)
Xig in P(1,1,4,6,7) -3/28 Z( R N {1 -1 1) l(]_ —1 1)
: 124 x g(1,-1,1), 2 x 5(1, -1, 1), 4(1, -1,
X1s in P(1,2,3,4,9) f 1(1,-1,2), 1(1,-1,3)
i 8) -3/40 2 x £(1,-1,1), #(1,-1, f
XIB in P(]-, 2)3351 ) g i _1 1 (1 1 1) (17_‘111)
: 1120 3 x i(1,-1,1), 4(1 ) 5
X15in P(1,3,4,5,6) - L1, 21,1, 31, 21,1, 31, 51, 2), 11,21, 2)
X19 in P(1,3,4,5,7) :19/420 ?(1) 1:1)’3 . 1(1 _151)
Xy in P(1,1,4,5,10)  -1/10 25( ’1_(1 -1.1 i(l -1,1), 2 x §(1,-1,2)
X20 in P(1,2,3,5,10)  -1/15 o ‘1) 1 1,-1,2)
20 9 -1/18 5 x 3(1,-1,1), 5(1,
Azo 1n P(l, 2,4)5) ) % ? -1 1) (1 )
Rl 7 -121 3 x 1i(, 11’"(1 ’
X30 in P(1,2,5,6,7) 101 21 1),2 x i(1 ,1), (1 1,3)
X0 in P(1,3,4,5,8)  -1/24 51( , = 1) 3
Xpin P(1,1,3,7,10)  -1/10 Fg ) ’z))m ~1,1
X21 in P(1’1’5’7’8) -ijz::g iglj—l,l),s X’l(l,,—].,l)a %(17 1!4)
§21 ?2 ll:gijg,g,g,gg '1/30 % X’%(]-) "']-) 1)’ %(11 _132)’ E(l’ _1,1)
211 30y 0y Uy 1 - 1. -1.2
mpareen am IS D,
Xp2 in P(1,1,4,6,11) -1/12 3( 7L 1) 3(1 _161 (1 1)
: -1/20 5% 2(1,-1,1), 5(1, )3
Xy2 in P(1,2,4,5,11) f ! 1,-1,1)
oy 8,12) -1/12  2x 3(1,-1,1), 1(1,-1,
X24 in P(1,1,3,8,12) 1 1 1 1)
2 1718 3(1,-1,1), 1(1,-1,1), 1(1,~1,
X34 in P(1,1,6,8,9) - 2\ )3 11,-1,1), £(1,-1,3)
. 1721 2 x _(]_,—]_,1), 2 x 3( ) AR AN )
X34 in P(1,2,3,7,12) 3 ?(1 -1,1), £(1,-1,4)
X mBo st 1 5 x I e T o)
Xaq in P(1,3,4,5,12) -1/30 2 x 3(1, VAR 213
: s 11,010, 30, 21,9, -,
X34 in P(1,3,4,7,10) -1/ 1 101 J11) 1 1,-1,1), #(1,-1,1)
o 7,8)  -1/42 4 x z(1,-1,1), 5(1,-1, 1011 L1 -1
A‘Zd. 1n P(l,sg 6, bl ) 2 x i(l -1 1), i(l,_l,l)’ 5(1,-1:1)7 "9'(1) 1)2)
X24 in P(1’4’5’6’9) -1/45 1 1 2—1 ,1) ’l(l 5—]. 3)’ %(11_1)2)
X25 in P(1,4,5,7,9)  -5/252 ¥(1’ 1,2), 1(1’—1’1)
X PLLSTI 285 51,012 30 LY 1), 1(1,-1,3)
o §,13) -124 3 x5(1,-1,1), 5(1,-1,1), £(1, -1,
X36 in P(1,2,3,8,13) ? 111 2), 1(1,-1,1)
i 13 -1/30 4 x -(1,—1,1), '5( , 14 ) gl y
Xy in P(1,2,5,6,13) 101 2_1 1), $#(1,-1,1), £(1,-1,5)
Xy7in P(1,2,5,9,11)  -3/110  i(1, AN UL 1,11 ~1,3)
Xy inP(1,5,6,7,9) 170 1(1,-1,1) §(1,-1’1§' s(L =11y 7(L =1,
27 1
) 5(1,-1,1), 5(1,-1,2
Xps in P(1,1,4,9,14)  -1/18 7o 1’13 i%l -1,1),2 x 1(1,-1,2)
X28 in P(]. 3,4,7 14) '1/42 3(1,_ y L] b H ’ 7
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Xz in P(1,4,6,7,11) -1/66 2 x 2(1,-1,1), (1,-1,1), 15(1,-1,3)
X30 in P(1,1,4,10,15) -1/20 -;-(1,—1,1), %(1,—1,1), %(1,—1,1)
X30in P(1,1,6,8,15) -1/24  £(1,-1,1), 3(1,-1,1), 5(1,—1,1)
Xj0 in P(1,2,3,10,15) -1/30 3 x %(1,—1,1), 2 x 3(1,-1,1), 3(1,-1,2)
X30 1]’1 P(1:2}6)7: 15) -1/42 5] X 5(1a_1$11)’ %(13_11]1)’ %(1)_1)1)
X30 in P(1,3,4,10,13) -1/52 1(1,-1,1), 1(1,-1,1), ﬁ(1,—1,4)
X3 in P(1,4,5,6,15) -1/60 ¥(1,—1,1), 2 x 3(1,-1,1), 2 x $(1,-1,1), 3(1,-1,1)
X30in P(1,5,6,8,11) -1/88  £(1,-1,1), 3(1,-1,3), (1,-1,2)
X2 in P(1,2,5,9,16) -1/45 2 x 1(1,-1,1), £(1,-1,1), 3(1,-1,4)
Xpin P(1,4,5,7,16) -1770 2 x 1(1,-1.1), 1(1,~1,1), }(1,-1,3)
Xi3 in P(1,3,5,11,14) -1/70  %(1,-1,1), 11—4(1,—1,5)
X in P(1,3,4,10,17) -1/60 %(1,—1,1), Ya,-1,1), 2a,-1,1), £(1,-1,3)
X34 in P(1,4,6,7,17)  -1/84 §(1,—1,1),% x 1(1,-1,1), 6(1 -1,1), 3(1,-1,2)
X3 in P(1,1,5,12,18) -1/30  £(1,-1,2), ¥(1,~1,1)
Xs6in P(1,3,4,11,18) -1/66 2 x §(1,-1,1), (1,-1,1), ]1(1 -1,3)
X36 in P(1,7,8,9,12) -1/168 %(1,—1,3), %(1,—1,1) ;1(1 1), 3(1,-1,1)
X p(Ls68l0) 1120 1011 1o 11 Hhonh, 30,-19
38 1In 1 9O - 3’_”3’_”5’_”?3'1’_’
X40 in §(1,5,7,8,20) i%o 21 x %(1,—1,12), %(1,-1,}1), 1(1,-1,1)
X42in P(1,1,6,14,21) - 1a,-1,1), 11,-1,1), (3, -1,1
ij in PEl,2,5,14,21g -1/70 §(x %(1,—1,31(), %(1,—1,71(), %(1,—)1,3)
X4 in P(1,3,4,14,21) -1/84 2 x 3(1,=1,1), 3(1,-1,1), 3(1,-1,1), 3(1,-1,2)
X44in P(1,4,5,13,22) -1/130 $(1,-1,1), $(1,-1,2), 513(1,—1,3)
X4 in P(1,3,5,16,24) -1/120 2 x %(1,-1,1), §(1,—1,1), 1(1,—1,3)
Xso in P(1,7,8,10,25) -1/280 %(1,3—1,2), %(1,—1,1), f(1 3 , 1), (1 -1,2)
.X54 in P(1,4,5, 18, 27) -1/180 g(l,—l,l), ?(1,—1,1), §(1 '—1,2), (1 1,2)
Xes in P(1,5,6,22,33) -1/330 3(1,-1,2), 3(1,-1,1), 3(1,-1,1), 1](1 -1,2)

I1.6.7 Codimension 2 Q-Fano weighted complete intersections.

There are 85 codimension 2 quasi-smooth Q-Fano weighted complete intersections which
satisfy the conditions of Theorem I1.4.4, o = —1 and }_, a; < 100.
Complete intersection K3 Singularities.
Xg,g in P(l,l,l,l,l,l) -6

X33in P(1,1,1,1,1,2) 922  3(1,-1,1) .

X34in P(1,1,1,1,2,2) -3 2 x $(1,-1,1)
XsainP(1,1,1,1,2,3)  -8/3 %(1,-1,1)

X44 in P(1,1,1,2,2 2) -2 4 x 2(1 -1 1)

Xi5in P(1,1,1,2,2,3)  -5/3  1(1, —1 ,1), 2 x 3(1,-1,1)
X46in P(1,1,1,2,3 3) 43 2 x (1 -1,1)

X4,5 in P(l 1 2, 2,2 3) -1 6 x z(l -1 1)

Xs6in P(1,1,1,2,3,4) -5/4  }1,-1,1), 2(1 ,1)
Xs6in P(1,1,2,2,3,3) -56 3 x 2(1 -1,1), 2 X 1(1,-1,1)
Xeein P(1,1,1,2,3,5) -6/5  i(1,-1,2)

Xeein P(1,1,2,2,3,4)  -3/4 2(1,—1,1), 4 x 2(1,-1,1)
Xesin P(1,1,2,3,3,3) -2/3 4 x 3(1,-1,1)



Xﬁllo 1n P(l,l, 3
XG,]O in P(l)za ,3: )
Xsoin P(1,1,2,3,4,7)
Xs,g in P(1,1,3,4, 4,5)
Xs,g in P(1,2,3, 3,4,5)
XS,]O in P(1,1,2,3,5,7)

bPCJ'(
0101
N

X3,10 in P(l, 1,2,4,5,6)
XS,]O in P(l, 1,3,4,5, 5)
XswinP(l 2 3 44 5)
Xg 10 in P(l 1 2,3 S 8)
Xg ,10 in P(l 1 3,4,5,6)
Xo 10 in P(1.2.2.3 5, 7
XQ,]O in P(1,2,3,4,5,5)
Xs,lg in P(1,1,3,4,5,7)
X3 12 in P(]. 2,3,4,5,6)
Xg ,12 in P(l 2 3,4,5 7)
X]g 11 in P(l 2 3, ,5 7)

XIO 12 in P(]. 1,3, 4, 5,9)
XIO 12 in P(l 1 335! 6: 7)
XlO 12 in P(l 1 4,5,6,6)
X10,12 n P(1,2, 3, 4,5,8)
X10,1‘2 in P(1,2, 3,5,5,7)
X10,12 in P(1,2,4, 5,5,6)
X10,12 in P(1,3,3,4,5,7)
X012 in P(1,3,4,4,5,6)
X1112 in P(1,1,4,5,6,7)
X10,14 in P(la 1) 2a 53 71 9)
XIO 14 in P(l, 2, 3, 5, 7, 7)
XlO 14 in P(1,2,4,5,6,7)
-XIO 15 in P(1,2, 3, 5, 7,8)
A]Q 13 in P(]., 3, 4, 5, 6, 7)
X12 14 in P(l, 1, 3, 4, 7, 11)
X12 14 1n P(l 1,4,6, 7,8)
X12,14 in P(1,2,3,4,7,10)
X12,14 in P(1a273: 5’ 739)
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-12 9 x 3(1,-1,1)
-7/10 %(1,—1 2),3 x $(1,-1,1)
712 £(1,-1,1), 3(1,-1,1), 2 x 3(1,-1,1)
-4/5 %(1,-1 1)
-8/15 g(1,~1 2) 2 x 3(1,-1,1)
-2 2x i (1 1)2><%(1, ,)
-1/3 6 x (1 1,1), 2 x 3(1,-1,1)
-9/20 %(1, -1,1), §( -1,2), 3(1,-1,1)
Z;s g(1,](11 1)1 2()1 -1,1),2 x %(1 -1,1)
- X = ,
-1/4 l(1,5-1,1), 7 x %(1,~1,1)
an o xda -y
310 1(1-1.1)2 x (1. -1.1)
-1/5 i(1,—1,2), 2 x %(1,—1,1), 3 x 3(1,-1,1)
-8/21 i(1,—1,1), 3(1,-1,3)
-1/3 i(1,—1,1), 3 x %(1 -1,1)
ans fal-11) 2 x 1 -11)
-1/6 1(1,—1,1), 4 x %(1 -1,1),2 x 3(1,-1,1)
38 %(1,—1,3), 5(1,-1,1)
-1/4 ¥(1,—1,1), $(1,-1,1), 3(1,-1,1)
-3/14  2(1,-1,3), 5 x %(1,*1,1)
3p0 L -11) 2 x (1 -1.1),2 x 11, -1,2)
-8/35 %(1,—1,1), 1(1,-1,2)
2/15 £(1,-1,1),4 x 3(1,-1,1), 2 x 3(1,-1,1)
-9/70 %(1,—1,2), %(1,—1,2), 3x 1(1,-1 1)
-11/84  3(1,-1,1), 1(1,-1,1), 3(1,-1,3), 2 X 2(1,-1,1)
29 3(1,-1,2), 3(1,-1,1)
-421 %(1, 1,1),2 x %(1,—1,1)
-1/6 ?(1,—1,1),2‘x §(1, 1,1)
-1/8 §(1,—1,3), 3 x ?(1, -1,1), 1(1,-1,1)
-435  2(1,~-1,3),2 x 3(1,-1,2)
-1100 5 x 3(1,-1,1),2 x £(1,-1,1)
221 3(1,-1,2),4 x 3(1,-1,1)
112 2% 3(1,-1,1), 3 x 3(1,-1,1), 1(1,-1,1)
-11/70 %(1,4,1),% 1,-1,1), %( -1,1)
'2/9 '?'(13_134)
2121 §(1, 1,1), 2 x £(1,-1,3)
-1/12 }-(1, -1,1), (1 -1,1),5 x 2(1,-1,1)
-5/56 T(l’ 1,3) (1 -1,3), 3(1,-1,1)
-;/3310 gl(gi 1113) (1 -1,2),2 x 3(1,-1,1), (1,-1,1)
18 %1(1 L1,1), 3(1,-1,1), 1(1,-1,1)
-1/10 10( -1,3), 4 x 1(1 -1 1)
-4/45  2(1,-1 2) 3(1,-1,4), 3(1 1)
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X12,14 in P(1,3,4, 5, 7,7) '2f35 %(1,—1,2), 2 X 'i'(]., —1,2)
X124 in P(1,4,4,5,6,7) -120 §(1,—1,1), 3 x }-(1,—1,1), 2 % %(1,—1,1)
X12]14 in P(2,3,4, 5,6,7) -1/30 3(1,—1,2), 7 X% 5(1,—1,1), 2 x 5(1,—1,1)
?2'15 i gg’;’i’ g’g’é;) ?ﬁg f{g ,_11’2?,3%(1’1?11’1)1 1), 3(2,-1,1)

12,15 111 1y EH U, Y, - gl T eh XE)_1’§’ )
Xi215 in P(1,3,4,5,7,8) -3/56 %(1,—1,2), %(1,—1,3), 3(1,-1,1)
X12,16 in P(1,2,5,6,7,8) 22135 £(1,-1,2), 2(1,-1,1), 4 x 1(1,-1,1)
X415 in P(1,2,3,5,7,12)  -1/12 fgu( ,—1,5), 3(1,-1,1), 3(1,-1,1)
X14,15 in P(1,2, 5, 6, 7, 9) -1/18 —(1,—1,1), %(1,—1,4), 2 x %(1,—1,1)
?4,15 in g(1,3,4, 5, ;, ;0) -1//32. %(.1,—1,1), }io(l, 1,33),;(1,1—1,2)

in P(1,3,5,6,7, -1 =(1,-1,1), (1,-1,3), 2 x %(1,-1,1

Xiii: in Pgl,1,5, 7,8, 9; -4/45 %El,—l,zg, %El,—l,lg i )
X416 in P(1,3,4,5,7,11)  -8/165 }-(1,—1,1), §(1,—1,2), }1—](1,—1,3)
X14.16 in P(1,4,5,6,7,8) 130 £(1,-1,2), £(1,-1,1), 5(1,-1,1),2 x 2(1,-1,1)
Xis16 in P(1,2,3,5,8,13)  -1/13 il15(1,—1,5), 2 x %(1,-1,1)
X156 in P(1,3,4,5,8,11)  -1/22 ?(1,4,4), 2 % §(1,—1,1.)
X418 in P(1,2,3,7,9,11)  -2/33 }—1(1,—1,5), 2 x 5(1,-1,1)
X415 in P(1,2,6,7,8,9) -1724 §(1,~1,1), 5 x %(1,—1,1), 3(1,-1,1)
X1220 in P(1,4,5,6,7,10)  -1/35 #(1,-1,2),2 x 5(1,-1,1), 2 x (1,-1,1)
)gms in P(1,1,6,8,9,10)  -1/15 ﬁ(l,—l, 1), %(11,—1,1), %(1,1-1,1) 1
X16,18 in P(1,4,6,7,8,9) -1/42 7}(1,—1,1),2x E(11,—1,1),2><§(1,—1,1),5(1,—1,1)
;]8,20 mn g§13435a6333 1‘313 ';gz }_4(( 5_1:3))): 12()( E(la_)l:l)) 5(11_1y1)

18,20 1n 1,4, 5, 7, ,1 - 1 = 1,—1,3 » 13 1,—1,3
Xis20 in P(1,5,6,7,9,11)  -4/231 %(1,—1,3), TI‘T(1,—1,2), 3(1,-1,1)
Xis,22 in P(1,2,5,9,11,13)  -2/65  £(1,-1,1), :5(1,—1,6)
Xa0,21 in P(1,3,4,7,10,17) -1/34 }1—7(1,—1,5), %(1,—1,1)
X830 in P(1,6,8,9,10,15) -1/120 §(1,—1,1),2><%(1,—1,1),2><§(1,—1,1),§(1,—1,1)
X343 in P(1,8,9,10,12,15) -1/180  3(1,-1,1),3(1,1,1),5(2,-1,1),3(1, ~1,1),3(1,~1,2)

I1.6.8 Note. X, ;4 in P(2,3,4,5,6,7) is the only element in the above list with a; > 2 for all
1 (see Example 11.6.1).

IL.7 The plurigenera formulas.

Before we describe the Ried’s table method for producing examples of weighted complete
intersection we must state the plurigenera formulas for canonical and Q-Fano 3-folds.

I1.7.1 Definition. For a singularity Q of type 1(1,—1,b) define:

0 ifn=0,1
(Qm)= { T BCHR) 5,59
k=1

where T denotes the smallest non-negative residue of z modulo . This is extended to negative
integers via:

I(—n) = —I(n+1)
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for all » > 0. This is for consistancy with Serre duality. For a collection (or basker) B of
singularities define:

i(n)="" Ug,n)

Q€B
foralln € Z.

From [F1, Theorem 2.5, equation (4)] (see also [R4, Chapter III]) we have the following:

I1.7.2 Theorem. For any projective 3-fold X, with at worst canonical singularities, there exists
a basket B of singularities such that

(2n — Dn(n —

= D g~ (2n - )(0x) + ()

X(Ox(nffx)) =

for all n € Z.

J1.7.3 Canonical 3-folds.
Let X be a canonical 3-fold. Then K x is ample and we have:

(2n — D)n(n - 1)

" P, = x(Ox(nKx)) = o

K% = (2n = 1)x(Ox) + I(n)

for all n > 2. This formula is Reid’s exact plurigenera formula.

I1.7.4 Q-Fano 3-fold complete intersections.

If X is a Q-Fano 3-fold then —I{x is ample. Moreover if X is also a complete intersection
then x(Ox) = 1. So:

2n+n(n+1)

P_, =x(Ox(—nKx))= 155

(-Ex)’+@n+1)—I(n+1)

for all n > 1.

I1.8 The Reid table method.
Consider a complete intersection Xg, .. 4, in P(ayg, ..., ay). The Poincar€ series (see [WPS,
section 3.4] and compare [A&M, 11.1]) corresponding to the coordinate ring 12 of X is:

!

P(t) = i hO(X, Ox(n))t"

n=0
t=c
IT(1-1%)
— i=1
i=n

(1—t%)

..
il
o
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o0
Moreover if wx = Ox(1) then P(t) = > Pp(X)t", where P,(X) are the plurigenera of X.

n=0
o0
In the case of a Q-Fano 3-fold with wx = Ox(—1) then P(t) = 3 P_,(X)}t", where P_,(X)
n=0

are the anti-plurigenera of X.
11.8.1 Example. X¢ in P* has Poincaré series

_ (-1

N Ens

=1+1+5t2 4+ 153+ ...
Sopg=1,P2=5, P3=15,etc.

I1.8.2 Question. Given a list of plurigenera (which could arise from a record of pluridata) does
there exist a complete intersection with wx & Ox(£1)?
The following lemma due to Reid helps answer the above.

11.8.3 Lemma. Given a sequence pg = 1, p1, pa2, ... such that

& T (1 - v
pit = S——
T St

for some {d;,a;}. Then these {d;,a;} are unique up to a; # d; and are determinable.

Proof. The following is a constructive proof. Let ¢? = p;. So

© i TI01—t%)
2 W= [y

Without loss of generality assume that d. > ... > d; and a,, > ... 2> a¢. Clearly we may assume
ag # d or else these two terms would cancel. There are two cases:
() ap < dy. Let ag occur with multiplicity g Then P(t) = 1 + ut®° + higher order terms.
So the first non-zero ¢7 is g3, = u < 0. Define ¢} = ¢} — ¢)_, , where ¢f = 0if z < 0.
Then ¢;, = ¢, — 1. Thus

w - m .
D gt = (af — gi_a,)t
i=0 1=0

=(1—t“°)i gt

=0

[y

(1—t4)

§

ii
A

—=
—~—
—
|
-
2
g

-I-l.
(=



A. R. Fletcher. -50-

This involves one less a;.

(ii) di < ap. Let d; occur with multiplicity . Then P(t) = 1 — ,utdl + higher order terms.
So the ﬁrs‘t non-zero q) is ¢§, = —p < 0. Define ¢} = ¢f +¢}_,,, for i = 1,2, ... where
g} = 0 if i} 0. This corresponds to:

m - w .
Yoaitt =" (q] +alg)t
=0 i=0
w .
=> (& + q)u, +9gq, + )
=0
[T (1~1t%)
— =2 )
[T (1 —1%)
1=0

This involves one less d;.
Repetition of the above steps clearly terminates when

o0
D at=1
t=0

By induction on the number of a; and d; it is clear that the process uniquely determines the q;
O]

11.8.4 The table method. So the proof of the above lemma allows us to construct a weighted
complete intersection from a list of ‘plurigenera’. This construction is easily set out in the form
of a table. In the first column write down the integers {0,1,2,...} and in the second the list
{1, Py, P,,...}. Let the n'® column be denoted by ¢ for i = 0,1,.... Each successive column
is obtained as follows. Look down the list {¢*} of the n'® column to find the postion of the
first non-zero entry (disregard the initial 1 at the top of the column). Suppose this is in row r.
There are 2 cases:
() this entry is postive. First enter (r) at the head of this column. This will keep a record of
the degrees of the generators. The (n + 1)'" column is obtained by the rule:
‘I?-H = q:; - Q?—ra
assuming that ¢ = 0 for all : < 0.
(ii) this entry is negative. First enter (—) at the head of this column. This will keep a record
of the degrees of the relations. The (n + 1)** column is obtained by the rule:

n+l __ n n+1
4; =4 =45,

assuming that ¢7'*! = 0 and for all 7 < 0.
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The process is clearly defined and the integers at the head of each column keep track of the a;
and —d;.

I1.8.5 Example. Consider the record of pluridata K° = %, x = 1, pg = 0, 9 singularities of type
2(1,1,1) and 8 singularities of type 1(2,1,1). Using Reid’s plurigenera formula (see section
11.7) the plurigenera P, corresponding to this record was calculated and is given below. The
table obtained is the following:

n P, ) ) C RN C) 3) (4) (-6) (-12)
0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0
3 3 3 3 2 1 0 0 0 0
4 4 2 1 1 1 1 0 0 0
5 6 3 0 0 0 0 0 0 0
6 11 7 5 2 0 -1 -1 0 0
7 12 6 3 2 1 0 0 0 0
8 19 8 1 1 1 1 0 0 0
9 25 13 7 2 0 0 0 0 0
10 32 13 5 2 0 -1 0 0 0
11 41 16 3 2 1 0 0 0 0
12 54 22 9 2 0 0 -1 -1 0
13 64 23 7 2 0 0 0 0 0
14 81 27 5 2 0 -1 0 0 0
15 98 34 11 2 0 0 0 0 0
16 117 36 9 2 0 0 0 0 0
17 139 41 7 2 0 0 0 0 0
18 166 49 13 2 0 0 1 0 0
19 191 52 11 2 0 0 0 0 0
20 224 58 9 2 0 0 0 0 0

This gives X 12 in P(2,2,3, 3,3,4), which has the above record.
I1.8.6 Note. Of course this method cannot tell the difference between X4 in P(1,1,1,2) and
the example of V. lliev X3 ¢ in P(1,1,1,2,3), in which the cubic relation does not involve the
degree 3 generator.

However in this section we are only interested in the general member of a family of weighted
complete intersections and so Iliev’s example does not occur.
I1.8.7 Warning. Although in general it is clear when this process stops, it is not clear when it
is worth continuing with a particular list of integers.
I1.8.8 The analysis.

This process is basically the same as that in section I1.2.6 on the coordinate ring

R:@Rm.

m2>0

Starting from the dimensions of each R,, the degrees of the generators and relations can be
found. At each stage it is assumed that the monomials are linearly independent unless
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(i) there already exist relations of a lower degree, or

(ii) a relation is forced by the dimension not being large enough.
For the above example we have the following analysis:

Degree Dimension Monomials

0 1 1

1 0 0

2 2 To, T1.

3 3 Yo, Y1, Y2.

4 4 :c%, ToZ1, :c?, z.

5 6 ToYo, ToY1, ToY2, T1Yos T1Y1, T1Y2.

6 11 z3, T3z, 2ozt 73, ¥E, vov1, Yoya, ¥I, V1V, Y3, Toz, T12. 1 relation.

If this calculation is continued only one more relation is found, which is of degree 12

I1.8.9 Canonical 3-fold complete intersections.
The formula:

1,
Py = 5 K% =3(1-p)) +1(2)

limits the value of p, (since K% > 0) and defines K% in terms of a particular basket of
singularities and P;.
I1.8.10 Q-Fano complete intersections.

The formula: 1

defines K% in terms of a particular basket of singularities and P_;.

I1.8.11 The search. The search through all combinations of P > 0 (P, = P for canonical
3-folds and P_; = P for the Fano case) and baskets will give every possible list of plurigenera
(respectively anti-plurigenera). Hence a list of canonically (respectively anti-canonically) em-
bedded complete intersections can be found. Of course this is not a finite search, and requires
a computer to make any resonable progress.

The order of the search was as follows. Let @; for : = 0,1, ... be a list of the types of
3-fold cyclic quotient singularity -f;(l, —1,a) in order of increasing index r and increasing a
within each index. So Q¢ = 3(1,1,1), @ = 3(1,-1,1), etc.. The program took 2 integer

arguments [ and u, and searched through all baskets {n; x @;} such that I < 3 n;(i +2) < u.
=0

I1.8.12 The raw list.
Here is the first part of the list produced by the search program (with arguments O 8).
Xs in P(1,1,1,1,3)

X]g in P(1,1,1,4,6)
X4 in P(1,1,1,1,1)
Xs in P(1,1,1,1,2)
X in P(1,1,1,2,4)
X]o in P(1,1,1,3,5)
X2 3 in P(l,l,l,l,l,l)
Xs3in P(1,1,1,1,1,2)
A34 in P(1,1,1,1,2,2)
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Xg in P(1,1,1,2,2)

X4,4 in P(1,1,1,1,2,3)
X7in P(1,1,1,2,3)

X, in P(1,1,1, 3,4)
X222in P(1,1,1,1,1,1,1)

XG,G in P(1,1,1,2,3,3)
X2 in P(1,1,2,3,4)
X44in P(1,1,1,2,2,2)
X]g in P(1,1,2,2,5)
X5in P(1,1,1,2,2,3)
X]g in P(1,1,2,6,9)
X4 6 in P(1,1,1,2,3,3)
)Ls ¢ 1N P(]., 1,1,2,3,4)
X6 g 1N P(l, 1,1,3,4, 5)

I1.8.13 Refinement.

Of course this list contains complete intersections already obtained in other ways (see
sections II.5 and I1.6) and some intersections which do not meet the requirements; i.e.
(1) dimension 3,
(2) quasismooth but not the intersection of a linear cone with other hypersurfaces,
(3) canonically or anti-canonically embedded,
(4) and have at worst terminal singularities.
The example X 5, in P(2,2,3,4,5,11) from the raw list is not quasismooth, since the poly-
nomial of degree 6 does not involve the generator of weight 5. We use the following lemma to
cut out a large number of elements from the raw list produced by the search program.

I1.8.14 Lemma. Let Xg4, ... a4, in P(ao, ..., an) be quasismooth but not an intersection of a linear
cone with other hypersurfaces. Suppose also that dy, ...,d. and ay, ..., a, are in increasing order.
Then:

(i) de > an, de1 > An—q, .., dy > Qp—ct1-

(ii) if de—1 < ay, then an | d..

Proof. (z). Suppose d. > an, ..., dec g1 > @n—g41 and de_x < an—j for some k =0,...,c— 1.
So d; < a,—i for all ¢ < ¢ — k. Therefore the polynomials fi, ..., fn,—x do not involve the
variables z,,_x, ..., Tn.

Let II be the coordinate (% -+ 1)-plane in A" 41 given by o = ... = z,—¢-1 = 0. So fi,
«.s fn—k are identically zero on II. Define Z = (fe—g41 = ... = fc = 0)NIL. Thus dimZ > 1
and so Z — 0 is non-empty. Let Q@ € Z — 0. Then 8f;/0z; are zero at Q for all : < ¢ — k and
for all 5. Therefore

9f1/020(Q) ... 9f1/024(Q)
rank Lo <k-c
9fe/0z0(Q) ~ Ofc/02(Q)
Thus Q € C% is singular and so X is not quasismooth.
(z2) is treated likewise.
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I1.8.15 Example. So a codimension 2 complete intersection Xy, 4, in P(ay, ..., a,), which is
quasismooth and not the intersection of a linear cone with another hypersurface, satisfies:

(i) d2 > a, and dy > ap-1.

(i) if dy < a, then a,, | ds.
So this lemma gives extra combinatoric conditions to help remove nasty complete intersections.
11.8.16 The final list.

The program was run between the limits 0 and 32 and gave the following list (after cutting
out repetitions and nasty complete intersections):
Complete Intersection K% p, Singularities.

X222inP(1,1,1,1,1,1,1) -8 0

X2’2,4 in P(l,l,l,l 1 1 1) 16 7

Xg,g,g mn P(1,1,1,1,1,1,3) 8 6

X2,3,3 in P(l,l,l,l,l,l,l) 18 7

.X3’3’3 in P(1,1,1,1,1,1,2) 27/2 6 2(1 -1 1)

X3,3,4 in P(1,1,1,1,1,2,2) 9 5 ( -1 1)
X344inP(1,1,1,1,2,2,2) 6 4 ?( 1)
X444inP(1,1,1,1,2,2 3) 16/3 4 3(1 _1 1)

}L4’44 in P(1,1,1,2,2,2, 2) 4 3 8)( ( 1,1)

Xsa5in P(1,1,1,2/2,2,3) 10/3 3 3(1 “1 ,1), 4x3(1,1,1)
X446inP(1,1,1,2,2,3/3)  8/3 3 2x§(1,1-,1)
Xsa6inP(1,1,2,2,2/2,3) 2 2 -12x 1(1,1,1)

Xis6in P(1,1,2,2,2,3,3) 573 2 i(l —1,1), 6x2(1,1,1)

X4,6,G in P(l, 1’2,2,3,3,3) 4/3 2 dx = (1 -1 1)

X466 in P(1,2,2,2,2 3,3) 1 1 18>< ( : ,1)

Xs6,6in P(1,1,2/23,3,4)  5/4 2 4(1 1,1), 4x 2(1 1)

X566 in P(1,2,2,2,3,3,3) 5/6 1 4>< (1, 1,1), 9x2(1,1,1)

Xo6,10 in P(2,2,2,3,3,4,5) 1/4 0 (1 1,1),22x1 ( , ,1)

Xoosin P(1,2,2,2,3,3,4) 34 1 *(1 _11) 134 (1101)
Xee,6inP(1,2,2,33,3,3) 2/3 1 8x3(1,-1,1)

X566 in P(2,2,2,2,3,3,3) 12 0 27 x 1(1,1,1)

Xe6,7in P(1,2,2,3,3,3,4)  7/12 1 1(1 —-1,1), 4x3(1,-1,1), 4x3(1,1,1)
Xeos in P(1,1,2,3,3,4,5)  4/5 2 3(1,-1,2)

X668 in P(1,2,2,3,3,4,4) 172 1 ?(1 -1 1) 8x3(1,1,1)

Xesgin P(2,2,2,3,3,3,4) 1/3 0 18 x % ,1,1),4 x 3(1,-1,1)
Xs7sin P(1,2,2, 3 3 4,5) 715 1 5(1 1, ) 2x3(1 -1,1), 6x3(1,1,1)
-XG,S,IO in P(l 2, , , 5,5) 4/15 1 (1 -1 2) 2X (1 -1 1)

XG}B,]D in P(2,2,3,3,4,4,5) 1/6 0 2)(?(1 -1 1) 2)(%(1 —1 1) 14)( (1,1,1)
XesoinP(1,2,3,3,4,4,5) 3/10 1 5(1 -1,2), 2x4(1 -1,1), 2x2(1,1,1)
Xs,1012 in P(2,3,4,4,5,5,6) 1/15 0 ?(1 -1,1), 2><?(1 1 , 1), 10><2(1 ,1)
.Xg,g'lo in P(2,3,3, 4, 4,5,5) 1/10 0 2xsz (1 -1 2), 2x= (1 ) %(1,—1,1),

4x?(1 1, )

Xo,0,12 in P(2,3,3,4,5,6,7) 1/14 0 T(1 1,2), 6x1(1,-1,1), 5x1(1,1,1)
Xi0,11,12 in P(2,3,4,5,5,6,7) 11/210 0 %( 1, ) 2 x 3(1,-1,1),
E( )’ %(13_133)
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X10,12,14 in P(2,31415)6:718) 1/24 0 %(1’_1 3) %(1 -1 1) 2 x 3(1 )
8 x 3(1,1,1)
X10,12,18 in P(3,4,5,5,6,7,9) 2/105 0 %(13“1’1)’2 %( -1 1) 4)(3(1 1’1)
X12,14,15 in P(3,4,5,6,7,7,8) 1/56 0 ?(1,1,1), 1(1,-1,1), 2 x 1(1,-1,2),
5(1,-1,3)
X1215.16 in P(3,4,5,6,7,8,9) 1/63 0 2 x 3(1,1,1),3 x 3(1,-1,1),
1 1
1(1,-1,2), 3(1,-1,2)
X12,16,18 in P(45576361778)9) 17105 0 ;(1!_1,1) %(1 -1 1) 2)(3(1 )
6 x £(1,1,1)

11.8.17 Note. After refinement there are no codimension 2 or 1 complete intersections left in the
list.

11.8.18 Extra example. The family of intersections X3 2222 in P® is smooth, K% = 186,
p, = 9and x(Ox) = -8

If the search were continued this would eventually appear; however the program becomes

painfully slow.

I1.8.19 Conjecture.

(1) There are no canonical complete intersections with codimension greater than 5.

(2) There are no Q-Fano complete intersections with codimension greater than 3.

11.8.20 K3 surfaces. Reid has done a similar search to produce lists of K3 surface weighted
complete intersections; using Riemann-Roch for Og(1) (see [R4, Theorem 9.1]). This time the
search is finite due to the following theorem pointed out by Reid:

I1.8.21 Theorem. Let S be a K3 surface with canonical (Du Val) singularities of types A,,,
Dy, or E,, for v = 1,...,n. So Y. n; < 19. This limits the singularities present on the K3
surface to a finite list,

Proof. Let f : T'— S be a minimal resolution. T is still a K3 surface. By [BP&YV, Proposition
VIIL3.3] h'! = h!'(Q}) = 20. By the Signature Theorem [BP&V, Theorem IV.2.13] we have
that the cup product restricted to H?(7T', R) is non-degenerate of type (1,h'' —1) = (1,19). Via
the Néron-Severi group, the exceptional (—2)-curves of the resolution f are linearly independent
in H}!, each with negative self-intersection.
It is well known that a Du Val singularity of type A,, D, or E, contributes exactly n
(—2)-curves to T'. Thus 3" n; < 19.
O
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