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Introduction

In this paper, we consider elliptic differential equations on manifolds with singular-
ities of cusp-type.

In our previous paper (1], we investigated asymptotic solutions to the corre-
sponding homogeneous equations and found, in particular, that these solutions are
functions of exponential growth of order £ near each cusp point of the same order.
Hence, it is natural to construct the elliptic theory on manifolds with cusp-type
singularities in weighted Sobolev spaces with weight exponential of order ¥ in a
neighborhood of a cusp point of the same order.

In fact, it is convenient to construct the elliptic theory in the framework of
an algebra, so that elliptic operators form the subgroup of invertible elements (we
carry out our considerations modulo compact operators). If such an algebra is con-
structed, the desired finiteness theorem (that is, the Fredholm property) is a direct
consequence of the existence of near-inverses (regularizers) for elliptic elements of
the algebra. Since it is clear that the main difficulties in the construction of the



regularizer in this situation are concentrated near singular points of the manifold
in question, we construct the corresponding local algebra, which we call the local
cusp algebra. For constructing such an algebra we use the noncommutative analysis
created by V. Maslov 2] and developed further by V. Maslov and his collaborators
(see [3]-[8] and the bibliography therein). Namely, using the notion of non-standard
charcteristics introduced by V. Maslov [9] we represent the operator under inves-
tigation as a function of two ordered operators and then use the noncommutative
calculus mentioned above.

Acknowledgements. The authors are grateful to Vladimir Nazaikinskii for
many fruitful discussion on the subject of this paper.

1 Preliminary considerations

1.1 Geometry of the problem and ellipticity

1. Let M be a smooth manifold with a finite number of points {m,...,my} of cusp
type and let H be a differential operator of order g on this manifold. This means
that:

N
e In the complement of the set {J{m;} of all cusp points the manifold M has
3=0
the structure of a C°°-manifold.

e Associated to each point m; are a neighborhood U; C M and a smooth man-
ifold 2; such that U; is topologically equivalent to the cone

([0,1] x ;) / ({0} x ;) (1)

and the smooth structure on the cone coincides with that on the manifold M
in the complement of the vertex m; of this cone. We denote by (r,w) the
coordinates on U; induced by the representation (1), where r € [0,1] and w
are local coordinates on the manifold Q (see Figure 1).

e Associated to each point m; is a positive integer k; such that local expressions
of operators H near m; are

I3 i .
= 3 i) (- ) @
T
=0

where A;(r) are smooth differential operators on ) of order p — I, and the
dependence of the operator A;(r) in the variable r is C* up to the point

3



Global manifold Local structure

Figure 1. Manifolds with singularities of cusp type.

r = 0. The numbers k; are called the multiplicities of the cusp points m;,
j=1,...,N.

In particular, we shall consider elliptic operators of the form (2) in the following
sense:

Definition 1 An operator H of the above type is called elliptic if both:
1. Itisellipticin the usual sense at all points of the complement M\ {m;,....my}.
2. The family of operators ,
H(p)="> Ai(0)p (3)
is a strictly elliptic analytic family of (z);)[:arators on the manifold §? in the sense

of Agranovich-Vishik ([10]).

We remark that, under the assumption of ellipticity of the operator H, the family
H(p) of operators in (3) is meromorphically invertible in the complex plane C with
the coordinate p.

Theorems showing the finite-dimensionality of the kernel and cokernel of elliptic
operators will be established in special weighted Sobolev spaces which will be de-
scribed below. We remark that the choice of these spaces for proving the finiteness
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theorems is governed by the asymptotic expansions of solutions to the correspond-
ing homogeneous equation obtained in [1]. Due to the results there, these Sobolev
spaces must have an exponential weight at each singular point m; of the manifold
M of an order k;.

It is known that the proof of finiteness theorem can be accomplished in the
framework of an operator algebra including the operators of the considered type and
regularizers for such operators. Then the finiteness theorem is an easy consequence
of the existence of a regularizer and the corresponding embedding theorems.

1.2 Operator algebra and noncommutative analysis

Due to the locality principle, it is clear that it suffices to construct the above men-
tioned algebra in a neighborhood of a singular point of the underlying manifold.
So, we focus our attention on the construction of the local cusp algebra near a cusp
point. Let us consider the construction of this algebra in more detail (since we are
working in a neighborhood of some fixed cusp point, we omit the corresponding
index j).

1. First of all, our future algebra must contain differential operators of the
form (2). Omitting the inessential factor r~#(*+1) we can write down the expression
of the operator in the form

S a\" d
> Ai(r) (—ir*“ E) =i (r, —irk“g) . (4)
One can see that this operator is a function of the two opcrators

d
B=r and A=—ir*t'— 5
dr’ (5)
where the operator A acts first, and the operator B acts second. The latter remark
is necessary since the two operators (5) do not commute:

[B7 A] = [T‘, —'I'T'k+l i] = l.‘l”k+l.

(The square brackets denote the commutator of the corresponding operators.) So,
we shall write down the operator (4) in the form

1

i=i 3,—1'1-*'“% , (6)



where the indices over the operators define the order of their action (for compli-
cated operators like —ir¥*'d/dr we use the bar to define the range of action of the
corresponding index; this bar will be omitted in the case when the notation of an
operator consists of a single letter.)

For example, if the function H(r, p) is a polynomial in the variable p, say

Aep=3 AP,

i=0

then one has

and

It is natural to construct the local algebra as the algebra of functions of operators
(5). We remark that the symbol function H (z,£) involved into relations (4) and (6)
is a polynomial in the variable ¢, corresponding to the operator ~ir**1d/dr, and,
hence, the definition of the operator (6) is clear (see the examples above). However,
if we need to write down the regularizers for such operators in the form of functions
of operators (5), we must consider more general symbols, which requires the exact
definition of function of noncommutative operators (5).

This definition can be given as follows. First, we remark that both B and A are
symmetric in the Hilbert space Ly (R, r %!} defined by the norm

170 = [170)F

Let
ettB and en‘A

be the two one-parameter groups' corresponding to operators (5). Definition of the

!These groups will be well-defined, for example, if the operators A and B are self-adjoint.
Unfortunately, this fails for the operator —ir*+'d/dr in the space introduced above. However, it
18 not essential in our heuristic consideration since it is possible to modify this operator up to a
self-adjoint operator which coincides with —ir¥+!d/dr near the origin (we recall that we construct
a local algebra). This will be done in the main part of the paper.
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2 1
function F' (B, A) can be given in the form

2 1 m e =
F (B, A) = /e"Be"AF(t,T) dtdr, (7

where F (1, 7) is the Fourier transform of the function F (z,¢) in the variables (z, £).
Clearly, the class of functions used in the latter definition requires the exact descrip-
tion. This description will be presented below, and here we denote by Smbl the class
of admissible symbols for the definition (7), and by Op the corresponding class of
operators.

The main problem in constructing an algebra of operators of the form (7) is to
compute the symbol of the composition F o G and the symbols of adjoint operators
F* and G* via symbols F (z,8) and G (z,€) of the operators F and G. Formally it
can be expressed as follows. Formula (7) defines a linear mapping

@ : Smbl - Op

which is an isomorphism on the image and, hence, the composition law in the algebra
Op defines some (noncommutative) composition in the algebra Smbl. Similar, the
conjugation in the algebra Op defines a conjugation in the symbol algebra. Our aim
is to compute an explicit expressions for these operations.

The method of noncommutative operators supplies us with a procedure to com-
pute the sought-for composition law. Namely, one must first compute the operators
of the so-called left ordered representation, that is, the two operators {4 and Ig
satisfying the following conditions

smbl (AF) l4[F(z,8)],

lB [F (ﬂi,f)]

smbl (Bﬁ‘)

for any operator F with symbol £ (y,&). Here smbl (13' ) denotes the symbol of the

operator F. The general formula for the composition will then be
2 1

smbl (ﬁ'é’) = F (E,H) G (z,¢)

([8, p- 98]). The operators {4 and lg are called the operators of the left ordered
representation. Let us compute these operators for A and B considered above.



First, we have

- 2 2 1
BF:BF( ,A)

2 1
since the operator B in the function F (B,A) acts after the operator A. Hence,

the operator /g is simply multiplication by the variable z:
IB =x.

Later on, the expression for AFis
. 3 2 1
AF = AF (B, A) ,

3
and, to compute the symbol of the last operator one has to commute the operators A

2
and B. This can be done with the help of the commutation formula (see {8, p. 62}):
3 2 1 1 2 1 3 _S§F /2 41
AF (B,A) = AF (B,A) — (B, A] i (B, B,A) ,
X
6F 4o
E (CC y T :E) -
is a difference derivative of the function F (z,{) in the variable z. In our case we

have
3 2 1 1 2 1 3 __§F /2 41
AF (B,A) = AF (B,A)—zB"“— (B,B,A)

bz

1 2 1 2 2 1
AF (B, A) — 1Bk Z—F (B,A)

where
F(z'€)— F(g"¢)

o — !

1

x

since the commutator (B, A] = i B**! commutes with B, and the difference derivative
becomes the usual derivative for equal arguments z” = z’. Hence, the expression for
the operator I, is

Ih=¢-— irtn O

oz’

and we arrive at the following composition formula:

1
2 1

smbl(ﬁ'é)zF(};,a)G(a:,f)=F :%,f—z':c"“(,ja—z G(z,§).



We remark that the formula for an adjoint operator is almost self-evident:

7 (8.4)] = (B.4).

where the bar stands for complex conjugation (in the operator-valued case it must
be replaced by conjugation in the space of coefficients).

2. Now, to construct a regularizer for the operator

1

~ [ 2 d
H —irkr1 2
Sl I
one should solve the equation
1
J¢ %,g-ixk+la—i R(z,0)=1. (8)

Clearly, solving the latter equation is too a complicated task to be done. Fortunately,
one does not have to solve this equation exactly, since for constructing a regularizer
it is sufficient to solve it up to a smoothing operator. This can be done in the
asymptotic space scale generated by the operator A = —ir¥*'d/dr. We must also
take into account that, due to the results of the paper [1], solutions to the equation

1

7 RIS P
dr

have exponential type of order k. So, we introduce the space scale E with the norm

7 20 R
i, = [ [omo{-25} @+ 442"
0 0

where A, is the positive Laplace operator on the manifold Q (we have taken into
account that the operator H acts on functions with values in a function space on
the manifold ©2). Multiplication by the function exp (—cr/ (krk)) determines an
isomorphism between the space scale £ and the space scale E* = EJ defined by
the norm

2 drdw
u (1‘, w) m"v (9)

00
s/2 2drdw
2= [ [+ a4+ 80w S
[

9



that is, the mapping
4 5 3
exp{—m} : E2 - F (10)

is an isomorphism. In addition, the following diagram commutes

A

A+1o
Es Es—l

Hence, the definition of functions of operators (B, A) as well as the investigation of
their properties can be performed for ¢ = 0, and then all the information obtained
can be taken to the space scale E? with the help of isomorphism (10) provided only
that the symbol class consists of analytic functions admitting the shift by 7o in the
complex plane.

Now, expanding the operator

1

. ]
i :%,f—ia:"“é-;

involved in equation (8) in powers of the operator —iz**19/8z (this can be eas-
ily done since this operator commutes with multiplication by ¢), we arrive at the
following asymptotic form of equation (8):

-

ff(:r:,f) + %—I: (z,€) (—i$k+1%> +] R(z,f)=1.

This can be solved by the usual methods by expanding R(z, £) in a series of functions
homogeneous in £ with decreasing order of homogeneity.

As can be seen from the above diagram, we have to work with symbols F'(z,§)
that are analytic in £ and belong to the corresponding symbol class on almost every
horizontal line {Im¢ = const}. We allow these symbols to have polar singularities
in £ such that the number of poles in each strip a < Im§ < b is finite.

10



1.3 Statement of the problem

Now we can describe the exact statement of the problem. To do this we globalize
the function spaces introduced above in the following way. Let x; be smooth fi-
nite functions in neighborhoods U; of the singular points m; (7 = 1,...,N) of the
manifold M such that x; = 1 near m; and the supports of x; do not intersect one
another. Then the system of functions

{XaXh"':XN}
with
N
x=1- ZXJ
i=1

form a partition of unity on M. Let us consider the corresponding decomposition

N
F=xf+>_xif

i=1

for any function f on the manifold M. By E;_ (M), we denote the Banach space of
functions on M determined by the finiteness of the norm

N
A2 e = IXANS + D X6 A2, 5
i=0

here [|-||, is the usual Sobolev norm on the manifold M and ||-||, ., is given by

~

_ —y(k;+1
lull, , = [Ir=" 5]

near each cusp point m;, where ||-|, , is the norm in the above introduced space E;.
The aim of the present paper is, in particular, to prove the finiteness theorem
(Fredholm property) for the operator

H: E: (M) — EXF,(M).

LT

The construction of the corresponding local cusp algebra and the proof of the
finiteness theorem appear in Sections 2 and 3.
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2 Local cusp algebra

We construct a local cusp algebra in the neighborhood of each cusp point using
the special coordinates (r,w) € [0,70] x 2 described above. We recall that in these
coordinates the operator H has the form

H=Zu:/i,(r) (—r*“;:)l (11)

up to the inessential factor r=#(*+1) (see formula (2) above). Here the A;(r) are
smooth differential operators of order ¢ — ! on the manifold ? smoothly depending
on the parameter r € [0, 7).

The algebra will be constructed in certain Hilbert scales. The zeroth space of
such a scale is exactly the above introduced space E? (see (9)). The latter is a
weighted Lj-space on [0,70] x §2, determined by the norm?

. [ - dr dw
2= [ [ 17 P S
o Q

with a ¢ € R.

As it was already mentioned in the previous section, we reduce the problem to
the case ¢ = 0. This is accomplished by considering the function e~?/*"* f (r,w)
instead of f(r,w). Since

d a kel d
—rftl et F = el F —T‘HIE- +a,
T

one sees that the transformed operator has the same structure

. H . . ld H " R x d !
H =ZA:(1‘) (-——T+Ii‘;+0’) =ZA;(1‘) (—1‘ +1:i-;) ,
i=0

i=0
and the corresponding family is

.u n

~

H ()= Y A (p+0) =Y A5 (12)

=0 =0

2Since all the constructions of the local algebra will be carried out near one of the singular
points of the manifold M, we shall omit the corresponding index j. So, we write k£ instead of k;,
1 instead of ;, and so on.

12



We remark that the ellipticity requirement is fulfilled for the transformed operator
whenever it is fulfilled for the initial one. In what follows, we assume that this
requirement is fulfilled and we omit the primes over all operators in question (such
that H, H (r,p), Ai(r) and so on).

Let us impose a requirement on the choice of the number o. First, we note that,
due to the ellipticity condition above, the operator family (3) is meromorphically
invertible in the complex plane C with the coordinate p. We suppose that no pole
of the family H (r,p) lies on the vertical line

L, = {p€ C|Rep =0},

and, what is more, the norm

” (1+p* + A)* [H (r,p)]

-1

(13)

H*(Q) — H* ()

is bounded uniformly in (r,p), p € L,. For the transformed family (12) this means
that no pole of the inverse family lies on the imaginary axis in the plane C with the
corresponding estimate. Clearly, this must be fulfilled for sufficiently small rq.

So, in this section we carry out the definition of the local algebra for ¢ = 0.
Clearly, this definition can be rewritten for the arbitrary values of ¢ with the help
of the isomorphism (unitary for s = 0)

exp {—%} By - E§
described in the previous section.

Under the above described transformation, the zeroth space of our future space
scale becomes

E® = L, ((0,7q) x 2, r=(:+1)) (14)

ki dr dw
112 = [ [ 15t et
00

We wish to construct the regularizer in the space scale generated by the operator®
—r**1d/dr. This means that the remainder must lie in the domain of the operator

with the norm

(-—r“‘ld/dr)N for sufficiently large N. We cannot write down the expressions for the
norms in all spaces of the scale at the moment, since the operator —r*+1d/dr must
be modified for purely technical reasons; this will also affect the function spaces.
The full description of the scale in question will be given in the following subsection.

3In fact, we also need some decay conditions as r — 0, but we do not include these conditions in
the definition of the scale. The desired estimates will be obtained as a by-product in constructing
the regularizer.
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2.1 Construction of the local algebra

We see that the operator H given by (11) is a function of the operators r and
~r*+1d/dr, and the asymptotics must be constructed in the scale generated by the
second of these operators. So, it is natural to search for the regularizer in the form
of a function of these two operators as well. The difficulty is that the operator
—r¥+1d/dr is not a generator in the scale in question.

To explain this phenomenon we recall ([8]) that for the definition of functions of two noncom-
mutative operators one should use the corresponding one-parameter groups. Let us compute the
group U, corresponding to the operator —r¥+1d/dr. Let us search for this group in the form

(Uef) (r) = F(R(r,1)).
Then, since one must have
%(sz) (r) = Uy (—r“’l%) (r)= (-r*“gi) (R(r,t))

r
we obtain the following equation for the function R(r,t):

8R(r,t) _ b1
— = —RETH(r, 1)

The solution of this equation is
r

(1 + krkg)'/*

and one can see that this group is local, that is, not determined on the whole line R.. This happens

R(r,t):

due to the fact that the trajectories of the corresponding vector field can come to infinity by finite
time. One can check that this phenomenon takes place due to the growth of the coefficient r*+!
of the considered operator —r¥tld/dr at infinity. Since we are interested in the investigation of
the behavior of solutions near the origin, this problem is purely technical, and we can change our

operator outside the segment [0, ro] in the arbitrary way. This is exactly what is done in the sequel.

So, we modify the operators in question in the following way. First, we shall
consider functions on the entire semiaxis r € (0, +00).

Let ¢ (r) be a smooth function of the variable r € R such that the following
conditions are fulfilled:

Tk+l! IT‘l S 7o,
p(r)=< (=1)*'C, r< ~2n,
C, r 2 2rg,

with a constant C (see Figure 2).

14



o(r)

-3, -, - o2 3
k _odd
Q,_rk#]
o(r)
-3r, -2r, -1,

Figure 2. Graph of the function ¢(r)

Now we introduce the operators®

R = (15)

B = r (16)

(note that the operator A coincides with the initial operator —irf+!d/dr near the
origin). Clearly, these functions satisfy the following (nonlinear) relations

[A, Bl = —i¢ (B), (17)

where the square brackets denote, as usual, the commutators of the corresponding
operators.

Next, let us extend the function® H (r,p) to all values of r € (—oo, +00) so that
I:{(r, p) is smooth and )i (r, p) has no poles for real p; in addition we assume that
H (r,p) is independent of r for sufficiently large |r|. Then for r € [0, 7] we clearly
have

H= i A (B)(—iA) = H' (fa’, /14) :
=0

4We have inserted the factor i in (15) to deal with self-adjoint operators and symbols that are
functions of a real variable.

5We assume that the change of symbol H (r,p) — H (r,—ip) corresponding to the above change
of operator A is already made.
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Now let us give a precise definition of function spaces in which our operators will
be considered. Denote by

E° = L* ((0,+00) x 2,7 (r))

the space of functions f (r,w) with the finite norm

113 = 7 Jueerss.
0 N

@ (r)

Note that in a neighborhood of zero ¢! (r) = r~(*+1 50 for functions supported in
such a neighborhood the latter space coincides with the space (14) defined above.

To define all other spaces of our future space scale, we need the following asser-
tion:

Lemma 1 The operators A and B are self-adjoint in E°.

Proof. The operator B generates the one-parameter group given by the multi-
plication by exp {¢rt} which is obviously unitary.
Next, for each r € (0, +00) the solution R (r,t) of the Cauchy problem

R=¢(R), Rl,_,=r

is defined on the entire axis ¢ € (—o00, +00). Consequently, the operator A generates
the one-parameter group of translations

(e*f) (r,w) = f(R (), w). (18)

One can show that this group is unitary either by straightforward computations or
by verifying (again by straightforward computations) that A is symmetric on the
dense subset C§° C E°. 0

Note that the function ¢ (B) in (17) is now well-defined as a smooth function of
a self-adjoint operator B.

Let us now introduce the Hilbert space E* as follows: E* is the space of functions
f (r,w) with finite norm®

2 dr dw
o(r)’

1712 = f J10+ 448" 1 (r0)
¢ N

6Since we have reduced our problem to the case & = 0, we omit the corresponding index.

16



where s € Z4, and A, is the positive Beltrami-Laplace operator on 2. Since the
operator A is self-adjoint in E°, this norm is well-defined for any s € R; for purely
technical reasons we shall use it only for s € Z.

Later on, it is easy to see that the scalar product

B drdw
,0)g = rw)g(r,w
(ron= [ [ 16300 555
00
establishes the isomorphism
(E°)" ~ E~*.

We shall consider also the operators A and B in the two-parameter Hilbert space
scale F*!. This scale is defined by the finiteness of the norm

2 drdw
o(r)

+oo
||u||=/j‘(1+r2)”2 1+ A7+ 8,) u(r,w)

—-00 Q2

We remark that this scale coincides with the above scale E? for | = 0: E? = F*°,

Lemma 2 The following assertions are valid:
i) The operators A and B are bounded in the scale F*!'; more precisely, the

operators

A F:,f N F’_l'l,
B FA,I N Fs,l—]

are bounded for any s, .
ii) The one-parameter groups exp {itA} and exp {it B} are bounded in each F*!,
more precisely,

lexp {it A poi . s < Cot (1 + [N :

and
llexp {it B}l g . pux < Car (1 4 [2])"! (19)

for each s, with a positive constant C.

Proof. i) Since
14, B] = —ieo(B)

is a bounded operator, and all higher commutators [[A, B], B], ... vanish, we see
that the operator A is an operator of first order in the scale F*! with respect to

17



the first parameter. The assertion on the boundedness of the operator B is quite
similar.

ii) Consider first the group exp {itB}. The proof of estimate (19) for positive
s goes by induction in s. For s = 0, the statement is true; let us show how the
induction step s = 0 = s = 1 is carried out (the subsequent calculations are
quite evident). Since B =r, A = —ip(r)d/dr, one has

Aexp {itB} = —i(p(f‘)% exp {itr} = tp (B)exp {it B} + exp {it B} A.

Hence,

lAexp {itBYully, < llexp {itB} Aully, + It]lke (B) exp {itB) ull,

IA

||Au||0‘, + const [t ||“||o,l
C (1 + 1)) llull,,

IA

for u € C and, hence, for all u € F!, as required. For negative s the desired
estimate follows by duality.

Now, let us turn our mind to the group exp {itA}. Similar to the above consid-
ered case, it suffices to estimate the norm

1B exp {itA}l, o

via the 1-norm |ju||, , of the function u. We use the direct expression for the group
exp {itA} given by (18). So,

Bexp {itA} = ru(R(r,t),w).
Since ¢(r) is bounded, we have
|R(r,t)| < v+ Ct]
for any r and ¢ with a positive constant C'. Using this estimate, it is easy to see that
| Bexp {itA}l],o < C (1 + [t]) |lull,, -
The induction on ! completes the proof. O

Now, let us introduce the space of operator-valued symbols. In what follows we
denote by (z,£) the coordinates corresponding to operators A and B in the symbol
space.

18



Definition 2 By 5% = 5§ (R? H*(Q)), we denote the space of functions f (z, £),
(z,€) € R? with values in the Sobolev scale {H?*(Q)} which satisfy the following
condition: there exists an integer m = m (f) (depending on f) such that for any n
and s the quantity

Cos (f) = z sup

atf<n (=€)

—m/2 aa-h@f
St (2:6)

(1+2°+&+A) (20)

H*— H*
is finite.

Remark 1 The introduced symbol class is quite natural in the considered situation

since the operators A and B are generators of groups of tempered growth in the
considered scale (see Theorem 1V.3 in the book [8]).

Clearly,
s=[Jsm=/ (ﬂs:;) :

where ST is the space of functions with the finite right-hand side in (20). Therefore,

we can equip S* with the corresponding convergence closely following the procedure
described in Example IV.1 in [8, p. 252]. Note that

H(z,6) € S* (R:LH ().
Now, it follows from the description of §*-generators given in [8, Subsection
L [2 1
IV.2.3] that A and B are S*-generators (and, hence, functions F' (B, A) are well-

defined) in the scale { F*!} (the fact that our symbols are operator-valued leads to
no additional difficulties).

L [2 1
Let us consider now operators F' (B,A) in the space scale F°. The following
assertion takes place:
Theorem 1 Let ﬁ'(:c,f) be an operator-valued symbol such that the quantily

_mslol 40 F(z, €)

(1+&+A) 5 0eF

(21)

H*— H*

is bounded uniformly in (z,£) for any o, B, s with some fized value of m. Then the
operator

. .21
F=F( ,A) : E*— BT (22)

is bounded for all values of s.
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Proof. Using Theorem IV.5 of [8, p. 279], one can see that the operator
L /21
F(B,A) : By — Ey

is bounded provided that m < —1. It is also easy to see that for such values of m
this operator is bounded in the whole scale E*. Actually, this fact can be proved by
induction on s; we shall illustrate only the first induction step (all subsequent steps
are performed in a similar way). To prove the boundedness of the operator

L (21
F (B,A) : By — B (23)

it is sufficient to estimate the norm i

AFull via ”ﬁ'Au” and |jull;. This can be
0 0

done with the help of the representation operators (see [8, p. 97]; the computation
of these operators in the considered case is given in the next subsection)

i a

la = §—1p(z),

15 = I.
One has’

- 2 1 - 2 1

A [[F (B,A)H _é (B,A) ,
where .
. . OF (z,
G (2,6 = WP (2,) = £F (5,6) ~ i () T 20%)
Hence,
N - - 2 1 " N 2 1
”AFu = ”FAu+ i (B,A) ul < “FAu o ”H (B, A)
4]
with .
: 0F(z,§)

Since the function A (z,§) satisfies conditions of Theorem 1, we have

" 2 1
‘H (B,A)

"By [], we denote the so-called autonomous brackets which delimit the range of action of the
Feunmann indices (see [8, p. 15]).

< Cllullo,

0
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and, finally,

||A13'u

< e+

This completes the proof of the boundedness of operator (23). Similar, one can
prove that the operator

L 21
F (B,A) : B — BT

is bounded for any s.

We remark that the estimate (22) stated in the theorem is not yet proved, since
there is a loss of 1 + € in the order of the operator. However, order-exact estimate
(22) can be proved now quite similar to the proof of Theorem IV.6 in [8, p. 282];
there is no need to reproduce this purely technical proof. =]

Remark 2 Clearly, all the above stated results are valid also in the space scale E?
defined by the norm

2 dr dw

400
191, = [ [ expiovmn] o+ 47+ 80" f ren| T

-0

where the function ¥ is defined in such a way that ¢¥'(r) = ¢~ !(r). As it was
explained in the beginning of this section, the presence of the weight exp {o(r)}
leads only to the shift in the &-plane.

~

Let now Smbl(k) be a space of symbols H (r,p) such that:
1) H (r,p) is meromorphic in p in the whole plane C with the coordinate p, and
infinitely smooth in r up to the origin;

-

2) H (r,p) satisfies estimate {(21) on each line L, = {Rep = o} which does not
contain poles of this function.

a 2 1
As it will be shown in the next subsection, the set Op(k} of operators H (B, A)

with H (r,p) € Smbl (k) form an algebra. We introduce the following definition:

Definition 3 The algebra Op(k) is called the k-th order local cusp algebra.
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2.2 Left ordered representation of the local algebra

Now, in order to find the right regularizer for the operator in question, we must
solve asymptotically the equation

[ (8.4)] - |2(8.4)] =1

where R (z,€) is the symbol of the regularizer. To this end, we must compute the

symbol of the operator on the left in the latter relation. First, let us evaluate the
1
operators of the left ordered representation of the local cusp algebra generators A,

2
B. This can be accomplished by a standard procedure (see the examples in (8,
Section I1.2]). We have

2 1 3 2 1 2 2 1
B [[R (B,A)]] = BR (B,A) = BR (B,A),

and

lh = E—1wp(z 30
lg = =z (24)

Lemma 3 Operators (24) are S™-generators.

Proof. The assertion about g is clear. Let us consider 4. We have

e E (y,6) = & F (2 (y,1),£),
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where z (y,t) is the solution to the following Cauchy problem

z=p(z), 2|, =y (25)

It is the behavior of the solution to (25) as t — Zoo that is of importance. If
y = 0, then z (y,t) = 0 and everything is all right. To be definite, let us consider
the case £ > 0 (the opposite case can be considered quite in the same way; note
that, intuitively, this case is inessential since the spectrum of our problem lies in
{z > 0}). Then for t » +o0, beginning with some t5 = ¢, (y), we have

z(y,t) = = (y,to) + const (£ — o),

so, only the behavior of the solution as ¢ — —oo is essential. Clearly, to investigate
this behavior it suffices to consider small values of  where ¢ (z) = z*¥*'. Then the
solution to (25) has the form

k 1/k
I(y,t):{ly—} y t = —o0.

- ktyk
So, we see that the derivatives
9Pz (y,t)
Jye s
grow at most polynomially in ¥ and ¢ and that the differentiation by y does not
increase the growth in y. Now, we see that {4 generates a group of tempered growth

in §%, and, hence, this operator is an S®-generator in S (see [8, p. 268] for
details). 0

We arrive at the following standard theorem of the method of ordered represen-
tation.

Theorem 2 Suppose that H (z,¢) and R(z,€) are two functions from §°° (H*(92)).
. . /21 21
Then the symbol K (z,£) of the composition | H (B, A)H ) [[R (B,A)]] is equal

to

R0, = 1 (14) R,0).

Proof. This is a special case of Theorem IL.1 in [8, p. 98]. .

Remark 3 From the computational viewpoint, we are interested in the compu-
tation of the symbol of the composition only for small values of z. If H (z,¢) is
a polynomial in £, then the computation can be done directly after replacing the
operator A by the operator —ir*+1d/dr.
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Actually, let us consider the composition

1 1

- . d
H 1%,—:':"“"1% o ||R ?‘,-—ir“‘ld—r u(r)
p ! S S,
= E}i; (r) (—ir”“%) R :2', —irk+l di; u(r). (26)
=0

It is clear that, due to the Leibnitz differentiation formula, each operator ——ir“"d/_dr outside the
autonomous brackets on the right in (26) acts at the coefficients of the operator R as well as at
the function u(r). Namely,

- d
(—ir“’li) R i,—ir""'l-d—r u(r) =

" d »
{ (5 —iz “E) Rz :=3,e=$+'=—a/§?} "

Using this formula for each factor —ir*+!d/dr on the right in (26), we obtain

1 1

~ 12 . d ~ {2 d
H r,—tr““ﬁ o||R r,—:r"*‘la— u(r)=
b AN
> @) (- it ) R L b=
1=0 z s=l =TI Tdjdr
S S S S
Hllg,la]| R(z,8) . u(r),
P 77

as required.

L (21
The assertion of Theorem 2 shows that the set of operators F (B,A with

symbols from Smbl(k) forms an algebra. This is exactly the local cusp algebra
we wanted to construct. This algebra is a *-algebra in the sense of the following
affirmation:

Theorem 3 Let F(:c,{) be a symbol subject to the conditions of Theorem 1. Then
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the adjoint to the operator
L2 1
F'(B,A) Y AR A

is given by the formula

.2 1 * . 1 2
[F (B,A)} = f* (B,A) . BTt B

where F* (z,€) is an adjoint symbol (we recall that 13'(.7:,{) is an operator-valued
function). Later on, the asymptotic formula

smbl {[F (é,fq)] } - g;% (—-icp(a:) _a%)j (Z%)j B (z,6)  (27)
is valid.

Proof. It suffices to prove only formula (27) since all other affirmations of the
theorem are evident. Due to the permutation indez formula (see (8, p. 61]), we have

. f1 2 . 21 _3__ 82t /4 2 5 1
Iz (B,A) - P (B,A)+[A, B]T(B,B,A,A)

{l
‘1‘2)
TN
ow
hl—'
N’
|
S
TN
e LX)
SN’
Pl
o
Sk
TN
oW
b_»—-
N’ T =

2 3
Similar, commuting the operators B and A in the latter formula we arrive at the

result .
B A= (B.A)—io(BYZE (B 4
(03) - (53) o () 2 ().

where by dots we have denoted the difference derivatives of higher order. Continu-
ation of this process leads to the proof of the desired formula. a
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2.3 Construction of right regularizer

L /21
As follows from Theorem 2, to obtain a right inverse for H (B, A) one has to solve

the equation
1

a :?:,f—ir,o(:n);—z é("r:{):l-

To obtain a right regularizer, we must solve this equation asymptotically. Intuitively,
since the asymptotics for operators must be “in powers of A”, the asymptotics for
symbols must be “in powers of £”. Of course, this plausible reasoning must be
justified, for which we must estimate the remainder.

We use the following properties of the symbol H (z,€): this function is a poly-
nomial of order g in £, and, moreover, the quantity

(—utp)jz O°FPH

2
(1+f +Aw) W

H*«(Q)— H'(Q)

is bounded uniformly in (z,¢) for any s, a, and 8.
Now, the construction of the regularizer goes as follows. Note that, since

[f, ~ip (x) (%] =0,

we can easily write out the Taylor expansion of the operator

around the point (z,£):

1

= | 2 _ d 1O H . Y\’
H 2,8 —ip(z) 5= —Zﬁ—éﬁ?(z’ﬂ (—“P(-T) a—m) :
Let us search for the symbol of the regularizer in the form

K
R(K) (Ilé) = z JIA%J (I1E) P

i=0
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where the orders of the symbols Rj (z,€) decrease as j increases. This means that
the norm )
—uti+p)j2 O° TP R,

2 (
(1+&+A.) 97908

(28)

He (@) — H*(Q)

is bounded uniformly in (z,§) for any j, s, a, and 8. Then we obtain the system
f{(x,{)éo (IaE) = 1,
H (z,¢) R; (<,€)

If
|
M-
==
83
|
-§.
~
3
Q
S’
&
L
w
N
o,
v
[y

Il
—
no}
—_—
B
Iy
~—
—
L

Ro(2,)
Ri(z,6) = —[H(z,s)]"iﬂ@— (_i¢(z)a)’3j_,($,5),j21,

Since the norm

i (z,6)]"

“(1 +& 4+ A"

H () — H*(Q)

is bounded uniformly in (z,£) (see formula (13) above), the boundedness of the
norm (28) for the operator R, (z,£) easily follows by induction. So, we obtain

1

R i g\ - .
B l2¢-io() g | B8 =1+Qu (=,0),
where the symbol Q(K) (z,€) has the form

\ WY a\ .
Q) (z,6) == o8 (—w(:v) a—m) Ri-1(z,¢) (29)
and the norm

(—utK+8)/2 0 HPQ k) (2, €)
Jz=OEP

(14+€&+A)

< o0
He () = H*(0)
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is bounded uniformly in (z,§) for any N, a, 8, s.
. 2 1
From this, it follows that the operator Qx) (B, A) is bounded as an operator

In spaces
~ 2 1
Qux) (B,A) o

for any s (the proof can be carried out similar to that of Theorem IV.6in {8, p. 282]).
However, we can even obtain a better result. It can be also proved by induction on
7, that each term in the sum on the right in (29) contains exactly K factors ¢ (z) a?_:’
arranged throughout the product. Let us consider the behavior of this function as

z — 0, where ¢ (z) = z**'. Let us commute all ¢ (z) in the product
0 0 0 0
go(x)atp(:v)ago(a:)a—mga(z)a—x (30)

to the left and estimate the least power of z thus obtained. The commutation of
each d/9z “kills” z in the first power. Since there are K operators of the form §/0z
involved into the expression in question, the “worst” term (in which all 8/dz were
killed by commutation with z) will contain the power®

LKO+) L K=1 _ Kkl

So,
where the operator

is bounded for any s.

2.4 Construction of left regularizer

The left regularizer for the equation in question can be constructed with the help of
the similar technique. Namely, we search for the left regularizer in the form

. /12
L=L(B,A)

8We have taken into account that the first factor p(x) and the last derivative 8/8z in (30) do
not take part in the process of “killing” the powers of z.
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putting the same operators in the inverse order. Hence, we need to solve the following

operator equation:
L1 2 ~ 21
[[L (B,A)]] o HH (B,A)]] =1.

12
Let us find the right ordered representation of the tuple B, A. We have

a 1 2 - 1 2 1
[[L (B,A)]] B=1 (B, A) B,

so that
rTBE=7=
Later on,
L /12 . /1 2\ 0
5] - (o)
. /-1 2\ 0 1 =1\ ogl /1 -1 2
= L(B,A)A—F(B—B)A—; B,B,A)
L1 2\ 2 1 [ /1 2
= L(B,A)A-l—i(p(B)a—L(B,A),
Oz
whence
, 0
ra=E+ip(s) 5.

Now, the equation for the symbol L (z,¢) of the left regularizer takes the form

2

q :‘c,£+iso(m)a—i L(z,6)=1.

Again we search for the solution of the latter equation in the form of the series
i’(maf) = 240(:5,5) + Ll (:Eaf) + .. ()
thus obtaining

-

H(m,{)ig(:c,f) = 17 .

J ! 182
. . 1/, 0 0'H . .
H(z,£) L;(x,§) = 2 T (199(1) g) {'a“é-,-fq'—l] (z,€), 721
— the most significant difference in this recurrent system compared with that for
the left regularizer is that the operator ip (z) 8/0z acts on 8'H /8¢' as well.

The rest of the construction makes no difference with that for the right regularizer
and we omit it altogether.
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3 Construction of global regularizer

In spite of the fact that the construction of a global regularizer is quite standard
after we have constructed local regularizers in neighborhoods of all singular points
of the manifold M, we shall briefly present this construction for the paper to be
self-contained.

First, with the help of a cut-off function x in a neighborhood of each singular
point m; of the manifold M, we construct a local regularizer in a neighborhood of
each cusp point of the manifold M. Namely, the following statement is valid:

Theorem 4 For any value of K, the operator®

1

K ———

N 2 d
E R; | ry—irktl—
- dr
1=0

is a regularizer for the operator H up to the order K in the neighborhood of the
corresponding singular point. This means that
1

. u d R R
H Z RJ’ Tg‘, —ir‘k"'ld— - Ql + Q21

r

where the operator Ql is an operator of order —K in the space scale E]_ (M):
Y s y s+ K
O ¢ EBi, (M) = E2HF (M),

and the operator Q. is a pseudodifferential operator of zeroth order on the manifold
M which equals 1 on the space of functions concentrated in some neighborhood of
the considered singular point, and equals zero on the space of functions with supports
outside some larger neighborhood.

9More precisely, one should consider the operator

1
K — 4
- 2 .
x(r) D Ry | 7—irkti— | x (),
ji=0

where x (r) is a cut-ofl function equal 1 in some neighborhood of the considered singular point
and vanishing outside some larger neighborhood. To be short, we omit the corresponding cut-off
functions.
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Denote by fij, 7 =1,..., N the above constructed regularizers in neighborhoods

of the points m;, j =1,..., N. Then one has the composition formula
" A N A -~ -~
H) R =Q+@
i=0
where Q' is an operator of order —K in the space scale E , (M), and Q2 is a pseu-

dodifferential operator of zero order whose symbol equals 1 1n some neighborhood of
the set {m,,...my} of singular points of the manifold M, and vanishes identically
outside some larger neighborhood of this set.

Let us search for the global regularizer for the operator H in the form

N
R=>"R+T, (31)
=0
where T is a pseudodifferential operator on the manifold M identically vanishing in
a neighborhood of the set of its singular points. For the operator T we have

N

ﬁﬁ:f;(zmm) O+ Oy BT =1
i=0

We can neglect the operator Q’1 since this operator is of arbitrary large negative

order, and write down the following equation for the operator 7"

HT =1-Q.,.
So, the operator T can be chosen in the form
T= X’il_l (1 _Q;) )

where x is a function on M equal to 1 in a neighborhood of the support of the
operator (1 - ’2), and vanishing identically near the set of singular points of M
and H~! is a regularizer for the operator H on the smooth part of the manifold
M. Clearly, the latter operator is well-defined and, for such a determination of
the operator T, the operator R given by (31) is a (rlght) global regularizer for the
operator H on the manifold M.

The left regularizer for the operator H can be constructed in a quite similar
manner.

The existence of the regularizers for the operator H together with the bounded-
ness of the corresponding operators leads us to the following statement:

31



Theorem 5 (finiteness theorem). Let H be an elliptic operator on the manifold M
with singularities of the cusp type in the sense of Definition 1. Then the operator

H: E: (M) = E:Z™ (M)

Iy

possesses the Fredholm property.

4 Asymptotic expansions of solutions

In this section, we shall prove the resurgent character of solutions to equation
Hu=f (32)

provided that the right-hand part f of this equation is infinitely exponentially flat
near a singular point of the manifold M. This means that the function f admits
the estimate

1/ ()l < Caoxp {5}

with a positive constant C, for any real number a.

Remark 4 The requirement of infinite flatness of the right-hand part can be re-
placed by the requirement of resurgent character of this function (cf. [11]). We shall
not construct the corresponding theory here.

Clearly, investigating the asymptotics of solutions on manifolds with cusps near
some singular point of this manifold, one should use the k-Laplace transform where
k is the order of the corresponding cusp point. So, the representation of solution to
equation (32) will be

1 _
w= LU (o)) = 5 [ €U ) dp
Le

Now one should investigate the analytic properties of the function
Ulp,w) = B [u(r,w)].

As it will be shown below (and as one can guess from the results of the paper [1])
this function will not be a meromorphic one. The only thing one has to verify is that
this function will be endlessly continuable!®, that is, that the corresponding solution

ORoughly speaking, the function is called to be endlessly continuable, if it has not more than a
discrete set of singularities on its Riemannian surface. The exact definitions the reader can find in

the book [12].
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is a resurgent function in the variable r. If so, the asymptotics of the solution has
the form derived in the paper [1] by the authors.
The aim of this section is to prove the following affirmation:

Theorem 6 In a neighborhood of each singular point of the manifold M any solu-
tion to equation (32) possesses an endlessly continuable k-Borel transform. In other
words, all solutions to equation (32) are resurgent functions in the variable r. All
the singularities of this Borel transform are contained in the set of singularities of
the operator H™! (0, p).

The rest part of this section is devoted to the proof of this theorem.

4.1 Preliminary transformation

Let u (r) be a solution of equation (32) and let m be a singular point of the manifold
M.

Consider a cut-off function x (r) equal to 1 in a sufficiently small neighborhood
of the point m and having its support in some larger neighborhood of this point
(we suppose that this last neighborhood does not contain other singular points of
M and that the variables (r,w) can be used in this neighborhood). Denote

v(r)=x(r)u(r). (33)

Our aim is to prove that the function v(r) has an endlessly continuable k-Borel
transform.
We recall [12] that the k-Borel transform of a function v (r) is defined by the

formula
Vi) =Bl = [exp () v om (31)

0

(the result of the integration is independent of the choice of the value ry up to an
entire summand). To examine the properties of the function V (p) we must use
equation (32). First, we rewrite this equation with respect to the function v(r)
given by (33). Clearly, we have )

Hv=f,
where f (r) possesses all properties of the function f (r) (in particular, it is infinitely
flat near the point m), but is concentrated in a neighborhood of the point m. So,
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we arrive at the equation for the function v (r) of the form!!

2

— u !
i ,‘.,_,.k+1£: v(r) = Z (—-rHI%) Ar)v(r) = f(r)

=0

(we have omitted the inessential factor r‘“("“z).
Expanding the coefficients of the operator H in powers of r up to the first order,
we obtain the equation

2

;ffo (—r‘kﬂdi) + ; H Tl‘,—r““di v(r) = f(r) . (35)

r r

The k-Borel transform of this equation will be a starting point of our proof. However,
before the application of the k-Borel transform to (35) we shall investigate the
properties of function (34) which follow from the results of the previous sections.

4.2 A priori properties of the Borel transform of
solution

The following affirmation is valid'?:

Lemma 4 Let v(r) be an element of the space E, (Ry). Then the function V (p) =
By [v(r)] is holomorphic in the half-plane {Rep < ~o}. Moreover, in this half-plane

the estimate R
ep
Vol < coop {2221
To

is valid in each closed half-plane {Rep < —o — €} with a positive constant C,. Here
ro is a number such that v(r) =0 forr > rg.

U For purely technical reasons we have written down the equation for the function v (r) using the
inverse order of operators. Clearly, the coefficients A; (r) differ from those involved into the initial
equation, but all their properties are just the same. Moreover, the operator (U, —ir*"’ld/dr) 18
the same as for the initial operator.

12We formulate this result for a scalar-valued function v(r). Nevertheless, the same result is
valid for functions with values in a Banach space as well.
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Proof. Let {Rep < —o — ¢}. Then one has
p
Vol < [lew{g}oo
0
g

Rep+o o dr
= fp{k—} exp {~ v ()|
0 i

Using the Cauchy-Schwarz inequality, we obtain the estimate

dr
PR+

1/2

7 2(Rep+ o dr
Vol s { feo{ZEEEDL ST,
0
1/2

I 2 2(Rep+o+¢)] dr
= exp —m exXp kT‘k T’k+1 I|U||a
o

Rep+o+¢
T} loll, -

< Ce.exp {

The latter estimate proves the lemma. a

4.3 Multiplication by a function in the Borel representa-
tion

To apply the k-Borel transform to equation (35), one needs to investigate the action
of the operator of multiplication by a function A (r) in the Borel representation. For
simplicity, we shall carry out our considerations for scalar-valued functions though
all the results are obtained in the same way for functions with values in a Banach
space as well.

First, we consider the action of multiplication by powers of r. The following
affirmation is valid.

Lemma 5 The formula

| (o
B v = [ sV @ d (36)

—00

is valid for each positive integer j and any function V (p) subject to the conditions
of Lemma 4. Here the integration is fulfilled over a contour along which the real part
of p tends to —oo.
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Figure 3. Deformation of the integration contour.

Proof. Let us consider first the case 7 < k. First of all, we have
. 2ii 1\ [
e}t = (1-om (52)) [on (-2
L]
_ 9mis . -
i = o2 ()

for each oy > 0. Here we have used the Jordan lemma for the contour drawn on
Figure 3. Substituting the latter expression into the integral

—a1 4100

-y —ico

By [r’v (r)] = jexp{%} o (r) r(ki:l

0

and changing the integration order, we obtain

1
(1= exp {233 [K)) T G/F) k7%

-0y +ic0 ro 4
—q r i
X / /exp{ e }v(r) rkﬂ}qi’ 'dgq

-0 =100 0

Bk [1"11) (1‘)] =

<
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—g14ic0
1 »
= [ —exp Zrig /)T G/F) BT [ ve-odta

-1 —160

Performing once more the above described deformation of the integration contour
and taking into account that the function V (p) is holomorphic for sufficiently large
negative values of Re p, we arrive at relation (36).

Later on, let j = k. In this case we have

To

d k 3] P k dr
a—ka[r v(r)] = a—p!exp{m}r U(r)rk-i-l
L f P dr_ V(p)
= ¢ foe{dhrmmm =12

0

Taking into account the decay properties of the function V (p) as Rep — —o0, we
have

P
1
Bl = [ Vi da,
which clearly coincides with (36) for 5 = k.
Finally, the proof of relation (36) for ; > k can be carried out by induction on
j- Suppose that the needed formula is already proved for ; = j, and 7 = j;. Then
one has

By [rv (r)] = B [r 0 ()]
B Nam=1 [ Gkt
E*T (5, /k) (52/%)
The latter integral can be rewritten as a multiple integral over the domain drawn

on Figure 4. The convergence of this integral follows from the estimate of Lemma
4. So, one can change the integration order in the integral (37), thus obtaining

P

p . :
o (r)] = (p = )P0 (g — )20 N dd
ASOESAY Grem T Gu R T Gy~ 9 (Y (@) 44

-0 \g

Since

3

[ _Gim-r nGm-t T /R)T(G2/k)  (Gitia) -1
q[(p q) (¢—-¢) dg = T (G 4 72)/9) (p—4q)
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Figure 4. Integration domain.
we have )
_ B (P _ qf)((.f1+j2)/k)—1 ' ,
Belre Ol = | mwmmnr G e @) 4"
So, the affirmation of the lemma is valid for j = 7; + j2. ]

Now we can derive the formula for the Borel representation of the multiplication
by an arbitrary function A (r) holomorphic in a neighborhood of the origin. Denote
by R the radius of convergence of the Taylor series

A(r) = iAjrj.

=0

Then, formally, the multiplication by A (r) is transformed by the k-Borel transform
into the convolution with the function '

Aob (p) + A'(p),

where o /1
14

Ap)=)_ Ajm- (38)

i=1

The following assertion takes place:
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Proposition 1 Let A(r) be a holomorphic function near the origin, and let R be
its radius of convergence. Then the formula

Bi[A(r) v (r)] = (Adb (p) + A (p)) * B [v (r)]

is valid for a constant Ap and a function A'(p). Moreover, the function A’ (p) given
by (38) is an entire function subject to the estimate

e < Cop {1+ 0 (39)

Proof. Clearly, it is sufficient only to prove the latter estimate. We have
k ©0 k)—
|pl(1/ )-1 |p|(J/

= C
' <
WO < 2 W BRrG < & BEAT G

Splitting the latter sum in the following way

0o Elpl(j/k)"l _ kZ_i ‘Llii 1 |pli
“~ RiT(j/k) — < ||REl & RSET((I/F) +35+1)

and evaluating each sum on the right in the latter relation, we arrive at the estimate

! L |P|
A ()] < 0|p|Texp{m .

Estimate (39)readily follows from the latter estimate. o

4.4 Proof of the theorem on endless continuability

Let us apply the k-Borel transform to equation (35). Due to the result of Proposition
1, we obtain the following equation for the k-Borel transform V (p) of the function
v (r):

Ho(p) + (d/dp)™""* H ((d/dp) e )] Vip)=F(p), (40)

where

1

(d/dp)™"/* i ((d/dp)“"‘,p)wp) / H(p~q,p)V(q) dg.
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The function H (g, p) is defined via the function rH, (r,p) in the same way as the
function A’ (p) is defined via A (p), the variable p being a parameter. Namely,

(3/K)—1
q

if

= Hp)r’

i=1

Dividing equation (40) by Hy (p), we arrive at the equation
P
Vo) + [ B )R- an)V (@) di= 5 () F ()

(the integral on the right converges for sufficiently small ro due to the estimates
of the type (39) for the function H (p — ¢,p)). This equation will be used for the
proof of the fact that the function V (p) is an endlessly continuable function in p.
First of all, we remark that the function V (p) is already known to be a holomorphic
function in p in the half-plane Rep < —¢. We shall consider V (p) in this region as
a known function.

Consider an arbitrary small neighborhood U of the set of poles of the function
Hi! (p) (see Figure 5). In the complement C \ U of this neighborhood we rewrite
the equation in the form

b4

V<p)+/ffa‘ () H(p—a,p)V (g) dg =

= 15 (9) F (p) - / ' (p)H(p— 4,9) V (q) da. (41)

Since in the considered region the kernel Hy'(p)H (p — ¢,p) of this equation is
bounded everywhere except p = ¢ and has a weak singularity at this point, the usual
estimates for successive approximation method show that the Volterra equation (41)
is solvable in C \ U. Since U can be chosen arbitrary small, this fact proves the
endless continuability of the function V (p). This completes the proof of the theorem.

Remark 5 One can also prove that the constructed solution is of exponential type
with order k in the whole plane C. We leave the corresponding estimates to the
reader.
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Figure 5. Analytic continuation of V(p).

Remark 6 As we have already written, the function V (p) has no singularities in
the half-plane Rep < o even at those points where the operator family H;! (p)
has singularities. However, this remark concerns only one sheet of the Riemannian
surface of V (p), from which we have started the process of analytic continuation.
On all other sheets of the Riemannian surface of V (p) the function V (p) can have
singularities at poles of Hy ' (p) even for Rep < 0.
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