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Working with
Weighted Complete Intersections.

A. R. Retcher.

1 Introduction.
This article contains the following:

1 A presentation of the basic definitions, theorems and techniques of weighted complete
intersections, along with many examples. This information was collected from a variety of
sources (mainly [WPS]) but also incIudes some original results.

TI Lists of various types of weighted complete interseetions of dimensions 1, 2 and 3, i.e. with
eyelic quotient canonieal isolated singularities.

Weighted complete intersections oceur naturally in many disguises. Enriques' famous example
of a surfaee of general type such that 4>4 K s is not birational ean be expressed as the weighted
complete intersection BIO in P(l, 1,2,5).

For eertain elasses of variety V of general type (e.g. minimal surfaees of general type) the
eanonieal maps 4>nKv : V ~ V, for large enough n, are birational onto the canonical model 11.
Define the canonical ring R v by

Rv = ffi HO(V, nI(v).
n;:::O

The ring R v is known to be finitely generated in these cases, although not necessarily in degree
1. So V rv Spec Rv is a subvariety of some weighted projective space.

These weighted complete intersections are sirnilar to the complete intersections of nonnal
projective space pn but are usually singular and hence have some pathologies.

However these weighted complete intersections are still very easy to visualise and to work
with; their basic invariants are calculated using combinatorics. So they form a large quagmire of
good examples. This anic1e sets out to familarise the reader with weighted complete interseetions
and to give certain eombinatorie conditions for their important properties. Some of these are
already known (see [Da], [Di], [Du], [WPS], ete.) but some are new. This constitutes Chapter I.

In Chapter 11 we present various lists of weighted complete intersections of dimension I,
2 and 3; all with at worst cyelie quotient isolated canonical singularities. The eanonical 3-fold
weighted complete interseetions are interesting sinee they are all canonical models (see [Rl],
[R2], [R4, section 2.5]) and hence are of interest for classification purposes as weIl as in their own
right. These were all calculated using a set of combinatoric conditions and a computer. We also
give a complete list of the 95 families of weighted hypersurfaee K3 surfaces (see [Rl, seetion
4.5]) found by Reid in 1979 after a lang hand calculation. We also calculate the corresponding
singularities.

Another method originally used by Reid to produce examples of K3 surfaces is to be found
in section 11.8. It is used to produce canonically and anti~canonicallyembedded canonical3-folds.
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From the Poineare series of the graded ring corresponding to a weighted complete intersection,
the degrees of the generators and the relations can be determined. This teehnique uses repeated
differencing to evaluate the power series. Using the Riemann-Roch formula for canonical 3-folds
(see section H.?) a Poincare series can be prcxluced from a list (or record) of invariants, which
we hope will correspond to either a canonically or an anti-canonically embedded canonical 3­
fold. Clearly there will be a large number of rejected records and hence this is very hit and
miss. However in practice it works very well.

TIris article started life as the third chapter of my Ph.D. thesis [F2] and grew.

2 Acknowledgements.
I would like to thank Miles Reid for all his help and A. Dimca and A. Parusinski for many

useful conversations. My thanks to Maria lano and Dunean Dicks for reading through previous
versions and suggesting changes. I would also thank: all those at the Mathematics Institute,
University of Warwick, the mathematics department of the University of Leicester, and the Max­
Planck-Institut für Mathematik, Bonn. I am grateful to Prof. Hirzebrueh and the institute for the
invitation and their kind hospitality.

3 Notation.
All varieties will be assumed to be quasi-projective aver an algebraically closed field k of

characteristic zero. Let V be such a variety, of dimension m.
k'" is the multiplicative group of nonzero elements of k.
Z, Q are the rings of integers and rational numbers respectively.
Zr is the Abelian group {D, 1, ... , r - I} under addition modulo r.
Z; is the group of units of Zr under multiplication modulo r.

{a, ... , b, ... , c} is a list with the element b omitted.
Amis affine m-space.
pm is projective m-space.
P(ao, ... , a m ) is used to denote the weighted projective space with weighting ao, ... , am . When
there is no ambiguity this will be denoted simply by P.
VO is the nonsingular locus of V.
Ov is the sheaf of regular functions on V.
n~ = n~/k is the sheaf of regular I-forms on Va.

nv= Ann~/k is the sheaf of regular n-forms on VO.

Wv = nv is the sheaf of regular canonical differentials on VO.
](y is the canonical divisor corresponding to Wv = Ov(I(v).
Let J:. be a coherent sheaf on V. Then

hi(J:.) = hi(V, L:) = dirn Hi(V, J:.),
X(L:) = I:J-l)ih i (J:.)

and 4> c is the rational map corresponding to the sheaf .c.
Let D be a Carrier divisor on V. Then

hi(D) = hi(Ov(D)),
X(D) = I:i( -l)ihi(Oy(D)).
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and <P D is the rational map corresponding to the sheaf 0 v (D).
In partieular <Pn J(v is ealled the n th eanonieal map.
pg(V) = hO(wv) is the geometrie genus of V.
Pn(V) = hO(w~n) is the n th plurigenus of V. For negative n these are referred to as the
anti-pIurigenera.
The words smooth and non-singular will be used interehangeably.
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1.1 Preamble.
In this chapter we give a brief summary of the facts about weighted complete intersections

along with many examples. We also prove necessary and sufficient conditions for a weighted
hypersurface X d in P(ao, ... , an) to be quasismooth and wel1·formed.

Sections 1.2 and 1.3 recap the main definitions and theorems about weighted projective
spaces and weighted complete interseetions. Section 1.4 sets out various facts about the co­
homology of weighted complete intersections. Section 1.5 contains necessary and sufficient
conditions for quasismoothness in the hypersurface and codimension 2 cases. Infonnation about
cyclic quotient canonical singularities in dimensions 1, 2 and 3 is to be found in section 1.6,
along with two technical lemmas used to count points of intersection along singular strata of P.
Examples of how to calculate the singularities of various weighted complete intersections are
included in section 1.7.

1.2 Definitions and theorems on weighted projective spaces.
We start by reviewing some definitions and notation concerned with weighted complete

intersections.

1.2.1 Definition. Let ao, ... , an be positive integers and define S = S (ao 1 ••• , an) to be the
graded polynomial ring k[xo, ... , x n ], graded by degxi = ai. The weighted projective space
P(ao, ... , an) is defined by

P(ao, ... , an) = Proj S

1.2.2 Note. Let Xo, ..., X n be affine coordinates on A n+l and let the group k'" aet via:

A(XO, ... ,xn) = (AaoXo, ... ,AanXn)'

Then P(uo, ... , un ) is the quotient (An+l -.Q) / k"'. Under this group action Xo, ... , X n are the
homogeneous coordinates on P (Uo, ... , an). elearly P (ao, ... , an) is a rational n-dimensional
projective variety.
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L2.3 Affine coordinate pieces.
Let {x 0, ... , X n} be the homogeneous coordinates on P (ao, ... , an). The affine piece Xi =f 0

is isomorphie to A n / Zai' Let € be a primitive ai th root of unity. The group acts via:

for all j =f i, on the coordinates {zo, ... , ii, ... , zn} of An; here Zj is thought of as Xj / \YXi.
Compare this with the case of pn where the affine coordinates on Xi t 0 are Zj = Xj/Xi.

1.2.4 Examples.
(i) pn = P(l, ... ,1).

(ii) Consider P(l, 1,2) with homogeneous coordinates u, v and 'W. The affine piece 'W = 1 is
A 2/Z2 with group action

U 1-+ -u

V 1-+ -v

The coordinate ring R is given by:

R = k[U,V)Z2

= k[u2
, v2

, uv)

= k(x, y, zJ/(xy - z2).

So P (1, 1, 2) is the projective compietion of the ordinary quadratic cone xy = z2 in A 3
•

1.2.5 Lemma. For all positive integers q we have

Proj S( ao, ... , an) ~ Proj S(qao, ... , qan).

Proof. This follows from the fact that the 2 graded rings are isomorphie.

o
From [EGA, Proposition 2.4.7] (also see [Hart, Exercise n.S.!3]) we have:

1.2.6 Lemma. Let S be a graded ring anti define the truncation S(q) = EBm>o Sqm to be
the graded subring with m th graded pan Sqm. Then there exists a canonica'-isomorphism
Proj S(q) rv Proj S.

This is called the q-tuple Veronese embedding, and is used in the proof of the following:

1.2.7 Lemma. Let ao, ... , an be positive integers with no commonfactor. If q = hcf(al, ... , an)
then

Proof. Define S' = EBm>o Sqm with the same grading as S. So S' rv S(q). By the previous
lemma we have Proj S' ~ Proj S.

Suppose x~o ...x~n is a monomial of degree mq for any m. Hence Po ao + ... +Pnan = qm,
and so q IPo ao. As the {ai} have no common factor, q IPo. Hence Xo onIy appears in S' as
x o

q
• Thus S' = k(xo

q
, Xl, ... , x n), which is isomorphie to S( qao, al, ... , an). Therefore

Proj S(ao, ...,an)~Proj S'~Proj S(aO,al/q, ... ,an/q)
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o
1.2.8 Quasi-reßections. Let G be a finite group acting on a variety X. A quasi-reflection is
any element of G whose fixed locus is a hyPerplane. No singularities are produced by the action
of any group generated by quasi-reflections.

The cancelling which occurs in Lemma 1.2.7 is nothing more than the elimination of quasi­
reflections from the actions of each Zai on the corresponding affine coordinate piece.

This lemma leads to the following corollary from [WPS, 1.3.1] (see also [De, Proposition
1.3]):

1.2.9 Corollary. P (ao, ... , an) f'V P (bo, ... , bn)Jor some {bi} suchthat Jor each i

hcf(bo, ... , bi, ... ,bn ) = 1.

Proof. By Lemma 1.2.5 we can cancel any common factor of the {ad. By renumbering as
necessary and by repeated applications of Lemma 1.2.7 we can reduce P(ao, ... , an) to the case
P(bo, ... , bn ). A maximum of n + 1 applications of Lemma 1.2.7 are required.

o
1.2.10 Examples.

(i) P(a, b) f'V pl for all a and b.
(ii) P(2, 3,3) ~ P(2, 1, 1).

(üi) Let f = x5 + y3 + Z2 E k[x, y, z] with weights 6, 10 and 15 respectively. Define
X : (f = 0) C P = P(6, 10, 15). By the previous lemma P f'V p 2

•

P(6, 10, 15) e=! P(6, 2,3) ::: P(3, 1,3) ~ P(1, 1, 1)

The monomials transfonn as:

Thus X C P ::::: (x + y + Z = 0) C p2 = P 1 C p 2. Of course the coordinate rings of the
affine cones (see llI.2.l4) over X C P and pl C p 2 are not isomorphie.

In view of Corollary 1.2.9 we make the following:

1.2.11 Definition. The expression P(ao, ... , an) is well-Jormed if for each i

hefeao, ... , Qi, ... , an) = 1.

1.2.12 The quotient map.
Let T = k[yo, ... , Yn), where the {Yd all have weight 1, and so pn f'V Proj T. Consider

the inclusion map S l"-4 T given by:

for all i. This induces a quotient map f7 pn -+ P. In terms of the coordinates {Yi} on pn
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The map pn --.. p is a ramified Galois covering with Galois group EBi Za;.

1.2.13 Definition. Let r > 0, a}, ... , an be integers and let x}, ... , X n be coordinates on An.
Suppose that Zr acts on An via:

for all i, where f a primitive r th root of unity. A singularity Q E X is of type ~ (aI, ... , an) if
(X, Q) is isomorphie to an analytic neighbourhood of (An, O)/~r'

1.2.14 Notation. Write Pi E P for the point [0, ... ,0, 1,0, ... ,0], where the 1 is in the i th position.
We will call Pi avertex, the I-dimensional toric stratum PiPi an edge, etc.. The fundamental
simplex (i.e. the union of all the coordinate hyperplanes PO ...Fi ...Pn ) will be denoted by ß.

1.2.15 The singular loeus P sing of P.
Define hi,i, ... = hcf(ai,ai, ... ). The vertex Pi is a singularity of type ~i (ao, ... ,ai, ... ,an ).

This singularity is not necessarily isolated. Each generic point P of the edge PiPi has an analytie
neighbourhood P E U which is analytically isomorphie to (0, Q) E A l X Y, where Q E Y is
a singularity of type ~ (ao , ... , cii, ... , cij , ... , an). Similar results hold for higher dimensional

1,)

toric strata. The singularities only occur on the fundamental simplex ß.
Notiee that codimp(P"ing) 2: 2.

1.3 Definitions and theorems on weighted complete interseetions.
The first few definitions come from [WPS].

1.3.1 Definition. Let X be a closed subvariety of a weighted projeetive spaee P, and let
p : A n +1

- .Q --.. P be the canonical projection. The punctured affine cone Cxover X is given
by Cx= p-l (X), and the affine cone Cx aver X is the completion of Cxin A n+l.

Notice that k'" acts on Cx to give X = CxIk*.
1.3.2 Lemma. Cxhas 110 isolated singularities.

Proof. If P E Cx is singular then every point on the same fibre of the k*-action will be singular.

D
1.3.3 Definition. X in P( ao, ... , an) is quasismooth of dimension m if its affine cone Cx is
smooth of dimension m + 1 outside its vertex Q.

When X C P is quasismooth the singularities of X are due to the k* -action and hence are
cyclic quotient singularities. Notice that this definition is not equivalent to the smoothness of
the inverse image (T -1 (X) under the quotient map of seetion 1.2.12 (e.g. X a in P (2, 3, 5)).

Another important fact ([WPS, Theorem 3.1.6]) is that a quasi-smooth subvariety X of P
is a V-variety (i.e. a complex space which is locally isomorphie to the quotient of a complex
manifold by a finite group of holomorphic automorphisms). This is used later to define the
canonical sheaf of X, which is usually singular.

1.3.4 Definition. Let 1 be a homogeneous ideal of the graded ring S and define XI to be:

XI = Proj Sl1 c P

Suppose furtherrnore that 1 is generated by a regular sequence {fd of homogeneous elements
of S. XI C P is caUed a weighted complete intersection of muItidegree {d i = degfd. In this
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case, we denote by Xd1, ... ,de in P = P(ao, ... , an) a sufficiently general element of the family
of aU weighted complete intersections of multidegree {di}'

Xd1, ... ,de in P(ao, ... ,an ) is of dimension n - c. In general we will write Cd1, ... ,de in
P(ao, ... , ac+l) for a dimension 1 complete intersection and Sd1, ... ,d e in P(ao, ... , ac+2) for a
surface.

1.3.5 Definition. X d in P (ao, ... , an) will be said to be a linear cone if d = ai for some i (i.e.
the defining equation f can be writen as f = Xi +g).

Clearly X d in P(Uo, ..• , an) in this case is isomorphie to P (ao, ... , Ui, ... , an).
1.3.6 Examples.

(i) X 46 in P(4,5,6,7,23) is a general element in the family of all degree 46 hypersurfaces in
P(4,5,6,7,23).

(ii) X s in P(1, 1,1,1,4) is a double cover of p 3 branched along a smooth octic surface.

1.3.7 The coefficient convention.
When a general polynomial of a given weighted homogeneaus degree occurs in a calculation

then it will usually be written without the non-zero coefficients. For example the defining
polynomial for X 2 in P(1, 1,1) is:

and will be simply written as:

1.3.8 The canonical sheaf wx.
All weighted compiete interseetions (and weighed projective spaces) are V-manifolds (Le.

locally are quotients of An by a finite group action) and so the dualizing sheaf wx is given by:

~ .
WX = l.Wxo

where i : XO f....+ X is the inclusion of the smooth part X O into X. This sheaf is a divisorial
sheaf (see [Rl, appendix to seetion 1, Theorem 7]) and can be written as:

wx ~ CJx(Kx)

where J(x is a Q-Cartier divisor (i.e. r J(,< is a Cartier divisor for some nonzero integer r). In
fact J(x Ix ° is Cartier.

For the general definition of the canonical sheaf for varieties with at worst canonical sin­
gularities see [R4, seetion 1.4].

We now introduce an important concept which was not mentioned (and possibly missed)
by Dolgachev in [WPS].

1.3.9 Definition. A subvariety X C P of codimension c is well-formed if the expression for P
is well-formed (see Definition 1.2.11) and X contains no codimension c + 1 singular stratum of
P.
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This means that any codimension 1 stratum of X is either non-singular on P, or an inter­
section X n S, where S is a codimension 1 stratum of P, i.e. codimx (X n P ~ing) ~ 2.

1.3.10 Well-formedness for hypersurfaces.
The hypersurface X d in P(aa, ... , an) is well-formed if and only if

(1) hcf(ao, , ai, ,aj, ... ,an) I d
(2) hd(ao, , ai, ,an) = 1

for all distinct i, J.
1.3.11 Well-formedness in codimension 2.

The codirnension 2 weighted complete interseetion Xd1,d'J in P(ao, ... , an) is well-fonned
if and only if
(1) for all distinct i, j and k, with h = hcf(ao, ...,ai, ... ,d'j, ... ,ak, ... ,an ), either h I d1 or

h Id2 ,

(2) for all distinct i and j, with h = hcf(ao, ... , ci;, ... , d'J', ... , an), then h Id1 and h Id2 ,

(3) for all i hcf(ao, ... , ai, ... ,an) = 1.

1.3.12 Well-formedness in higher codimensions.
The above conditions can be generalised to higher codimensions. X d1 , ••• ,dc in P(ao, ... , an)

is weH-fonned if and only if
(1) P(ao, ... , an) is well-fonned
(2) for all J.l = 1, ... , c the highest common factor of any (n - 1 - c + J.l) of the {ai} must

divide at least J.l of the {d j }.

1.3.13 Note. Dimca also defines well-fonnedness (see [Di]) under a different name. He gives
the following equivalent set of arithmetic conditions in the quasismooth case. Define:

m(h) = I{i : h Iai}1

k(h) = l{i : h J ddl
q(h) = dim X + 1 - m(h) + k(h)

for all h E Z. Then the quasismooth weighted complete intersection Xd1, ... ,dc in P(ao, ... , an)
is well-fonned if and only if q(p) ~ 2 for all primes p. This foHows from a theorem essentially
due to Hamm (see [Di, Proposition 2]).

In fact a weighted complete intersection (not necessarily quasismooth) is well-fonned if
and only if q( h) 2:: 2 for all integers h ~ 2. This is easy to show from the conditions in section
1.3.12.

1.3.14 The adjunction formula.
If X d1 ,... ,dc in P(ao, ... , an) is well-fonned and quasismooth then w X "-J 0 X (L: d i - I: ai)

(see [WPS, Theorem 3.3.4]). We define the amplitude to be this difference of sums, and will
usually be denoted by a.

1.3.15 Note. The adjunction fonnula does not hold if the weighted complete intersection is not
well-fonned. We give two examples in dimensions 1 and 2 respectively.

(i) Consider the curve C7 in P(l, 2,3). Let D C p2 be the curve (T-l(C) where (T : p2 ~ P
is the quotient map (see section 1.2.12). Then the curve D is non-singular of degree 7 and
so is of genus 15. By Hurwitz Theorem (see [Hart, Corollary l'I.2.4]) we calculate that
g( C) = 1 and so we ~ Oe. This contradiclS the adjunction formula since the amplitude is
1.
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(

gi(P) ... gf(P) )
rank: : < k

g~(P) ... g~(P) -

(ii) An example in dimension 2 is the surface 59 in P(l, 2, 2,3). A quick calculation shows that
this surface is both quasismooth and non-singular. If it is well-fonned then the amplitude
Cl' = 1 and so I{~ = ~. This contradicts the fact that I{~ E Z whenever 5 is non-singular.
In fact 59 in P is a smooth K3 surface.

1.3.16 Well-formedness in dimensions greater than 2.
However we find that well-formedness only needs to be checked in dimensions 1 and 2.

We have the following generalisation of a proposition due to Dimca (see [Di, Proposition 6]).

1.3.17 Theorem. Let X = X d1 ," " dein P (ao, ... , an) be a quasismooth weighted complete
interseetion oJ dimension greater than 2. Then
either (i) X is welljormed

or (ii) X is the intersection oJ a linear cone with other hypersurjaces (i.e. ai = dA Jor some
i and A),

1.3.18 Note.
(1) In case (ii) the weighted complete intersection is isomorphie to an interseetion of lower

codimension, Le. X d1 ,... ,d·>.., ... ,dc in P(ao, ... , ai, ... ,an) Of possibly a weighted projective
space.

(2) Cases (i) and (ii) are not mutally exclusive. Consider the hypersurface X 2 in P(1, 1, 1,1,2)
gjven by

I=Z+LXiXj.
i,j

This is both a linear cone and well-fonned, and is, of course, isomorphie to p3.
We need a preliminary result.

1.3.19 Lemma. Let Z be the affine variety 01 all points P which satisfy the determinantal
condition:

where {g{} are general weighted homogeneous non-zero polynomials. 11 Z is non-empty then
codirnZ ~ (m - k)( c - k).

This is an elementary fact (see [ACGH, P. 83]).
Proof of Theroem 1.3.17. Let X = (11, ... , le) C p = P(ao, ... , an)' Suppose that P is well­
fonned and assume that X is quasismooth with dirn X ~ 3 but not well-fonned. So there is a
singular stratum TI of P such that codimx(TI n X) ~ 1.

If codimx(fr nX) = 0 then ..J( C fr and so X is contained in some coordinate hyperplane.
Thus some of the defining polynomials are of the form I>.. = Xi for some A and i. So X is the
intersection of at least one linear cone with other hypersurfaces.

So assume that codimx(IT n X) = 1. By reordering we can assurne that

fi = (Xk = ... = X n = 0) C P

for some k. Let TI = p-l fr c A n+l - {O}, where p : A n+l - {O} ~ P is the natural projection.
Since codirnx fI = 1 then k = dirn TI = n - c. As II is a fixed component of Cx then we can



Warking with Weighted Complete Intersectians.

write the {fA} as:

~ i { higher order terms}
fA = L.J xi9A(XO, ... ,Xk-l) + .

. In Xk, ... , X n
I=k

for all ..\ = 1, ... , c.
Define Mp to be the matrix

Mp = (8fJ/~XO(P) 8fJ/8:x n (P) ) .

8fe/8xo(P) 8fe/8xn(P)

-11-

Singular points on Cx occur whenever rank M p < c. Consider this matrix restricted to II:

_(0' .:.,0g~~P) ... g~~P) )
M pEII - : : : .

0, ... ,0 gf(P) ... g~(P)

So PEIl n Cx is singular whenever rank (g1) ::; c - 1. Let Z be just this set.
If Z is empty then, in particular, Q~ Z. As the entries of Mp are al1 weighted homogeneous

polynomials, they must all be of degree O. Thus, using the coefficient convention 1.3.7,

f "" { higher order terms }
A = L.-J Xi + .

111 Xk, ... , Xn

for al1 ..\ = 1, ... , c. So X is the interseetion of a linear cone with other hypersurfaces.
So assume that Z is non-empty. By the previous lemma, codirnZ ::; n - k - c + 2.

Remembering that k = n - c we have

dirn Z 2: k - (n - k - c + 2) = n - c - 2 = dirn X - 2 2: 1.

So Z - {O} is non-empty and thus Cx is not smooth away from the origin, a contradiction.

D

1.4 Cohomology of weighted complete intersections.
Prom [WPS, section 3.4.3] we have:

1.4.1 Lemma. Let X = (/], ... , fe) C P(ao, ... , an) be a well-/ormed quasismooth weighted
projective complete intersection. Let A be the graded ring S(ao, ... , an)/(fl, ... , fe) and An be
the n th graded part 0/ A. Then

if i = 0
if i = 1, ... , dirnX - 1
if i = dimX
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for all n E Z.

In particular if S is a well-fonned quasismooth weighted projective complete interseetion
of dimension 2 then the following are equivalent:

(i) S is a K3 surface.
(ii) Ws f'.J Os.

(üi) the amplitude Q: = 2:A dA - 2:i ai = O.
For hypersurfaces we have the following result due to Steenbrink [5]:

1.4.2 Theorem. Let X be the weighred hypersurjace X d in P(ao, ... , an) with defining equation
I and Q: = d - 2: ai. Then the Hodge structure is given by:

o
1
dimk (s(ao, ... ,a n ))

8/ jd+n

dim
k

(s(ao, ... ,a n )) +1
8/ jd+n

if i +j t n - 1 and i t j
if i + j t n - 1 and i = j

if i + j = n - 1 and i f. j

if i + j = n - 1 and i = j

where BI = (al/8xdi=O, ... ,n is the Jacobian ideal 0/ I.
Proof. This follows from [WP5, section 4] and duality.

o
1.4.3 Note. The above fonnula satisfies the duality relations hi,j = hi,i = hn-I-i,n-I-j for all
i and j because

di (
S(ao, ... ,an)) =d' (S(ao, ... ,an))

mk B 1ffik B .
I jd+n I (n-I-j)d+n

1.4.4 The Euter number.
The Euler number e(V) of a variety V is defined by'

',]

For a smooth curve C we have e(C) = -deg !(c = 2 - 2g. For a surface S, with at worst Du
Val singularities of types {Qni}i where Q = A, B or E, we have Noether's fonnula:

12X(Os) = K~ + e(S) + L ni·
i

In particular the case of a K3 surface S with Du Val singualrities of types {Qni}i gives that
hl,I(S) = 20 - 2:i ni and so e(S) = 24 - Ei nj.

When X is a well-fonned quasismooth weighted hypersurface of dimension 3 most of the
Hodge numbers cancel or are zero and so

e(X) = 2(1 - h1,2(X)).
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1.4.5 Examples.
(i) The hypersurface 53 in P(l, 1, 1,2) has Euler number 5. There are two ways to check this.

(a) It is easy to see that this surface has exactly one singularity, which is of type ~ (1, 1)
(i.eo of Du Val type Al). Also the amplitude is -2 and I{~ = (-2)2 . ~ = 6. By
Noether's fonnula we have e(S3) = 5. .

(b) Altematively, the Hodge numbers are simple to calculate. Let w, x, y and z be
generators of weights 1, 1, 1 and 2 respectively in S(l, 1, 1,2)0 Then

hl,l = dim ( 2 ~[w;X, y, z] ) = 2.
(w ,x ,y ,w+x+y) 1

i=2
o
o
1

i = 1
o
3
o

Thus the Badge strllcture is:
hi,i i = 0

j = 0 1
j=l 0
j=2 0
Thus e(S3) = 1 + 3 + 1 = 50

(ii) The hypersurface X 10 in P(l, 1, 1,2,5) has the following Hodge strllcture.
hi,i i = 0 i = 1 i = 2 i = 3

j =0 1 0 0 1
j = 1 0 1 145 0
j = 2 0 145 1 0
j = 3 1 001

Let v, w, x, y and z be generators of weights I, I, 1, 2 and 5 respectively in S(l, 1, 1,2,5). The

only hard Hodge number is h1 ,2(X) = dimk ( ~[v,~,x§,y,:] ») = 145. This gives an Euler
v ,w ,x ,v ,z 20

number of -288.

I.S Quasismoothness.
In this section we prove conditions for quasismoothness for hypersurfaces and ccxlimension

2 weighted complete intersectionso

First we consider the problem of a hypersurface.

1.5.1 Theorem. The general hypersurface Xd in P = P(ao, ... ,an ) ofdegree d, where n ~ 1
is quasismooth if and only if

either (1) there exists a variable x i tor some i of weight d (i.e. X is a linear cone)

or (2) tor every non-empty suhset I = {io, ... , i k - 1 } 0/ {O, ... , n}
either (a) there exists a monomial x~1 = x?;O ...x?::-~l 0/ degree d,

(b)fi 1 k h · .[ M p mo p mk-lp ifor or J.l = ,... , , t ere eXlst monomla s x I X ep = X io ' ' .. Xik -1' X ep 0

degree d, where {elJ} are k distinct elements.

1.5.2 Note. H X d is a linear cone then f can be written as f = Xi + 9 for some Xi and X d

is c1early quasismooth. So we need only consider the case where f is not linear in any of the
variables (i.eo degxi = ai -=I d for all i).
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Proof. Assume that Xd in P is not a linear cone. Let F be the linear system of all homogeneous
polynomials of degree d with respect to the weights aj. Let / E F be a sufficiently general
polynomial. Define Xd : (/ = 0) C P.

1
j

--+

1
p

Note that the point .Q is a base point and is usually singular; as this point does not lie in
Cxthis does not affeet quasismoothness. By Bertini's Theorem (see [Hart, Remark m.l0.9.2])
the only singularities of the general Cxlie on the base locus of the linear system F. Any
component of the base locus is just a coordinate k·plane for some k = 0, ... , n. So the general
hypersurface Xd is quasismooth if and only if the general hypersurface Cxis non-singular at
eaeh point of its interseetion with every eoordinate k-plane eontained in the base locus.

Let TI be a coordinate k·plane for some k = 1, ... , n. By renumbering, assurne that TI is
given by Xk = ... = x n = 0, corresponding to the subset I = {O, ... , k - I}. Let TID C TI be the
open torie stratum where Xo, ... , Xk-l are non-zero. Expand / in tenns of the coordinates Xb

~ { higher order terms}/ = hexa, ... , Xk-I) + LJ xigi(XO, ... , Xk-l)+. .
. In Xk, ... , X n
I=k

Assurne that one of conditions (a) and (b) hold for I. If (a) holds (Le. h is non-zero)
then rr is not part of the base locus, and so by Bertini 's Theorem TIo eontains no singular
points. Geometrically this means that Cx interseets TID transversally and so rro is normal to the
hypersurface at the points of interseetion.

Assurne that only (b) holels. So h =0 and TI C Cx' By (b) there are at least k of the gi
which are non-zero. Singular points occur exactly on the locus Z = ni(gi = 0) c rro, which is
an interseetion of at least k free linear systems on rro. Thus dimZ ~ O. As Z is a quasicone,
it is at worst the origin (compare Lemma 1.3.2). Therefore Cxis non-singular along rro.

As one of these two conditions holds for every non-empty subset I, Cx is non-singular.
Conversely assume that conditions (a) and (b) do not hold for all I. Let I be a subset for

which these two conditions faiI. Without loss of generality assume that I = {O, ... , k - I}. Let
TI be the corresponding coordinate k-plane xk = ... = X n = O. As (a) and (b) do not hold

/ = ~ xigi(XO, ... , Xk-l) + { hig?er order terms}
L...., In Xk, ... , x n
i=k

and at most k - 1 of the gi are non-zero.
As above, singular points occur exactly on the interseetion Z = ni>k(gj = 0) n TI. Since

there are at most k - 1 of the gi which are non-zero, dimZ ~ k - (k-- 1) = 1. Thus Z is
non-empty and so Cx is singular on rr.
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Therefore conditions (a) and (b) are both sufficient and necessary for quasismoothness
when X d in not a linear cone.

o
1.5.3 Note.

(i) The only quasismooth cones are the linear cones. Suppose a variable Xi does not occur in
the defining equation f. So Cx I"'V CX' X Al where X' : (f = 0) C P(ao, ... ,uil ... ,an ).

Suppose that CX' has a singularity at the origin. Thus CXI x Al has a line of singularities
along Qx Al; a contradiction. So CX' is non-singular at the origin and so f must be linear
in a variable; this is the linear cone case.

(ii) Without lass of generality we can assume in (b) that eil E {O, ... ,n} - I, since otherwise
this is condition (a). .

(iii) For 2111 2: n + 1 condition (b) implies condition (a), since there are simply not enough
variables Xi.

(iv) Condition (b), with 111 = 1, ·of the theorem gives that for all .i = 0, ... , n there must exist a
monomial xixei' for some ei, of degree d. This is equivalent to requiring that Cxis smooth
along the coordinate axes (Le. Xd is quasismooth at the vertices) and is in practice the most
substantial case. Weighted hyperspaces (and polynomials) which satisfy this condition will
be said to be semi-quasismooth.

(v) Cx contains no coordinate stratum of dimension ~ (n + 1)/2 except possibly in the linear
cone case.
So we have the following corollaries for curves, surfaces and 3-folds.

1.5.4 Corollary. The curve Cd in P (ao, al , a2), where d > ai, is quasismooth if and only if the
lollowing hold for all i:

(1) there exists a monomial xixep for some ei, 01 degree d.
(2) there exists a monomial of degree d which does not involve Xi.

Proof. Since d > ai for all i, X d is not a linear cone. Conditions (1) and (2) come [rom
considering the conditions of the above theorem for 111 = 1 and 111 = 2respectively.

D
The proofs of the following corollaries are similar to the above.

1.5.5 Corollary. The surface Sd in P(ao, "'l a3), where d > ai, is quasismooth if and only if
the following Iwld:
(1) for all i there exists a monomial xixe; for some ei 01 degree d.
(2) for all distinct i, j

either there exists a monomial xix'J of degree d,
or there exist monomials x7 1 xjl x e1 and x72xj2 x e2 of degree d such that el and

e2 are distinct.
(3) there exists a monomial 0/ degree d which does not involve Xi.

1.5.6 Corollary. The 3-fold X d in P( ao, ... , a4), where d > ai, is quasismooth if and only if
the following hold:
(1) for all i there exists a monomial Xixei 0/ degree d.
(2) for all distinct i, j

either there exists a monomial xixj of degree d,
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or there exist monomials xr1 xi 1 Xe 1 anti xr· xi:2 X e :2 01 degree d such that el and
e2 are distinct.

(3) there exists a monomial 01 degree d which does not involve either Xi or x j .

In the eodimension 2 ease we have:

1.5.7 Theorem. Suppose the general codimension 2 weighted complete interseetion Xd 1 ,d'l in
p = P(ao, ... , an), where n ~ 2, 0/ multidegree {d1 , d2 } is not the interseetion 01 a linear cone
with alWther hypersurjaee. X d1 ,d:2 in P is quasismooth if anti only illor each nonempty subset
I = {io, ... , i k - I} 01 {G, ... , nLone 01 the lollowing holds:
(a) there exists a monomial x I 1 0/ degree d1 anti there exists a monomial xr:2 0/ degree d2

(b) there exists a monomial xr 01 degree dJ, and lor J.L = 1, ... , k - 1 there exist mOlWmials
x~m u Xem U 01 degree d2 , where {e p } are k - 1 distinet elements.

(e) there exists a monomial xr 0/ degree d2 , anti lor J1. = 1, ... , k - 1 there exist molWmials
xfrn U

xem U 01 degree dI, where {e/-t} are k - 1 distinet elements.
M1 M·

(d) lor J-io = 1, ... , k, there exist monomials x I I' X e 1 01 degree dI , and x I I' Xe'l 01 degree d1 J

~ ~

such that {e~} are k distinct elements, {e~} are k distinct elements and {e~, e~} contains
at least k + 1 distinct elements.

Proof. Let F I and F 2 be linear systems of all homogeneous polynomials of degrees d1 and d2

respeetively with respeet to the weights ao, ... , an' Let 11 E F I and J2 E F 2 be suffieiently
general polynomials. Define

We have the following eommutative diagram:

C* ~ A n + I -_0x

1
x

1
P

The only singularities that ean oeeur in the general member of the family occur on the
eoordinate strata. So as in the proof of quasismoothness for hypersurfaces, X is quasismooth if
and only if Cxis smooth along 811 the coordinate strata.

Assume that one of eonditions (a), (b), (c) or (d) holds for eaeh nonempty subset I. Let
TI be a eoordinate k-plane for some k. By renumbering, we can assurne that TI is given by
x k = ... = X n = 0, corresponding to the subset I = {O, ... , k - I}. As befare let rrD be the
open torie strata where xo, ... , Xk-I are all nonzero. Expand both 11 and 12 in terms of the
coordinates Xk, ... , x n :

~ i { higher order terms}
J>.. = h>..(xo, ... , Xk-I) + L-, xig>..(XO, ... , Xk-I) + .

. In Xk, ... , X n
I=k

for A = 1,2.
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Suppose (a) holds. So h1 and h2 are non-zero on ,11°. If either h1 or h2 involves only
one monomial then rro n Cl is empty. This includes the case when k = 1. So without loss
of generality assurne that h1 and h2 each involve at least 2 monomials and hence k 2:: 2. 11°
is not part of the base locus of PI or F2. By Bertini's Theorem (11 = 0) and (/2 = 0) are
non-singular on rro. Since (h 1 = 0) and (h 2 = 0) are free linear systems on 110

, (h 1 = 0) and
(h 2 = 0) intersect transversally. Thus, at each point of (h 1 = h2 = 0) n rro, there exist two
distinct normals. Therefore Cl is non-singular along 11°.

Suppose (b) holds. So hl is non-zero and there are at least k - 1 of the {gf} which are
non-zero. So 110 is not part of the base locus for F}, and so by Bertini's Theorem we have that
(Jl = 0) is non-singular on 110

• Singular points occur exactly on the locus

which is an intersection of at least k - 1 free linear systems on (h l = 0) nrrD• Thus dirn Z ~ 0
and hence is at worst the origin. Therefore Cxis non-singular along rro.

The case where condition (c) holds is similar to the case for condition (b).
Suppose that only condition (d) holds. We have

~ i { higher order terms }JA = LJ xi9A(XO, ... ,Xk-I)+ .
. In Xk, ... , X n
I=k

for ,\ = 1,2. The normal directions, perpendicular to the plane TI, to the hypersuIfaces are
(gf, ... , gf) and (g~, ... , gf)· Define the matrix Mp by

M - ( gt(P) gl(P) )
p - g~(P) g!](P) .

Singular points occur exacdy on the locus Z = {P : rank M p ~ 1}. As there are at least
k monomials of the form xp Xe of degree d).., at least k of the {gi} are non-zero. As these
are free on 110, each row of the matrix lvIpis non-zero for each P E rrD• Furthennore this
matrix for any P E Z has at least k + 1 non-zero columns, since there are at least k + 1 distinct
elements in {e~, e~}. By renumbering we can assurne that the first k + 1 columns of M P are
not identically zero on rro.

Fix P E rro. Without lass of generality we can assurne that gf (P) t- O. If g~ (P) = 0
then g~(P) t- 0 for some i > k, and so M P has rank 2. In this case P E Cx is non-singular.
Suppose that g~(P) t- O. Define a = gf(P), b = g~(P) and

Zp = n(ag~(Q) - bg~ (Q) = 0) C 11°.
i>k

Notice that P E Zp if and only if rank M p ~ 1, which is equivalent to P E Cxbeing singular.
Since Z p is the intersection of k free linear systems on rrD, dirn Z p ~ 0 and so Z p is at
warst the origin. In particular P 't Z p and hence P E Cxis non-singular. Therefore Cxis
non-singular along rro.
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As one of these four condirions holds for every non-empty subset I, Cxis non-singular.
Conversely assurne that none of the conditions (a), (b), (c) or (d) hold for same non-empty

subset I. Without lass of generality we can assurne that I = {O, ... , k - I}. Let TI be the
corresponding coordinate plane Xk = ... = X n = O. There are three cases:

(i) TI rt- CXdl So h1 is non-zero and there are at most k - 2 of the {g~} which are non-zero.

The singular points are exactly the locus Z = (h} = 0) ni(9~ = 0). However

dirn Z 2: k - (k - 2) - 1 = 1

and so Z contains more than the origin. Thus Cxis singular along n.
(ii) n et CXd2 Similarly in this case C} is singular along lI.

(iii) II C CX
dl

n CXd2 In this case both h1 and h2 are identically zero. So

~ i { higher order ternlS}
I>. = L.J Xi9>.(xo, ... , Xk-l) + .

. In Xk, ... , X n
I=k

for ,,\ = 1, 2. As condition (d) does not hold, one of two cases occurs:
either (1) for some ,.\ there are at most k-1 of the {gi} which are non-zero. Thus the intersection

Z>. = ni(gi = 0) has dimension at least 1 and so these {gi} have a common solution.
Therefore the matrix

M = (gf(P) gl(P) )
p g~(P) g2(P)

has rank less than 2 for same P E Z>. and hence Cx is singular along lI.
or (2) there are at most k distinct elements in {e~, e~ }. Thus there are at most k non-zero

columns in the matrix M p. Let Z = {P : rank M p ~ I}. Therefore

dirn Z ~ k - (k - 1) = 1

and so contains more than just the origin. Therefore Cxis singular along TI.
So if one of these four conditions are not satisfied for every subset I then Cxis singular.

o
1.5.8 Corollary. Suppose X d1 ,d2 in P is quasismooth and is not the interseetion ofa linear cone
with another hypersurface. We have the following:

(i) Every variable Xi occurs in at least one of the defining equations.
(ii) All but at most one variable are in both equations.

(Ui) lf Xi does not appear in one defining equation then there exists a monomial xi occurring
in the other equation.

Proof.
(i) This follows from the previous theorem with 111 = 1.

(ii) Suppose, after renumbering, that Xo and Xl are not involved in 11. Theo none of the
conditions can hold for 1 = {O, l}, a contradiction.

(ni) Suppose that Xi does not appear in /1, Conditions (a), (b) and (d) cannot hold and so there
must be a monomial xr of degree d2 • Geometrically if one of the hypersurfaces is singular
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along a coordinate axis, because the equation li does not involve that variable, then the
other hypersurface cannot pass through that axis.

D

1.6 Cyclic singularities and counting points.
In this seetion we give combinatorial conditions for cyclic quotient singularities to be

isolated and canonical (see [R4, Definition 1.1] for the definitions of canonical and tenninal
singularities). The last two lemmas of this seetion are used to count the number of intersections
along 1 and 2 dimensional strata. We also give an alternative proof of the first of these lemmas
in terms of the Minkowski mixed volume of integral polyhedra.

1.6.1 Lemma. A canonical curve point is smooth.

This is clear since canonical singularities are normal. For dimension 2 we have:

1.6.2 Lemma. The Jollowing are equivalent:
(1) Q in S is a cyclic quotient canonical sur/ace singularity.
(2) Q is oJ type ! (a, - a) Jor some index r anti a coprime to r.
(3) Q is oJ type ~(1, -1) Jor some index r.

The above singularities are Du Val singularities of type A r - t .

For 3-folds we have the following due to White, Morrison, Stevens, Danilov and Frumkin:

1.6.3 Lemma. The Jollowing are equivalent:
(1) S is an isolated cyclic quotient terminal 3-fold singularity.
(2) S is 0/ type ~ (bo, bt , b2 ) J Jor some positive integers r, bo, bI , b2 , with r 2:: 2, rand bi

coprime anti r I bi + bj Jor a pair 0/ distinct i, j.
(3) S is 0/ the form ~(1, -1, b) Jor some r 2:: 2 and b coprime to r.

The following two lemmas are very useful for calculating the number and arrangement of
singularities on a complete intersection.

1.6.4 Lemma. Let x anti y be oJweight ao and aI respectively, where hcf(ao, aI) = 1. Suppose
fex, y) is a homogeneous polynomial of degree dJ semi-quasismooth (see Note 15.3(iv)) and
sufficiently general. Let Po = [1,0] anti PI = [0,1]. Then Xd: (I = 0) in P(ao,al) is afinite
set and:

(i) Pi is in Xd if and only if ai 1dfor i = 0,1,
(U) there are exactly l_d_J other points in Xd.

aOa1

Proor. Notice that x ß1 /ya O is an invariant of the group action of k* on A 2 - Qwhich defines
P(ao, al). There are four cases:

(i) ao Id and aI Id. Then f is of the fonn

1 - x d/ ao + + d/a1- ... y ,

written using the coefficient convention (see section 1.3.7). So

f (a)d/aoa1
yd/a, = :~ + ... + 1,
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which has exacdy _d_ roots.
aOal

(ii) ao )' d and al I d. Since Xd is semi-quasismooth, f is of the form

1 = y(x(d-ad/a o + ... + y(d-ad/a1 ).

The solution y = °gives the point Po.

_1_ _ (Xi) (d-ad/ao al

d/ - + ... + 1.
y al Yö

-20-

This has exacdy n = d-al roots. So d = naOal + al' As ao Yd then ao > 1, and so
aOal 11

al < aOal. Thus n = l_d_J.
aOal

(üi) ao Id and al 1d. Similar to (ii).
(iv) ao )' d and al )' d.

f = xy(x(d-ao-ad/ao + ... + y(d-ao-ad/a 1 )

So the two vertices Po and PI are solutions. Also

f _ (Xi) (d-ao-ad/ao al

d/ - a + ... + 1,
xy al Yo

which has exactly n = d-aaoOa~al roots on P - {Po, PI}' So d = naOal + (ao + al). As
ao )' d and al )' d then ao, al ~ 2 and not bath equal to 2. Thus

Therefore n = LaO:l J.
D

1.6.5 Lemma. Let xo, Xl anti x2 have weights aa, al and a2, where hcf(aa, al, a2) = 1. Let
fand 9 be sufficiently general semi·quasismooth homogeneous polynomials in k [X 0, X 1, X 2] oi
degrees d and e respectively. Suppose that Xd,e : (I = 0, 9 = 0) in P(aa, al, a2) is a finite set.
Let

ni,j be the number 0/points 0/ Xd,e along the edge PiPj,
hi,j = hcf(ai,aj),
ni be ehe number 0/points at the vertex Pi (i.e. ni = 0,1),
N be the number 0/ points in P - ~.

Then:

1.6.6 Note.
(1) Xd,e in P is not automatically finite (consider X:s,9 in P(l, 2,4)).
(2) Similar results hold for higher codimensions and involve induction on the dimension.
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(3) Notice that Lemma 1.6.4 can be deduced from the above (consider Xd,l in P(ao, al, 1).
(4) This also has connections with the Minkowski mixed volumes of Newton polyhedra (see

after proof).

Proof. Let er : p Z ~ P be the quotient map defined in secrion 1.2.12. Let F = er* f and
G = er*g. Since Xd,e is finite, V(F) and V(G) have no common components. By Bezout's
theorem Y = V(F, G) in p2 consists of exactIy de points counted with multiplicity.

The restriction of er to p2 - .6. is aOal a2-to-l, onto P -.6.. As there are N points on
p - .6. this accounts for aOal azN points on p Z - .6..

The restriction of er to the line QiQi is aiai/hi,j-to-l, onto PiPi' Without lass of generality
assurne that hi,i I d but that hili I e. Let k be such that {i, j, k} = {O, 1, 2}. Norice that x k I g,
or else there would exist a monomial xfx~ of degree e, contradicting hi,j t e. Then f and 9
are of the form:

Thus F and G are of the fonn:

F = Xi ai Xjj + Xja jXii + ._.
, I

G = X:Ia(Xr ai + Xi aj + ...).

We localise F and e by setting Xi = 1, to give the corresponding affine equations Fand G.
Let [Xi, Xi, X k] = [1,~, 0] be a point of intersecrion along the line QiQj. The multiplicity p.
of the intersection is given by:

J1 = mult(F, G, [1, ~,O])

= lTIult(F, G, (~, 0))

= mult(Xii +X;na i +...,X: Ia , (~, 0))
= mult(X/ + ...,X: II

, (0, 0))

=ak

where XI = Xi -~. So this line contributes (ni,jak)aiai/hi,i points (counted with muItiplicity)
to Bezout's theorem.

Consider the vertex Qi. If Pi is contained in X then ai Ad and aj 1 e. As X is semi­
quasismooth, ai I d - ai and ai I e - ak for distinct i, j, and k. So fand 9 are of the
fonn:

f = XiXj + ...
_ m +9 - Xi Xk '"

Thus:
F = X!1 Ui X· +I J .

e = XimuiXk + .
The intersecrion multiplicity J.L at Q i is:

J.l = mult(F, G, Qd.
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J.L = mult(F, C, (0, 0))

= mult(Xji +...,X;~ + ... ,(0, 0))

-22-

Clearly Xji and X:· are the smallest degree monomials in Fand G. So this gives a contribution
of ajakni.

Combining the above gives:

de = L niajak + L
distinct i,j,k i>j, k#i,j

which rearranges to give the formula in the lemma.

D
An alternative proof of the above two lemmas is via Newton polyhedra and the Minkowski

mixed volume (see both [Be] and [Ku]).

1.6.7 Definition. An integral polyhedron S is a polyhedron in Rn with vertices in zn. The n­
dimensional volume of S will be denoted by Vn ( S), where the volume of the unit parallelepiped
is l.

1.6.8 Definition. For each m = (m1, ... ,m n ) E zn define

Let f E k[XI,xl"l, ... ,Xn,X;;-I] be a Laurent polynomial. Then

f= L GmX
m

,

mEZ"

where all but a finite number of the {Gm} are zero. The Newton polyhedron Newton(f) of f is
the convex hull of {m E zn : Gm =f O}, and is an integral polyhedron.

L6.9 Definition. Let S = {Si : i = 1, ... , n} be a set of integral polyhedra. The Minkowski
mixed volwne V (S) of S is given by:

V(S) = (_1)0.-1 LVn(Sd + (_1)0.-2 L Vn(Si + Sj) + ... + Vn(Sl + ... + Sn)
i>j

where Si + Sj = {Si + Sj : 8i E Si,Sj E Sj}.

This is the classical formula up to a multiple of n!
Let Tn be the n-dimensional torus (k*)n. This eorresponds to the open torie stratum

in P. Let:F be a system of n suffieiently general Laurent polynomials {li : Tn -+ k} with
corresponding Newton polyhedra S = {Si}' The roots of these n polynomials in Tn are isolated.
Let L(:F) be the number of such roots, eounted with muItiplicity. Then [Be, Theorem A] gives:

L(F) = V(S).
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1.6.10 Alternative proof of Lemma 1.6.4. Let Tl be the torus XOXI =f:. 0 in P = P(aa, aI).

Suppose that an, al I d. Then f = xg/ao + ... + x~/al. So

N J = Newton(f) = [(d/ao,O),(O,d/al)],

where [P, Q] denotes the Une segment in Z2 from P to 'Q. So VI (NI) + 1 is the number of
integral points on N J' i.e. the number of solutions to

{(a,ß) E Z2 : a ~ O,ß ~ O,aaO + ßal = d}.

For a solution (a, ß) we have a = (d - ßaI)/ao E Z, Le. d ßal mod al' As an
and al are coprime, then al is invertible modulo an, with inverse s. So ß =ds mod an, i.e.
ß = ds + nao for some n. Also 0 ::; ß ::; d/al. So

ds d ds
-- <n < -- --.

ao - - an aI an

There are _d_ + 1 such solutions. Thus f has _d_ roots on the torus Tl in P.
aOal aOal

Similarly when ao Ad, etc..

o
Lemma 1.6.5 can be proved using analogous methods.

1.7 Determination of singularities on weighted complete interseetions.
In this section we shall determine the singularities of three weighted complete interseetions,

presenting the calculations in detail. These examples are a good introduction to the theorems giv­
ing arithmetic conditions for weighted complete intersections to have at worst isolated canonical
singulariries.

1.7.1 The surface 8 = 836 in P(7, 8,9,12).
We shall see that this surface has four singularities, one each of type A2 , A3 , A6 and A7 •

The Euler number of such a K3 surface is 6, which is the lowest Euler number found in any of
the lists of weighted complete intersection K3 surfaces.

Let w, x, y and z be the homogeneous coordinates on P = P(7, 8, 9, 12) of weights 7, 8,
9 and 12 respectively. Let f be a general polynomial of homogeneous degree 36. Using the
coefficient convention (see seetion 1.3.7) we have:

So S is well-formed and, by Theorem 1.5.1, is quasismooth. So the singularities of S arise
only due to the singularities of P and occur only on the edges and vertices of P. Consider the
vertices.

Po: f contains no monomial of the form w n for any n and so Po E S. Consider the affine
piece (w = 1). The point Po E S looks like:

(i = f(l,x,y,z) = x + ... = 0) C A 3/E
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wher~ E is a primitive 7th root of unity and acts on the coordinates of A 3 via:

x ~ E
8

X = EX

Y~ E
9

y = EZy

Z~EIZZ=E5Z.

-24-

Notice that 81 18x = w 4 +... is non-zero at Po. By the Inverse Function Theorem y
and Z are local coordinates around Po E S. This gives a singularity of type ~(2, 5),
which is Du Val of type A6 •

PI: Again f contains no monomial of type x n and ~o PI E S. As above, this gives a Du
Val singularity of type A7 •

Pz, P3 : Since I contains the monomials y4 and z3 then Pz, P3 rt S.
There are only two singular edges in P, P1 P3 which is analytically isomorphie to k* x ~(3, 1)
and PZP3 which is k* x ~ (2, 1).

PI P3 : Since 11 P l P"J = x
3

Z + Z3 = Z (x
3 + z Z) then S does not contain the edge P1P3 • As

x =1= 0 and z =1= 0 on the edge PI P3 then the affine piece (z = 1) contains aU of the
intersection points. Since (8f I8x)Iz= I = X Z + ... is non-zero then wand y are Iocal
coordinates on S at each of the points of S n PI P3 • This is cIear geometrically sinee
S is a general element of all degree 36 hypersurfaees and so it must cross this line
transversally. Thus each point is a singuIarity, whieh is anaIytieally locally isomorphie
to A ZI E where the coordinates of A 2 are wand y and € is a 4th root aeting via:

w ~ E7 W = €3 W

Y ~ E9y = Ey.

This gives a Du Val singularity of type Aa•

We must now count the number of interseetion points on this edge. Each point
of the intersection is given by the equation x 3 + zZ = 0 in P(S, 12). This is just X Z4

in peS, 12), Le. Xe in P(2,3). Either from first principles or from Lemma 1.6.4 we
can see that this is exacdy one point.

PZP3: As above, there is exac1dy one Du Val singularity, which is of type Az, along this
edge.

1.7.2 The 3-fold X = X 46 in P(4,5,6,7,23).
The hypersurface X 46 in P(4,5,6, 7,23) has the following singularities:

3 of type t(1, 1, 1),
1 of type 1(3,1,1),.
1 of type ~(4, 1,2),
1 oftype r(5,1,1),
1 of type 7(6,1,3).

The singularities are checked as follows. Let v, w, X, y and z be the homogeneous coordinates
of P = P(4,5,6, 7, 23) of weights 4, 5, 6, 7 and 23 respectively. Let I be a general polynomial
of homogeneous degree 46. Then f (using the coefficient convention) is of the form:
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This is well-formed and quasismooth (see Theorem 1.5.1). So the singularities of the hypersurface
oeeur only on the edges and at the vertiees of P. Consider the vertiees in reverse order:

P4 : Since f eontains the monomial z2 with a non-zero eoeffieient, f(P4 ) t= 0 and so
P4 f/. X 46 •

P3 : There is no monomial of the form yn for any n in f, and so P3 E X 46 • Consider the
affine piece (y = 1). P3 E X 46 looks like:

- 4(f = f(v,w,x,l,z) = v + ... = 0) CA IE

where E is a primitive 7th root of unity and aets as:

V 1-4' €4 V ,

W 1-4' E
5

W,

X 1-4' E
6 x,

Z 1-4' €23 z.

Notice that 8j18v = y6 +... is non-zero at Pa. By the Inverse Function Theorem w,
x and z are local coordinates on X 46 around Pa E X 46 • Thus the singularity here is
of type ~(5, 6,23). This is equivalent to ~(6, 1,3), which is terminal.

P2 : Again there is no monomial of the fonn x n for any n in f, and so P2 E X 46 • Consider
the affine piece (x = 1). P2 E X 46 looks like:

(1 = J(v, w, 1, y, z) = v + ... = 0) C A 4 I€

where E is a primitive 6th root of unity and acts as:

V 1-4' E
4

V,

W 1-+ f5 w ,

Y ~ €7 y ,

ZI-4'€23 Z ;

Notice that 8 f I8v = X
7 + ... is non-zero at Pa. By the Inverse Function Theorem, w,

y and z are local coordinates on X 46 around P2 E X 46 • Thus the singularity here is
of type *(5, 7, 23). This is equivalent to !(5, I, 1), which is terminal.

PI: PI E X 46 is loeally f = x + = 0 and gives a tenninal singularity of type !(4,1,2).
Po: Po E X 46 is locally j = x + = 0 and gives a tenninal singularity of type !(3, 1, 1).

Consider the edges of P. An edge PiPj is singular if and only if h = hefeai, aj) t= 1. In whieh
case it is analytieally equivalent to k* x *(ao, ..., tii, ... , dj, ... , a4). So only the edge POP2 is
singular and looks like k* x ~(1, 1, 1). Since 2 = hcf(4,6) I 46, the hypersurface does not
contain this line. Lemma 1.6.4 is used on X 46 in P(4,6), after eaneelling the common factof,
to give three points of interseetion. Alternatively,
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where g36 and 93 are polynomials of degree 36 aod 3 respectively. There are exactly three solu­
tions to g3 = 0, and so there are three points of intersection. So X 46 crosses Po P2 transversally
and hence there are three singularities, each of type !(1, 1, 1), along POP2 •

1.7.3 The 3..fold X 12,14 in P(2, 3,4,5,6,7).
The family X12,14 in P(2, 3, 4,5,6, 7) is an anticanonically embedded Fano 3-fold with

only the following isolated tenninal singularities: 1 of type i(4, 1,2), 2 of type i (2, 1, 1) and 7
of type !(1, 1, 1). .

The singularities are checked as foHows. Let u, v, w, x, y and z be the homogeneous
coordinates of weights 2, 3, 4, 5, 6 and 7 respectively. Let /, 9 be homogeneous polynomials
of degrees 12 and 14 respectively. Then X = (f = 9 = 0) C P = P(2, 3,4,5,6, 7).

Consider the vertices of the weighted projective space P. Since 5 112 and 5 ,.r 14, P3 EX.
So

/ = x 2 u + ...
_ 2 +g- x w ...

Thus {v, y, z} are local coordinates around P3 , which is therefore a singularity of type! (3,6,7),
Le. i(4,1,2). There are 00 other vertices contained in X.

Consider the l·dimensional loci of P.
POP2 : h = hcf(2, 4) = 2 and

f = u
6 + w

3 + ...
7 2g=u+wy+ ...

So the local coordinates are {v, x, z} and the singlI1arities are of type ~ (1, 1, 1). There
are three such intersection points (by Lemma 1.6.4 applied to X 6 in P(l, 2)).

POP4 : Likewise h = hcf(2, 6) = 2 and

f 6 2=u +y + ...
7 5 2g=u +u w+y u+ ...

(/ = 0) in P(l, 3) is two points by Lemma 1.6.4. So there are two singularities, each
of type !(1, 1, 1), along POP4.

P2 P4: There is exactly one singularity, which is of type !(1, 1,1), on this line.
P1 P4 : This time h = hcf(3, 6) = 3 and

f 4 2=v +y + ...
4 29 =v u+y u+ ...

So there are two of type l(l, -1, 1) on P1P4 •

Consider the only singular 2-dimensional locus, POP2 P4 , of P where h = hcf(2, 4,6) = 2. By
Lemma 1.6.5, there are seven intersection points (same of which have already been counted), aH
of type ~(1, 1, 1).



Working with Weighled Complete Intersections.

11

Lists of various weighted compIete intersections.
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TI.I Preamble.
The aim of this chapter is to produce lists of hypersurface and codimension 2 weighted

complete intersections of dimension at most 3 with at worst isolated canonical singularities. We
present various theorems giving conbinatoric conditions' on the weights and degrees of such
intersections. From these conditions we can produce lists of intersections (along with their
corresponding singularities). In most cases a computer was used for its speed and inability to
become bored.

Sections II.2 and II.3 treat the cases of dimension 1 and 2 respectively; and give corre­
sponding lists. Section II.4 deals with the 3-fold case (both hypersurfaces and codimension 2)
and sections IL5 and II.6 deal with the particular cases of canonical 3-folds and Q-Fano 3-folds
respectively. Section II.7 gives an alternative method for producing canonically and anticanoni­
cally embedded 3-fold complete intersections using the Poincare senes of a ring.

II.2 Weighted curve hypersurfaces.
II.2.1 Theorem. A weighted curve compiete intersection is smooth ifand only ifit is quasismooth.

Prüof. Any I-dimensional cyclic quotient singularity is of type ~ (a) for some coprime rand a.
Let x be the coordinate on Al. The group Zr acts via:

where E is a primitive r th root of unity. So

So this is non-singular. Notice that this group action is just a quasi-reflection (see section 1.2.8).

D
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From [O&W, Corollary 3.5] we have a formula for the genus of dimension 1 hypersmfaces.

11.2.2 Theorem. Let Cd in P(ao, aI, a2) be a non-singular curve. Then the genus 9 is given
by:

II.2.3 Theorem. A weighted curve Cd in P (ao , al , a2) is we11lormed, not a linear cone and
quasismooth if and only iftor each i the following three conditions Jwld:

(1) ai < d,
(2) ai I d,

and (3) hefeai, aj) = 1 tor all distinct i, j.

Proof. C is well-fonned if and only if ai I d for all i and hefeai, a j) = 1 for all distinct i, j
(see section 1.3.10). These are conditions (2) and (3).

Suppose Cis not a linear cone and quasismooth. Theo conditions (1) holds. Also ai Id-a e

for some e. But this is already satisfied by condition (2).
The converse follows immediately from conditions (1), (2) and (3).

D
11.2.4 Smooth weighted curve hypersurfaces with amplitude a = d -2: ai = O.

We list the only smooth weighted curves of codimension 1 with Q' = 0 satisfying the above
conditions.

~~ D
C3 in P(I, 1,1) 3P
C4 in P(I, 1,2) 2P
C6 in P(I, 2, 3) P

All are elliptic curves (i.e. 9 = 1 and w rv Oe) and are given by ProjRe where Re is:

Re = EB HO(Oe(nD)),
n2:0

and D is given in the above table.

II.2.S The calculation. The above curves are the only ones satisfying the conditions of Theorem
11.2.3. This is demomstrated as follows.

Order the {ad by ao ~ al ~ a2. conditions (2) and (3) of Theorem II.2.3 give aOal a2 I d.
Let d = Aa2. As a = 0 then 3a2 ~ ao + al + a2 = d = Aa2. So A ~ 3 (i.e. A = 2,3).

(i) A = 2. So aOal 12. Either (ao,al) = (1,1) (i.e. C4 in P(I, 1,2)) or (ao,al) = (I , 2) (i.e.
C6 in P(I, 2,3)).

(ii) A = 3. So aOal I 3. Either (ao ,aI) = (1, 1) (Le. C3 in P(I, 1, 1)) Of (ao, al) = (1,3) in
which case a2 = 2 < al, a contradiction.

11.2.6 The ring Re. Consider an elliptic curve C and the divisor D = 2P, where P is any
point on C. By Riemann-Roch,

hO(nD) - h1 (nD) = deg(nD) + (1 - g).
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As D > K 0, then hl(nD) = 0 for all n ~ 1. Also 9 = 1 and so

hO(nD) = deg(nD) = 2n.

-29-

Thus hO(D) = 2 and hO(2D) = 4. Let Xo, Xl be a basis for HO(D). Then x5, XOXI and xi are
linearly independent elements of HO(2D). As hO(2D) = 4 then there exists an extra element y
of degree 4.

Consider the map:

Notiee that Xo and Xl have no eommon base points. B~ the base-point-free peneil trick (see
[ACGH, p. 126]),

Ker<pn f'o.J HO«n - l)D - D) = HO«n - 2)D)

which has dimension 2(n - 2). Also HO(D) ® HO«n - 1)D) has dimension 2.2(n - 1). So
dirn Im <Pn = 2n, and hence <Pn is onto for all n ~ 2. This means that HO(nD) is generated by
HO(D) and HO«n - l)D).

So we have the following table of bases for the HO(nD).
n hO (nD) monomials
1 2 xo, Xl.

2 4 x~, XOXI, x~, y.
3 6 3 2 2 3

X O' XOXI, Xo Xl' Xl' xoY, Xl y.
4 8 4 3 2 2 342 2 2xO' XOx}, XOX I' XOX I' Xl' xoY, XOXIY, XIY' Y .

Notiee that HO(4D) has dimension 8, but there are 9 monomials. Sinee <P4 is onto then the
first eight in the list are linear independent. So there must be a relation of the form:

where h2 and 94 are homogeneous polynomials of degrees 4 and 2 respectively.
The number N n of monomials in HO(nD) is given by:

Suppose that f was the only relation, then the dimension of the module generated by the
monomials of degree n is N n - l.Nn - 4 = 2n, which is the same as hO(nD).

So the ring R is k [x0, X I , y] / (f), where Xi has weight 1 and y has weight 2, i.e. the eurve
is C4 in P(l, 1,2). This teehnique should be compared to that in [M, Leeture 1, p. 17 - 21] and
to Weierstrass normal form.

ll.2.7 Smooth weighted curve hypersurfaces with amplitude a = d - L: ai = 1.
There are only two such curves which satisfy the conditions of Theorem II.2.3:

curve genus wc
C4 in P(l, 1, 1) 3 Ve(l)
C6 in P(l, 1,~) 2 Oe(l)
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These were calculated in a similar way to those of section II.2.5 and the genera by the formula
in Theorem II.2.2.

II.3 Weighted surface complete intersections.
In this section we give necessary and sufficient conditions for surface weighted complete

interseetions of codimension 1 and 2 to be quasismooth, well-formed and have at worst canonical
singularities. We also include lists of such intersections.

II.3.1 Theorem. Let Sd in P = P(ao, al, a2, aa) be a general hypersurjace of degree d and let
a = d - I: ai. Sd is quasi-smooth, welI-formed with at worst canonical quotient singularities
and is not a linear cone if and only if all the lollowing hold:
(1) Por all i,

(i) d > ai.

(ii) there exists e such that ai Id - a e (i.e. there exists a monomial xixe of degree d).
(iU) there exists a monomial 01 degree d which does not involve Xi.

(iv) if ai A' d, then ai Ia.
(2) For all distinct i, j, with h = hcf(ail aj), then

(i) h Id.
(U) h I a.

(Ui) one of the following holds:
either there exists a monomial xixj 0/ degree d,

or there exist monomials x7 1 xjl xel and x72xj2 x e2 of degree d such that el and
e2 are distinct.

(3) For all distinct i, j, k, hcf(ai, aj, ak) = l.

II.3.2 Note. Since the hypersurface is well-fonned then ws = <9s(a).
Proof. Let f be a general homogeneous polynomial of degree d in variables xo, ... , Xa; define
Sd : (/ = 0) C P.

Sd is quasismooth and not a linear cone if and only if conditions (li), (lii), (liii) and
(2iii) hold (see Corollary 1.5.5).

Suppose furthermore that conditions (liv), (2i), (2ii) and (3) hold. As Sd is quasismooth
the only singularities are due to the k*-action and hence are cyclic quotient singularities on the
fundamental simplex ß C P. By condition (3) only vertices and edges need be checked.

Consider Pi E Sd. By renumbering we can assurne that i = O. So ao Ad. Condition
(lii) gives that there exists an e t= 0 such that ao I d - ae • Without loss of generality we can '
assume that e = 1. So f is of the fonn f = XöXl + .... Thus af /aXl is non-zero at Po. Ey the
Inverse Function Theorem X2 and Xa are local coordinates. So Po E Sd is of type alo (a2, a3).
However d = ao + ... + aa + a and so ao I a2 + aa + a. By condition (liv), ao I a2 + aa.
Le t h = hef (ao, a2)' So h I aa and hence, by condition (3), h = 1. Therefore Po E Sd is a
canonical singularity.

Consider the edge Pi Pj • Again by renumbering assurne that i = 0 and j = 1. f restricted
to POPI is:
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where the surn is taken over the set {(n, m) : nao + mal = d}. If ao 1d then ao I d - ae for
sorne e :f o. If e :f 1 then h = hef(ao, al) 1 a e and by eondition (4) h = 1. Then POPI is
non-singular. So assurne that either ao I d or ao I d - al. Henee f is not identieally zero on
PoPI, and so Sd n Po PI is finite. Bach point in this intersection is of type *(az , a3). Sinee
d = ao + ... + a3 + Q and h I athen h I a2 + aa. Also hef(h, az) = 1. Thus eaeh point is
eanonical

Therefore Sd in P has at warst canonical singulariries.
Conversely assurne that Sd is quasismooth, well-formed, not a linear cone and has at warst

only eanonical singularities. Suppose ai 1 d. By renumbering we can assurne that i = O. So
Po E Sd and ao I d - ae for some e. Without loss of generality assurne that e = 1. As above
the singularity at Po E Sd is of type ;0 (az, aa). Since this is canonical we have ao I az + a3
and so ao I a. This is eondition (liv).

Suppose h = hefeai, aj). By renumbering assurne that i = 0 and j = 1. As Sd is well­
fonned then h I d, whieh is eondition (2i). So POPI n Sd is a finite intersection, where each
point is of type *(az, aa). This is canonieal and so h I a. This is condition (2ii).

Suppose h = hef(ai, aj, ak). Without loss of generality assurne that i = 0, j = 1 aod
k = 2. Let h' = hef(ao, aI). So h' I d. Henee the line POPI contains singularities of type
tl (az, aa). As these are canonical h = hef(h', az) = 1. This is condition (3).

o
II.3.3 Reid's 95 codimension 1 K3 surfaces.

In 1979, Reid produced the list of all families of codimension 1 weighted K3 surfaces; 95
in all (see [R1, seetion 4.5]). The full list follows along with their respective singularities.

Weighted K3 surface
X 4 in P(l, 1, 1,1)
X 6 in P (1, 1, 1, 3)
X 7 in P(l, 1,2,3)
Xs in P(l, 2, 2,3)
X g in P(l, 2,3,3)
X I0 in P(l, 2,2,5)
X ll in P(l, 2, 3, 5)
X l2 in P(l, 2,3,6)
Xl2 in P(l, 3, 4,4)
X l2 in P(2, 3,3,4)
X l4 in P(l, 2,4, 7)
X l4 in P(2, 3,4,5)
X I5 in P(l, 3, 4, 7)
X l5 in P(2, 3, 5,5)
X 16 in P(l, 2, 5,8)
X l6 in P(l, 4, 5,6)
X l7 in P(2, 3,5, 7)
XIS in P(l, 3,5,9)
XIS in P(2, 3,4,9)
XIS in P(3, 4, 5,6)
X 20 in P(I,4, 5, 10)

Singulariries

Ab A2

4xAb A2

Ab 3xA2

5xA I

AI, A 2 , ~

2xA}, 2xA2

3xAa
3xA}, 4xA2

3xAt, Aa
3xAt, A2 , Aa, A4

Aa, Aa
Al, 3x~
2xA I , ~

Al, A4 , A s
Ab A2 , A4 , Aa
2xA2 , A4

4xA I , 2xA2 , Aa
3xA2 , Aa, AI, A 4

A I ,2xA4

Weighted K3 surface
X5 in P(l, 1,1,2)
X 6 in P(l, 1,2,2)
Xs in P(l, 1,2,4)
X 9 in P(l, 1,3,4)
X lO in P(l, 1,3,5)
X 10 in P(l, 2,3,4)
X l2 in P(l, 1,4,6)
X l2 in P(l, 2,4,5)
X 12 in P(2, 2, 3,5)
X la in P(l, 3,4,5)
X l4 in P(2, 2,3, 7)
XIS in P(l, 2,5, 7)
X I5 in' P(l, 3,5,6)
XIS in P(3, 3,4,5)
X 16 in P(1,3,4,8)
Xl6 in P(2, 3, 4, 7)
XIS in P(l, 2,6,9)
XIS in P(l,4, 6, 7)
XIS in P(2, 3, 5,8)
X l9 in P(3, 4,5, 7)
X 20 in P(2, 3,5, 10)

Singularities
Al
3xA I

2xA I

Aa
A 2

2xA}, A2 , Aa
Al
3xAI , A4

6xAI , A4

A2 , A 3 , A4

7xA}, A 2

A}, A 6

2xA2 , A 5

5xAz, Aa
A 2,2xAa
4xAI , A2 , A 6

3xAI , Az
Aa, Al, A6

2xA}, A4 , A7

A 2 , Aa, A4 , A6

2xAI , A2 , 2xA4
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3xAJ, ASl AG
Ag
Al, 2xA21 As
A z, Aß
5xA}, Aa, A4
Alt A z, A s
3xA}, A IO

Al, Aß, Ag
2xAlt A4 , Az, AB
A4 , A6

4xA}, ~J As
~,ASI Az, A 6

Az, Alt 2xAß

Aa, Al, A4

3xAJ, 2xAz1 A4

Aa, Al, A l2
AJ, A7 , A IO

2xAa, A 4 , Aß
A2, Aa, Al, Ag
A4 , A s
Aa, A 7l A J , Az
A4 , A Sl Al, A7

A}, A z, A6

2x A z, A a, Al, Aß
2xA2 , A4 , A7

A a, Al, A4, As

X ZO in P(2, 5, 6, 7)
X ZI in P(l, 3, 7,10)
X ZI in P(2, 3, 7, 9)
X zz in P(l,3, 7,11)
X zz in P(2,4,5, 11)
X Z4 in P(l, 6,8,9)
X Z4 in P(2, 3,8,11)
X Z4 in P(3, 4, 7,10)
X Z4 in P(4,5,6,9)
X Z6 in P(l, 5, 7, 13)
X Z6 in P(2, 5,6, 13)
X Z7 in P(5, 6, 7, 9)
X Z8 in P(3,4, 7, 14)
X ao in P(l, 4,10,15)
Xao in P(2, 3, 10,15)
Xao in P(3, 4, 10, 13)
X ao in P(5, 6, 8,11)
Xaz in P(4, 5, 7,16)
Xa4 in P(3, 4, 10,17)
X a6 in P(l, 5, 12, 18)
X J6 in P(7, 8, 9, 12)
X as in P(5, 6, 8, 19)
X 42 in P(l, 6,14,21)
X 42 in P(3, 4, 14,21)
X 48 in P(3, 5, 16,24)
X S4 in P(4,5, 18,27)

X zo in P(2, 4,5,9) 5 X Ab As
X zo in P(3, 4,5,8) A Zl 2xAJ , A7
X 21 in P(l, 5, 7,8) A 4l A7

X Z1 in P(3,5,6, 7) 3xAzl A4, As
X zz in P(l, 4,6,11) Aa, Ab As
X Z4 in P(l, 3, 8,12) 2xAzl AJ

X Z4 in P(2, 3,7,12) 2xAll 2xAzl A6
X Z4 in P(3, 4,5, 12) 2xAzl 2xAa, A4
X Z4 in P(3, 6,7,8) 4xAzl Al, A6
X zs in P(4,5,7,9) Aal Aß, As
X Z6 in P(2,3,8,13) 3xAb A z, A 7
X 27 in P(2, 5,9, 11) A},~, A IO

X zs in P(l, 4,9,14) All A 8
X zs in P(4,6,7,11) 2xAb As, A10

X JO in P(l, 6,8,15) Alt A2, A7
X JO in P(2,6, 7,15) 5xAJ, A Zl Aß
X ao in P(4,5,6,15) Aa, 2xA}, 2xA4l A z
X JZ in P(2, 5,9,16) 2xAb A4l As
X Ja in P(3, 5, 11, 14) A4l A la
X a4 in P(4,6,7,17) Aa, 2xA1l A5 , Aß
X a6 in P(3,4,11,18) 2xAzl Alt A lO

X JS in P(3, 5,11,19) A Zl A4, A10
X 40 in P(5, 7,8,20) 2xA4l Aß, A 3

X 4Z in P(2, 5,14,21) 3xAb~' A6
X 44 in P(4,5,13,22) AI,~, Al2
X so in P(7, 8,10,25) Aß, A7, Ab A4
X ßß in P(5, 6, 22,33) A4, Ab AZl AIO

However there are not so many dimension 2 weighted hypersurfaces with Ws t"'V 0 s(±1):
II.3.4 Theorem. There are exactly three families of dimension 2 weighted hypersurfaces with at
worst canonical singularities and ws t"'V Os(l), and exactly three families with Ws ::: Os( -1),

0'=1 a=-1
55 in P(l, 1, 1, 1) 5a in P(l, 1, 1, 1)
5a in P(l, 1, 1,2) 54 in P(l, 1, 1,2)
Ss in P(l, 1, 1,4) Sß in P(l, 1,2,3)

II.3.5 Note. These families are all non-singular.

Proof. Canditian (2ii) of Theorem 11.3.1 is very strang when 0' = ±1 and forces the ai to
be pairwise coprime. Similarly condition (1 iv) forces ai I d for each i. So aoal az aa I d and
d = ao + ... + aJ + a. Order aJ ~ az ~ al ~ ao ~ 1 and let d = 'xaa. Thus aOala2 I ,X and
(A - 1)aa = ao + '" + az + a.

Suppose a = 1. Then 2aa ~ Aaa = ao + ... + aa + 1 ~ 5aa. So 2 ~ A ~ 5. Running
through the possible values of A:

(i) A = 5. So aOalaZ 15. If az = 1 then a4 = 1 (i.e. 55 in P(l, 1, 1, 1». If az = 5 then a3 = 2,
a contradiction.

(ii) A = 4. So aOalaZ I 4. If az = 1 then a4 = ~, a contradiction. If az = 2 then a4 = ~, a
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contradiction. If a2 = 4 then a4 = ~, a contradiction.
(iii) ,\ = 3. So aOa] a2 I 3. If a2 = 1 then a4 = 2 (i.e. 86 in P(l, 1, 1,2)). If a2 = 3 then a4 = 3,

a contradiction.
(iv) ,\ = 2. So aOa]a2 12. If a2 = 1 then a4 = 4 (i.e. S8 in P(l,l, 1,4)). If a2 = 2 then a4 = ~,

a contradiction.
So there are exactly three families.

Suppose that 0:' = -1. Then 2a3 ::; ,\aa = Go + ... + a3 - 1 ::; 6aa. Thus 2 ::; ,\ ::; 6.
As above this gives rise to the following families: 83 in P(l, 1, 1, 1) in the case ). = 3, S4 in
P(l, 1, 1,2) and 86 in P(l, 1,2,3) in the case ,\ = 2.

D
Consider the case of codimension 2 complete intersections.

II.3.6 Theorem. Suppose S = Sd lld. in P = P(ao, ... , a4) is quasismooth anti is not the
intersection of a linear cone with another hypersuiface. Let 0:' = 2:: d,\ - 2:: ai. S is well­
formed and has at worst canonical singularities if and only if the following hold:
(1) for all i, if ai Adl and Gi 1d2 then ai IQ.

(2) for all distinct i and j, with h = hefeGi, aj), one of the following occurs:
(a) h I dl and h I d2 ,

(b) h Id l , h I d2 anti h I 0', or
(c) h I dl , h I d2 and h 1 0'.

(3) for all distinct i, j and k, with h = hefeai, aj, ak), h I dl , h I d2 and h I 0:'.

(4) for all distinct i, j, k and 1. h = hef(ai, a j, ak, a,) = 1

II.3.7 Note. Since the hypersurface is well-fonned we have that Ws = 0 5 (0').
Proof. Let I] and 12 be sufficiently general homogeneous polynomials of degrees d] and
d2 respectively, in the variables Xo, ... , X4 with respect to the weights ao, ... , a4. Define
S : (11 = 0,12 = 0) C P.

Since S is quasismooth the only singularities are due to the k·-action and hence are all
cyclic quotient singularities occurring on the fundamental simplex .6..

Assurne conditions (1), ... , (4) hold By conditions (2), (3) and (4) S is well-fonned. By
condition (4) only the vertices, edges and faces of !J. need be considered

Suppose Pi E S. By renumbering we can assurne that i = O. So ao I d] and ao Xd2 •

As S is quasismooth (and using I = {O} in Theorem 1.5.7) there exist monomials xöx e1 and
xox e• of degrees dl and d2 , where e] =j: e2. By renumbering we can write e] = 1 and e2 = 2.
So 11 and 12 are of the form:

f] = X~Xl + .
12 = X~X2 + .

Thus all /aXl and a12/aX2 are non-zero at Po. By the Inverse Function Theorem, Xa and X4 are
local coordinates around Po. Hence Po E 8 is of type ;0 (aa, a4). As dl +d2 = ao +... + a4 + 0:'

and ao I 0' then ao I a3 + a4. Let h = hefeao, aa). So h I a4 and, by condition (3), h I d].
Since deg(xÖx]) = d], h Ial and so, by candition (4), h = 1. Thus Po E S is canonical.

Consider the edge PiPj. By renumbering we can assurne that i = 0 and J = 1. Let
h = hef(ao,al)' Notice that POp] C X d >. if and only if h I d,\ for). = 0,1. By condition (2),
h I d>.. for some A. Without loss of generality assurne that h I dl . There are 2 cases:
(a) h Id2 • POPI n (f>.. = 0) is a finite set of points for A= 0, 1. Thus POP1 n S = 0.
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(b) h A' d2 • In this case no monomial of the fonn xöx~ of degree d2 exists (or else h I d2 ).

From Theorem III.3.7 (with I = {O, I}) there exists a monomial xöx~Xe of degree d2,
where e =f 0, 1. By renumbering we can assurne that e = 2. Thus 12 is of the fonn:

and 8!2/8x2 is non-zero on POP) n S. By the Inverse Funetion Theorem, Xa and X4 are
Ioeal coordinates around eaeh point of POP) nSand so each is of type ! (aa, a4). Condition
(2b) gives h la and so h I aa + a4' Let h' = hef(h, aa). So h' I a4 and thus by condition
(4) h' = 1. Thus these points are canonical.

Therefore S has at worst canonical points along POP).
Consider the face PiPjPk • As before assurne i = 0, j = 1 and k = 2. By condition (3)

h = hef(ao, al, a2) I d) and h 1 d2. So Po PI P2 intersects S transversally. Each point in the
intersection is of type t(aa, a4). As h 10:, h I aa + a4. By condition (4) hcf(h, aa) = 1. Thus
these points are canonicaI.

Therefore conditions (1), ... , (4) are sufficient.
Conversely assume that S is well-fonned and has at worst canonical singularities. Suppose

ai Xd) and ai Xd2 • By renumbering assurne i = O. Thus Po E S. Since S is quasismooth
there exist 2 monomials x~xel and Xox e2 of degrees d) and d2 , where el =/= e2. Without lass
of generality we can assurne that el = 1 and e2 = 2. As 'before we find that Po E S is of type
alo ( aa, a4). As this is canonical ao I aa + a4 and so ao I 0'. This is condition (1).

Suppose h = hcf(ai, aj) for distinct i and j. As usual we can renumber such that i = °
and j = 1. As S is well-formed then h I dA for some .'\' Suppose h I d). If h I d2 then this
is condition (2a). So assume that h J d2 • As above each point of POP) n S is isolated and of
type i(aa, a4)' Thus h I aa + a4 and so h I 0'. This is condition (2b). Likewise for the case
when h I d2 but h Xd). This gives condition (2c).

Suppose h = hef(ai, a j, ak) for distinct i, j and k. Renumber such that i = 0, j = 1 and
k = 2. As S is well-fonned then h I d) and h I d2 • Thus POP)P2 n S is a finite number of
points, all of type *(aa, a4)' As these are canonical h I aa + a4 and so h I 0'. This is condition
(3). Also hefeh, aa) = hef( h, a4) = 1, which is condition (4).

So these conditions are necessary.

o

Singularities
Al
A2

2 x AI, A 2

6 X A)
3 x AI, 2 X A2

4 x AI, Aa
9 x Al

Weighted K3 surfaces
Xa,a in P(I, 1, I, 1,2)
X 4 ,4 in P(I, 1, 1,2,3)
X 4 ,5 in P(I, 1,2,2,3)
X 4 ,6 in P(I, 2, 2, 2, 3)
X 5 ,6 in P(I, 2,2,3,3)
X 6 ,6 in P(I, 2, 2,3,4)
X 6 ,6 in P(2, 2, 2,3,3)

Singulariries

2 X A)
4 X A)
2 X A 2

AI, Aa
A4

4 x A 2

II.3.8 Codimension 2 Weighted K3 Surfaces.
There are 84 families of codimension 2 quasismooth, well-fonned K3 surfaces with only

canonical singularities and L: aj ~ 100. These were found by means of a computer search
program.
Weighted K3 surfaces
X2 ,a in P(I,I,l,I,I)
Xa,4 in P(I, 1,1,2,2)
X 4 ,4 in P(I, 1,2,2,2)
X 4 ,6 in P(I, 1,2,3,3)
XS,6 in P(l, 1,2,3,4)
X 6 ,6 in P(I, 1,2,3,5)
X 6 ,6 in P(I, 2, 3, 3, 3)
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X 6 ,7 in P(l, 2,2,3,5) 3 x Ab A4 X 6 ,7 in P(l, 2, 3, 3,4) Al, 2 X A z, A3

X 6 ,8 in P(l, 1,3,4,5) A 4 X 6 ,B in P(l, 2, 3, 3, 5) 2 X A 2 , A4

X 6 ,8 in P(l, 2,3,4,4) 2 x Ab 2 X A3 X 6 ,B in P(2, 2, 3,3,4) 6 X Al, 2 X Az
X 6 ,9 in P(l, 2,3,4,5) Al, A 3 , A4 X 7 ,8 in P(l, 2,3,4,5) 2 X Al, A z,~
X 6 ,IO in P(l, 2,3,5,5) 2 X A 4 X 6 ,IO in P(2, 2,3,4,5) 7 X Al, A 3

X S,9 in P(l, 2,3,4, 7) 2 x Ab A 6 X 8 ,9 in P(l, 3,4,4,5) 2 X A 3 , A4

X B,9 in P(2, 3, 3,4,5) 2 x Ab 3 X Az, A4 X 8 ,IO in P(l, 2,3,5,7) Az, A 6

XS,IO in P(l, 2,4,5,6) 3 x Ab Ae; X 8 ,IO in P(l, 3, 4,5,5) Az, 2 X A 4

X 8 ,lO in P(2, 3,4,4,5) 4 x Ab A z, 2 X A3 X9,lO in P(l, 2,3,5,8) Al, A 7

X9,IO in P(l, 3,4,5,6) A z, A 3 , As X9,IO in P(2, 2,3,5, 7) 5 x Ab A 6

X 9 ,IO in P(2, 3,4,5,5) 2 x Ab A3 , 2 X A4 X 8 ,IZ in P(l, 3,4,5, 7) ~, A6

X 8 ,lZ in P(2,3,4,5,6) 4 x Ab 2 X A z, A4 X 9 ,IZ in P(2,3,4,5, 7) 3 x Al, A4 , A6

XIO,ll in P(2, 3, 4,5, 7) 2 x Ab A z, A3 , A 6 X lO ,12 in P(l, 3,4,5,9) Az, AB
XlO,lZ in P(l, 3, 5,6, 7) 2 X Az, A6 XlO,IZ. in P(l, 4,5,6,6) Al, 2 X A 5

X 10 ,12 in P(2, 3,4,5,8) 3 X Al, A 3 , A 7 XIO,IZ in P(2, 3, 5,5, 7) 2 X A 4 , Aß
X 10 ,12 in P(2, 4, 5, 5, 6) 5 x Ab 2 X A4 XIO,IZ in P(3, 3,4,5,7) 4 X A Z1 A 6

X 10 ,12 in P(3, 4,4,5,6) 2 X A2 , 3 X A 3 , Al X U ,12 in P(l,4, 5,6, 7) Al, A 4 , A6

X 10 ,14 in P(l, 2,5,7,9) A 8 X lO ,14 in P(2, 3,5,7,7) Az,2 X A6

X10 ,14 in P(2, 4,5,6, 7) 5 x Ab A3 , A 5 X lO ,15 in P(2, 3,5,7,8) Ab AG, A7

X IZ ,13 in P(3, 4, 5,6, 7) 2 X A 2 , Ab A4 , A 6 X 12 ,14 in P(l, 3, 4, 7, 11) A lO

X I2 ,14 in P(l, 4, 6, 7, 8) AI, A 3 , A 7 X 1Z ,14 in P(2, 3, 4, 7, 10) 4 x Ab Ag
X I2 ,14 in P(2, 3,5,7,9) A z, A4 , AB X IZ ,14 in P(3,4, 5, 7, 7) A 4 ,2 X A 6

X lZ ,14 in P(4,4,5,6,7) 3 X A 3 , 2 x Ab A4 X 1Z ,15 in P(l, 4,5,6,11) Al, A IO

X 12,15 in P(3, 4,5,6,9) 3 X A z, Al, A 8 X1Z,IS in P(3, 4,5, 7,8) A3 , A 6 , A7

X lZ ,16 in P(2, 5,6, 7,8) 4 x AI, A 4 , A6 X 14 ,lS in P(2, 3,5,7, 12) AI, A z, Au
X 14 ,lS in P(2,5,6,7,9) 2 x Al, As , AB "'Y14,15 in P(3,4,5,7,10) A 3 , A 4 , Ag
X I4 ,15 in P(3, 5, 6, 7, 8) 2 X A z, As, A 7 X 14 ,16 in P(l, 5, 7, 8, 9) A4 , A 8

X 14 ,16 in P(3, 4,5,7,11) A z, A 4 , AlO X 14 ,16 in P(4,5,6,7,8) Ab 2xA3 , A4 , A 5

X 15 ,16 in P(2, 3,5,8,13) 2 x Ab A12 X lS ,16 in P(3,4, 5,8,11) 2 x A 3 , A lO

X 14 ,18 in P(2, 3,7,9,11) 2 x A 2 , A lO X 14 ,lB in P(2, 6, 7, 8,9) 5 x AI, A z, A 7

X IZ ,20 in P(4,5,6,7,10) 2 X Al, 2 X A 4 , A 6 X 16,18 in P(1, 6,8,9,10) Al, A 2 , Ag
X 16 ,18 in P(4,6,7,8,9) 2xAI , 2xA3 , Az, A6 X 18 ,20 in P(4,5,6,9,14) 2 x Al, A z, Al3

X 18 ,ZO in P(4,5, 7,9,13) A 6 , A I2 X 18 ,20 in P(5,6,7,9,11) A2 , Aß, A IO

X 1B ,Z2 in P(2, 5,9,11, 13) A4 , A l2 X ZO ,Zl in P(3, 4, 7,10, 17) AI, A l6

X IB ,30 in P(6, 8,9,10, 15) 2xAr, 2xAz, A 7 , A4 X 24 ,30 in P(8, 9,10, 12, 15) AI, A 3 , AB, A z, A4

11.4 Weighted 3-fold complete intersections.
This section gives the corresponding conditions and lists for 3-folds.

11.4.1 Theorem. Let X d be a general hypersurjace in P = P (ao, ... , a4) and let Q' = d - I: ai.
Then X d is quasismooth with only isolated terminal quotient singularities anti is not a linear
cone if and only if aLI the foLIowing hold:

(1) For aLI i,
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(i) d > ai.

(U) there exists a monomial xixe 0/ degree d (i.e. there exists e such that ai Id - ae).

(Ui) if ai I d, there exists an m i- i, e such that ai I a m +a.
(2) For all distinct i J jJ with h = hcf(ail aj), then

(i) h Id.
(ii) there exists an m i- i J j such that h I a m + 0'.

(iU) one 0/ the lollowing ho/cis:
either there exists a monomial xixj 01 degree d,

or there exist monomials X?1 xjl Xel ami X?2 xj2 Xe2 01 degree d such that el

and ez are distinct.
(iv) there exists a monomial 01 degree d which does not involve Xi or Xj.

(3) For all distinct i, j, k, hef(ai,aj,ak) = 1.

11.4.2 Note. Since the hypersurface is quasismooth and of dimension 3 then it is well-formed,
and so wx = OX(O').
Proof. Let I be a general homogeneous polynomial of degree d in variables xo, ... , X3; define
Xd : (/ = 0) C P.

Xd is quasismooth and not a linear cone (and therefore well-formed) if and only if conditions
(li), (lii), (2i), (2iii), (2iv) and (3) hold (see Corollary 1.5.6). By calculating the types of
the singularities on Xd we can show that conditions (liii), (2i), (2ii) and (3) are equivalent to
these singularities heing terminal; the combinatorial conditions for which are found in Lemma
1.6.3.

Suppose furthermore that conditions (liii), (2i), (2ii) and (3) hold. As X d is quasismooth
the only singularities are due to the k"'-action and hence are cyclic quotient singularities on the
fundamental simplex ß C P. By condition (3) only vertices and edges need be checked.

Consider Pi E Xd. 'By renumbering we can assume that i = O. So ao I d. By condition
(lii) there exists an e i- 0 such that ao I d - ae• Without lass of generality we can assurne
that e = 1. So I is of the fonn f = XgXI + .... Thus Bllaxl is nonzero at Po. By the
Inverse Function Theorem xz, X3 and X4 are local coordinates around Po. So Po E X d is of
type alo (a2, a3, a4)' However d = ao +... +a4 + 0' and so ao I a2 + a4 + a. By condition (liv),
ao I a +a m for some m = 2, 3, 4. Without loss of generality assurne m = 2. BYcondition (1 iv ),
ao I a3 + a4' Let h = hef(ao 1 a3)' So h I a3 and hence, by condition (3), h = 1. Therefore
Po E X d is a terminal singularity.

Consider the edge PiPj. Again by renumbering assurne that i = 0 and} = 1. / restricted
to POPI is:

where the sum is taken over the set {(n, m) : nao + mal = d}. If ao 1 d then ao I d - a e

for some e t- O. If e i- 1 then h = hefeao, al) I ae and by condition (4) h = 1. Then POPI

is nonsingular. So assurne that either ao I d or ao I d - al. Hence I is not identically zero
on Po PI, and so X d n Po PI is finite. Each point in this intersection is of type *(az, a3 , a4).
By condition (2ii) h I 0' + am for some m = 2,3,4. By renumbering assurne m = 2. Since
d = ao + ... +a4 +0', then h I a3 + a4. Also hef(h, a3) = 1. Thus each point is terminal.

Therefore X d in P has at worst terminal singularities.
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Conversely assurne that X d is quasismooth, not a linear cone and has at worst only terminal
singularities. Suppose ai I d. By renumbering we can assurne that i = O. So Po E X d and
ao Id - ae for same e. Without loss of generality assurne that e = 1. As above the singularity at
Po E X d is of type t-(a2 , aa , a4). Since this is terminal we have, after renumbering, ao I a2 +a3
and so Uo 1 a + a m for some m. This is condition (1iv).

Suppose h = hefeai, aj). By renumbering assurne that i = 0 and j = 1. As X d is well­
fonned then h I d, which is condition (2i). So POp] n Xd is a finite intersection, where each
point is of type t(a2, aa, a4). This is terminal and so h I a + am for m = 2,3,4. This is
condition (2ii).

Suppose h = hcf(ai, aj, ak). Without loss of generality assurne that i = 0, j = 1 and
k = 2. Let h' = hcf(ao, al)' So h' I d. Hence the line POP1 contains singularities of type
i, (a2, aa, a4). As these are terminal h = hef(h' , a2) = 1. This is condition (3).

D
II.4.3 Theorem. There are exactly Jour Jamilies oJ quasismooth 3-Jold weighted hypersur/aces
with only terminal isolated quotient singularities and wx ~ 0 x:

X s in P(1, 1, 1, 1, 1)
X 6 in P(l, 1, 1,1,2)
X a in P(1, 1, 1, 1,4)
X lO in P(l, 1, 1,2,5)

Notice that the above are all non-singular.

Proof. As !(x r"V Ox then a = O. Suppose h = hef(ai, aj) f. 1 for distinct i, j. By Theorem
11.4.1 (2ii) there exists an m i=- i,j such that h I a m + a. However a = 0 and so h I am. By
(3) h = 1, a contradiction. Hence ai and aj are coprime for distinct i, j.

Suppose that ai 1 d. Then there exists an m f. i, ei such that ai I a m + a. Thus
ai = hefeai, um) = 1, contradieting ai 1d. Thus ai 1 d for all i.

Order the {ad such that a4 2:: ... 2:: ao. So 5a4 2:: d 2:: 2a4. Let d = ),a4. Thus A. = 2,3,4
or 5. As the {ai} are pairwise eoprime then aa al a2 aa a4 1 d and so Go al a2 a3 I ),. Also
Go + ... + aa = (A. - 1)a4. There are four cases:

(i) A. = 5. Either (aa, a], az, aa) = (1,1,1,1) giving a4 = 1 (Le. X s in P(1, 1, 1, 1, 1») or
(aa,al' a2,aa) = (1,1,1,5) giving a4 = 2 < aa.

(ii) A. = 4. So ). - 1 = 3 and divides aa + ... + aa. There are three possibilities:
(a) (ao, al , a2, aa) = (1, 1, 1, 1), giving 3 1 4.
(b) (aa,aI,a2,aa) = (1,1,1,2), giving 315,
(e) (ao,al,az,aa) = (1,1,1,4), giving 317.

All of these possibilities give eontradictions.
(üi) A = 3. Either (aa,al,a2,aa) = (1,1,1,1) giving a4 = 2 (i.e. X 6 in P(1,1,1,1,2»), or

(ao , a1, az, aa) = (1, 1, 1, 3) giving a4 = 3, contradicting the coprime condition.
(iv) A. = 2. Either (aO,al,a2,aa) = (1,1,1,1) giving a4 = 4 (Le. X a in P(1,1,l,l,4»), or

(ao, al, az, a3) = (1,1,1,2) giving a4 = 5 (i.e. X 10 .in P(l, 1,1,2,5»).

o
Consider the case of codimension 2 complete intersections.

11.4.4 Theorem. Suppose X = Xd 1 ,d2 in P = P(ao, ... , as) is quasismooth and not the
interseetion 0/ a linear cone with another hypersurjace. Let a = L: d.\ - L: ai. X has at worst
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terminal singularities if and only if the foltowing hold:
(1) for alt i, if Gi 1d l and ai 1 d2 then there exists eJ, e2 and m such that ai I d l - Uel'

Gi I d2 - a e2 and ai I Q' + a m , where {i, el, e2, m} are distinct.
(2) for alt distinct i anti j, with h = hcf(ai, aj), at least one of the following occurs:

(a) h I d l and h I d2 ,

(b) h Id l , h 1d2 and h I Q' + a m for some m f. i, j, or
(c) h Ad}, h I d2 and h I Q' + Um for some m f. i,j.

(3) for alt distinct i, j and k, with h = hcf(ai, aj, ak), h I dJ, h Id2 and h I Q' + am for some
m f. i,j, k.

(4) for alt distinct i, j, k and I, h ="hcf(ai,aj,ak,aI) = 1.

II.4.5 Note. Since X is quasismooth, of dimension 3 and not the intersect of a linear cone with
ather hypersurfaces then X is well-fonned. Thus wx = 0 x (Q').
Proof. Let /1 and /2 be sufficiently general homogeneous polynomials of degrees dl and
d2 respectively, in the variables xo, ... , X4 with respect to the weights ao, ... , a4. Define
X : (/1 = 0,/2 = 0) C P.

Since X is quasismooth the only singularities are due to the k*-action and hence are all
cyclic quotient singulariries occurring on the fundamental simplex ~.

Assume condirions (1), ... , (4) hold. By condirion (4) only the vertices, edges and faces of
~ need be considered.

Suppose Pi E X. By renumbering we can assume that i = 0. So ao 1d l and ao )' d2 • By
condition (1), there exist monomials X~l x e1 and X~2 xe2 of degrees d1 and dz, where el f. ez.
Note that this is really quasismoothness. By renumbering we can write el = 1 and ez = 2. So
11 and 12 are of the form:

/1 = X~lXl + .
f2 = X~2X2 + .

Thus afl/aXl and af2/8x2 are non-zero at Po. By the Inverse Function Theorem, Xa, X4 and
x.., are local coordinates. Hence Po E X is of type a10 (aa, 04, a..,). By condition (1) ao I Q' +am

for same m f. 0,1,2. Without 1055 of generality assurne m = 3. As dl + d2 = ao + ... + as + Q'

then ao I a4 + as. Let h = hcf(ao, a4)' So h I a.., and, by condition (3), h I d1. Since
deg XÖXl = dJ, h laI and so, by condirion (4), h = 1. Thus Po E X is tenninal.

Consider the edge PiPj. By renumbering we can assurne that i = °and j = 1. Let
h = hcf(ao,al)' Notice that POPI C Xd). if and only if h )' d>. for.A = 0,1. By condition (2),
h I d>. for some .A. Without lass of generality assurne that h Idl • There are two cases:
(a) h I d2 • POPI n (f>. = 0) is a finite set of points for ;\ = 0, 1. Thus POPI n X = 0.
(b) h )' d2 • In this case no monomial of the fonn X~OX~l of degree d2 exists (or else h I d2 ).

From Theorem 1.5.7 (with I = {O, I}) there exists a monomial x~o X~l Xe of degree dz,
where e f. 0,1. By renumbering we can assume that e = 2. Thus /2 is of the form:

and 8f2/8x2 is non-zero on POP1 n X. By the Inverse Function Theorem, Xa, X4 and Xs

are local coordinates and so each point of Po PI n X is of type t(aa, a4 , as ). Conditian
(2b) gives h I Q' + a m for same m f. 0,1,2. Assurne that m = 3, and hense h 1 a4 + as.
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Let h' = hef(h, a4). So h I a4 and thus by condition (4) h = 1. Thus these points are
tenninal.

Therefore X has at worst tenninal points along POp].
Consider the face PiPjPk • As before assume i = 0, j = 1 and k = 2. By condition (3)

h = hef(ao, a], a2) I d] and h I d2. So POP]P2 intersects X transversally. Bach point in the
interseetion is of type t(a3, a4, as). As h I Q' + a m for some m f=. 0, 1,2, after renumbering,
h I a3 + a4. By condition (4) hef (h, a3) = 1. Thus these points are tenninal.

Therefore condition (1), ... , (4) are sufficient.
Conversely assurne that X has at worst terminal singularities. Suppose ai t d] and ai Jd2 •

By renumbering assurne i = O. Thus Po E X. Since X is quasismooth there exist 2 monomials
xgx e1 and xox e2 of degrees d] and d2, where e] f=. e2. This gives the first part of condition
(1). Without loss of generality we can assurne that e] = 1 and e2 = 2. As before we find that
Po E X is of type !o (a3, a4, a:s). As this is terminal, after renumbering, ao I a3 + a4 and so
ao I Q' + a5· This is condition (1).

Suppose h = hef(ai , a j) for distinct i and j. As usual we can renumber such that i = °
and j = 1. As X is well-formed then h I dA for some A. Suppose h I d]. If h I d2 then this
is condition (2a). So assurne that h I d2 • As above each point of POp] n X is isolated and of
type i(a3, a4, as). After renumbering, h I a3 + a4 and so h I Q' + a:s. This is condition (2b).
Likewise for the case when h Id2 but h 1d]. This gives condition (2c).

Suppose h = hef(ai, aj, ak) for distinct i, j and k. Renumber such that i = 0, j = 1 and
k = 2. Since X is well-fonned h Id] and h Id2 • POp] P2 n X is a finite number of points, all
of type i(a3, a4, as). As these are terminal, after renumbering, h I a3 + a4 and so h I Q' + as.
This is condition (3). Condition (4) follows from the fact that hef(h, a3) = hef ( h, a4) = 1.

So these conditians are necessary.

D
II.4.6 Codimension 2 weighted 3-fold complete intersection with trivial canonical bundle.

The four families of 3-fold codimension 2 quasismooth complete intersections with at warst
terminal singularities, W x r"V 0 x and L: ai < 100 are:

X 2,4 in P(l, 1, 1, 1, 1,.1)
X 3 ,3 in P(1,1,1,l,l,1)
X 3 ,4 in P(l, 1,1, 1, 1,2)
X 4 ,4 in P(l, 1, 1, 1,2,2)

Again the above are all non-singular and were found using a computer search based on the
conditions of Theorem 11.4.4.

II.5 Canonically embedded weighted 3-folds.
II.5.1 Canonically embedded 3-fold weighted hypersurfaces.

There are 23 families of 3-fold quasismooth weighted hypersurfaces with only terminal
isolated quotient singularities with Wx ~ Ox(l) and L: ai ~ 100.

Hypersurface. 1(3,; Pg Singularities.
X 6 in P (1, 1, 1, 1, 1) 6 5
X 7 in P(l, 1, 1, 1,2) 7/2 4 ~(1, -1,1)
X s in P(1,1,1,2,2) 2 3 4 x !(1,-1,1)
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6 x t(I, -1, 1)
2 x 2"(1, -1, 1)
~(1,-I,I),2 x !(1,-1,1)
3 X !(I, -1, 1)

X g in P(l, 1,1,2,3) 3/2 3 !(I, -1,1)
X IO in P(I, 1, 1, 1,5) 2 4
X IO in P(I,I,2,2,3) 5/6 2 5 x t(I,-I,I), ~(I,-l,1)

X I2 in P(l, 1, 1,2,6) 1 3 2 X I(I, -1, 1)
X 12 in P (1, 1, 2, 3, 4) 1/2 2 3 x ~ (1, -1, 1) 1

X 12 in P (1, 2, 2, 3, 3) 1/3 1 6 x ~ (1, -1, 1), 4 x 3(1, -1, 1)
X I4 in P(1, 1,2,2,7) 1/2 2 7 x 2(1, -1,1)
X I5 in P(1, 2, 3,3,5) 1/6 1 ~(1, ;1, 1), 5 x t(I, -I, 1)
X I6 in P(I,.I,2,3,8) 1/3 2 2 x I(1,-1,1), 1(1,-1,1) 1

X I6 in P(l,2,3,4,5) 2/15 1 4 x l(l,-l,l), 3(1,;1,1), 5(1,-1,2)
X I8 in P(I, 2,2,3,9) 1/6 1 9 x 1(1, -1,1),2 x 1(1, -1,1) 1 I

X I8 inP(2,3,3,4,5) 1/20 0 4 x 1(1,-1,1),~ x 3'(1,-1,1), t(I,-I,I), 5(1,-1,2)
X 20 in P(2,3,4,5,5) 1/30 0 5 x 2(1,-1,1), 3'(1,-1,1),4 x -g(l,-1,2)
X 2I in P(I,3,4,5,7) 1/20 1 ~(I,-I,I), !(1,-1,2)
X 22 in P(1,2,3,4,11) 1/12 1 5 x ~(1,-I,I), j(I,-1,1), ~(1,-1,1)

X 28 in P(I,3,4,5, 14) 1/30 1 j(l, -1, 1), !(1, -1,1), i(1, -1, 1)
X 28 in P(3, 4, 5, 7, 8) 1/120 0 J(I, -1, 1), 3 x ~(1, -I, 1), !(l, -1, 2), ~ (1, -1,3)
X 30 in P(2,3,4,5,15) 1/60 0 7x!(1,-1,1), 2x~(I,-I,I), :t(I,-I, 1),2 x ~(I,-I,2)

X 40 in P(3,4,5, 7,20) 1/210 0 t(1,-I,I),2 x ~(I,-I,I), 2 x i(I,-I,2), ~(I,-I,2)

X 46 in P(4,5,6,7,23) 1/420. 0 4(1, -1, 1),3x ~(I, -1, 1),~(1, -1, 2),~(I, -1, I),~(I, -1,3)

II.5.2 Conjecture. This list was produced using a computer program. In fact the program was
run much further but produced no more exampies. I conjecture that the lists in this section and
in sections II.5.3, 11.6.5, and 11.6.6 are compiete lists, and not limited by L: aj :S 100.

II.5.3 Interesting Example. The family X 46 in P(4,5;6, 7, 23) has Pg, P2 and P3 all zero.
It is interesting to find canonical 3-foIds with as many of their first plurigenera equaI to zero
as possibIe (see also [Fl, section 4.9]). This is the best such weighted camplete interseetions
example found in these lists.

II.5.4 Canonically embedded codimension 2 weighted 3-folds.
There are 59 families af 3-fold codimensian 2 weighted camplete intersections satisfying

the conditions of Theorem 11.4.4 with Wx rv Ox(l) and L: aj ::; 100.
CompIete Interseetion !{} Pg Singularities.
X 2 ,s in P(l, 1, I, 1, 1, 1) 10 6
X 3 ,4 in P(I, 1, 1, 1, 1, 1) 12 6
X 3 ,s in P(I, 1, 1, I, 1,2) 15/2 5 ~(I, -I, 1)
X 4 ,4 in P(I, 1,1, 1, 1,2) 8 5
X 3 ,6 in P(I, I, 1, 1,2,2) 9/2 4 3 x t(I, -1,1)
X4 ,s in P(I,I,I,I,2,2) 5 4 2 x 2"(1,-1,1)
X 2,B in P(I, 1, I, 1, 1,4) 4 5
X 4 ,6 in P(l, 1, I, 1,2,3) 4 4
X 4 ,6 in P(I, 1, 1,2,2,2) 3 3
X 3 ,B in P(l, 1, 1, 1,2,4) 3 4
X 4 ,7 in P(l, 1,1,2,2,3) 7/3 3
X SJ6 in P(l, I, 1,2,2,3) 5/2 3
X 6 ,6 in P(l, 1, 1,2,3,3) 2 3
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X 4 ,S in P(I, 1,2,2,2,3)
X 6 ,6 in P(I, 1,2,2,2,3)
X 3 ,IO in P(I, 1,1,2,2,5)
X 4 ,9 in P(I, 1,2,2,3,3)
X 6 ,7 in P(I, 1,2,2,3,3)
X 4 ,IO in P(I, 1,1,2,3,5)
X 4 ,IO in P(I, 1,2,2,2,5)
X 6 ,s in P(I, I, 2, 2, 3,4)
X 6 ,s in P(I, 2,2,2,3,3)
X 6 ,9 in P(I, I, 2, 3, 3,4)
X 6 ,9 in P(I, 2,2,3,3,3)
X 4 ,12 in P(I, 1,2,2,3,6)
X 6 ,IO in P(I, 1,2,3,3,5)
X 6 ,IO in P(I, 2,2,2,3,5)
X 6 ,IO in P(I, 2,2,3,3,4)
X 4 ,14 in P(I, 2,2,2,3, 7)
X a,12 in P(I, 2, 2, 3,4,5)
XS,IO in P(I, 2, 2, 3,4,5)
X a,12 in P(I, 2, 3, 3,4,4)
X 6 ,12 in P(2, 2, 3,3,3,4)
X 6 ,13 in P(I, 2, 3,3,4,5)
X 9 ,IO in P(I, 2, 3,3,4,5)
X 6 ,14 in P(I, 2, 2,3,4, 7)
X S ,12 in P(l, 2,3,4,4,5)
X 6,14 in P(2, 2,2,3,3, 7)
X S ,12 in P(2, 2, 3, 3,4,5)
X 6 ,1.5 in P(2, 3, 3, 3,4,5)
X6,16 in P(I, 2,3,3,4,8)
X 10 ,12 in P(I, 2,3,4,5,6)
X 10 ,12 in P(2, 2, 3, 4, 5,5)
X 10 ,12 in P(2, 3, 3, 4,4,5)
Xa,15 in P(2, 3, 3,4,5,5)
Xa,IS in P(I, 2, 3, 3, 5, 9)
X 6 ,IS in P(2, 2, 3, 3,4,9)
X 10,14 in P(2, 2,3,4,5,7)
X 6 ,20 in P(I, 2,3,4,5,10)
X 12 ,14 in P(2, 3, 4, 4, 5, 7)
X 12 ,15 in P(I, 3,4,5,6, 7)
X10,IB in P(2, 3,4, 5,6, 7)
X 12,16 in PC2, 3, 4, 5,6,7)
X S ,22 in P(2, 3,4,4,5, 11)
X 12 ,IB in P(2, 3,4,5,6,9)
X I2 ,IS in P(3, 4,4, 5,6, 7)
X10 ,21 in P(3, 4,5, 5,6, 7)

4/3
3/2
3/2
1
7/6
4/3
1
1
2/3
3/4
1/2
2/3
2/3
1/2
5/12
1/3
3/10
1/3
1/4
1/6
13/60
1/4
1/4
1/5
1/6
2/15
1/12
1/6
1/6
1/10
1/12
1/15
2/15
1/12
1/12
1/10
1/20
1/14
1/28
4/105
1/30
1/30
3/140
1/60

2 lCl, -1, 1),8 x ~Cl, -1,1)
2 9 x tC1,-I,I)
3 5 x ~(1,-1,1) 1

2 2 x ~Cl, -1, 1),3 x J(I, -1, 1)
2 3 x 2Cl, -1,1),2 x 3(1, -1, 1)
3 l(I, -1,1)
2 10 x ~(1, -1, 1)
2 6 x ~(l,-I,I)

1 12 x ~(1, -1,1),2 x l(l, -1,1)
2 :lCl, -1, 1), ~(1,-1, 1)
1 3 x t(l, -1, 1),6 x j(I, -1, 1)
2 4 x ~C1, -1, 1), 2 x 3"(1, -1, 1)
2 2 x 3(1, -1, 1)
1 15 x ~Cl,-I,I)

1 iC1,-I,I),7 x ~~1,-1,1), 2 x l(I,-I,I)
1 JCl,-I,I), 14 X I2 (I,-1,1)
1 l(I,-I,2),9 x 2~1,-1,1)

1 3"(1,-1,1),10 x 2"Cl,-I,1)
1 3 x tC1,-I,I), 3 x t(I,-I,I)
o 9 x 2"(1, -1,1),8 x 3"(1, -1, 1)
1 t(l,-l,l), k(I,-l,2), !(1,-1,1), 2 x t(I,-I,I)
1 1(1, -1, 1),2 x ~~1, -1,1),3 x k(I, -1,1)
1 1(1,-1,1),10 X I2 (I,-I,l)
1 5(1,-1,1),6 x 2"(1,-1,1)
o 21 x ~(1, -1,1),2 x t(l, -1,1)
o }Cl,-I,2), 12 x ~Cl,-I,I),4 x kCl,-I,I)
o "4Cl, -1, 1), ~(1, -1, 1), 10 x tCl, -1,1)
1 2 x t(I,-I,I),2 x jCl,-I,I),2 x ~Cl,-I,I)

1 5 x 2(1,-1,1),2 x '3(1,-1,1)
o 15 x ~C1, -1, 1),2 x k(I, -1,2)
o 6 x t(l, -1, 1), 4 x l(I, -1, 1),3 x tC1, -1,1)
o 2 x 2(1, -1, 1),5 x 3"(1, -1, 1),3 x 5(1, -1,2)
1 t(I, -1,2), 4 x i(I, -1, 1)
o 1(1,-1,1),13 x ~(1,-1,1),4 x i(I,-I,I)
o 3(1, -1,1), i(I, -1, 1), 17 x ~(1, -1, 1)
1 3 X ~(1, -1, 1),2 x k(l, -1,2)
o tel, -I, 2), ~ x ~(1, -1,1),3 x t(l,-l, 1)
1 IC1, -1,2), 2Cl, -1, 1)
o 1(1, -1, 1),t C1 , -I,3),7x t(I, -1, 1),3x tC1, -1,1)
o ~ (1, -1, 2), I Cl, -1, 2),8 x 2f1, -1, 1),2 x 3"f1, -1, 1)
o J(I, -1, 1)'5(1, -1, 1),10x 2(1, -1, 1),2x 4'Cl, -1,1)
o lCl,-I,I),9 x~(I,-I,I),4 xiCl,-I,I)
o ~(1, -1, 1),t(I, -I,2),3x j(I, -1, 1),3x t(l, -1,1)
o 4(1,-1, 1)'6Cl, -I,l),3x3"(I, -1, 1),2x 5(1, -1,2)
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X 12 ,21 in P(3, 4,5,6, 7, 7) 1nO 0
X 12 ,28 in P(3, 4,5,6, 7, 14) 1/105 0

i(1,-1,2), !(i,-l,l), 3 x t(1,-1,2) 1

'g(1, -1, 1),2x 3 (1, -1, 1),2x 2"(1, -1, 1),2x '7(1, -1,2)

11.6 Q.Fano 3·folds.
In [R4, seetion 4.3] Reid conjectures that if X is a Q-Fano 3-fold then Ox(-](x) has a

global section. This is false as shown by the following exarnple:

II.6.1 Example.
The farnily X 12 ,14 in P(2, 3,4,5,6, 7) is an anticanonically embedded Fano 3-fold with

only the following isolated tenninal singularities: 1 of type ~ (4, 1,2), 2 of type ~ (2, 1, 1) and 7
of type !(1, 1, 1). These singularities were detennined eariler.

Since it is quasismooth and of dimension 3, wx ": 0 x( -1) and ](5< = - 3
1
0' By an

unpublished result of Barlow (see [R4, Corollary 10.3]) we have

r~ -1
](X. C2(X) = L - 24X(Ox)

singula.rit.ies Q TQ

< O.101
-30"where rq is the index of the singularity Q of type r~(1,-1,bQ)' SO ]{X.C2

However 0 x (-](x ) r"V 0 X (1) has 00 global sections.
Experimentation leads to the following:

II.6.2 Conjecture. Every weighted hypersurlace Q-Fano 3-lold X J with canonical singularities J

has a global seetion 01 w-;/ .

This is clear in one particular case.

II.6.3 Lemma. Consider X d in P(ao, ... , a4) be a lamily 0/ Q-Fano 3-folds with only isolated
tenninal singularities. Suppose also that ao ~ ... ~ a4 and a4 1 d. Then wXl has aglobai
section.

Proof. As a4 1 d, the vertex P4 is contained in X. The condition for a tenninal singularity
at Pi gives that there exists an a m such that a4 I a m + o'. So a m = f-La4 + (-0') for same

integer p. Since 0' < 0 and a4 2::: am , then p ~ O. Thus deg(x~-Jl) x m ) = -0' and so
diln HO(Ox( -0')) 2::: 1. But HO(wXl

) ~ HO(Ox( -0'», and so wXl has aglobai seetion.

o
Notice that when 0' = -1, there exists a generator Xi with deg (Xi) = 1, Le. ao = 1.

II.6.4 Lemma. There is a bijection between the /ollowing:
(i) the set ollamilies 01 quasisnwoth, well-fonned weighted surjace hypersurlaces Sd in

P(a1, ... , a4) with only canonical singularities anti trivial canonical class.
(ii) the set ollamilies 0/ quasismooth weighted 3-/olds hypersurjaces X d in P(l, al, ... , a4)

with only terminal singularities anti wx r"V 0 X ( -1).

Proof. Suppose that Sd in P = P (a1 , .•. , a4) is a K3 surface, with at würst canonical singularities.
By comparing the conditions in Theorems 11.3.1 and HA.l it is clear that the conditions of the
latter are satisfied for X = X d in P(l, al, ... , an). Thus X is quasismooth with at worst tenninal
singularities.



Working with Weighted Complete Intersections. -43-

~(1,-1,1)

3 x !(1,-1,1)
!(1, -1,1), i(l, -1, 1)
2 x i(1;-1,1) 1

4 x 2'(1,-1,1), 3(1,-1,1)
t(I,-l,l) . 1 ~
1(1, -1, 1), 3 x 3(1, -1,1)
3(1, -1, 1)
5 x t(l, -1, 1)
2 x 2(1,-1,1), j(l,-l,I), i(I,-1,1)
t(l, -1, 1), lei, -1, 1), i(l, -1,2)
2(1, -1, 1)
2 x t(l, -1, 1), ~ x t(l, -1,1)
3 x 1(1,-1,1), "5(1,-1,1)
3x 1(1,-1,1) 1

6 x 1(1,-1,1), 5(1,;-1,2)
3 x 2(1, -1, 1), 4 x 3(1, -1, 1)
l(l, -1, 1), t(l, -1,1), !(1, -1, 1)
3 x t(l,-I,l), t(I,-I,l)
7 x 1(1,-1,1), T(I,-I,l) 1 1

3 x 2(1,-1,1), 3(1,-1,1), 4"(1,-1,1), "5(1,-1,2)
~(l, -1, 1), tel, -1,3)

Conversely suppese X d in P(l, ab ... , an) is quasismooth and has at worst terminal sin­
gularities. It can be seen from Theorems n.3.1 and n.4.1 that only condition (1 i i) of Theorem
11.3.1 needs proof (the others being either trivially satisfied or equivalent in both the surlace and
the 3-fold case).

Set ao = 1 and consider a1 for i ~ O. Suppose that condition (lii) does not hold. So
aj 1d - a e for all e = 1, ... ,4. In particular aj ,( d. Thus aj I d - ao, i.e. aj 1 d - 1. Since
aj 1d then Theorem 11.4.1 (liv) gives that there exists an m i- 0, i such that aj I am -1. Henee
aj I (d - 1) - (am - 1), Le. ai I d - am, a contradiction. So ai I d - ae for some e =I 0, i,
which is condition' (lii) of Theorem 11.3.1.

o
II.6.5 Note. Each singularity on the K3 surface is of type ~(a, -a) for some rand a, with
respect to some pair of the coordinates XJ, .:., X4. Forming the corresponding Q-Fano 3-fold
results in an extra local coordinate Xo at each singularity, which is thus of type ~(a, -a, 1). A
similar result holds for higher codimensions.

11.6.6 List of anti-canonically embedded (Q-Fano) weighted 3-folds.
Tbe previous lemma gives a bijection between Reid's list of 95 families of weighted K3

surfaces (see section 11.3.3 Of [R4, section 4.5]) and the 95 families. of quasismooth weighted
hypersurface Q-Fano 3-folds, with a = -1 and L: ai < 100. These were found by a computer
search and are listed below. .

Hypersurface. K~ Singularities.
X 4 in pe!, 1,1,1,1)' -4
x~ in P(l, 1, 1, 1,2) -5/2
X 6 in P(l, 1, 1, 1,3) -2
X 6 in P(I,1,1,2,2) -3/2
X 7 in P(l, 1, 1,2,3) -7/6
X s in P(1, 1, 1,2,4) -1
X s in P(I, 1, 2,2,3) -2(3
X g in P(I, 1, 1,3,4) -3/4
X g in P(I, 1, 2,3,3) -1/2
X 10 in P(I, 1, 1,3,5) -2/3
X 10 in P(l, 1,2,2,5) -1/2
X 10 in P(l, 1,2,3,4) -5/12
X u in P(l, 1,2,3,5) -11/30
X 12 in P (1, 1, 1, 4, 6) -1/2
X 12 in P(I, 1,2,3,6) -1/3
X 12 in P(I, 1,2,4,5) -3/10
X 12 in P(l, 1,3,4,4) -1/4
X 12 in P(1,2,2,3,5) -1/5
X 12 in P(1,2,3,3,4) -1/6
X 13 in P(1,1,3,4,5) -13/60
X 14 in P(l, 1,2,4, 7) -1/4
X 14 in P(1, 2, 2,3,7) -1/6
X 14 in P(1,2,3,4,5) -7/60
X 15 in P(l, 1,2,5,7) -3/14
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X 15 in P(l, 1,3,4, 7)
XIS in P(l, 1,3,5,6)
X 15 in P(l, 2, 3, 5,5)
X 15 in P(l, 3,3,4,5)
X 16 in P(l, 1,2,5,8)
X 16 in P(l, 1,3,4,8)
X 16 in P(l, 1,4,5,6)
X 16 in P(l, 2,3,4, 7)
X 17 in P(l, 2,3,5, 7)
XIS in P(l, 1,2,6,9)
XIS in P(l, 1,3,5,9)
XIS in P(l, 1,4,6,7)
XIS in P(l, 2,3,4,9)
X 18 in P(l, 2,3,5,8)
XIS in P(I,3,4,5,6)
X 19 in P(l, 3,4,5,7)
X 20 in P(l, 1,4,5,10)
X 20 in P(l, 2, 3, 5,10)
X 20 in P(l, 2,4,5,9)
X 20 in P(l, 2, 5, 6,7)
X 20 in P(l, 3,4,5,8)
X 21 in P(l, 1,3, 7, 10)
X 21 in P(l, 1,5,7,8)
X 21 in P(I, 2, 3,7,9)
X 21 in P(I, 3,5,6,7)
X 22 in P(I, 1,3,7,11)
X 22 in P(I, 1,4,6,11)
X 22 in P(I, 2,4, 5,11)
X 24 in P(l, 1,3,8,12)
X 24 in P(l, 1,6,8,9)
X 24 in P(l, 2, 3, 7, 12)
X 24 in P(I,2,3,8, 11)
X 24 in P(l, 3,4,5,12)
X 24 in P(l, 3,4, 7, 10)
X 24 in P(I, 3,6, 7,8)
X 24 in P(l, 4,5,6,9)
X 25 in P(I, 4,5, 7, 9)
X 26 in P(l, 1,5,7,13)
X 26 in P(I, 2,3,8, 13)
X 26 in P(I, 2,5,6, 13)
X 27 in P(l, 2,5,9,11)

X 27 in P(I, 5,6,7,9)
X 28 in P(I, 1,4,9,14)
X 2S in P(I, 3,4,7,14)

~5/28 :1(1,-1,1), t(l, -1,2)
-1/6 ~ x l(I,-l,l), t(l,-I,I)
·1/10 "2(1, ~1, 1), 3 x ~(I, -1,2)
-1/12 5 x J(I, -1,1), 1(1, -1,1)
-1/5 ~ x 2(1, -1, 1), ~(I, -1,2)
-1/6 1(1, -1, 1),2 x 4(1, -1, 1)
-2/15 2(1, -1,1), k(I, -1, 1), i(I, -1,1)
-2/21 4 x !(1, -1, 1), t(l, -1, 1), ~(1, -1,2)
-17/210 !(l, -1, 1), t(I, -1,1), t(l, -1,2), t(I, -1, 3)
·1/6 3 x 1(1,-1,1), t(I,-l,l)
-2/15 2 x 3(1, -1,1), "5(1, -1, 1)
·3/28 i(I,-I,I), 4(1,-1,1), t(I,-I,I)
-1/12 4 x t(l, -1, 1),2 x t(l, -1,1), :l(I, -1,1)
-3/40 2 x ~(1, -1, 1), t(l, -1,2), l(l, -1,3) 1

-1/20 3 x 3(1,-1,1), 4(1,-1,1), 2(1,-1,1), 5(1,-1,1)
-19/420 t(l, -1, 1), ~(1, ;-1, 1), -k(I, -1,2), t(I, -1,2)
~1/10 "2(1, -1, 1),2 x ~(1, -1, 1)
-1/15 2 x t(l, -1, 1), 1(1,-1,1),2 x k(I, -1,2)
-1/18 5 x ~(l, -1, 1), J(l, -1,2) 1

-1/21 ; x "2(1, -1, 1), ~(1, -1, 1), 1(1,-1,3)
-1/24 3(1, -1, 1),2 x 4(1, -1, 1), s(l, -1,3)
-1/10 to(1, -1,3) 1

-3/40 1(I, -1,2), s(l, -1, 1)
-1/18 2(1, ;-1, 1), 2 x tCI, -1, 1), l(l, -1,4)
-1/30 3 x 3C1,-1,1), 5Cl,-1,2), 6(1,-1,1)
-2/21 t(1, -1, 1), t (1, -1, 2) 1

-1/12 4(1, -1, 1), 2(1, -1, 1), "6(1, -1, 1)
-1/20 5 x t(l, -1, 1), t(I, -1, 1), i(I, -1, 1)
-1/12 2 x "3(1,-1,1), 4(1,-1,1)
-1/18 !(I, -1, 1), t(l, -1,1), i(l, -1, 1)
-1/21 2 x tel, -1, 1),2

1
x t(l, -1,1), t(l, -1,3)

-1/22 3 x ~(1, -1,1), TI(I, -1,4)
-1/30 2 x "3(1, -1,1),2 x :lCl, -1, 1), !(1, -1,2)
-1/35 4(1,-1,1), t(I,-1,2), 110(1,-1,3)
-1/42 4 x t(l, -1,1), t(I, -1,1), t(l, -1,1) 1 .
-1/45 2 x "2(1,-1,1), -g(I,-I,I), "3(1,-1,1), 9(1,-1,2)
-5/252 j(I, -1, 1), t(I, -1,3), iC1, -1,2)
-2/35 "5CI, -1,2), 7(1, -1, 1)
-1/24 3 x t(1, -1, I), t(1, -1, 1), iC1, -1, 3)
-1/30 4 x "2(1, -1,1), :s(I, -1,2), "6(1, -1,1)
-3/110 !CI,-l,I), k(I,-I,l), 111(1,-1,5)

-lno t(I,-I,I), i(I,-I,I), tCI,-I,I), tC I ,-I,3)
-1/18 ~(I,-l,I), y(I,-I,2) 1
-1/42 "3(1,-1,1), "2(1,-1,1),2 x 7(1,-1,2)
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!(1,-1,1)
2 x ~(I,-I,I)

%(1, -1, 1)
4 x !(l,-I,l)
~(1, -1, 1),2 x !(1, -1,1)
2 x j(l, -1, 1)
6 x 2(1, -1, 1)
!(1, -1, 1), !(1, -1, 1)
3 x !(1, -1,1),2 x ~(1, -1, 1)
i(1,-1,2) I

4(1, -1, 1), 4 x 2'(1, -1, 1)
4 x ~(1, -1,1)

X 28 in P(1,4,6,7,11) -1/66 2 x !(1,-1,1), i(I,-I,I), 1\(1,-1,3)
X 30 in P(I, 1,4, 10, 15) -1/20 t(l, -1,1), t(l, -1,1), t(l, -1, 1)
X 30 in P(l, 1,6,8,15) -1/24 2'(1, -1,1), 3(1, -1,1), '8 (1, -1, 1)
X30 in P(1,2,3,10,15) -1/30 3 x i(1,-1,1), 2 x ~(1,-1,1), ~(1,-1,2)

X30 in P(1,2,6,7,15) -1/42 5 x '2(1,-1,1), ~(1,-1,1), ~(l,-l,I)

X30 in P(1,3,4,10,13) -1/52 t(l,-l,l), ~(1,-1,1), l3(1,-1,4)
X 30 in P(1,4,5,6,15) -1/60 1(1,-1,1),2 x ~(1,-1,1), 2 x ~(I,-I,l), ~(1,-1,1)

X 30 in P(I,5,6,8,11) -1/88 '2(1,-1,1), !(1,-1,3), 1\(1,-1,2)
X 32 in P(I,2,5,9,16) -1/45 2 x i(I,-l,I), i(l,-l,l), i(1,-1,4)
X 32 in P(l, 4,5, 7,16) -lnO 2 x 4'(1, -1, 1), 5(1, -1, 1), '7(1, -1,3)
X 33 in P(I,3,5,11,14) -lnO t(I,-l,l), {4(1,-I,5) 1 1
X 34 inP(1,3,4,IO,17) -1/60 I(I,-l,l), 4(1,-1,1), '2(1,-1,1), 10(1,-1,3)
X 34 inP(I,4,6,7,I7) -1/84 1(1,-1,1),~ x !(I,-I,I), i(I,-I,l), ~(1,-1,2)
X 36 in P(I, 1,5,12,18) -1/30 X(l, -1,2), '6(1, -1,1)
X 36 in P(I,3,4,11,I8) -1/66 2 x ~(1,-1,1), ~(1,-1,1), 1\(1,-1,3)
X 36 inP(1,7,8,9,12) -1/168 t(1,-1,3), t(l,-I,l), \(1,-1,1), ~(1,-1,1)

X 38 in P(I,3,5,11,19) -2/165 1(1,-1,1), I(l,-l,l), p(1,-1,4) 1

X 38 in P(I, 5, 6, 8,19) -1/120 s(l, -1, 1), '6(1, -1, 1), 2'(1, -1, 1), s(l, -1,3)
X 40 in P(I,5, 7, 8, 20) -1/140 2 x i(l, -1, 2), ~(1, -1,1), ~(I, -1, 1)
X 42 in P(I,I,6,14,21) -1/42 !(I,-I,I), l(I,-l,l), t(l,-I,!)
X 42 in P(I, 2, 5,14,21) -lnO 3 x t(l, -1, 1), t(l, -1,1), t(l, -1,3) 1
X 42 in P(1,3,4,14,21) -1/84 2 x 3(1,--:-1,1), 4(1,-1,1), '2(1,-1,1), '7(1,-1,2)
X 44 in P(I,4,5,13,22) -1/130 !(1,-1,1), l(I,-1,2), /3(1,-1,3)
X 48 in P(l, 3, 5,16,24) -1/120 2 x ~(1, -1, 1), k(l, -1, 1), ~(1, -1,3)
X50 in P(I, 7, 8, 10,25) -1/280 t(1, -1,2), j(l, -1,1), t(I, -1, 1), t(l, -1,2)
X S4 in P(1,4,5,18,27) -1/180 1(1,-1,1), i(I,-I,I), ~(1,-1,2), 9/1,-1,2)
X 66 in P(I,5,6,22,33) -1/330 5(1,-1,2), '2(1,-1,1), 3"(1,-1,1), rr(I,-1,2)

II.6.7 Codimension 2 Q..Fano weighted complete intersections.

There are 85 codimension 2 quasiwsmooth Q-Fano weighted complete interseetions which
satisfy the conditions of Theorem ll.4.4, a = -1 and L: ai ::; 100.

Complete intersection [(1 Singularities.
X 2 ,3 in P(l, 1, 1,1,1,1) -6
X 3 ,3 in P(I, 1, 1,1, 1,2) -9/2
X 3 ,4 in P(l, I, 1,1,2,2) -3
X 4 ,4 in P(I, 1,1,1,2,3) -8/3
X 4 ,4 in P(l, 1, 1, 2,2,2) -2
X 4 ,5 in P(l, 1, 1, 2,2,3) -5/3
X 4 ,6 in P(I, 1, 1, 2,3,3) -4/3
X 4 ,6 in P(I, 1,2,2,2,3) -1
X S ,6 in P(I,I,I,2,3,4) -5/4
X S ,6 in P(l, 1,2,2,3,3) -5/6
X 6 ,6 in P(I, I, 1, 2,3,5) -6/5
X 6 ,6 in P(l, 1,2,2,3,4) -3/4
X 6 ,6 in P(I, 1,2,3,3,3) -2/3
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9 x !(1, -1, 1)
t(I, -1,2), 3 x !(1, -1,1)
1(1,-1,1), ~(I,-I,I),2 x k(l,-I,I)
~(I,-I,I) 1

5(1,-1,2),2 x 3(1,-1,1)
2 x i(I,-1,I),2 x t(I,-I,I)
6 x '2CI, -1, 1),2 x 3(1, -1, 1)
tCI, -1, 1), t(l, -1, 2), ~(I, ~I, 1)
3CI,-1,I), 5(1,-1,1),2 x '2(1,-1,1)
2 x k(I, -1,2)
t(l, -1, 1),7 x t(I, -1, 1)
1(1,-1,2),2 x ~C1,-I,I)

}C1, -1, 1),2 x j(l, -1, 1) 1

~(I,-1,2), ~ x 2(1,-1,1),3 x 3(1,-1,1)
1(1, -1,1), "7(1, ~1, 3)
~CI, -1, 1),3 x ~(1, -1,1)
JCl, -1,1),2 x l(I, -1,1) 1

JCI, -1, 1), ~ x '2(1, -1,1),2 x 4(1, -1,1)
J(I, -1,3), 1C1 , -1, 1) 1

1C1 ,-I,1), 6(1,-;1,1), 3(1,-1,1)
1C1,-1,3),5 x ~(I,-I,l) I

1C1 ,-I,I), ~ x "2(1,-1,1),2 x 5(1,-1,2)
}(I, -1, 1), "7(1, -1,2)
~(1, -I, 1),4 x !(l, -1,1),2 x ~(1, -1,1)
1(1,-1,2), t(1,-1,2),; x !(1,-1,1) 1

3(1,-1,1), 4(1,-1,1), 9(1,-1,3),2 x '2(1,-1,1)
i(I,-I,2), ~CI,~l,l)
JCI , -1,1),2 ,x 1(1, -1, 1)
~(I,-I,l),2 x q(I,-l,l) I

J(I,-1,3),3 x 1(1,-1,1), 4(1,-1,1)
9(1, -1,3), 2 x 5(1, -1,2)
5 x !(1, -1,1),2 x ~Cl, -1,1)
~Cl,-1,2),4 x l(l,-l,l)
2 x kCI, -1,1),3 x ~(1, -1, 1), !(1, -I, 1)
tC1, -1, 1), ~(1, -1,1), 4(1, -1, 1)
~C1, -1,4) 1

1(1, -1, 1),2 x 9(1, -1,3)
1(1,-1,1), i(I,-l,I), ~ x !(1,-1,1)
1(1,-1,3), J(I,-1,3), '2(1,;-1,1) 1

5(1,-1,1), 9(1,-1,2),2 x 3(1,-1,1), 2(1,-1,1)
{I (1, -1, 3)
s(l,-I,l), 4(1,-1,1), i(I,-l,l)
IloCl,-1,3),4 x !(l,-l,l)
5(1,-1,2), tCl,-1,4), kC1,-1,1)

-1/2
~7/10

-7/12
-4/5
-8/15
-1/2
-113
-9/20
-7/15
-2/5
-1/4
-3n
-3/10
-1/5
-8/21
-1/3
-4/15
-1/6
-3/8
-1/4
·3/14
-3/20
-8/35
-2/15
-9nO
-11/84

-219
-4/21
-1/6
-1/8
-4/35
-1/10
-2/21
-1/12
-IInO
-2/9
-2/21
-1/12
-5/56
-13/210
-2/11
-1/8
-I/la
-4/45

Xs,s in P(I, 2,2,2, 3,3)
X S ,7 in P(I, 1,2,2,3,5)
X S,7 in P(I, 1,2,3,3,4)
Xs,s in P(I, 1, 1,3,4,5)
Xs,s in P(I, 1,2,3,3,5)
X 6 ,8 in P(I, 1,2,3,4,4)
X S ,8 in P(I, 2,2,3,3,4)
X S ,9 in P(I, 1,2,3,4,5)
X 7 ,s in P(I, 1,2,3,4,5)
XS,10 in P(l, 1,2,3,5,5)
XS,lO in P(I, 2,2,3,4,5)
X S,9 in P(I, 1,2,3,4,7)
X S,9 in P(I, 1,3,4,4,5)
X S ,9 in P(I, 2,3,3,4,5)
XS,lO in P(I, 1, 2, 3,5,7)
XS,lO in P(I, 1,2,4,5,6)
X 8 ,lO in P(I, 1,3,4,5,5)
XS,lO in P(I, 2, 3,4,4,5)
X 9 ,lO in P(I, 1,2,3,5,8)
X 9 ,lO in P(I, 1,3,4,5,6)
X 9 ,lO in P(I, 2,2,3,5,7)
X 9 ,lO in P(I, 2,3,4,5,5)
X S ,12 in P(I, 1, 3,4,5,7)
X 8 ,12 in P(I, 2,3,4,5,6)
X 9 ,12 in P(I, 2,3,4,5, 7)
X10,1l in P(I, 2,3,4,5, 7)

X 10 ,12 in P(I, 1,3,4',5,9)
X 10 ,12 in P(I, 1,3,5,6,7)
X 10 ,12 in P(I, 1,4,5,6,6)
X 10 ,12 in P(I, 2, 3, 4, 5,8)
X 10 ,12 in P(I,2,3,5,5, 7)
X 10 ,12 in P(I, 2,4,5,5,6)
X lO ,12 in P(I, 3,3,4,5, 7)
X 10 ,12 in P(I, 3, 4,4,5,6)
X ll ,12 in P(I, 1,4,5, 6, 7)
X 10 ,14 in P(I, 1, 2,5, 7,9)
X 10 ,14 in P(l, 2, 3,5, 7, 7)
X 10 ,14 in P(l, 2,4,5,6, 7)
X 10 ,15 in P(I, 2, 3,5,7,8)
X 12 ,13 in P(I, 3, 4, 5,6,7)
X 12 ,14 in P(I, 1, 3,4,7,11)
X 12 ,14 in P(l, 1,4,6,7,8)
X 12 ,14 in P(I, 2,3,4, 7, 10)
X 12 ,14 in P(I, 2, 3,5, 7,9)
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X 12 ,14 in P(I, 3,4,5,7,7) -2(35 f(l, -1,2),2 x t(l, -1,2) 1
X 12 ,14 in P(I,4, 4,5,6, 7) -1/20 ~(1, -1, 1), 3 x 1(1, -1, 1), 2 x ~(1, -1, 1)
X 12 ,14 in P(2, 3,4,5,6, 7) -1/30 5(1, -1,2), 7 x '2(1, -1, 1), 2 x 3(1, -1,1)
X 12 ,15 in P(I, 1,4,5,6,11) -3/22 tl (1, -1, 2), !(1, -1, 1)
X 12 ,15 in P(I,3,4,5,6,9) -1/18 !(1,-1,2),3 x l(I,-I,l), ~(1,-1,1)

X 12 ,15 in P(I, 3, 4,5, 7,8) -3/56 7(1, -1,2), i (1, -1, 3), ~(1, ~1, 1)
X 12 ,16 in P(I, 2, 5, 6,7,8) -2/35 5(1, -1,2), 7(1, -1,1), 4 X '2(1, -1, 1)
X 14 ,15 in P(I,2,3,5, 7,12) -1/12 112 (1,-1,5), ~(1,-1,1), l(I,-I,I)
X 14 ,15 in P(I, 2,5,6,7,9) -1/18 1(1, -1, 1), i(l, -1,4), 2 x !(1, -1, 1)
X 14 ,15 in P(I,3,4,5, 7,10) -1/20. 1(.1,-1,1), to(I,-I,3), ~(I'I-I,2)

X 14 ,15 in P(I, 3,5,6,7,8) -1/24 1(1, -1, 1), J(l, -1,3),2 x 3(1, -1, 1)
X 14 ,16 in P(1,l,5, 7,8,9) -4/45 ~(I,-I,2), !(1,-1,1) 1
X 14 ,16 in P(I, 3,4, 5,7,11) -8/165 1(1, -1, 1), }(1, -1,2), p(l, -1,3) 1
X 14 ,16 in P(I, 4,5,6,7,8) -1(30 5(1, -1,2), '6(1, -1, 1), '2(1, -1, 1), 2 X 4"(1, -1, 1)
X 15 ,16 in P(I, 2, 3, 5,8, 13) -1/13 \3 (1, -1,5),2 x t(l, -1, 1)
X 15 ,16 in P(I,3,4,5,8,11) -1/22 11(1,-1,4),2 x 1(1,-1,1.)
X 14,18 in P (1, 2, 3, 7, 9, 11) -2133 TI (1, -1, 5), 2 x 3(1, -1, 1)
X 14,18 in P (1, 2, 6, 7, 8, 9) -1/24 V(1, -1, 1), 5 x t(1, -1, 1), l (1, -;1, 1)
X 12 ,20 in P(I, 4,5,6, 7, 10) -1135 7(1, -1,2), 2 x 2"(1, -1, 1), 2 X 5(1, -1, 1)
X 16 ,18 in P(I,1,6,8,9,10) -1/15 to(l,-I, 1), !(1,-1,1), l(I,-I,l)
X 16 ,18 in P(1,4,6,7,8,9) -1/42 7(I,-1,1),2x !(I,-1,1),2X~(I,-1,I),l(1,-I,I)

X 18 ,20 in P(1,4,5,6,9,14) -1/42 114 {1,-1,3), ~ x ~(I,-I,l), 3(1,-1,1)
X 18 ,20 in P(I, 4,5, 7,9, 13) -2191 1(1, -1,3), ]3(1, -1,3)
X 18 ,20 in P(1,5,6, 7,9,11) -4/231 7(1,-1,3), \1(1,-1,2), l(I,-I,I)
X 18 ,22 in P(l, 2, 5, 9,11,13) -2/65 5

1
(1, -1, 1), 11(1, -1,6)

X 20 ,21 in P(l,3,4,7,10,17) -1134 p(1,-1,5), '2(1,-1,1)
X 18 ,30 in P(l,6,8,9,10,15) -1/120 J(l,-1,1),2xk(I,-1,1),2xl(I,-I,1),k(I,-1,1)
X Z4 ,30 in P(l,S, 9,10,12,15) -1/180 g(l, -1, l),k(l, 1, 1),~(1, -1, l),l(l, -1, 1),*(1, -1,2)

TI.6.8 Note. X 1Z ,14 in P(2, 3, 4,5,6,7) is the only element in the above list with ai 2: 2 for all
i (see Example 11.6.1).

11.7 The plurigenera formulas.
Before we describe the Ried's table method for producing examples of weighted cornplete

intersection we must state the plurigenera fonnulas for canonical and Q-Fano 3-folds.

ll.7.1 Definition. For a singularity Q of type ~(1, -1, b) define:

{

0 if n = 0,1

l(Q, n) = ntl
b1(~~bk) if n 2: 2

k=1

where x denotes the smallest non-negative residue of x modulo r. This is extended to negative
integers via:

l( -n) = -l(n +1)
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for all n ~ O. This is for consistancy with Serre duality. For a collection (or basket) B of
singularities define:

l(n) = L l(q,n)
QE8

for all n E Z.

From [Fl, Theorem 2.5, equation (4)] (see also [R4, Chapter IU]) we have the following:

II.7.2 Theorem. For any projective 3jold X, with at worst canonical singularities, there exists
a basket B 01 singularities such that

(2n - 1)n(n - 1) 3
x(Ox(n!(x)) = 12r !(x - (2n - 1)X(Ox) + Zen)

lor all n E Z:

-U.7.3 Canonical 3..folds.
Let X be a canonical 3-fold. Then !(x is ample and we have:

t : .,. (2n-1)n(n-l)
Pn = x(Ox(n!(x)) = Kl- (2n -l)X(Ox) + l(n)

12r

for all n ~ 2. This formula is Reid's exact plurigenera formula.

II.7.4 Q-Fano 3-fold complete intersections.
If X is a Q-Fano 3-fold then -!(l( is ample. Moreover if X is also a complete interseetion

then X(Ox) = 1. So:

P-n = X(Ox( -n!(x)) = (2n + 1)n(n + 1) (-!(X)3 + (2n + 1) - l(n + 1)
12r

for aU n 2: 1.

II.8 The Reid table method.
Consider a complete intersection Xd1! ... ,de in P(ao, ... , an). The Poincare series (see [WPS,

seetion 3.4] and compare [A&M, 11.1]) corresponding to the coordinate ring R of Xis:

00

P (t) = L hO(X, Ox(n))t n

n=O

t=c

TI (1 - t di )
i=l-----i=n
TI (l-tai )

i=O
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00

Moreover if Wx ~ Ox(l) then pet) = L: Pn(X)tn, where Pn(X) are the plurigenera of X.
n=O

00

In the case of a Q~Fano 3~fold with Wx ~ Ox( -1) then pet) = 2: P_n(X)tn, where P-n(X)
n=O

are the anti-plurigenera of X.
n.8.! Example. X 6 in p4 has Poincare series

(1-t 6
) 2 3

P (t) = (1 _ t)5 = 1 + t + 5t + l5t + ...

So Pg = 1, P2 = 5, P3 = 15, etc.

II.S.2 Question. Given a list of plurigenera (which could arise from arecord of pluridata) does
there exist a complete intersection with Wx ~ Ox(±l)? '

The following lemma due to Reid helps answer the above.

II.8.3 Lemma. Given a sequence Po = 1, Pb P2, ... such that

for some {dil ad. Then these {d i , ad are unique up to ai t= dj and are determinable.

Proof. The following is a constructive proof. Let q? = Pi. So

Without loss of generality assume that de ~ ... ~ d1 and an ~ ... ~ ao. Clearly we may assurne
ao t= d1 or else these two terms would cance!. There are two cases:

(i) ao < d1 • Let ao occur with multiplicity J.l. Then pet) = 1 + J.1.t ao + higher order tenns.
So the first non~zero q? is q~o = J.1. < O. Define q1 = q? - q?-ao' where q? = 0 if i < O.
Then ql = qO - 1 Thusao ao .

00 00

L qlt i = L (q? - q?-ao )t i

i=O i=O

00

= (1 - tao) L q?t i

i=O
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This involves one less ai.

(ii) d l < ao. Let d l occur with multiplicity J1.. Then pet) = 1 - /-lt d1 + higher order tenns.
So the first non-zero q? is q3

1
= - J1. < 0. Define ql = q? + ql-d

1
' for i = 1,2, ... where

ql = 0 if il O. This corresponds to:

00 00

L qlt i = L (q? +qf-d1 )t i

i=O i=O

00

~ 0 0 0 i= L-t (qi + qi-d1 + qi-2d1 + ... )t
i=O

cn (1 - tdi
)

i=2
nn (1 - tai)

i=O

This involves one less di .

Repetition of the above steps clearly terminates when

00

L q?t i = 1
i=O

By induction on the number of ai and dj it is clear that the process uniquely determines the ai

and dj.

o
ll.8.4 The table method. So the proof of the above lemma allows us to construct a weighted
compiete interseetion from a list of tplurigenera'. This construction is easily set out in the fonn
of a tabie. In the first coIumn write down the integers {O, 1,2, ...} and in the second the list
{l, PI, P2 , ••• }. Let the n th coIumn be denoted by qi for i = 0,1, .... Each successive column
is obtained as follows. Look down the" list {qi} of the n th column to find the postion of the
first non-zero entry (disregard the initial 1 at the top of the column). Suppose this is in fOW r.
There are 2 cases:

(i) this entry is postive. First enter (r) at the head of this column. This will keep arecord of
the degrees of the generators. The (n + l)th column is obtained by the ruIe:

assuming that qi = 0 for all i < O.
(ii) this entry is negative. First enter (-r) at the head of this column. This will keep arecord

of the degrees of the relations. The (n +1)th column is obtained by the rule:

q!l+I = q!l _ q!l+I
I I I-r ,

assuming that qi+ I = 0 and for all i < O.
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(·12)
1
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

(-6)
1
o
o
o
o
o
o
o
o
o
o
o
-1
o
o
o
o
o
o
o
o

The process is dearly defined and the integers at the hea~ of each column keep track of the ai

and -di .

1l.8.S Example. Consider the record of pluridata K 3 = i, X = 1, Pu = 0, 9 singularities of type
~(1, 1, 1) and 8 singularities of type i(2, 1,1). Using Reid's plurigenera formula (see section
1l.7) the plurigenera Pn corresponding to this record was calculated and is given below. The
table obtained is the following:

n Pn (2) (2) (3) (3) (3) (4)
o 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0
3 3 3 3 2 1 0 0
4 4 2 1 1 1 1 0
5 6 3 0 0 0 0 0
6 11 7 5 2 0 -1 ~l

7 12 6 3 2 1 0 0
8 19 8 1 1 1 1 0
9 25 13 7 2 0 0 0
,10 32 13 5 2 0 -1 0
11 41 16 3 2 1 0 0
12 54 22 9 2 0 0 -1
13 64 23 7 2 0 0 0
14 81 27 5 2 0 -1 0
15 98 34 11 2 0 0 0
16 117 36 9 2 0 0 0
17 139 41 7 2 0 0 0
18 166 49 13 2 0 0 1
19 191 52 11 2 0 0 0
20 224 58 9 2 0 0 0

This gives X 6,12 in P(2, 2, 3,3,3,4), which has the above record.

II.8.6 Note. Gf course this method cannot teIl the difference between X 6 in P(l, 1, 1,2) and
the example of V. lliev X 3 ,6 in P(l, 1, 1,2,3), in which the cubic relation does not involve the
degree 3 generator.

However in this section we are only interested in the general member of a family of weighted
complete intersections and so Iliev's example does not occur.

II.S.7 Warning. Although in general it is dear when this process stops, it is not clear when it
is worth continuing with a particular list of integers.

ll.8.8 The analysis.
This process is basically the same as that in section 11.2.6 on the coordinate ring

Starting from the dimensions of each Rm the degrees of the generators and relations can be
found. At each stage it is assumed that the monomials are linearly independent unless
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(i) there already exist relations of a lower degree, or
(ii) a relation is forced by the dimension not being large enough.

For the above example we have the following analysis:
Degree Dimension Monomials
011
100
2 2 xo, Xl.

3 3 Yo, Y}, Y2·
4 4 x~, xox}, xi, z.
5 6 XoYo, XOYI, XOY2, Xl Yo, Xl YI, Xl Y2.
6 11 3 2 2 3 2 2 2 1 l'xo, x ox1, XOX I ; Xl' Yo, YOYI, YOY2, YI' YIY2, Y2' XOZ, XIZ. re atlon.

If this calculation is continued only one more relation is found, which is of degree 12

II.8.9 Canonical 3-fold complete intersections.
The formula:

P2 = ~Ki- - 3(1 - pg) + 1(2)
2

limits the value of Pg (since J(} > 0) and defines J(i in terms of a particular basket of
singularities and P2.
II.8.10 Q-Fano complete intersections.

The fOfffiula:

P-l = -~[(~ + 3 -1(2)

defines J<Jc in tenns of a particular basket of singularities and P_].
II.8.li The search. The search through all combinations of P 2:: 0 (P2 = P for canonical
3-folds and P-1 = P for the Fano case) and baskets will give every possible list of plurigenera
(respectively anti-plurigenera). Hence a list of canonically (respectively anti-canonically) em­
bedded complete intersections can be found. Of course this is not a finite search, and requires
a computer to make any resonable progress.

The order of the search was as follows. Let Qi for i = 0, 1, ... be a list of the types of
3-fold cyclic quotient singularity ~(1, -1, a) in order of increasing index rand increasing a
within each index. So Qo = !(1, 1, 1), Q1 = ~(l, -1,1), etc.. The program took 2 integer

00

arguments land u, and searched through all baskets {ni X Qi} such that 1 :S I: ni( i + 2) < u.
i=O

II.8.12 The raw list.
Here is the first part of the list produced by the search program (with arguments 0 8).

X 6 in P(1, 1,1, 1,3)
X 12 in P(1, 1, 1,4,6)
X 4 in P(1,1,1,1,l)
X 5 in P(l, 1, 1, 1,2)
Xs in P(l, 1, 1,2,4)
X]O in P(1, 1, 1,3,5)
X 2 ,3 in P(1,1,1,l,1,1)
X 3 ,3 in P(1, 1, 1, 1, 1,2)
X 3 ,4 in P(1, 1, 1,1,2,2)
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X 6 in P(I, 1,1,2,2)
X 4 ,4 in P(l, 1, 1, 1,2,3)
X 7 in P(I, 1, 1,2,3) .
X9 in P(l, 1, 1,3,4)
X 2,2,2 in P (1, 1, 1, 1, 1, 1, 1)
X 6 ,6 in P(I, I, 1,2,3,3)
X I2 in P(l, 1,2,3,4)
X 4 ,4 in P(l, I, 1,2,2,2)
X IO in P(l, 1,2,2,5)
X 4 ,5 in P(l, 1, 1,2,2,3)
X I8 in P(l, 1,2,6,9)
X 4 ,6 in P(I, 1, 1,2,3,3)
X S,6 in P(I, 1, 1,2,3,4)
X 6 ,8 in P(l, 1, 1,3,4,5)

-53-

11.8.13 Refinement.
Gf course this list contains compiete intersections already obtained in other ways (see

sections 11.5 and II.6) and same interseetions which do not meet the requirements; Le.
(1) dimension 3,
(2) quasismooth but not the interseetion of a linear cone wirh other hypersurfaces,
(3) canonically or anti-canonically embedded,
(4) and have at worst tenninal singularities.

The example X 6,22 in P (2, 2, 3,4,5, 11) frorn the raw list is not quasismooth, since the poly­
nomial of degree 6 does not involve the generator of weight 5. We use the following lemma (0

cut out a large number of elements from the raw list produced by the search program.

11.8.14 Lemma. Let Xd1, ... ,dc in P(ao, ... , an) be quasismooth but Mt an interseetion 0/a linear
cone with other hypersurjaces. Suppose also that d1, ... , de and ao, ... , an are in increasing order.
Then:

(i) de > an, dc- 1 > an-I, ... , d1 > an-c+l·
(ii) if de-l < an then an 1 de .

Proof. (i). Suppose de > an, ... , de- k+l > an -k+l and de- k < an-k for some k = 0, ... , C - 1.
So di < an-k for all i .::; c - k. Therefore the polynomials flJ ... , f n-k da not involve the
variables Xn-k, ••• , X n •

Let II be the coordinate (k + l)-plane in An + 1 given by Xo = ... = X n -k-l = O. So f},
..., !n-k are identically zero on II. Define Z = (fe-k+l = ... = Je = 0) n TI. Thus dimZ 2:: 1
and so Z - Q is non-empty. Let Q E Z - Q. Then 8 fi / 8x j are zero at Q for all i .::; c - k and
for all j. Therefore

(

8fl/8.xo(Q) ... afl/ß~n(Q) )
rank: :.::; k - c.

8fe/axo(Q) ... ß/c/axn(Q)

Thus Q E Cx is singular and so X is not quasismooth.
(ii) is treated Iikewise.

D
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~(I, -1, 1)
2xi(I,-I,I)
4x"2(1,I,1)
leI, -1,1)
8x ~(I, -1, 1)
j(l,-I, 1), 4x~(I,l, 1)
2x leI, 1-, 1)
'12x ~(1, 1, 1)
2x t(I, -1, 1), 6x ~(I, 1, 1)
4x 3(1, -1, 1)
18x!(I,I,I)
~(1, -1,1), 4x!(1, 1,1)
4x l(I, -1, 1), 9x k(l, 1, 1)i (1, -1, 1), 22 x i(1, 1, 1)
4(1,-I,1),13x"2(I,I,I)
8xi(l, -1, 1)
27 x ~ (1, 1, 1)
t(I, -1, 1), 4xl(1, -1,1), 4x!(1, 1, 1)
~(1, -1,2) I

4(1, -1, 1), 8x"2(I, 1,1)
18 x !(1', 1, 1), 4 x i (1, -1, 1)
i(l, -1, 2), 2xi(1, -1,1), 6x!(1, 1, 1)
2xi(I,-l,2),2xi(I,-1,1) 1

2x 4(1, -I, 1), 2x 3"(1, -1, 1), 14x "2(1,1,1)
~(1, -1,2), 2x~(1, -1, 1), 2x~(1, 1, 1)
2xi(1, -1,1), 2xi(I,-1, 1), 10~!(1, 1,1)
2x~(1,-1,2),2x 4(1,-1,I), 3x3"(1,-1,I),
4x"2(1,1,I)
t(l, -1,2), 6xk(I, -1,1), 5x !(I, 1,1)
5 x t(l, 1,1), 2 ~ l(I, -1, 1),
2 x 5(1, -1,2), 7"(1, -1,3)

X 9 ,IO,12 in P(2, 3, 3,4,5, 6, 7) 1/14 0
X IO ,l1,12 in P(2, 3,4,5,5,6, 7) 11/210 0

II.8.15 Exam pie. So a codimension 2 complete interseetion X d1 ,d2 in P (a 1 , ••• , an), which is
quasismooth and not the interseetion of a linear cone with another hypersurface, satisfies:

(i) d2 > an and d l > an-I.

(ii) if dl < an then an Id2.

So this lemma gives extra combinatoric condirions to help remove nasty complete interseetions.

ll.8.16 The final list.
The program was ron between the limits 0 and 32 and gave the following list (after cutting

out repetitions and nasty complete interseetions):
Complete Interseetion K~ Pu Singularities.
X 2 ,z,z in P(I, 1, I, 1, 1, I, 1) -8 0
X Z ,Z,4 in P(I, 1,1,1,1,1,1) 16 7
X 2 ,2,6 in P(I, 1, 1,1,1,1,3) 8 6
X 2 ,3,3 in P(I, 1,1,1,1,1,1) 18 7
X 3 ,3,3 in P(I, 1,1,1, 1, 1,2) 27/2 6
X 3 ,3,4 in P(I, 1,1,1,1,2,2) 9 5
X 3 ,4,4 in P(1, 1, 1, 1,2,2,2) 6 4
X 4 ,4,4 in P(I, 1, 1, 1,2,2,3) 16/3 4
X 4 ,4,4 in P(l, 1, 1,2,2,2,2) 4 3
X 4 ,4,S in P(I, 1,1,2,2,2,3) 10/3 3
X 4 ,4,6 in P(I, 1,1,2,2,3,3) 8/3 3
X 4 ,4,6 in P(1, 1,2,2,2,2,3) 2 2
X 4 ,5,6 in P(I, 1,2,2,2,3,3) 5/3 2
X 4 ,6,6 in P(I, 1,2,2,3,3,3) 4/3 2
X 4 ,6,6 in P(I,2,2,2,2,3,3) 1 1
X S ,6,6 in P(1,1,2,2,3,3,4) 5/4 2
XS,6,6 in P(I, 2,2,2,3,3,3) 5/6 1
X 6 ,6,IO in P(2, 2, 2, 3, 3,4,5) 1/4 0
X 6 ,6,6 in P(I, 2,2,2,3,3,4) 3/4 1
X 6 ,6,6 in P(l, 2, 2,3,3,3,3) 2/3 1
X 6 ,6,6 in P(2, 2, 2,2,3,3,3) 1/2 0
X 6 ,6,7 in P(I, 2, 2,3,3,3,4) 7/12 1
X 6 ,6,S in P(l, 1,2,3,3,4,5) 4/5 2
X 6 ,6,a in P(I, 2, 2, 3, 3,4,4) 1/2 1
X 6 ,6,a in P(2, 2, 2, 3,3,3,4) 1/3 0
X 6 ,7,a in P(1,2,2,3,3,4,5) 7/15 1
X 6,a,lo in P(I, 2,3,3,4,5,5) 4/15 1
X 6 ,S,IO in P(2, 2, 3, 3, 4,4,5) 1/6 0
X 6 ,S,9 in P(I, 2, 3, 3,4,4,5) 3/10 1
Xa,IO,12 in P(2, 3,4,4,5,5, 6) 1/15 0
X S ,9,IO in P(2, 3, 3, 4, 4, 5,5) 1/10 0
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X 10 ,12,14 in P(2, 3, 4,5,6,7,8) 1/24 0 1(1, -1, 3), i(l, -1, 1),2 x l(I, -1, 1),
8 x ~(1, 1, 1)

X 10,12,18 in P(3, 4,5,5,6, 7,9) 2/105 0 t(l, -1,1), 2x ~(1, -1, 1), 4x !(1, -1,1)
X I2 ,I4,15 in P(3, 4,5,6,7,7,8) 1/56 0 j(l, 1, 1), i(I, -1, 1),2· x ~(1, -1,2),

8(1, -1,3)
XI2 ,I5,16 in P(3, 4, 5,6,7,8,9) 1/63 0 2 x ~(1, 1,1), 3 X ~(l, -1, 1),

t(1,-1,2), t(1,-I,2) 1

X I2 ,16,I8 in P(4,5,6,6,7,8,9) 1/105 0 7(1,-1,1), s(I,-1,1),2xä(l,-I,I),
6 x ~(1,1,1)

ll.8.17 Note. After refinement there are no codimension 2 or 1 complete intersections left in the
list.

11.8.18 Extra example. The family of intersections X 2 ,2,2,2,2 in p8 is smooth, ](i = 16,
Pg = 9 and X( 0 x ) = -8.

I[ the search were continued this would eventually appear; however the prograrn becomes
painfully slow.

ll.8.19 Conjecture.
(1) There are no canonical complete intersections with codimension greater than 5.
(2) There are no Q-Fano compiete interseetions with codimension greater than 3.

ll.8.20 K3 surfaces. Reid has done a similar search to produce lists of K3 surface weighted
complete intersections; using Riemann-Roch for Os(1) (see [R4, Theorem 9.1]). This time the
search is finite due to the following theorem pointed out by Reid:

11.8.21 Theorem. Let S be a K3 surface with canonical (Du Val) singularities of types A ni I

D ni or E ni for i = 1, ... , n. So L: ni ::; 19. This limits the singularities present on the K3
surface to a finite list.

Proof. Let f : T ----+ S be a minimal resolution. T is still a K3 surface. By [BP&V, Proposition
vrn.3.3] hI,I = hI(n}) = 20. By the Signature Theorem [BP&V, Theorem IV.2.13] we have
that the cup product restricted to H2(T, R) is non-degenerate of type (1, h1

,1 -1) = (1,19). Via
the Neron-Severi group, the exceptional (-2)-curves of the resolution f are linearly independent
in HI,I, each with negative selfwintersection.

It is weIl known that a Du Val singularity of type An, D n or E n contributes exactly n
(-2)-curves to T. Thus I: ni ::; 19.

D
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