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A note on the fuchsian groups of genus zero

o. Schwanrnan

Introduction

For every genus-zero fuchsian group r we construct the canonieal central extension r
and diseuss some algebro-geometrie by-products of this construction (see § 3, Main Theorem).
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1. Basic definitions, facts and notations

Let </;> be the hennitian fonn IZII2-IZ212 of signature (1,1) in C2 and U(1,1) be the

group Aut </;>. Define the cone B = {z E C2 14>(z) < o} and let B be the unit ball - the

image of the cone iJ in the projective space PC 2 = pI(C). The group PU(1,1) is the

group Aut B of all biholomorphic automorphisms of B.

Remark 1. The I-dimensional complex hyperbolic space B can be identified with 2

dimensional real hyperbolic space with curvature -4. This means, for exampIe, that the area

of an convex r-gon P in B with angles 0'1,···, O'r equals a(F) = i' (r -2 - t O'i).
1=1

Maiß definition. We say that a discrete subgroup r of Aut B is a genus-zero fuchsian

group if

(i) the quotient space B /r is compact (has finite volume)

(ü) the quotient space B /r ~ pI (C) (its natural point-compactification B/r ~ pI (C) )

For the sake of simplicity we will assurne that the quotient B /r is compact, but all our

arguments are also good in general case.

In what follows r stands for a genus-zero cocompact fuchsian group in one-dimensional

complex ball B.

Algebraic structure of the group r is known.

Fact 1. r admits corepresentation

with integers ni ~ 2, i = 1,'·', r.

We will call li the canonical generators of the group rand write sometimes r =

r("YI,···"r).

Fact 2. Cyclic subgroups (,I),···, (-,r) are representatives of all elliptic conjugacy

classes of r.
Remark 2. The volume of the quotient space B /r equals !1r(r - 2 - ~ I/nd.



The imports"! definition

The element , E U(1, 1) is called the complex reflection if the set Fix, of ,-fixed points

in C2 is a complex line.

We say that a discrete subgroup G of U(l,l) is the complex reflection group, or er

group, if it is generated by complex reflections.

A

2. The group r and its properties

Let r be a genus-zero fuchsian group in B and , =f e * - an elliptic element of r. Then

, has the unique fixed point [x] in B. Let r E C be the differential of , at the fixed

point [x] C B.

Lemma 1. For any elliptic element, E r there exists the unique reflection 7 E U(l, 1)
such that

(i) the image 01 7 under the canonical homomorphism 7r : U (1, 1) -+ PU (1, 1) is ,
(ii) the eigenvalues 01 7 are (1, r) and the eigenvector with eigenvalue lUes in the cone

iJ.

•
Write x for the complex line in C 2 corresponding to the ,-fixed point [x] c B C PC2.

Choose a vector e E C2 such that </>( e, x) = 0, </>( e, e) = 1. Then define the complex

reflection 1, we are looking for, by the fonnula: z 1-+ z - (1 - r)<f>(z, e)e.

•
We will say that the complex reflection 1 is the complex reflection lift of the elliptic

element , Er. As weIl we will call an element 9 E U (1, 1) a lift of an element 9 E PU (1, 1)
if 1r(g) = g.

Let t be the subgroup of U( 1, 1) generated by the lifts of all elliptic elements of r.
Lemma 2.

(i) t is a discrete reflection subgroup 0/ U(l, 1)
(ii) t iJ = iJ
(ni) the center Z (t) 0/ the group t is finite

(iv) t/Z(t) ~ r
(v) r acts as a discrete subgroup in the cone B.

•
By Fact 1 the determinants of the elements of t take only a finite number of values. This

proves (iii). The rest is straightforward.

•
Lemma 3. Let r be r( ,1,' .. ,rr). Then

(i) the group t is generated by the elements 71,"', 7r
(ü) every complex reflection in the group t is conjugate to apower 0/ some 0/ the

7i, i = 1,"', r
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(üi) the center Z (i') is generated by the product 1'1':' ·1'r.

•
Suppose , is an elliptic element of f. Then by Fact 2 there exists an element 9 E f

such that f = 9 ,I;g-l. Write 9 = 'lI ... ,ik as a product of the canonical generators

'I, i = 1, ... ,r and define the element 9 of t by 9=1i1 ••• 1ik' Obviously l' =9~tfig-l .
Note that this proves (ii) and shows that every complex reflection of t is generated by the

elements 1'1,"', 1'r, and (i) follows by definition of the group i'. To prove (üi) choose an

element 9 E Z (t). Then 9 = 1 and we may therefore apply the Fact 1 to conclude

that the element 9 has a presentation 9 = TI Wi, where the word Wi has the fonn:

Wi = P 1'1 .. '1'rP-1 or Wi = Q 1'~iQ-l. But 7ii = 1 in the group i', and the element

7172 . 1'r lies in the center Z (t) .
•

The Maiß Lemma. Let Z be the generator of the center of t. Then Z = e±2yCT.x . E2

and
1r

A = "2(r - 2 - EI/ni) = vol B/f.

To make the proof of the Main Lemma more clear we would like to recall some facts

about reflections in the hyperbolic plane B (see Remark 1). If W is such a reflection then we

can lift w to the extended group U(I, 1) = U(I, I)UO", where 0" is the complex conjugation

on C2 : O"Z = Z. It is clear that the cone iJ is 0" -invariant and that 0" normalises the group

U(I,I). Any lift of w will have the fonn w= 0" 0 9 with 9 E U(l, 1). Note that for every

lift W~ have w2 = Eh. The proof if easy: w2 = 99 = AE2 because w 2 = id in the

group PU(I, 1) (= PU(I, 1) U 0"). But 9 E U(I, 1) and hence A = 1 by the direct matrix

calculation. Now, if we have two reflections W1 and W2 then their product , = W1 W2 might
have the fixed IX>int in B (precisely the intersection point of the axes of W1 and W2 in B ).
In this case for any choice of the lift tU1 we can find the unique lift W2 such that W1 W2 = l'
where l' is the canonical complex reflection !ift of ,.

Further, let P be a convex r - gon in B, 'counter clockwise' oriented and with angles

1r 0'1 , ... , 1r O'r. Let w1 , ... ,Wr be the reflections in its sides and put ,1 = W1 W2 , ,2 =

W2 w3,' •• "r = W rW1. Note that ,1'" ,r = id in the group PU(I, 1). We can assurne

that 1'1 = Wl'W2, 1'2 = W2W3,"', 7r-1 = Wr -1wr hut then 7r = ApWrW1' We say that
the complex number Ap is the deficiency number of the r - gon P. Suppose that we fix
orientation of P as above. Then we have

Lemma 4. The dejiciency number of the r - gon P in B equals e2~ Jl, where
1r

JL = "2(E Q'I - (r - 2)) = -2 area P.

•
If r = 3 the claim of the lemma can be proved by direct and short calculation. In general

case we will proceed by induction as follows. Let I be the diagonal which connects tbe

vertices of P with numbers 1 and 3. The diagonal 1 dissects the r - gon P into two

pieces: triangle PI and (r - 2)gon P2.

Let w be the reflection in 1. Then we have

(1) \ A A A A A A \

/\p = Wl W2 . W2 W 3 .... W rW1/\p =

3



(1) because w~ = E2

(2) because if Jl1 WW1 and Jl2WrW are complex reflections then their product

Jl1Jl2WrWWW1 = !l1!l2WrW1 is also the complex reflection (in fac4 both of them

have the common fixed line in the cone iJ ), and the same remark concems the

pair W2W, WW3.

Thus we have shown Ap = APl . AP2 and the induction arguments plus the area additivity

camplete the proof.

•
Now let us come back for the proof of the Main lemma.

•
Let T(f) be the Teichmüller space of the marked group f = f( ,1,' .. 'Ir) and [f']

be any point of T(f). Than it is easy to prove that A(f) = A(f'). Therefore we can

make a special choice of f and prove the lemma for this particular nice case. Let e be
a Coxeter group in B generated by reflections in the sides of the convex r - gon P
with the angles n1l' " •• ,..L. Further let r be the subgroup of C generated by the elements

1 n r

11 = W1 W2, 12 = w2W3,"', Ir = W rw1 (here we use the conventions and notations of
lemma 4). The rest part of the proof of the Main lemma is straightforward by the result

of lemma 4.

•
3. Thc quotient space iJIr and its properties

Let L be the restriction of the line bundle OPl (-1) to the complex ball B (recall that B
comes as B/e·, B c e2 ). Then 1 is the t -line bundle and we have ([2])

{ the quotient space iJ/r} ~ {the quotient space 1 - {zero section} /r}

( ~ means "the same thing as ..."). Let m = IZ (f') I be the order of the center. We see that

{L - {zero section}/r} ~ {10m - {zero section}/f}.

Notice that the action of f on Hne bundle 1om has the following nice property: every

elliptic element I E r .acts triviallyon the fiber over I-fixed point [x] in B. The proof

is immediate: the complex reflection lift "l fixes by definition the complex line x over [x].
The shotup of this arguments is the lemma 5.

Lemma S.

{ the quotient space BIr} ~ {L - {zero section} }
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where L is a Une bundle on P1 ~ B If.

•
The proof is clear.

•
The next proposition will show the line bundle L.

Proposition. L = Opt (N), where

Iz(t)1 ( r)
N = 2 . (r - 2) - ~ I/ni . (*)

•
The problem of calculating the self-intersection number of zero section in our case is

classical. Its solution actually goes back to H. Poincar~ [4]. In sequel it was rediscovered

many times by different authors (see for example [1], [3], [5], [6] ... ). The appendix to the

M. Yoshida's paper [6] is a good palce to find the modern proof of the fonnula (*) along

the H. Poincare lines.

•
Let L be the surface which comes after blowing down the zero seetion of the line bundle L
(note that by Proposition the self-intersection number of this section is negative). Now we

come to the object of our prime interest. We call a zero-genus fuchsian group f an excellent
group if I is a smooth surface. In this case L ~ C2 by lemma 5.

Maiß Theorem. A zero·genus fuchsian group f = f(11, ... , Ir) is excellent ~ the

numbers nl,"', n r are the solutions oj diophantine equation

1 1 1 2- + - +... + - + - = (r - 2).
nl n2 n r m

It follows from the Main lemma and the Proposition.

(**)

•
•

Our last statement is in the style of I. Dolgachev's paper [2]. Define the f -automorphy

factor a(I, z) by the formula a(" z) = (cz~d)'"' where m = Iz(t) I, z E B, and the 'j' -lift

1 equals to the matrix (: ~) E U (1,1). Let A(f, a) stands for the graded algebra of

r -automorphic fonns with respect to the automorphy factor a(I, z) .

Theorem. The group r is excellent iff the algebra A(f, a) is the (weighted) polynomial
algebra C[X}, X 2].

Concluding Remark. Needless to say that the arguments of the Main Lemma apply as

weIl to the case of a finite group in pI (C) and recover the results of § 9.6 and 11.7 in the
H.S. Coxeter's book "Regular Complex Polytopes".
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