
Continuity of Edge and Corner Pseudo-DifTerenial
Operators

Jörg Seiler

Max-Planck-Arbeitsgruppe
"Partielle Differentialgleichungen und

komplexe AnalysisH

Universität Potsdam
Am Neuen Palais 10
14469 Potsdam
Germany

MPI96-16O

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Gennany



Continuity of Edge and Corner Pseudo-Differential
Operators .

Jörg Seiler
Max-P lanck-Arbeitsgruppe

"Partielle Differentialgleichungen und Komplexe Analysis"
Universität Potsdam

14415 Potsdam

November, 1996

~.Abstract. We consider global Fourier and Mellin pseudo-differential operators with operator
;4valued symbols and extend the Calderon-Vaillancourt theorem to these dasses. The composi-
.1

..,tion of each such two operators remains in the dass. Moreover, we describe the composition
"cf Mellin pseudo-differential operators, which have symbols that, in addition, extend smoothly
up to the origin.
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Introduction

The present paper is concerned with pseudo-differcntial operators on manifolds with singular
geoolCtries in the sense of nonweompactness or pieeewise SlllOoth Riemannian metrics. An
approach to the analysis on manifolds with singularities was dcveloped by SCHULZE [13], [14].
·One idea in that calculus is to build up 'higher' singularities by iteration frOIn 'lower' ones.
For example, an edge can be written as a produet of a Euclidean space and a eone, while a
corner is a cone over a base itself having conical singularities. This is refieeted in the structure
of the eorresponding pseudo-differential symbols, which are funetions taking values in operator
algebras on the 'lower' singular object. In other words, the pseudo-differential ealeulus is
realized by iterating established caleuli.

The specifie symbolie strueture can be interpreted in the framework of pseudo-differential
symbols whose values are linear operators between eertain Hilbert spaces; these spaces are
equipped with strongly continuous groups of isomorphislllS that enter in the symbol estimates.
This is a non-trivial generalization of the scalar ealculus to the operator-valued ease. For the
(Ioeal) calculus see SCHULZE [11], and HIRSCHMANN [4].

An important question in trus eontext is an extension of the Calder6n-Vaillaneourt theorem
in the operator-valued set-up. A first result in this direction was obtained in DORSCHFELDT,
~RIEME, SCHULZE [2] under the assumption of the existenee of order-redueing operators whieh
reduced the proof to the situation of groups of unitary operators. It turns out that this
.~pproach is not convenient for Inany purposes, e.g., the operator algebra in SEILER [15], where
the asymptotic data do not allow reductions to the case of unitary group actions.

Thc analysis of pseudo-difIerential operators 011 non-eompact Inanifolds was studied in the
scalar ease by PARENTI (7], CORDES [1), SCHROHE [9]' and others. The operator-valued ana
logue appears, in partieular, in boundary-value problems on llon-compaet configurations. Also
applications to non-linear probleIns in eonnection with travelling waves in infinite eylinders (as
recently suggested by VISIK) require such tools for the Laplacian with Dirichlet or Neulnann
eonditions. For eylinders with singular cross section, the eorresponding loeal problems were
treated by SCHMUTZLER [8], whereas the infinite cylinder is just a case of non-compactness in
the present case.

The main purpose of this paper is to give a proof of the Calder6n-Vaillaneourt theorem in
the operator~valuedcase, admitting arbitrary group actions. To this end we generalize tech
niques introduced in HWANG [5]. The norm estimates we obtain for pseudo-differential op
erators show, in partieular, the continuity of the operator quantization, i.e., the mapping of
the symbols to the assoeiated operators. This beeomes important, for example, in parameter
dependent variants of the caleulus. Furtbel' we obtain natural eonditions on tbe symbols which
ensure the eompactness of the corresponding pseudo-differential operators. We also perform an
analogue for Mellin pseudo-differential operators, for which the Fourier transform on the real
axis is replaced by the Mellin transform Oll the half-linej these operators arise, for illstanee,
in the caleulus of corner pseudo-differential operators, cf. SCHULZE [12), and DORSCHFELDT,
SCHULZE [3].

In a final Section we apply the results achieved to the global edge algebra of smoothing Mellin
and Green operators of SEILER [15] in spaees with asymptotics.
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Notation·

The real numbers are denoted by IR, the complex numbers by C. Furthermore, lR.t- are the
positive reals, IR+ the non-negative reals, and r ß = {z E C; Re z = ß} for ß E IR. N are the
positive integers, ~ the non-negative ones.

In the sequel E and Ej , j E No, are always Hilbert spaces. ,C(Eo,Ed is the space of a11 linear
continuous operators A : Eo~ EI. The norm of A is denoted' by IIAIlEo,E1 '

For a Frechet space F, the smooth functions on an open set n with values in F are de
noted by 0 00 (0, F), the compactly supported ones by C8"(O, F). Moreover, Coo(IR+, F) =
Coo(IR, F)IIl+ = {u E COO(lR.t-)i limt--+o aku(t) exists 'V k E No}. A(C, F) are the entire func
tions with values in F. The Schwartz space of F-valued rapidly decreasing functions on }RQ is
denoted by S(Rq, F). Ir F equals C, it is omitted in the notation.

The Fourier transform of u E S(Rl, F) is
l'

(;(1/) = 1'"ti(1/) = Je- i
Y'1 ti (y) dy.

The Fourier transform is extended to S'(IIrl, F) = .c(S(JRll), F) in the standard way.

.ifinally, set ('I}) = (1 + 11712)1/2 for 1] E IRQ.
'~.

~~

~t Global pseudo-differential operators and Sobolev spaces

Seetions 1.1 and 1.2 include basic material concerning global pseudo-differential operators and
weighted edge Sobolev spaces. For a detailed exposition of the pseudo-differential calculus we
refer to [2). A more general approach to edge Sobolev spaces can be found in [4].

1.1 Global operator-valued symbols

1.1 Definition. A set K = {K).i ..\ > O} c L(E, E) of isomorphisms is called a (strongly
continuous) group action on E if

i) /';).K.q = K.).e V..\, {} > 0 (in particular K.l = lE),

ii) For each e E E the function ..\ H K).e : lR.t- ~ E is continuous.

Since E is a Hilbert space, also the adjoint group K.* = {K;i ..\ > O} is a group action on E.
For a group action K on E Olle can find non.negative constants c and M such that

v..\ > O. (1.1)

For abbreviation we set K('I}) = K.(TJ)' For later reference we observe an easy consequence of
Peetre's inequality, namely that there exists a constant c such that

(1.2)

where M is tbe constant from (1.1).

In following we assume that each Ej is equipped with a fixed group action Kj.
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1.2 ,Definition. For M, m E IR let s",m (JRll x R'l,; EolEI) denote the space of all functions
a E COO(IRq x JRl1, .c(Eol EI)) satisfying

sup {lIKII(71){a~aea(y,ry)}Ko(ry)IIEo,El (ry)!a l-J.1 (y)IßI-m} < 00
Y,'7ERQ

for all multiindices Ci, ß ENg. These semi-norms induce a Frechet topology on SJ.llm(JIrl X

JIrl; Eo, Et}.

Elementary calculations show that

a~aeSJ.I,m(JR!l x ~;E01Et} C SJ.I-lal,m-IßI(JIrl x IIrl;Eo,Et},

SJ.I,m (JRfl x rrrz; EI, E2 ) . SIl' ,mi (JRlI X IRq; Eo,Et} C SJ.'+J." ,m+m' (JRQ X IRq j Eo, ~) .

In case both EI Y Eo with KO,A = I'o:I,A on EI und ~ Y E3 with K3,A = 1'i:2,). on ~, the
elnbeddings

hold. Ir Mo, MI are the constants corresponding respectively to #to, #tI via (1.1), then

'.~~'I.'
I.

Jrhere the subscript (1) means that both Ea and EI are equipped with the trivial group action
#t:::::1.

To a given symbol a E Sll,m (IRq x lRlJ; Eo, EI) we associate a continuous operator

op(a) : S(JR'l, Eo) --; S(JR'l, EI) : U >-+ [op(a)u](y) = JeiY~a(y, '1)"('1) a'l_

Here, dry = (21f)-q dry.

1.3 Theorem. Ha E SJ.I,m(JRll X R1; Ell~) and bE SJ.",m' (JRll x RfJ; Eo,EI) then op(a)op(b) =
op(a#b), where the so-called Leibniz product of a#b is defined by

(a#b)(y, 'I) = JJe-ix{a(y, 'I + (lb(y + x, 'I) dxiI~

(understood as oscillatory integrals). For each N E N then the expansion

1
(a#b) = L ,(ij~a)(D~b) + rN

Ci.
o<N

holds, with a remainder rN in tbe space SIl+Il'-N,m+m' -N(llrl X JIrl;Eo,~), whicb is given
explicitely by tbe formula

11 (1 - 8)N-l jj .
rN(y,1]) = N L , e-Ix{a~a(y, 1} + Be)D~b(y + X,1}) dxiledO.

\ul:::;:N 0 a.

Tbe Leibniz product induces a continuous mapping

SJ.',m (JRll x .JIrl; EI, E2 ) X SJ..I' ,m' (JR'l x }RQ; Eo1 EI) ~ SIl+J." ,m+m' (JIrl x JIrl j Eo, ~).
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1.2 Weighted abstract edge Sobolev spaces

Let us fix group adions K. and Kj on the spaces E and Ej , respectively.

1.4 D eflnition. For s E IR. let Ws (JRll , Eo) denote the space of all distributions u E S' (JRil , E)
such that il is a measurable function and

For 8 E IR. we have weighted variants of those spaces, namely

with obvious definition of the corresponding norm. In case of a trivial graup action, i.e., K. =1,
we use notations H"(JRll, E) and Hs,o('fRll, E).

The spaces WSIO(JRll, E) are Hilbert spaces, having CÖ(JRll, E) as adense subset. Ir M corre
sponds to K. via (1.1), obviously

,~
"!f Eo~ E l and ~l,'\ = KO ,'\ on Eo for all .\ > 0, we immediately obtain that

W-"'O(JR'l, Et} y. WB,O(IRq, Eo).

Ir Eo EB EI is the direct surn equipped with the group action {KO,'\ ffi KI,,\}, then

As a consequence of Corüllary 1.11 we obtain that

W B ,5 (jRQ ,E) y. Ws' ,5' (JR'l , E) l

whenever s ~ s' and 8 ~ 8'. A motivation for introducing spaces of this kind is the following
example.

1.5 Example. Für each ..\ > 0 define Iuappings f'l,,\ : V'(IRn ) ~ V'(IR.n ) by

(For u E LIoc(IRn ) we then have (K,\u)(x) = ..\n/2u( AX) ). These mappings indlIce continuous
group actions on each of the spaces H S (IRn ) l the standard Sobolev spaces on JR.fl. Naw it is
known (see, e.g. [13], p. 268) that
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1.3 Continuity of global pseudo-differential operators

1.6 Remark. (Plancherel's formula) Let E be a Hilbert space. Then F L 2 (JRfl, E) -t

L2(IRq, E) is an isomorphism, and for each tL E L2(~ ,E) we have

ll.ruIIL~(lRq ,E) = (21r )q/21IuIIL~(Rq ,E)'

This is true if and only if E is a Hilbert space.

1.7 Definition. For a multi~index a E NZ and y E JRfl we write

Further, we define the following differential operator

(i+Dy)O = (i+Dy1 )Ol ..... (i + Dyq)Oq.

Here, DYJ = -i8yi . Then we obtain the relation

(i + Dy)Oeixy = (i + x)Oeixy . (1.3)

;~.8 Lemma. Let Eo, EI be Hilbert spaces and K, a group action on EI' Further let a E
,~oo (IRQ X JRfl,.c (Eo,EI)) be such that for some L E N the estimate

~ 1TL(a) := sup{(1])-L lI~aea(Y,1])IIEo,Elj y,7] E JIrl, a ~ aI, ß ~ ßM} < 00

bolds, where 0"1 = (1, ... ,1), ßM = (M, ... , M), and M corresponds to "" via (1.1) (bere we
assurne tl1at M E ~). Futhermore, let cjJ E Cr(IR2q) witll 4> == 1 near 0 and set

adY, TJ) = </J(cy, c1J)a{y, 1]), O<c::;1.

Finally, let u E S(Rt/, Eo). Tben tbe following statements hold:

a) op(a)uEW°(IRq,Et},

b) (op(ae)u, v) -t (op(a)u, v) for c -t 0 and eaGb v E S(JRfl, EI)' Here, (".) is the

scalar-product in WO(JRQ, EI)'

PROOF: a) Write A = op(a). With notation as in Definition 1.7 integration by parts gives

(1)

The first factor on the right-hand side is square integrable. Since t1 E S(JIrl, Eo) and because of
the assumptions on a, the integral, together with its derivatives with respect to y up to order
ßM, is bounded. So we obtain that (i - Dy)ßMAu E L2 (IRQ , Er). Hence we can estimate

IIAtill~o(Rq,EI) J11",-1 (ry)A,;(ry)II~, dry :::; cJII(i + ry)ßM A,;(ry)ll~l dry

= cJIIF[(i - Dy)ßM Ati]('1)II~, d'l

= cJ11 (i + Dy)ßM Ati(y)II~, dy < 00.

6



b) Set b! = a! - a, BE = op(be). We show that (BEu, v)VVO(lRq,Ed -7 0 for E -7 O. Froln the
relation

(B<u, V)WO(Rq,EI) =J(ii;ü(1)) , ,,-1 (1))' ,,-1(1));;(1))) EI d1)

and Plancherel's formula, it is sufficient to show that BEu -7 0 in L2(JRfl ,EI) for € -7 O. An
easy eomputation, using Leibniz' rule, shows that 7rL(b!) is uniformly bounded in 0 <-E ::::; 1.
Hence, inserting bE instead of a in formula (1), we see that

with a eonstant e independent of E. In view of Lebesgue's dominated eonvergenee theorem, it
remains to show that

B.u(y) =Jei1Jflb.(y, 1))fJ.(1)) 111/

tends to 0 with E for all y E IRq. But this is again an easy eonsequence of Lebesgue's dominated
convergence theorem. •

1.9 Theorem. Let Eo, EI be Hilbert spaces witb respective group actions "'0 and Kl. Further
assume tl1at a E COO(JRll x ~ I .c(Eo,Et}) satisfies
,\
~ 7r(a):= sUP{IIKll(1]){~aea(YJ1J)}Ko(1])IIEo,El;Y,f} E JIr'l, a::::; al, ß::::; ßM} < 00,
~ r
')

;where Q'l = (1, ... ,1), ßM = (M + 1, ... ,M + 1), and M(E ~) corresponds to ttl via (1.1).
J'Tben a induces a continuous operator

wbose norm can be estimated by

IIAIIWO(Rq ,Eo),W0(lRq ,Ed ::::; C 7r(a)

witb a constant c independent of a.

PRO OF: First, assume that a is eDmpactly supported in (y, 1]) . Further, let 'U E Ctr (Iff; , Eo)
and v E S(JRll, EI)' Then

(Au, v)WO(l{q ,EIl = J("11 (1)) x,-,(1)), "11 (1));;(1))) EI d1)

=JJJJ ei({-~)y-i{x ("11 (1))a(y, ~)u(x), "11 (1/);;(1}) EI dydxa~d1).

Now relation (1.1) yields that the latter expression equals, after a twofold integration by parts,

JJJJ ei({-~)Y-i{x(i + y - x)-<t l (i - D{)<t'

{(i +e-1J)-ßM (K1l (1J) (i - Dy)ßM a(y,e)u(x), K11(1J)V(1J)) EI } dydxitedfJJ

and from this we get. that (Au, v)wO(lRq,Ed eqllals

L JJe
iy{ \ ["11 (ODl (i - Dy)ßM a(y, O"o(~)]j(y, ~), g~(y,~)) EI dya~,

'"1::;01
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11 (1'i:1
1(11)l'i:l (~))* (i - D{)O:l-"t{i + ~ -l1)-ßM HE1,Et :5 c(~-l1)M j(i + ~ - t])-ßM 1

:5 C(~l -111)M ..... (~q _1]q)M l(i + ~ - '7)-ßM 1= cl{i + ~ - '7)-Otl,

with functions

f(y,O = I<ijl(~) Je-i{X(i + y - x)-"'u(x) dx,

9'Y(y,0 = (-1)"'-'1Jeiy~ (1<11 (f/)I<I (mO (i - D{)'" -'1(i + ~ _f/)PM 1<-1 (f/)il(f/) df/.

Hence we obtain the estimate

1(Au, V)WO(Rq ,El) I ::; c n(a) L lIfllL2(lIpq IEo) 119, 11 L2 (R:lq ,Et)·
, $0:1

Using Plancherel's formula, we get

In view of (1.2) we can estimate

.ttj

~
and this implies

.; 119'Ylli, ::; c{1l(i +0-2"11 d!;} Ilvll\:vO(RQ,EJ)'

For abbreviation now set h(z) = (i - Z)-O:l, and hy{z) = h{z - y). Then note that

(I)

Because of F(4n/J) = (2n)-q~ *?/J and the identities from (1), we obtain

f(y,~) = l<ij1te)(211")-'Jh,te - x)il(x) dx

= {2n )-qe-i{y1e ixy I'i:Ü
1
(~)I'i:O (x) ;:[(1 _ ~)Mh](~ - x)~-l (x)u{x) dx.

(~ _ x)2M 0

Now Plancherel's formula and (1.2) yield

Ilflli, = 1111(211")-' 1 eixyl<~I~~~~~) 1'"[(1- t.)Mh](~ - x)l<öl(x)ti(x) dxll:o dyd~

= (21f)-q jr(Ill'i:ül(~)I'i:~~) ;:[{1 _ ~)Mh](~ _ x)l'i:ü1(x)ü(x)112 dx~
} (~ - x) Eo

::; c11 111'"[(1 - A)MhJ(~ - X)l<öl(x)ti(x)lI~o d!;dx

= c J11'"[(1- A)MhJ(OI2d!; JIIl<ijl(x)il(x)lI~odx

= c{J1(1- t.)Mh(~Wd!;}lIu lI\:vo(R.,EoJ
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Altogether, we now have verified that

(2)

with a certain constant c independent of a, u, and v.

Finally, cOllBider the general case. Choose 4> E Cgo(IR2 q ) with 4> == 1 near O. For 0 < c :::; 1
define ady J 1]) = c/J(cy, €1]) a (y, 1]). Using Leibniz' rule it is easy to verify that 1r (aE;) ::; C7r (a)
with a constant c independent of c. Then, according to Lemma 1.8.b) and estimate (2),

1(Au, V))-vo(Rq ,EI) Il~o I(op(aE; )u, V)WO(]Rq lEl) I ::; C1r(a) IluIIWO(]Rq lEo) IlvIIWO(Kq ,EI)'

In view of the density of S(JRll, Et} in WO(JRIl, Ed we get

IIAu IlWO(Rq ,EI) ::; C 1r(a) lIullWO(Rq lEo)'

rhis implies the assertion. •
1.10 Remark. Let Eo, EI be Hilbert spaces with arbitrary group aetions.

a) Each symbol a E SJJ (~7]; Eo,EI ), i.e., a is a symbol independent of the variable y, induees
for eaeh s E IR eontinuous operators

'"'1

J
~ J

Y b) For J-l, 0 E IR set

These operators obviously induee for eaeh s E IR isometrie isomorphisms

AJJ,o : W"',O (JRll, Ej) -+ W"'-!-'(IJrl ,Ej ), pJJlo : W'" (JRfl ,Ej ) -+ WS-JJ,-o (JIrl, Ej)

with AJJ,lJ p-ll,-O = p-jj,-lJ AJJ,o = 1.

1.11 Corollary. Let Eo, EI be Hilbert spaces witll arbitrary group actions. Further let
a E Sjj,m (JR9 X JRCl j Eo, EI)' Tllen a induces for each s, 8 E IR continuous operators

op(a) : W"'lO(JRll, Eo) -+ WS-!-"o-m (jRQ, EI),

and tll€ mapping

a H op(a) : S!-"m(jRQ X ~; Eo,Ed -+ L:(WS,O(JRfl, Eo), WS-JJ,o-m(IRq, Ed)

is continuous.

PROOF: Let 8,0 E IR be fixed. By Theorem 1.3 there is a unique element Ci E SO,O(JRCl x
Ii'l; Eo,Et} such that

op(a) = p!-,-""m-oop(Ci)AS,O,

and the mapping a H Ci : Sjj,m(JRfl x JRll j Eo,Et} -+ SO'0(IRQ x IRq; Eo, EI) is continuous. Now
from Theorem 1.9 and Remark 1.10.b) we obtain

lIop(a) Ilw.,6 (IRq ,Eo).w.-~,6-m(Rq ,EI) ::; C1r(ii).

This c1early implies the assertion in view of the continuity of the map a H ii.

9
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1.12 Proposition. Let Eo, EI be Hilbert spaccs witb arbitrary group actions. Furtber let
a E SIl,m(JRCl X Hrlj Eo,Ed witl1 J1., m < 0 such tllat a(Yl1]) : Eo -7 EI is a compact operator
for a11 Y, fJ E JR'1. Tl1en

i8 compaet for each s, 8 E IR.

PROOF: Using the order reductions AIl,O, pll,a from Remark 1.10.b), we can assume that
8 = 0 = O. Now assurne that a is compactly supported in (y,1]). Then from [14], Theorem
1.3.54, we know that op(a) : W°(IR1, Eo) -7 WO (JR<1 , EI) iB compact. Finally, for general a, set

where rp E Co='{IR2q ) with 4> =:: 1 near O. Since a has negative order, a, -7 a in SO,O(fRll x
~j Eo,Ed for e -7 O. Hy Corollary 1.11 then follows that

Hence op(a) iB compact as a limit of compact operators. •

rl
1.13 Corollary. Let Eo '-+ EI be Hilbert 8paces with arbitrary group actions such tbat tl1e
~mbedding i8 compact, and the group action on EI induces (by restriction) the group action
on Eo. Then for s > s', 0 > 6' we have compactness of the embedding

WS,O(JIrl, Eo) e....t Ws',a' (JIrl, EI)'

1.14 Remark. LetSJJ (JR!1 x IRqj Eo, EI) denote the space of all a E GOO(JIrl x JIrl,.c(Eo,Ed)
satisfying

for all (t, ß E Nö. The associated pseudo-differential operators act from Ws (JR'l , Eo) to
W"-I-'{IIrl, Ed. Then the obvioUB analogues of Theorem 1.3 and Corollary 1.11 are valid.

2 Calculi for Mellin pseudo-differential operators

Again, let E and Ej be Hilbert spaces with respective group actions K and Kj.

2.1 The Mellin transform

For u(t) E (r+I/ 2LI (Rr , E) we define the weighted Mellin transform

(M--yu)(z) = (OO eu(t) dt,
Jo t

A straightforward calculation shows that

(M--yu)(1/2 -, + ir) = (FS..."u)(r)

10
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if we define
(S,u)(r) = e(r-l/2)r U (e-r ), rE IR.

FrOln this relation we clearly obtain that

M, : 7; (lItt- ,E) ---t S(r1/2-" E)

is bijective, ifwe set 7;(lItt-,E) = S11(S(IR,E)). The space 7i/2(lItt-,E) equals

{u E COO(lItt-, E)j PN(U) = sup II(logt)k(tat)lu(t)IIE < 00 VN E~ }.
k,lSN,t>O

The system of norms PN (.) gives a Freehet topology on ~ /2 (lItt- ,E), whieh induees the topology
on 7; (IR,. ,E) = t,-1/27i/2 (IR,-, E). For abbreviation wo set 7;(ll4) = 7;(lI4, C).

Let ~ (IR,. ,E) = .c(T_, (lRt- ),E) be the spaee of an eontinuous linear operators T-, (IRt-) ---t E.
We regard 7;(!R.t, E) as a subset of 'q(lRt-, E) via

(J, u) = 1'''' j(t)u(t) dt, u E L,(IR.,-).

-l-"t

~'Yor F E -r:; (ll4 ,E) define
.1

\-'

fr (M,F, v) = (F, t- 1(M:;-lv )(t-1
)), (S,F, v) = (F, S=~v)

for v E S(r1/2- i ) and V E S(IR). This yields mappings

Si : 'J:; (ll4, E) ---t S' (IR, E)

that extend M, and Si from 7;(lI4, E) to .-,:; (lI4, E). Formula (2.4) is valid in the distribu
tional sense.

The multiplication of a distribution F E J:;(ll4, E) with a funetion 9 of tempered growth, i.e.,
9 E Coo (lltr ), and all derivatives 1(tat) k glare majorized by apower of 1log t I, is defined by

2.2 Mellin symbols and Mellin edge Sobolev spaces

2.1 Definition. For s, 6, I E IR let V~(IRt-, E) denote the space of all u E ?:;(IR,., E) such "that
M'Yu is a measurable funetion and

( )

1/2

lIuIlV~(I4.E)= J(7")25 11,,-1 (7")(M-yu)(1/2 - 'Y + i7")111 d7" < 00.

Further we set
V;,O(IR,.,E) = {u E ~(II4,E); (logt)Ou E V~(IR,.,E)},

with obvious definition of the corresponding norm.

11



From (2.4) we see that S"'f induces an isomorphisnl

S,: V~,O(~,E) -+ WS,O(IR,E).

Hence the functional analytical properties of WS,O (IR, E) carry over to V~,6 (lR..t-, E). In partic

ular, V~'o(lR..t-, E) is a Hilbert space having Cü(lR..t-, E) aß adense subset.

,Ta a f1J.nction h E Coo(lR..t- X f l / 2-".c(Eo,EI)) associate (formally) a Mellin pseudo-differential
operator by

for tL E '7;(lR..t-, Eo). Then it is not difficult to verify that

where op(h,) is the usual Fourier pseudo-differential operator. Thus the question of investigat
ing the appropriate symbol classes in the Mellin set-up is reduced to looking at the image of the
Fourier symbol classes introduced in Definition 1.2, and Remark 1.14, under the transformation
fJJy = -logt.
':1
\,

.~.2 Definition. The space s~,m(ll4 x r 1/ 2-,; Eo,EI) consists of all funetions h E Coo(IRt- x
r 1/2-" .c(Eo,EI)) such that

sup {IIK11(T){a;.(t8t )kh(t,l/2 -, + iT)}Ko(T)II E o,El (T)l-Il (logt)k-m} < 00
t>O,'TER

for all k, l E No. These semi-norms induee a Frechet topology on SJ..l,m (lRt- x r 1/2-"'f j Eo,EI)'
Ey SJ..l (r I/2-,; Eo,EI) denote the closed subspace of SJ..l,O (lRt- x r I /2-'Y; Eo,EI) of all symbols
h that are independent of t.

An essential point is that

where h.., is defined as in (2.5), and the mapping h H h'Y is an isomorphism. This basically
relies on the fact that the push-forward of at under t H e- t : IR -+ lRt- is (-tad. Now we
obtain the following results:

2.3 Theorem. Let 9 E SJ-l,m(1I4 X f l / 2-'Y; EI, E2 ) and h E SIl',m' (lRt- x r l / 2-"'f; Eo,Et}. Then
op1(g)op1(h) = op1(g#h), wbere tlle Leibniz product of 9 and h is defined by

j r [00 . ds
(g#h)(t, z) = Jo s~eg(t, z + i~)h(st, z) 7it~,

For each N E N we obtain tbe expansion

12



with a remainder rN in the space S1-&+Jl-N,m+m'-N (I!4 x r 1/ 2-,; Eo,E2), whicb is given ex
plicitely by the formula

{I (1 - O)N-l J" (OO . ds
rN(t, z) = Jo (N _ 1)! Jo s~~8t'g(t, z + iOeH-tBt)Nh(st, z) -;dedO ,

zEr1/2-,. The Leibniz product induces a continuous mapping

, , +' + 'S1-&,m (IR.t x r 1/2-, i El,~) X 51-& ,m (14 x r 1/2-,; E Q , EI) -7 S1-& 1-& ,m m (lR.t- x r 1/2-,; E Q , E2)'

For later purpose we want to clarify the meaning of the oszillatory integrals in the previous
theorem. Let {Xe; 0 < c < 1} be a family of functions with

i) Xe E S(IR2
) for each c,

ii) sup I~XE(X)I < 00 for all Cl E N5,
:z:ER~,O<e<1

for c -t 0 pointwise for each x E IR2 ... ') Ba () {1, Cl =0
III :z:XE X --7 0, lai> 0

If we set xl (s, e) = Xe( -log s, e), then g#h = liII1e--?o Je with

~ Je(t, z) = Jr [00 si{Xd(S, e)g(t, z + ie)h(st, z) ds deo
H Jo s
..We also have af&;,(g#h) = limc--?o ata;Je .

(2.6)

2.4 Theorem. Let h E S1-&,m(lR.t- X r l / 2--y; Eo,EI)' Tben hinduces for each s,o E IR contin
uous operators

op1(h) : V~,6 (IR,-, Ea) ---t V;-1-&,o-m(14 ,Ed,

and we obtain tbe continuous Inapping

h H op1(h) : S1-&,m(If4 X r l / 2-,i Eo,Ed -7 L(V;,6(14 ,Eo), V;-1-&,6-m(Il4, EI))'

2.5 Proposition. Let h E S1-&,m(14 X r l / 2-,i Eo,Ed with /-L, m < 0 such that h(t, z) : EQ -7

EI is a compact operator for a11 (t, z) E lR.t- x r 1/2-,. Tl1en

op1(h) : V~,o (I!4, Eo) -7 V;,6 (II4, EI),

is compact for each s,o E lil

2.6 Corollary. Let Eo be compactly embedded in EI, and assume that tbe group action on
EI induces (by restrietion) the group action on Eo. Tl1en also tl1e embedding

V~ ,6 (ll4 ,Eo) y V;' ,6
1

(lR.t- lEI)

is compact whenever s > s' and 0 > 0'.

2.7 Remark. The space S1-&(14 x r 1/2-,; Eo,EI), consisting of an functions h E COO(lR.t- x
r l / 2-1" L(Eo,EI)) such that

sup {IIKll(T){~(tadkh(t,1/2-,+iT)}KO(T)lIEo,El (T}I-1-&} < 00
t>O,'TER

for all kJ l E No, corresponds under the mapping h H h"( to S1-&(IR x IR; EQ, EI)' cf. Remark
1.14. The analogues of the Theorems 2.3, 2.4, are valid for this symbol dass.
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1-1+1-1' (TTlI )g#h - I E 8 11\.+ X rl/2-,jEo,~ .

2.3 Mellin symbols with smoothness up to the origin

A crucial role in calculi for manifolds with singularities play Me11in symbols, which are smooth
not only in ~ but on IR+. These symbols are, in particular, Mellin symbols in the above
sense. We consider the behaviour of these symbols under the Leibniz product. In general,
the snlOothness up to t = 0 is preseved only modulo certain smoothing remainders, which are
described in the present section. No remainders occur if we require the symbols to extend
holomorphically in the covariable.

Let us define
81-1(IR+ x f 1/ 2-,; Eo, EI) = COO(IR+, S1-1(r 1/ 2_,; Eo,Er)).

Ifh E 81-1(IR+ xf1/ 2-,; Eo,Er) is independent oft for large t, then h E S1-1,O(~ xf1/ 2_...,.; E01 Er),
and (t8t )kh E 81-1,-00(I14 x r 1!2-,; Eo,EI) for a11 k E N. The last statement holds, since (t8 t )k
generates a zero in t = 0, which dominates logarithmic growth.

2.8 Proposition. Let 9 E 81-1 (IR+ x r 1/2-')'; EI,~) and h E 81-1' (IR+ x r 1/2-,; Beb Er), both
independent oE t for large t. Tben tbere exists a symbol I E S-OO,-OO(ll4 x r 1/ 2-...,.; E01~)

sucb tl1at

~
P~OOF: For abbreviation write 81',m(If4 X r) = 81-1,m(IR.r X r 1/ 2-...,.; Eo,Er), and analogously

f9r the classes on IR+. For k ENdefine

Then, by Theorem 2.3, g#h = gh + Ef=1 Ck + rN with rN E S1-1+1-t'-(N+l)'-OO(1l4 x r). Let
4J E COO(IR) such that 4J == 0 near T = 0, and 4J == 1 for large T. Then one can choose a sequence
(dk ) C IR, tending to infinity with k, such that

00
11(t,l/2 -, + iT) = :L ep(d;lT)Ck(t, 1/2 -, + iT)

k=l

converges in SI'+1-t'-1(IR+ x r) n S1-1+1-1'-1,-oo(I!tr x r) and

N

/1 - :L Ck E 8 Jl+Jl'-(N+l),-oo(IR..r x r).
k=1

In particular, (gh + /1) E 81'+11' (IR+ x r), and for each N E N

N

1 := g#h - (gh + Ir) = /1 - :L Ck - rN E SJA+JA'-(N+1),-OO(lllt- x r).
k=1

•
2.9 Remark. Let h E 8-00,-OO(Rt- x r 1/ 2-..,.; Eo, Er). Then op1(h) can be written as an
integral operator (with respect to the measure ~) with a kernel k E COO(Rr x ~,.c(Eo,Er))

satisfying
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Vice versa, each kernel having this property corresponds to a symbol h of infinitely negative
order. These results hold in view of (2.5) and the known facts for Fourier symbols from
S-oo,-OO(IR x IR;Eo,EI ).

2.10 Deftnition. A function h E Coo (IR.r , A(C; .c(Eo,EI))) is, by definition, an element of
Sll,m (Rr x C; Eo ,EI) if

sup p((t, iT) I-t h(t, ß+ iT)) < 00
c<ß<d

for each semi~norm p(.) of SIl,m(ll4 X r o;Eo,Ed and all reals c < c'. Further let SIl(IR+ x
C; Eo,Ed = COO(IR+, SIl(Cj E01 Ed).

Then the analogue ofTheorem 2.3 is valid for the dass SIl,m(~ xC; Eo, EI) (where the Leibniz
product corresponds to a fixed weight T)'
Ta a symbol h E Sil (IR+ x C; Eo,EI) we associate its conormal symbol of order I-' - k, giyen by

1
atl-k(h)(z) = k! (~h)(O, z).

,~.11 Theorem. Let 9 E SJ-.l (IR+ x Cj EI, ~) and h E Sil' (IR+ x C; Eo 1 Ed, both independent
.tof t for large t. Then
:~ g#h E Stl+tl' (Rt x C; Eo,~),
"
and the conormal symbols of the Leibniz product equal

a IJ+Ji -k (g#h) = L (T- la IJ - m (g) ) a IJ' -l (h).
l+m=k

Here, (Te jHz) = f(z + u) for a [ullction f deflqed on C.

PROOF: Clearly, the z·derivatives of g#h can be pulled under the oscillatory integral. Hence,
by induction, it suffices to show that

(1)

and that this derivative extends continuously to IR+. For convenience we assurne that 9 is
independent of t. The general case is proved in completely the same manner, but is awkward
to write down in view of the Leibniz rule. Now let Xl be holomorphic in {-2 < Re z < 2})
such that xdO) = 1 and ß I-t Xl (ß + i·) :] - 2, 2[-* S(IR) is bounded (for example, Xl can be
chosen as the Mellin transfoflll of a function from Cö='(ll4)). Further let X2 E S(IR), and

Now associate IE to g#h as in (2.6). Then

Write the integration in ~ as an integral over the curve r o. For fixed 8, t and z, the integrand
extends holomorphically to {-2 < Re w < 2} and decreases as a Schwartz function uniformly
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on parallel' lines of the iinaginary axis. Hence, by Cauchy's integral formula, we can replace
r o by r -1. This yields '

8tle (t, z) == J~ {OO s~xt{s, ~)(T-lg(z + i~))(ath)(st, z) ds d~Jo . s

with xt{s,~) = xdei~ - e)X2{-e log s). Taking the lilnit e -+ °implies (1). It remains to
verify that lill1e-+o{g#h)(t,·) = g{O, ·)h(O,·) in SJ~+/J' UC; Eo, ~). But this is true because of
g#h = gh + c with a certain c E SJl+Jl',-l (lllt- x C; Eo,~), in view of Theorem· 2.3. 0 bviously,
liIllc-+O c{t,·) = 0 in S/J+/J' (C; Bo, Eh). •

Let us finally mention, that the part of the previous theorem concerning the Leibniz product
was obtained in [7] for scalar-valued Me11in symbols, Lc. Ba = EI = E2 = C equipped with
the trivial group action K. == 1.

3 Application to operators on an infinite wedge

We illustrate an application of the results from SectiOIl 1 to an algebra of pseudo-differential
.operators on an infinite wedge, introduced in [16]. Here the wedge ia the product of the edge
~ and a (stretched) cone X" = II4 X X, where X is a smooth dosed manifold. The Sobolev
~paceB of the wedge are of the form W",6 (JIrl, E) for certain spaces E of distributions on XI\.
The operators have symbols taldng values in a certain dass of operators (namely the cone
algebra witb asymptotics in the sense of SCHULZE) that act between the Sobolev spaces on the
cone.

Let us fix some notation. By LJl(X) we denote the space of a11 pseudo-differential operators of
order J-l on X, and by LJl(Xj IR) the parameter-dependent ones with parameter T E IR, which
is treated as an additional covariable. The standard Sobolev spaces on X are H3{X). On
C~{XI\) = C~(lR..t., COO{X)) we define the Mellin transform as in Section 2.1, now acting on
functions taking values in COO{X).

In the following, w(t) E G~(IR+) is a cut-off function with respect to 0, Le., w(t) = 1 for
small t. For a Frechet space E, which is a left module over an algebra A, and a E A we set
[alE = {ae; e E E}, where tbe closure is taken in the topology of E.

3.1 Cone Sobolev spaces and spaces with asymptotics

For 8, r E IR let ll s"{XI\) be the completion of GOO(XI\) = GOO(lR.t, COO(X)) with respect to
the norm

lIul1 2 =1 IIR'(z)M~-n/2u(z)1112(X) az.
r~_1

Here, R S (z) E L S (X j r~_,) is a parameter-dependent pseudo-differential operator that in·

duces isomorprusms H"'{X) -+ H 3 '-ß(X) for each s' E IR and z E r~_,. Moreover,

az = (21ri) -1 dz.

To an f E V{Xj r 1/ 2-,) we associate a Mellin pseudo-differential operator

[op1U)uj (t) =1 c'J(z)(M~u)(z)az,
f 1/'J-1

16
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(3.7)

This extends for each 8 E IR by continuity to operators

op1(!) : 1l~,,+n/2(X") ~ 1l~-Jl,,+n/2(x").

Let {Ul , .. . l UN} be a covering of X and Xj : Uj ~ Vj C sn be diffeomorphisms. Here sn is
the unit sphere in JRl+n. To the mappings Xj associate

Xj : ll4 x Uj ~ fR1+n : (t, x) ~ tXj(x).

Let {4>1, ... , ePN} be a partition of unity on X with ePj E CÖ(Uj). Then [1 - w]H~~e(X")
denotes the closure of CÖ(X") with respect to the norm

N

l1uI1 2
= :E 11((1 - w)cjJju) 0 xj111~,,6(Rl+n).

j=1

The cone Sobolev spaces are defined as

JC~"(x") = [w]1lsl'(X") + [1 - w]H~~~e(X").

Note that K~" (X") ~ K S
' ,,' (X") if s ~ s' and , ~ 'i,

For , E IR aod an intervall e =]19, 0], 19 < 0, we caU Q a discrete asymptotic type with respect
(fO (" e), and write Q E As(" 8), if

~~ Q = {(qj, mj) E C x No j nil -, + 19 < Re qj <~ - " j = 0, ... ,N}
./

Uor some N E No. With such a type Q associate spaces
N mj

EQ(X") = {(t, x) ~ w(t) :E:E ejk(X)t-qj logk tj ejk E HS(X)}, EQ(X") = nsEREQ(X"),
j=Ok=O

which are eanonically isomorphie to a finite produet of H~(X) and Coo(X), respectively. Writ
ing K~' (X") = ne>ox:s,,-ß-e (X") we then set

x:~'(X") = K,~'(X") + EQ(X"), K,Q"(X") = n~ERK,~'(X"),

which are Freehet spaces that ean be written as projective limits of Hilbert spaces .

x:~'(X") = pr~jE#m {[W]{}CS,,-ß-CA,(X") + E~(X")} + [1- w]H~e(X")},

K,Q"(X") = pr~tAim {[w]{ Kk l,-ß-c1r (X") + E~(X")} + [1 - w]H~e(X")},

where Ck = cQ/k and cQ is chosen in a way that Reqj > nil -,+ () + CQ for all j. Finally, we
define the spaee of rapidly decreasing functions on X" as S(X") = S(IR, Coo (X)) IR+' and set

S6(X") = [w]JCQ"'(X") + [1 - w]S(X"),

which is a projective limit of the Hilbert spaces

[w]{K,k ,,-ß-c1r (X") + E~(X")} + [1 - w]H;~e(X"),

with Ck as above. The eorresponding group actions on aU these spaces now are induced by thc
mapping G~(X") ~ G~(X") defined by

.!!±1
(KAU)(t,X) = A---r-U(At, x).

On JCo,O(X") this is, in partieular, a group of unitary operators.
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3.2 Weighted edge Sobolev spaces

First we ge'neralize the material from Section 1 to Frechet spaces, which are projective limits
of Hilbert spaces. More precisely, let Fj (j = 0, 1) be Frechet spaces that can be written as

Fj = proj.limE~
kEN J

with Hilbert spaces E} P EJ P ... , such that the group action on EJ induces (by restriction)

the corresponding group action on each EJ. We then set

W",6(JR'l Fo) = pro}limW",6(~ E~). (3.8)
, J kEN ' J

Furthermore, we define. ,

sp,m(JIrl x JIrl j Fo,Fd = nlEN{ UkEN SIl1m(JIrl X JIrl j E~, Ei) }, (3.9)

Le., a E SIl,m (IRQ x 0 JR'l j Fo, F 1) if and onIy if to each l E N there is' a k E N such that
a E SJJ,m(JRQ X JRfl j E~, Ei}. By the definition of projective limits and Corollary 1.11 it is then
obvious that each a E SJJ,m(}RQ X }RQj Fo,Fd induces continuous operators

:j op(a) : )'V",6(IRq, Fo) -+, W,,-p,6-m(IRq ,Fd

for arbitrary 8,8 E IR. This abstract setting C8Jl be applied to the cone Sobolev spaces.
"

3.1 Definition. Let 8,8" E IR and Q E As'(-y,8), e =J19, 0]. The weighted edge Sobolev
spaces are defined as

W~,6(R'l x X A
) := W",6(JIrl, ,(""'Y(XA )) , W~6(JIrl x X A ) := W",6(JRIl, JCQ"Y(X")).

3.2 Remark. As a consequence of Example 1.5 we obtain

H~p(JR'l x X A
) C W~6 (JRll x X!\) C W~,6 (IRq x X") C Htoc(IRq x X")

for each 8,8" E IR and Q E As(" 8) (for more details see, e.g. {14]).

3.3 Example: Mellin and Green pseudo-differential operators

Throughout this section let data 9 = (", - v, 8) with weight.interva11 e =) - k, 0), k E N, be
fixed. Further let N+1 N_ E N. -

3.3 Definition. For jj,m E IR the space R~,m(}RQ x JIrl,gjN_,N+) consists of a11 symbols
g(Y,1]) E n"ERSJJ,m(R'l x }RQj IC","Y(X!\) ffi CN _, ,(oo,'}'-V(X!\)-EB CN+) satisfying

g E nsERsp,m(IRq x ~ j ,(8,"Y (X") EB CN - , S~~v (X") EB CN+),

g. E n"ElRSIl,m (JRll x IRq j ,(S ,v-'"Y (X") EB CN+ ,Sq; (X") EB eN - )

for certain asymptotic types QI E As(, - v,6), Q2 E As(-,,8) depending on g. Here the
involved group actions are {1'c;). EB I}, where {K).} is the standard group action from (3.7).
Further ... means the pointwise formal adjoint in the sense of

(gu, v) A:0,O(XA )$CN+ = (u, g·v )X;O,O(XA )$&

for a11 U E Cü(X") EB CN- and v E Gü(X") EB CN+.
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A set P is called discrete asymptotic type for Mellin symbols if

P = {(pj,mj) E C x No; j E Z}, Repi --+ ±oo for j -+ =FOO.

The projection of P to the complex plane is dcnoted by 'TrCP = {Pj; j E Z}. Then the space
M~,m(X) consists, roughly speaking, of a11 functions h(y) E Coo (JRll, A (C\ 7rC P, L/J (X))), where
the poles in Pj E 7rcP are at most of order mj + 1, and the Laurent coefficients Ujk(Y) of the
principal part of h(y) in Pi being elements of L-oo(X), and

sup (y)lol-m q (a;Ujk(Y)) < 00
yERq

for all (} E NZ and semi·norms q(.) of L -oo(X). Further one requires, that h(Yl Z + iß) is
"outside 'TrCPll an element of L/J(X irß) such that

sup {(y)lal-m q (~[h(y, ß+ ie))) j Cl ~ ß ~ C2, Y E }RQ} < 00

for a11 Cl < C2 E IR, each semi-norm q(.) of L/J (X; IRe)' and a11 Q' ENg. In particular, h(y, z) E
LJl(Xj r ß ) for each ß E IR such that 7rcP n r ß = 0.
,~or a precise definition of these spaces we refer to [16], Section 4.,
U
"'3.4 Definition. Let ~ E IR with v - ~ E No. A function

}

with

k+/J-v-l

m(y,1]) = w(t[1])) L t-/J+j L op1}° (hjo)(Y)1]°w(t[1]])
j=o 1019

(3.10)

h· E M-oo,m(X")
JO Pjo 1 7rCPio n r 1/ 2-;jo = 0, ,- n/2 - (v - JJ) - j ~ ,jo ~ ,- n/2

is called smoothing Me11in symbol (of order (JJ, m) with respect to g). Note that m == 0
if 1/ - J.L 2::: k. Hereby, w(t[1]]) and t-/J+j have to be understood as (parameter-dependent)
operators of multiplication betwecn the cone Sobolev spaces, and 1] H [1]] is a smooth strictly
positive function that equals 17]1 for large 11]1.

Now the space R~~G (JRll X ~, H.; N_ , N+) denotes all fuuctions of the form

K6 ,'Y(X") Koo,-y-V(X")
(m + g)(y,1]) = ( m(y,7]) 0) + g(y,7]) : EB -* . EB

o 0 CN- CN+

with g E R~m(JR'l X JIrl,~;N-,N+) and 7n(y,7]) as in the above Definition 3.4.

3.5 Theorem. (cf. [16J, Proposition 2.19) Let m(Y,7J) a.s above. Tl1en

mE n6ERSJ-l,m(JR'l x JR'ljK:"''Y(X'') EBCN-,Koo,1'-V(X") EBCN+).

Furtbermore, to each Q E As(" 8) exists a Q' E As(, - v, 8) such that

m E n6ERS/J,m(~ x IRq; JC8'Y(X") EB CN - 1 K:q''Y-V(X'') EB CN+).
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,Together with Corollary 1.11 we now get the following theorem.

3.6 Theorem. Let m + g E RIf.{'":.a(JR'l x JIrl, 9..; N_, N+) and let asymptotic types Q1, Q2 be
associated witb g. Then for eacb 8, fJ E IR. we obtain continuous operators

W~,6 (JR'l x X")
op(g) : EB

H",6(JR'l, CN- )

WQ~'j,6-m(JR<1 x X")

----; EB
H S -IJ,6-m(JR'l, CN+)

W~,6(}RQ X X") W;=~,6-m(JR'l X X")
op(m + g) : EB ----; EB

H" ,6 (JRll ,CN- ) H"-IJ,6-m(JRll, CN+)

Further, to each Q E As(,,8) there is a Q' E As(, - v, 8), depending on m and g, such tbat
\

W~6(RQ X XI\)
op(m + g) : EB

H s ,6(JRfl, CN_)

WQ:-IJ,6-m(R'l x X")
----; EB

H"-IJ,6-m(ffr1, CN+)

{?ontinuously.
' ..J
~t

~et 1 denote the identity operator E -t E and 1 = (~ ~) , viewed as an operator E ff! F -t

E ffJ G for various spaces E, P, G.

Further let from now on 9.. = (0,0,8). In the following we consider the algebra of operators

op(l +~ + g), with m + g E R~+a(Rq x [(l '9..; N_, N+).

3.7 Definition. A symbol 1 +m +g and the corresponding operator op(1 +m +g) are called
elliptic if

i) there exists an asymptotic type P with 1rcPnf!!±l = 0 such that (l+hoo )-l E M~'o(X),
:l

where hoo corresponds to m via (3.10),

ii) for large I(y, 1J)I
KO,O(X")

(1 + m + g)(y, 7}) : ffi
CN -

is invertible and the inverse is uniformly bounded in (y,1]).

Prom Theorem 3.6 and [16], Theorem 3.10 we can conclude:

3.8 Theorem. Let A = op(1 + m + g) with m + g E R~o+a(ffr1 x }RQ ,9..; N_, N+) be elliptic.

Then there exists a B = op(l + m' + g) with m' + g E R~+a(~ x ffr1, fli N+, N_) such that

20



for certain g± E RcOO,-OO(JIrl x IitJ, E; N±, N±). Furtber,

W~,6 (JRQ x XI\) . W~,6 (Rtl X XI\)
A: ED --t EB

H s ,6(JRll, CN_) H",6(JRQ, CN+)

is Fredholm for each 8,0 E IR. Let u E W~OO,-OO(Rtl XXI\) ED H- oo,-oo(1RQ ED CN_) and Au = 1.
Tben

a) 1 E W~,O(R1 X XI\) ffi H",O(ITrJ Ef) cN+) implies

u E W~,O(R.Q X Xl\) Ef) H 8 ,O(JI(l EB CN_),

b) 1 E WQ'~(Rtl X XI\) EBH",O(JRQ ffiCN+) implies tbe existence ofa Q2 E As(O, 8) such tbat

U E WQ':(}RQ x XI\) EB H 6 ,8(ITrl ffi CN_).

The Fredholmness of A is a consequence of Proposition 1.12.
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