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Abstract
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holm property) are established. The resurgent chara.cter of solutions is proved
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In this paper, we eonsider elliptic differential equations on manifolds with singular
ities of eusp-type.

In our previous paper [1], we investigated asymptotie solutions to the corre
sponding homogeneous equations and fouod, in partieular, that these solutions are
funetions of exponential growth of order k near eaeh cusp point of the same order.
Hence, it is natural to construet the elliptic theory on manifolds with cusp-type
singularities in weighted Sobolev spaces with weight exponential of order k in a
neighhorhood of a eusp point of the same order.

In fact, it is convenient to construet the elliptie theory in the framework of
an algebra, so that elliptie operators form the subgroup of invertible elements (we
earry out our considerations modulo compact operators). If such an algebra is coo
strueted, the desired fioiteness theorem (that is, the Fredholm property) is a direct
consequence of the existence of near-inverses (regularizers) for elliptic elements of
tbe algebra. Since it is clear that the main difficulties in thc construction of thc
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regularizer in this situation are eoneentrated near singular points of the manifold
in question, we eonstruet the eorresponding loeal algebra, which we eall the loeal
cusp algebra. For constructing such an algebra we use the noneommutative analysis
created by V. Maslov [2] and developed further by V. Maslov and his collaborators
(see [3]-[8] and the bibliography therein). Namely, using the notion of non-standard
chareteristics introduced by V. Maslov [9] we represent the operator under inves
tigation as a function of two ordered operators and then use the noncommutative
calculus mentioned above.

Acknowledgements. The authors are grateful to Vladimir Nazaikinskii for
many fruitful discussion on the subject of this paper.

1 Preliminary considerations

1.1 Geometry of the problem and ellipticity

1. Let M be a smooth manifold with a finite number of points {mI"'" mN} of cusp
type and let iI be a differential operator of order II on this manifold. This means
that:

N

• In the eomplement of the set U {mj} of all eusp points the manifold M has
j;o

the structure of a GClO-manifold.

• Associated to each point mj are a neighborhood Ui C M and a smooth man
ifold Oj such that Uj is topologically equivalent to the cone

(1 )

and the smooth structure on the cone coincides with that on the manifold M
in the complement of the vertex mj of this cone. We denote by (r, w) the
coordinates on Uj induced by the representation (1), where r E [0,1] and w
are local coordinates on the manifold n (see Figure 1).

• Associated to each point mj is a positive integer kj such that local expressions
of operators H near mj are

(2)

where Al (r) are smooth differential operators on n of order J1 - 1, and the
dependence of the operator AI (r) in the variable r is GOI' up to the point
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Global manifold Local structure

(3)

Figure 1. Manifolds with singularities of cusp type.

r = O. The numbers kj are called the multiplicities of the cusp points mj,
j = 1, ... ,N.

In particular, we shall consider elliptic operators of the form (2) in the following
sense:

Definition 1 An operator Hof the above type is called elliptic if both:

1. lt is elliptic in the usual sense at all points of the complement M\ {m}, ... .mN}'

2. The family of operators
JA

H(p) = :E Al (0) pi
1=0

is a strictly elliptic analytic family of operators on the manifold n in the sense
of Agranovich-Vishik ([10]).

We remark that, under the.assumption of ellipticity of the operator iJ, the family
H(p) of operators in (3) is meromorphically invertible in the complex plane C with
the coordinate p.

Theorems showing the finite-dimensionality of the kernel and cokernel of elliptic
operators will be established in special weighted Sobolev spaces which will be de
scribed below. We remark that the choice of these spaces for proving the finiteness
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(4)

theorems is governed by the asymptotic expansions of solutions to the correspond
ing homogeneous equation obtained in [1]. Due to the results there, these Sobolev
spaees must have an exponential weight at each singular point mj of the manifold
M of an order kj.

It is known that the proof of finiteness theorem ean be aceomplished in the
framework of an operator algebra including the operators of the eonsidered type and
regularizers for such operators. Then the finiteness theorem is an easy eonsequence
of tbe existence of a regularizer and the corresponding embedding theorems.

1.2 Operator algebra and noncommutative analysis

Due to the loeality prineiple, it is clear· that it suffices to eonstruet the above men
tioned algebra in a neighborhood of a singular point of the underlying manifold.
So, we foeus our attention on the construetion of the loeal eusp algebra near a cusp
point. Let us consider the construetion of this algebra in more detail (since we are
working in a neighborhood of sonle fixed cusp point, we omit the corresponding
index j).

1. First of all, our future algebra luust contain differential operators of the
form (2). Omitting the inessential factor r-Jl(k+l), we can write down the expression
of the operator in the form

Jl.. ( d)l .. ( d)~ AI (r) _irk+1 dr = Il r, _irk+I dr .

One can see that this operator is a funetion of the two operators

B = rand A = _irk+1~, (5)

where the operator A aets first, and the operator B aets second. The latter remark
is necessary since the two operators (5) do not eommute:

[B, Al = [r, _irk+I ~] = irk+I.

(The square brackets denote the commutator of the eorresponding operators.) So,
we shall write down the operator (4) in the form

(

2 • 1.

1

+1 d )r -zr -, dr'

5
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where the indices over the operators define the order of their action (for compli
cated operators like _irk+1d/dr we use the bar to define tbe range of action of the
corresponding index; tbis bar will be omiUed in the case when the notation of an
operator consists of a single letter.)

For example, if the function H(r, p) is a polynomial in the variable p, say

IJ

H(r,P) = LA(r)pi,
j=O

then one has

and

H (:'-ir'~I1;:) = ~A(r) (-ir'+1 :rY,

H (~, -ir':' :r) =t (-ir'+l:JA(r)
J=O

It is natural to construet the loeal algebra as tbe algebra of functions of operators
(5). We remark that tbe symbol funetion iI (x, e) involved into relations (4) and (6)
is a polynomial in the variable e, corresponding to the operator -irk+1d/dr, and,
hence, the definition of the operator (6) is clear (see the examples above). However,
if we need to write down the regularizers for such operators in the form of funetions
of operators (5), we must consider more general symbols, whieh requires the exaet
definition of function of noneommutative operators (5).

This definition can be given as folIows. First, we remark that both Band Aare
symmetrie in the Hilbert spaee L2 (R+, r- k

- 1 ) defined by the nonn

00

2 J 2 drIlf(r)11 = If(r)1 r k+1 •

o

Let

be the two one-parameter groupsl corresponding to operators (5). Definition of the

IThese groups will be well-defined, for example, if the operators A and Bare self-adjoint.
Unfortunately, this fails for the operator -irk+1d/dr in the space introduced above. However, it
ia not essential in our heuristic consideration since it ia possible to modify this operator up to a
self-adjoint operator which coincides with -irlc+1dfdr near the origin (we recall that we construct
a local algebra). This will be done in the main part of the paper.
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funetion F ( B, A) can be given in the form

(7)

where F (t, T) is the Fourier transform of the function F (x,~) in the variables (x, ().
Clearly, the dass of functions used in the latter definition requires the exact descrip
tion. This description will be presented below, and here we denote by 8mbl the dass
of admissible symbols for the definition (7), and by Op the corresponding dass of
operators.

The main problem in constructing an algebra of operators of the form (7) is to
compute the symbol of the composition F 0 6 and the symbols of adjoint operators
P* and 6* via symbols F (x,~) and G (x,~) of the operators Fand 6. Formally it
can be expressed as follows. Forn1ula (7) defines a linear mapping

'P : 8mbl -+ Op

which is an isomorphism on the image and, hence, the composition law in the algebra
Op defines some (noncommutative) composition in the algebra 8mbl. Similar, the
conjugation in the algebra Op defines a conjugation in the symbol algebra. Dur aim
is to compute an explicit expressions for these operations.

The method of noncommutative operators supplies us with a procedure to COffi

pute the sought-for composition law. Namely, one lTIUSt first compute the operators
of the so-called Left ordered repr-esentation, that is, thc two operators LA and LB
satisfying the following conditions

smbl (AP)
smbl (EP) =

LA [F (x, ~)],

LB[F(x,~)]

for any operator Fwith symbol F(y, ~). Here 8mbl (F) denotes the symbol of the

operator F. The general fonnula for the composition will then be

([8, p. 98]). The operators LA and La are called the operators of the left ordered
representation. Let us compute these operators for A and B considered above.
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3 (~1)AF B,A

First, we have
A 2 (2 1)BF= BF B,A

since the operator B in the function F (B, ,1) acts after the operator A. Hence,

the operator 18 is simply multiplication by the variable x:

18 = x.

Later on, the expression for AF is

A 3 (2 1)AF=AF B,A ,

3

and, to compute the symbol of the last operator one has to commute the operators A
2

and B. This can be done with the help of the commutation formula (see [8, p. 62]):

3 (2 1) 1 (~ 1) _3 8F (~ 41)
AF B,A =AF B,A -[B,A] 8x B,B,A ,

where
8F (X' X" ) = F (X', e) - F (x", e)
f: "e I"vX X - x

is a difference derivative of the function F (x, e) in the variable x. In our case we
have

= )\F (B,A)- iB~+l ~~ (B,B, ,1)

= ,1F (B,,1) - iB~+l ~~ (B,A)
since the commutator [B, A] = iB k+1 commutes with B, and the difference derivative
becomes the usual derivative for equal arguments x" = x'. Hence, the expression for
the operator lA is

1 t . k+l 8
A = , - 'LX -,

8x
and we arrive at the following composition formula:
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We remark that the formula for an adjoint operator is almost seH-evident:

where the bar stands for complex conjugation (in the operator-valued case it must
be replaced by conjugation in the space of coefficients).

2. Now, to construct a regularizer for the operator

(
1).. 2 d

H r -irk+1-, dr'

one should solve the equation

( 1).. 2 a ..
H X,C - iX

k+1 8x R(x,c) = 1. (8)

Clearly, solving the latter equation is too a complicated task to be done. Fortunately,
one does not have to solve this equation exactly, since for constructing a regularizer
it is sufficient to solve it up to a smoothing operator. This can be done in the
asymptotic space scale generated by the operator A = -irk+1d/dr. We must also
take ioto account that, due to the results of the paper [1], solutions to the equation

( 1).. 2 d
H r, -irk+1 dr U = 0

have exponential type of order k. So, we introduce the space scale E; with the norm

2 JOO J {20" } I( 2 ) 6/21
2

drdwlI u l16,u = exp - krk 1 +A +~w u (r,w) rk+1 '

o n

(9)

where ~w is the positive Laplace operator on the manifold .0 (we have taken into
account that the operator iJ acts on functions with values in a function space on
the manifold .0). Multiplication by the function exp (-0" / (kr k

)) determines an
isomorphism between the space scale E; and the space scale E' = Eg defined by
the norm

00

Ilull~= J JI(1+A2+ßwr/2u(r,w)12~::;
o n

9
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that is, the mapping

exp { - k:k} : E; -+ E
8

is an isomorphism. In addition, the following diagram commutes

A

A + ia
E8-1

(10)

Hence, the definition of functions of operators (8, A) as weIl as the investigation of
their properties can be performed for a = 0, and then all the information obtained
can be taken to the space scale E; with the help of isomorphism (10) provided only
that the symbol dass consists of analytic functions admitting the shift by ia in the
complex plane.

Now, expanding the operator

involved in equation (8) in powers of the operator -iX
k+18/8x (this can be eas

ily done since this operator commutes with multiplication by ~), we arrive at the
following asymptotic form of equation (8):

[

A aif (. k+ 1 a) ] A _H (x,~) + a~ (x,e) -IX 8x +... R(x,e) - 1.

This can be solved by the usual methods by expanding R(x,~) in aseries of functions
homogeneous in ewith decreasing order of hOlTIogeneity.

As ean be seen from the above diagram, we have to work with symbols F (x, e)
that are analytic in ~ and belong to the corresponding symbol dass on almost every
horizontal line {Irne = const}. We allow these symbols to have polar singularities
in esuch that the number of poles in each strip a ~ Im e~ b is finite.
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1.3 Statement of the problem

Now we can describe the exact statement of the problem. To do this we globalize
the function spaces introduced above in the following way. Let Xi be smooth fi
nite functions in neighborhoods Ui of the singular points mi (j = 1, ... ,N) of the
manifold M such that Xi =1 near mj and the supports of Xj do not intersect one
another. Then the system of functions

with

form a partition of unity on A1. Let us consider the corresponding decomposition

N

l=xl+ LXjl
j;l

for any function I on the manifold M. By E:."'I (M), we denote the Banach space of
functions on M determined by the finiteness of the norm

N

1I/11:,(1,'Y = Ilx/ll: +L 11xi/ll~,(1.'Y ;
j;O

here 11·11 is the usual Sobolev norm on the manifold Al and 11·11 is given by8 8,(1.'Y

near each cusp point mj, where 11'11",(1 is the n,orm in the above introduced space E:.
The aim of the present paper is, in particular, to prove the finiteness theorem

(Fredholm property) for the operator

iI : E;,'Y (M) ~ E;~~~ (M) .

The construction of the corresponding local cusp algebra and the proof of the
finiteness theorem appear in Sections 2 and 3.
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2 Local cusp algebra

We construct a local cusp algebra in the neighborhood of each cusp point uSlng
the special coordinates (r, w) E [0, rol x n described above. We recall that in these
coordinates the operator H has the form

(11)

up to the inessential fa.ctor r-J.'(k+l) (see formula (2) above). Here the Al (r) are
smooth differential operators of order J.l - I on the manifold n smoothly depending
on the parameter r E [0, rol.

The algebra will be constructed in certain Hilbert scales. The zeroth space of
such a sca.le is exactly the above introduced space E2 (see (9)). The latter is a
weighted L 2-space on [0, rol x !1, determined by the norm2

2 Jro
J
-~ 2 drdw

11 f 11 n = e /er If (r, w) I rk+1

o n

with auE R.
As it was already mentioned in the previous section, we reduce the problem to

the case u = O. This is accOinplished by considering the function e-njkrk f (r, w)
instead of f (r,w). Since

k+ 1 d (T q ( k+ 1 d )-r -eJ;:'I" = e'k";'k -r - + u ,
dr dr

one sees that the transformed operator has the same structure

and the corresponding family is

J.' J.'

H' (r, p) = 2: Al (r) (p +I u)l = 2: A~ (r) pi.
1=0 1=0

(12)

2Sinee all the eonstructions of the Ioeal algebra will be carried out near one of the singular
points of the man ifold M, we shall omit the eorrespondi ng index j. So, we wri te k instead of kj,

(} instead of (}j, and so on.
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(13)

We remark that the ellipticity requirement is fulfilled for the transformed operator
whenever it is fulfilled for the initial one. In what fallows, we a.ssume that this
requirement is fulfilled and we omit the primes over all operators in question (such
that H, iJ (r,p), Al (r) and so on).

Let us impose a requirement on the choice of the number u. First, we note that,
due to the ellipticity condition above, the operator family (3) is meromorphically
invertible in the complex plane C with the coordinate p. We suppose that 00 pole
of the family iJ (r, p) lies on the vertical line

L(1 = {p E CI Rep = (T} ,

and, what is more, the norm

11
(1 + p' +~wt/' [H (r,p)r 11

H·(O) - H·(O)

is bounded uniformly in (r, p), P E L(1. For the transformed family (12) this means
that 00 pole of the inverse family lies on the imaginary axis in the plane C with the
correspooding estimate. Clearly, this must be fulfilled for sufficiently small ro.

So, "in this section we carry out the definition of the IDeal algebra for (T = o.
Clearly, this definition can be rewritten for the arbitrary values of a with the help
oE the isomorphism (unitary for s = 0)

exp { - k~k} : E; ----t E~

described in the previous section.
Under the above described transformation, the zeroth space of our future space

scale becomes
(14)

with the norm

2 Jro
J

2 drdw
11/110 = 1I (r, w)1 7. k+1 •

o 0

We wish to construct the regularizer in the space scale generated by the operator3

-rk+1d/dr. This means that the renlainder must He in the domain of the operator

(_rk+1d/dr)N for sufficiently large N. We cannot write down the expressions for the
norms in all spaces of the scale at the moment, since the operator -rk+1d/dr must
be modified for purely technical reasons; this will also affect the function spaces.
The full description of the scale in question will be given in the following subsection.

3In fact, we also need some decay conditions as r - 0, but we do not include these conditions in
the definition of the scale. The desired estimates will be obtained as a by-product in constructing
the regularizer.
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2.1 Construetion of the loeal algebra

We see that the operator H given by (11) is a funetion of the operators rand
_rk+1dJdr, and the asymptotics must be construeted in the seale generated by the
seeond of these operators. So, it is natural to search for the regularizer in the form
of a funetion of these two operators as weH. The difficulty is that the operator
_rk+1dJdr is not a generator in the seale in question.

To explain this phenomenon we recall ([8]) that for the definition of functions of two noncom
mutative operators one should use the corresponding one-parameter groups. Let us compute the
group Ut eorresponding to the operator -rk+1d/dr. Let us seareh for this group in the form

(Ut f) (r) =J(R (r, t)) .

Then, sinee one must have

:1 (Ud) (r) = U, (_r'+1 f) (r) = (_rH1 f) (R(r,t))

we obtain the following equation for the function R (r, t):

aR (r, t) __Rl:+ 1 ( )
Gi - r, t .

The solution of this equation is
r

R(r,t)= I/k'
[1 + krkt)

and one can see that this group is loeal, that is, not determined on the whole line R. This happens

due to the fact that the trajectories of the corresponding vector field can come to infinity by finite

time. One can check that this phenomenon takes plaee due to the growth of the eoefficient r.l:+ 1

of the considered operator -rk+1d/dr at infinity. Sinee we are interested in the investigation of

the behavior of solutions near the origin, this problem is purely technical, and we ean change our

operator outside the segment [0, rol in the arbitrary way. This is exactly what ia done in the sequel.

So, we modify the opera.tors in question in the following wa.y. First, we shaH
eonsider functions on the entire semiaxis r E (0, +00).

Let c.p (r) be a smooth function of the variable r ERsuch that the following
eonditions are fulfilled:

<p(r) = {

with a eonstant C (see Figure 2).

r k+1
, Irl ~ ro,

(_I)k+l C, r~-2ro,

C, r ~ 2ro,

14



rp(r)

Ik oddl

rp(r)

even I

Figure 2. Graph of the function c.p(r)

Now we introduce the operators4

. d
A = -tcp (r) dr'

B r

(15)

(16)

(note that the operator A coincides with the initial operator _irk+1d/ dr near the
origin). Clearly, these functions satisfy the following (nonlinear) relations

[A, B] = -ic.p (B), (17)

where the square brackets denote, as usual, the commutators of the corresponding
operators.

Next, let us extend the function5 iI (r,p) to all values of r E (-00, +00) so that
iI(r,p) is smooth and iI- 1 (r,p) has no poles for real p; in addition we assurne that
iI (r, p) is independent of r far sufficiently large Irl. Then for r E [0, ro] we clearly
have

~ ( ).. .. 1" 2 I
H='LAl(B)(-iA) =H' B,A .

{;o

4We have inserted the factor i in (15) to deal with self-adjoint operators and symbols that are
functioDs of a real variable.

5 We assume that the change of symbol H (r, p) .- H (r, - ip) corresponding to the above change
of operator A is already made.
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Now let us give a precise definition of function spaces in which our operators will
be considered. Denote by

eo = L2 ((0,+00) x O,<p-l (r))

the space of functions I (r, w) wi t h t he Rn ite norm

00

~ 11 2 drdw11/110= I/(r,w)1 <p(r)'
o n

Note that in a neighborhood of zero <p-l (r) = r-(k+l), so for functions supported in
such a neighborhood the latter space coincides with the space (14) defined above.

To define all other spaees of our future spaee seale, we need the following asser
tion:

Lemma 1 The operators A and Bare self-adjoint in EO.

Proof The operator B generates the one-paran1eter group given by the multi
plieation by exp {irt} which is obviously unitary.

Next, for each r E (0, +00) the solution R (r, t) of the Cauchy problem

R= <p(R) , Rlt=o = r

is defined on the entire axis t E (-00, +00). Consequently, the operator A generates
the one-parameter group of translations

(e itAf) (r,w) = f (R (r, t) ,w). (18)

One can show that this group is unitary either by straightforward computations or
by verifying (again by straightforward eomputations) that A is symmetrie on the
dense subset Co c Eü. 0

Note that the function <p (B) in (17) is now well-defined as a smooth funetion of
a self-adjoint operator B.

Let us now introduee the Hilbert space E!I as folIows: E6 is the spaee of functions
f (r, w) with finite norm6

00

11 2 111( 2 )6/~ I~ drdw/116= l+A +~w f(r,w) <p(r) ,
o n

6Since we have reduced our problem to the case u = 0, we omit the corresponding index.
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where s E Z+, and .6.w is the positive Beltrami-Laplace operator on O. Since the
operator A is self-adjoint in eo, this norm is well-defined for any s E R; for purely
technical reasons we shall use it only for s E Z.

Later 00, it is easy to see that the scalar product

00

11 drdw
(/,9)0 = /(r,w)g(r,w) cp(r)

o Cl

establishes the isomorphism

We shall consider also the operators A and B in the two-parameter Hilbert space
scale F6,1. This scale is defined by the finiteness of the norm

+00

Ilull = 111(1 + r,)l/' (1 +A' +ß..,)'/' u(r,w) Ir ~(~.
-00 ()

We remark that this scale coincides with the above scale ElJ for I = 0: ElJ = FlJ,o.

Lemma 2 The Jollowing asse1'lions are valid:
i) The operators A and Bare bounded in the seale Fs,l j more precisely, the

operators

A FlJ,1 ---+ F lJ
- 1,I,

B FlJ,1 ---+ FlI,l-l

are bounded for any s, I.
ii) The one-parameter groups exp {itA} and exp {itB} are bounded in each FlI,l,

more precisely,

and

Ilexp {itB}lIF"f _F"l ~ Gsl (1 + Itl)llIl

for eaeh s, I wilh a positive constant C lJ/ •

Proof i) Since
[A, B] = -icp (B)

(19)

is a bounded operator, and all higher commutators [[A, B], B], ... vanish, we see
that the operator A is an operator of first order in the scale Fs,1 with respect to

17



the first parameter. The assertion on the boundedness of the operator B is quite
similar.

ii) Consider fi rst the group exp {i tB}. The proof of est imate (19) for positive
s goes by induction in s. For s = 0, the statement is true; let us show how the
induction step s = 0 => s = I is carried out (the subsequent calculations are
quite evident). Since B = r, A = -ii.p(r)djdr, one has

Aexp {itB} = -icp(r):r exp {itr} = tep (B) exp {itB} + exp {itB} A.

Hence,

lIAexp {itB} ullo,l < 11exp {itB} Aullo.1 + Itllli.p (B) exp {itB} ullo,l

< IIAullo,1 + const Itillullo,l
< C (1 + ItD llu lll,l

for u E Cgo and, hence, for all u E pU, as required. For negative s the desired
estimate follows by duality.

Now, let us turn our mind to the group exp {itA}. Similar to the above consid
ered case, it suffices to estimate the norm

11 B exp {itA} 11.,0

via the I-norm lIull.,} of the function u. We use the direct expression for the group
exp{itA} given by (18). So,

B exp {i tA} = TU ( R(T, t), w) .

Since i.p(r) is bounded, we have

IR(r, t)1 ::; T + c Itl

for any T and t with a positive constant C. Using this estimate, it is easy to see that

IIBexp {itA}lIs,o ::; C (1 + Itl) Ilull.,}·

The induction on I completes the proof. o

Now, let us introduce the space of operator-valued symbols. In what follows we
denote by (x,~) the coordinates corresponding to operators A and B in the symbol
space.
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Definition 2 By soo = SOO (R2 , H~ (!1)), we denote the space of functions f (x, ~),

(x,~) E R2 with values in the Sobolev scale {H~ (!1)} which satisfy the following
condition: there exists an integer m = m (f) (depending on f) such that for any n

and s the quantity

Cnll (/) = L sup 11 (1 + x2 +e+ ß w ) -m/2 :::;{ß (x, Oll (20)
o+ß:5 n (r,e> H' - H'

is finite.

Remark 1 The introduced symbol dass is quite natural in the considered situation
since tbe operators A and B are generators of groups of tempered growtb in the
considered scale (see Theorem IV.3 in the book [8]).

Clearly,

SOO = Usrn == U(n s:) ,
rn rn n ...

where S:, is the space of functions with the finite right-hand side in (20). Therefore,
we can equip SOO with the corresponding convergence dosely following the procedure
described in Example IV.} in [8, p. 252]. Note that

iI (x, c) E s~ (R2
, EI ~ (n)) .

Now, it follows from the description of SOO-generators given in [8, Subsection

,. (2 1)IV.2.3] that A and Bare SOO-generators (and, hence, functions F B, Aare well-

defined) in the scale {F~,l} (the fact that our syn1bols are operator-valued leads to
uo additional difficulties).

(21)
H'-H'

.. (2 1)Let us consider now operators F B, A in the space scale Eil. The following

assertion takes place:

Theorem 1 Let F (x, c) be an operator-valued symbol such that the quantily

2 - Tn-;la l ao +ßF(x, e)
(1 +e +~w) axoa~ß

is bounded uniformly in (x, e) for any 0', ß, s wilh some fixed value of m. Then the
operator .. .. (2 1)F = F B,A : Eil ---+ Eil-rn (22)

is bounded for all values of .9.
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Proof Using Theorem IV.5 of [8, p. 279], one can see that the operator

A (2 1)F B, A : Eo -. Eo

is bounded provided that m < -1. It is also easy to see that for such values of m
this operator is bounded in the whole scale E6. Actually, this fact can be proved by
induction on Sj we shall illustrate ooly the first induction step (all subsequent steps
are performed in a similar way). To prove the boundedness of the operator

A (2 1)F B, A : EI -. EI (23)

it is sufficient to estimate the norm IIAi'ullo via 11i'Aullo and 11 11 110. This can be

done with the help of the representation operators (see [8, p. 97]j the computation
of these operators in the considered case is given in the next subsection)

IA = (- iep(x) ;x'

JB = x.

where

Hence,

with

HA ( t) __ . ( ) Bi'(x,~)
x, ~ - tl.p x Bx .

Since the function h (x,~) satisfies conditions of Theorem 1, we have

Ilir (B, A) lIa ~ c Ilullo'

7By [·l, we denote the so-called autonomous brackets which delimit the range of action of the
Feunmann indices (see [8, p. 15]).
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and, finally,

This completes the proof of the boundedness of operator (23). Similar, oue can
prove that the operator

A (2 1)F B,A

is bounded for any s.
We remark that the estimate (22) stated in the theorem is not yet proved, since

there is a loss of 1 + e in the order of the operator. However, order-exact estimate
(22) can be proved now quite similar to the proof of Theorem IV.6 in [8, p. 282];
there is 00 need to reproduce this purely technical prooL 0

Remark 2 Clearly, all the above stated results are valid also in the space scale E;
defined by the norm

+00

II!II~.• = JJexp{u,p(r)} 1(1+ A
2+ c,w)'/2 !(r,wl!2 ~(~,

-00 0

where the fuoctioo 'l/l is defined in such a way that 'l/l'(r) = cp-l(r). As it was
explained in the beginning of this section, the presence of the weight exp{u'ljJ(r)}
leads only to the shirt in the ~-plane.

Let now 5mbl(k) be aspace of symbols iJ (r,p) such that:
1) iI (r,p) is meromorphic in p in the whole plane C with the coordinate p, and

infinitely smooth in r up to the origin;
2) iI (r,p) satisfies estimate (21) on each line L(1 = {Rep = u} which does not

contain poles of this function.

A (2 1)As it will be shown in the next subsection, the set Op(k) of operators H B, A

with iJ (r,p) E 8mbl (k) form an algebra. We introduce the following definition:

Definition 3 The algebra Op(k) is called the k-th order IDeal eusp algebra.
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2.2 Left ordered representation of the local algebra

Now, in order to find the fight regularizer for the operator in question, we must
solve asymptotically the equation

where R(x,~) is the symbol of the regularizer. To this end, we must compute the
symbol of the operator on the left in the latter relation. First, let us evaluate the

1

operators of the left ordered representation of the local cusp algebra generators A,
2
B. This can be accomplished by a standard procedure (see the examples in [8,
Section II.2]). We have

and

A[R(B,A)] AR (B,A) = AR (8,A)
+ (B- 8) A~= (B,8,A)
AR (B, A) + [A~B] ~= (B, 8,A)

= AR(B,A)-i,"(B)~=(B,A).

Hence, the operators of the left ordered representation are

LA ~ - i," (x) :x'
IB = x.

Lemma 3 Operators (24) are Soo -generators.

Proof The assertion about IB is clear. Let us consider IA • We have
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where x (y, t) is the solution to the following Cauchy problem

x = 'P (x), xIt==O = y. (25)

It is the behavior of the solution to (25) as t ~ ±oo that is of importance. If
y = 0, then x (y, t) = 0 and everything is aH right. To be definite, let UB consider
the case x > 0 (the opposite case can be considered quite in the same way; note
that, intuitively, this case is inessential since the spectrum of our problem lies in
{x > O}). Then for t ~ +00, beginning with some to = to (y), we have

x (y, t) = x (y, to) +const (t - to) ,

so, only the behavior of the solution as t ~ -00 is essential. Clearly, to investigate
this behavior it suffices to consider small values of x where c.p (x) = X k+1. Then the
solution to (25) has the form

{

k } l{k
x(y,t)= Y

k
k ,t~-oo.

1 - ty

So, we see that the derivatives
{)O+ß x (y, t)

8y0 8tß

grow at most polynomially in y and t and that the differentiation by y does not
increase the growth in y. Now, we see that lA generates a group of tempered growth
in sco, and, hence, this operator is an Soo-generator in soo (see [8, p. 268] for
details). 0

We arrive at the following standard theorem of the method of ordered represen
tation.

T h eorem 2 Suppose that H (x, ~) and R(x, ~~ are two funetions from 500 (H" (n)).

Then the symbol k (x, 0 of the composition ~H(B,A)] 0 [R (.8, A)] ia equal

to

Proof This is a special case of Theorem 11.1 in [8, p. 98]. o

Remark 3 Froll the computational viewpoint, we are interested in the compu
tation of the symbol of the composition only for smaH values of x. If iJ (x,~) is
a polynomial in ~, then the computation can be done directly after replacing the
operator A by the operator -irk+1d/dr.
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Actually, let us consider the composition

[H (~, -ir'~l :r)] 0 [R (~, -ir'~l ~) ] u (r)

=~ÄI(r) (-ir'+! :.)' [R (~'-ir'~l :r)] u(r). (26)

It is dear that, due to the Leibnitz differentiation formula, each operator - i rJ:+I d/ dr outside the
autonomous brackets on the right in (26) acta at the coefficients of the operator Ras weil as at
the function u (r). Namely,

Using this formula für each factor -irk+1d/dr on the right in (26), we obtain

as required.

A (2 1)The assertion of TheorelTI 2 shows that the set of operators F B, A with

symbols from 5mbl(k) forms an algebra. This is exactly the loca.l cusp algebra
we wanted to construct. This algebra is a *-algebra in the sense of the following
affirmation:

Theorem 3 Let P(x,~) be a symbol subjeet to the conditions of Theorem 1. Then
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the ad}oint to the operator

... (2 1)F B,A

is given by the formula

where p- (x,~) is an ad}oint sY1nboi (we recall that P(x,~) is an operator-valued
funetion). Later on, the asyrnptotic formula

is valid.

{[ "(1 2)]-} 00 1 ( 8)i(8)i ...
8mbl F B, A = ~ j! -iep (x) ßx ß( F" (x,O (27)

Proo! It suffices to prove only fonnula (27) since all other affirmations of the
theorem are evident. Due to the pennulation index formula (see [8, p. 61]), we have

... (1 2)F- B,A = po (B,A) + [/B] ~:~; (13,8,.4, A)
3

= PO(S,A)-iep(S) ~:~;(13,s,A,A)

= po (8, A) - iep (s) :x ö~o (S,A,A).
2 3

Similar, commuting the operators Band A in the latter fonnula we arrive at the
result

po (B, A) = po (S, A) - iep ( S) ~:~; (S, A) + ... ,

where by dots we have denoted the difference derivatives of higher order. Continu
ation of this process leads to the proof of the desired fornlula. 0
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2.3 Construction of right regularizer

"(2 1)As follows from Theorem 2, to obtain a right inverse for H B, A one has to solve

the equation

( 1)A ~ a"
H x, e- üp (x) OX R (x, e) = 1.

To obtain a right regularizer , we 1TIUSt solve this equation asymptotically. Intuitively,
since the asymptotics for operators must be "in powers of A", the asymptotics for
symbols must be "in powers of C'. Of course, this plausible reasoning must be
justified, for which we must estimate the remainder.

We use the following properties of the symbol iI (x, ~): this function is a poly
nomial of order p. in e, and, moreover, the quantity

is bounded uniformly in (x, e) for any s, 0', and ß.
Now, the construction of the regularizer goes as follows. Note that, since

[~,-i~(X) :x] = 0,

we can easily write out the Taylor expansion of the operator

around the point (x, e):

Let us search for the symbol of the regularizer in the form

K
"(K) " AR (x,e)=~Rj(x,e),

j=O
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where the orders of the symbols Rj (x,~) decrease as j increases. This means that
the norm

(1 +e+~ )(-~+j+I1)/2 0"+11Rj (28)
w axQa~ß

H·(O) - H'(O)

is bounded uniformly in (x,~) for any j, s, 0', and ß. Then we obtain the system

which can be easily solved inductively;

&(x,~)

Since the norm

1 1 (1H2+~wy/2[jl(X,Orll <00
H'(O) - H'(O)

is bounded uniformly in (x, <) (see formula (13) above), the boundedness of the
norm (28) for the operator Rj (x, <) easily follows by induction. So, we obtain

where the symbol Q(K) (x, <) has the form

(29)

and the norm

<00
H"(O) - H'(O)
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is bounded uniformly in (x, e) for any N, 0', ß, s.
... ('2 1). From this, it follows that the operator Q(K) B, A

In spaces

is bounded as an operator

... (2 1)Q(K) B, A : ES --+ E S+Il+K

for any s (the proof can be carried out similar to that of Theorem IV.6 in (8, p. 282]).
However, we can even obtain a better result. It can be also proved by induction on
j, that each term in the sum on the right in (29) contains exactly !( factors t.p (x) ;:r:'
arranged throughout the product. Let us consider the behavior of this function as
x --+ 0, where t.p (x) = xk+ I . Let us commute all t.p (x) in the product

ß ß ß ß
t.p (x) ßx ... t.p (x) 8x ... t.p (x) 8x ... t.p (x) 8x ... (30)

to tbe left and estimate the least power of x thus obtained. The commutation of
each 8/8x "kills" x in the first power. Since there are !( operators of the form 8/8x
involved into the expression in question, the "worst" term (in which all 8/ßx were
killed by commutation with x) will contain the power8

So,
... (2 1) 3 _ (2 1)

Q(K) B, A =BKk+I Q(K) B, A ,

where the operator

is bounded for any s.

2.4 Construction of left regularizer

The left regularizer for the equation in question can be constructed with the help of
the similar technique. Namely, we search for the left regularizer in the form

... ... (1 2)L = L B,A

BWe have taken into account that the first fador <,o(x) aod the last derivative 8/8x in (30) do
not take part in the process of "killing" the powers of x.
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whence

putting the same operators in the inverse order. Hence, we need to solve the following
operator equation:

[L (B,A)] 0 [H (3,,4)] = 1.

1 :l
Let us find the right ordered representation of the tuple B, A. We have

[

A (1 2)] A (1 :l) 1L B, A B = L B, A B,

so that
TB = x.

Later on,

[L(B,A)]A L(B,A)Ä
= L(B,A)Ä+(B-B)Ä~:(B,B,A)

= L(B,A) A+ i., (B) ~; (B,A) ,

rA = ( + i<p (x) :x.

Now, the equation for the symbol L(x,~) of the left regularizer takes the form

Again we search for tbe s?lution of the latter equation in the form of the series

L(x,~) = Lo(x,~) + LI (x,~) +... ,
thus obtaining

iI(x,~)Lo(x,~) - 1,

-t ~ (i<P(X) :x)' [~: Li_I] (x,O, j ~ 1

- the most significant difference in this recurrent system compared with that for
the left regularizer is that the operator iep (x) B/ Bx acts on BIH/Be a.s weIl.

The rest of the construction makes no difference with that for the right regularizer
and we omit it altogether.
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3 Construction of global regularizer

In spite of the fact that the eonstruetion of aglobai regularizer is quite standard
after we have eonstrueted loeal regularizers in neighborhoods of all singular points
of the manifold M, we shall briefly present this eonstruetion for the paper to be
self-eontained.

First, with the help of a cut-off funetion X in a neighborhood of eaeh singular
point mj of the manifold M, we eonstruet a loeal regularizer in a neighborhood of
eaeh eusp point of the manifold A1. Namely, the following statement is valid:

Theorem 4 For any value of K, the operator 9

is a regularizer for the operator iI up to the order K ln the neighborhood of the
corresponding singular point. This lneans that

K ( 1 )" "2 d " "
H" Rj r, -irk+1 - = Ql + Q2,

LJ dr
j=O

where the operator Ql is an operator of order -]( in the space seale E;,"Y (A1):

and the operator Q2 is a pseudodifferential operator of zeroth order on the manifold
M whieh equals 1 on the space 0/ /unctions eoneentrated in some neighborhood of
the considered singular point, and equals zero on the space 0//unctions with supports
outside some larger neighborhood.

9More precisely, one should consider the operator

where X (r) is a cut-off function equal 1 in some neighborhood of the considered singular point
and vanishing outside some larger neighborhood. Ta be short, we omit the corresponding cut-off
functions.
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(31)

Denote by Aj, j = 1, , N the above constructed regularizers in neighborhoods
of the points mj, j = 1, , N. Then one has the composition formula

N

iJ L R.J = Q~ + Q;,
j=O

where Q~ is an operator of order -]( in the space scale E;."Y (M), and ci; is a pseu
dodifferential operator of zero order whose symbol equals 1 in some neighborhood of
the set {mt, ... mN} of singular points of the manifold M, and vanishes identically
outside some largeT neighborhood of this set.

Let us search for the global regularizer for the operator H in the form

N

R= LRJ +t,
j=O

where t is a pseudodifferential operator on the manifold M identically vanishing in
a neighborhood of the set of its singular points. For the operator t we have

HR= H(t,ili +t) = ci; + ci; + Jit = 1.
}=o

We can neglect the operator ci; since this operator is of arbitrary large negative
order, and write down the following equation for the operator T:

jjt = 1 - Q;.
So, the operator T can be chosen in the form

.. A t ( .. )T = XH- 1 - Q; ,

where X is a function on M equal to 1 in a neighborhood of the support of the

operator (1 - Q;), and vanishing identically near the set of singular points of M

and iJ-t is a regularizer for the operator iI on the smooth part of tbe manifold
M. Clearly, the latter operator is well-defined and, for such adetermination of
the operator T, the operator Rgiven by (31) is a (right) global regularizer for the
operator il on the manifold Al.

The left regularizer for the operator iI can be constructed in a quite similar
ma.nner.

The existence of the regula.rizers for the operator iI together with the bounded
ness of the corresponding operators leads us to the following statement:
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Theorem 5 (finiteness theorem). Let H be an elliptic operator on the mani/old M
with singularities 0/ the cusp type in the sense 0/ Definition 1. Then the operator

iI : E;,~ (M) -+ E;::"~m (M)

possesses the Fredholm property.

4 Asymptotic expansions of solutions

In this section, we shall prove the resurgent character of solutions to equation

Hu = f (32)

lf (r,w)1 ~ Ca exp { - r:j }
with a positive constant Ca for any real number a.

provided that the right-hand part / of this equation is infinitely exponentially flat
near a singular point of the manifold M. This means that the function f admits
the estimate

Remark 4 The requirement of infinite flatness of the right-hand part can be re
placed by the requirement of resurgent character of this function (cf. [11]). We sha.n
not construct the corresponding theory here.

Clearly, investigating the asYlnptotics of solutions on manifolds with cusps near
some singular point of this manifold, oue should use the k-Laplace tra.nsform where
k is the order of the corresponding cusp point. So, the representation of solution to
equation (32) will be

u = Lk [U (p,w)] = _1_. Je-;;r:U (p,w) dp.
27rl

L~

Now one should investigate the analytic properties of the function

U (p,w) = Bk [u (r,w)].

As it will be shown below (and as one can guess from the results of the paper [1])
this function will not be a meromorphic one. The only thing oue has to verify is tha.t
this function will be endlessly continuable10 , that is, that the corresponding solution

lORoughly speaking, the function is ealled to be endlessly eontinuable, if it has not more than a
discrete set of singularities on its Riemannian surfaee. The exact definitions the reader ean find in
the book [12].
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is aresurgent function in the variable r. Ir so, the asymptotics of the solution has
the form derived in the paper [1] by the authors.

The aim of this section is to prove the following affirmation:

Theorem 6 In a neighborhood 0/ each singular point 0/ the mani/old M any solu
tion to equation (32) possesses an endlessly continuable k-Borel trans/orm. In other
words, all solutions to equation (32) are resurgent /unctions in the variable r. All
the singularities 0/ this Borel trans/orm are contained in the set 0/ singularities 0/
the operator iI- t (O,p).

The rest part of this section is devoted to the proof of this theorem.

4.1 Preliminary transformation

Let u (r) be a solution of equation (32) and let m be a singular point of the manifold
M.

Consider a cut-off function X (r) equal to 1 in a sufficiently small neighborhood
of the point m and having its support in some larger neighborhood of this point
(we suppose that this last neighborhood does not contain other singular points of
M and that the variables (r, w) cau be used in this neighborhood). Denote

v(r) = x(r)u(r). (33)

Our aim is to prove that the function v (r) has an endlessly continuable k- Borel
transform.

We recall [12] that the k-Borel transform of a function v (r) is defined by the
formula

ro

V (p) = Bdv (r)] = Jexp (k~k) v (r) r~:1
o

(34)

... -
Hv= /,

(the result of the integration is independent of the choice of the value ro up to an
entire summand). To examine the properties of the function V (p) we must use
equation (32). First, we rewrite this equation with respect to the function v (r)
given by (33). Clearly, we have

where j (r) possesses all properties of the function f (r) (in particular, it is infinitely
flat near the point m), but is concentrated in a neighborhood of the point m. So,
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we arrive at the equation for the function v (r) of the form ll

(we have omitted the inessential factor r-~(k+l)).

Expanding the coefficients of the operator H in powers of r up to the first order,
we obtain the equation

(35)

The k- Borel transform of this equation will be a starting point of our PfOOf. However,
before the application of the k-Borel transform to (35) we shall investigate the
properties of function (34) which follow [rOIn the results of the previous sections.

4.2 Apriori properties of the Borel transform of
solution

The following affirmation is validn :

Lemma 4 Let v (r) be an elernent 0/ the space Eu (R+). Then the funetion V (p) =
Bk [v (r)] is holomorphic in the hal/.plane {Re p < -O"}. Aloreover, in this half-plane
the estimate

IV (pli ~ C. exp {~~n
is valid in each closed half-plane {Re p ~ - 0" - c} with a positive constant C~. Here
ro is a number such thaf v (r) == 0 for r ~ ro.

11 For purely technical reasons we have written down the equation for the function v (r) using the
inverse order of operators. Clearly, the coefficients Ai (r) differ from those involved into the initial
equation, but aH their properties are just the same. Moreover, the operator iI (0, -irk+1d/dr) is
the same as for the initial operator.

12\Ve formulate this result for a scalar-valued function v (r). Nevertheless, the same result is
valid for functions with values in a Banach space as weil.
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IV (p)1 ~

Proof. Let {Rep ~ -(j - e}. Then one has

TO

IV (pli ~ j lexp{k~k }v(rl Ir:: 1

o

- ] exp {Re:r~ (T} lexp{- k:k} v(rll r:: 1 •

o

Using the Cauchy-Schwarz inequality, we obtain the estimate

{JTO { 2 (Re p + (j)} ~} 1/2 11 11
exp kr k r k+1 v <7

o

{jTO {_~} {2(Rep+(j+€)}~}I/'l11 I1
- exp krk exp krk r k+1 v <7

o

{
Re p + (j +e}

< Ce exp kr~ Il v ll<7 .

The latter estimate proves the lemma. o

4.3 Multiplication by a function in the Borel representa
tion

To apply the k-Borel transform to equation (35), one needs to investigate the action
of tbe operator of multiplication by a function A (r) in the Borel representation. For
simplicity, we shall carry out our considerations for scalar-valued functions though
all the results are obtained in the saUle way for functions with values in a Banacb
space a.s weIl.

First, we consider the action of multiplication by powers of r. The following
affirmation is valid.

Lemma 5 The /ormula

. jP (p_q)f-1
Bk [rlv(r)] = kj/kfU/k) V(q) dq

-00

(36)

is valid /or eaeh positive integer j and any function V (p) subjeet to the eonditions
0/ Lemma 4. Here the integration is /ulfilled over a eontour alang whieh the real part
0/ p tends ta -00.

35



Figure 3. Deformation of the integration contour.

Proof Let us consider first the case j < k. First of all, we have

-0'1 +100

J exp {- k~k}qt-1
dq

-:,0'1 -100

xqt-1 dq

(1 -exp e:ij
}) j exp { - k~k }

o

= (1 -exp {2:ij
}) r (Ü ktr'

for each 0'1 > O. Here we have used the Jordan lemma for the contour drawn on
Figure 3. Substituting the latter expression iuto the integral

ro

Bk [r'v (r)] = Jexp {k~k} riv (r) r~:l
o

and changing the integration order, we obtain

1

(1 - exp {21rij / k}) r (j / k) kille

X -~Z~~{1exp { Pk~/ } v (r) r~:l } qt-
1

dq
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= 1 -nj'+;00V (p _ q) qt-1 dq.
(1 - exp {27rij / k}) r (j / k) kil k

-O'l-ioo

Performing onee more the above deseribed deformation of the integration eontour
and taking into account that the funetion V (p) is holomorphie for sufficiently large
negative values of Re p, we arrive at relation (36).

Later on, let j = k. In this case we have

8 [ k] 8 jr
o

{P} k dr
8pBk r v (r) = 8p exp krk r v (r) rk+1

o

Taking into account the deeay properties of the function V (p) as Re p ----+ - 00, we
have

p

Bk [rkv (r)] = ~ j V (q) dq,

-00

whieh clearly eoineides with (36) for j = k.
Finally, the proof of relation (36) for j > k can be carried out by induction on

j. Suppose that the needed formula is already proved for j = jl and j = j2. Then
one has

Bk [r-iv (r)] = Bk [r-i1+hV (r)]

j
p( - )Ut!k)-l {jq ( _ ,)(j2/k)-1 }

= P . q q q V ( ') d' d.
k~ r (j1/k) kh /kr (j2 / k) q q q

-00 -00

(37)

The latter integral can be rewritten as a Illultiple integral over the domain drawn
on Figure 4. The convergence of this integral follows from the estiruate of Lemma
4. So, one can change the integration order in the integral (37), thus obtaining

jp {jP ( )(i! 11.)-1 ( ,)(j2/k)-1 }. p-q q-q , ,
Bdrv (r)] = -00 q' k(i, +i»/kr Udk) r U2/ k) dq V (q ) dq .

Since
p

j ( _ )(i!/k)-l ( _ ,)(h/k)-l d = r (jl/ k) r (j2/ k) ( _ ,)((i!+h)/k)-I
P q q q q r((jl+j2)/k) p q ,

q'
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q'

p

q

Figure 4. Integration domain.

we have

-00

So, the affirmation of the lemma is valid for ) = jl +)2. o

Now we can derive the formula for the Borel representation of the multiplication
byan arbitrary function A (r) holomorphic in a neighborhood of the origin. Denote
by R the radius of convergence of the Taylor series

00

A(r) = LAjrl.
1:;:0

Then, formally, the multiplication by A (r) is transformed by the k-Borel transform
into the convolution with the function

AoE (p) + A' (p) ,

where
00 (j/k)-1

A' (p) =L Aj kj~kr (jlk)'
f:;:1

The following assertion takes place:
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Proposition 1 Let A (r) be a holomorphie funetion near the origin, and let R be
its radius 0/ eonvergenee. Then the formula

Bk [A (r) v (r)] = (Ao,s (p) + A' (p)) * BJe [v (r)]

is valid for a eonstant Ao and a /unction A'(p). Mo reo ver, the /unetion A' (p) given
by (38) is an entire /unetion subjeet to the estimate

IA' (p)1 :s; C exp { (1 +c) ~~k } •

Proof Clearly, it is sufficient only to prove the latter estimate. We have

Splitting the latter surn in the following way

00 C ]p!U/k)-1 k-l { p t 00 1 Ipli }
f; Ri fUlk) =~ IRkl ~ Rkjki r((llk) +j + 1)

(39)

and evaluating each surn on the right in the latter relation, we arrive at the estimate

I Ir-I {lpl}IA (p)1 ~ C Ipl-r exp kRk .

Estimate (39)readily follows frOll1 the latter estimate. o

4.4 Proof of the theorem on endless continuability

Let us apply the k-Borel transform to equation (35). Oue to the result of Proposition
1, we obtain the following equation for the k- Borel transform V (p) of the function
v (r):

[HO (p) + (dld;)-I/k HI (dld;)-l/k)) ] V (p) = F(p) , (40)

where

1 (1) P1 k .. 1 k 4l
(dldp)- / H[ (dldp)- / , p V (p) = -L 1t (p - q,p) V (q) dq.
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The function 'H (q,p) is defined via the function ri!l (r,p) in the same way as the
function A' (p) is defined via A (p), the variable p being a parameter. Namely,

00 A qUjk)-l

1{ (q, p) = L Hj (p) kj/kr U k)
}=l J

if
00

rH1 (r, p) = L Bj (p) r
j

.

j=l

Dividing equation (40) by Ho (p), we arrive at the equation

p

V (p) + JHili (p) 1{ (p - q, p) V (q) dq = HilI (p) F (p)

-00

(the integral on the right converges for sufficiently small ro due to the estimates
of the type (39) for the function 'H (p - q,p)). This equation will be used for the
proof of the fact that the function V (p) is an endlessly continuable function in p.
First of all, we remark that the function V (p) is already known to be a holomorphic
function in p in the half-plane Re p < -u. We shall consider V (p) in this region as
a known function.

Consider an arbitrary small neighborhood U of the set of poles of the function
iIöl (p) (see Figure 5). In the complement C \ U of this neighborhood we rewrite
the equation in the form

p

V (p) +JfIil I (p) 1{ (p - q, p) V (q) dq =

Po

Po

= HilI (p) F (p) - JHili (p) 1{ (p - q,p) V (q) dq.

-00

(41 )

Since in the considered region the kernel i/öl (p) 'H(p - q,p) of this equation is
bounded everywhere except p = q and has a weak singularity at this point, the usual
estimates for successive approxilnation method show that the Volterra equation (41)
is solvable in C \ U. Since U cau be chosen arbitrary smalI, this fact proves the
endless continuability of the function V (p). This completes the proof of the theorem.

Remark 5 One can also prove that the constructed solution is of exponential type
with order k in the whole plane C. We leave the corresponding estimates to the
reader.
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o

Figure 5. Analytic continuation of V(p).

Remark 6 As we have already written, the function V (p) has 00 siogularities in
the half-plane Rep < er even at those points where the operator family HÖ

1 (p)
has singularities. However, this remark concerns only one sheet of the Riemannian
surface of V (p), from which we have started the process of analytic continuation.
On all other sheets of the Riemannian surface of V (p) the function V (p) can have
singularities at poles of iIö1 (p) even for Re p < er.
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