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Abstract

Let Mn be a closed Riemannian manifold homotopy equivalent to
the product of S2 and an arbitrary (n − 2)-dimensional manifold. In
this paper we prove that given an arbitrary pair of points on Mn there
exist at least k distinct geodesics of length at most 20k!d between these
points for every positive integer k. Here d denotes the diameter of Mn.

Introduction and main results.

In 1951 J.-P. Serre proved that for any pair of points on a closed Rieman-
nian manifold Mn there exist infinitely many geodesics connecting them. It
is, therefore, natural to wonder about the lengths of these geodesics. For
example, in [NR0] we made the following conjecture:

Conjecture A. There exists a function f(k, n), such that for every closed
Riemannian manifold Mn of diameter d and every pair of points x, y ∈ M n

there exist at least k geodesics between x and y of length at most f(k, n)d.

Example 1. For any two points on a round sphere there always exist
k geodesic segments of length ≤ kd, (see fig. 1). On the other hand
F.Balacheff, C. Croke and M. Katz ([BCK]) recently constructed an example
of Riemannian metrics on S2 arbitrarily close to the standard round metric
such that there exist points where the length of the shortest geodesic loop
based at this point is greater than 2d. These examples show that one cannot
take f(n, k) = k in Conjecture A even for n = k = 2.
Example 2. Let Mn be a closed Riemannian manifold with an infinite
torsion-free fundamental group. Then it is not difficult to see that for any
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Figure 1: Short geodesic segments on a round sphere.

pair of points p, q ∈ Mn there exist at least k distinct geodesic segments of
length ≤ kd ([NR0]). More generally, if π1(M

n) is either an infinite group
or a finite group with at least k elements one can consider the universal
covering space of Mn with the covering metric. Let p̃ be a lift of the base
point in Mn to the universal covering. It is known that one can choose the
fundamental domain U containing p̃ such that U contains the set S of all
points x of the universal covering for which p̃ is the closest to x lifting of
p, and U is contained in the closure of S. As the distance from p̃ to any
point of S does not exceed d, the diameter of U does not exceed 2d. Next
consider a metric ball B2kd(p̃) centered at p̃ of radius 2kd. In that metric
ball there exist at least k fundamental domains isometric to U and k distinct
points q̃1, ..., q̃k ∈ {π−1(q)}. Consider k geodesic segments α̃i, i = 1, ..., k,
connecting p̃ with q̃i of length ≤ kd. Each of them is projected onto a
distinct geodesic segment αi = π(α̃i) connecting the points p and q and of
length ≤ d+2(k−1)d = (2k−1)d. If the fundamental group of M n is finite
and has cardinality ≤ k − 1, we can consider the universal covering M̃n of
Mn. Its diameter will be at most (k − 1)d. If there exist k distinct geodesic
of length ≤ f(n, k)diam(M̃n) between every pair of points of M̃n, then we
can project these geodesics to Mn, obtaining at least (k−1)f(n, k)d distinct
geodesics between eveery pair of points of M n. Therefore the general case of
Conjecture A would follow from its validity for simply connected manifolds.

Some other evidence of the validity of Conjecture A is our recent results
[NR1] and [NR2] (see also [NR0]), where we show that on every closed
Riemannian manifold and for every pair of points of this manifold there
exist at least two geodesics connecting these points of length ≤ 2nd. If, in
addition, the manifold is diffeomorphic to a round 2-sphere, then for every
pair of points there exist at least k geodesic segments joining them of length
at most f(k)d, where f(k) = 4k2 − 2k − 1.



3

In this paper we will prove the following theorem.

Theorem 0.1 Let Mn be a closed Riemannian manifold which is either
homotopy equivalent to S2 × Nn−2 for an arbitrary manifold Nn−2 or is
a simply connected manifold such that for some map φ : S2 −→ Mn the
composition φ ◦ H of φ and the Hopf fibration H : S3 −→ S2 represents a
non-trivial element of infinite order in π3(M

n). Then for any pair of points
p, q ∈ Mn there exit at least k distinct geodesic segments of length ≤ 20k!d.
If p = q, then this upper bound can be replaced by a better upper bound 10k!d.

Remarks. 1. Let Mn be a simply connected Riemannian manifold. Assume
that there exists a non-trivial two-dimensional rational cohomology class u

of Mn such that u ∪ u = 0 ∈ H4(Mn, Q). Then an easy application of
rational homology theory implies that a map φ : S2 −→ Mn such that φ∗(u)
is the fundamental cohomology class of S2 satisfies the assumptions of the
theorem. (The existence of such φ follows from the Hurewicz theorem.)
Therefore Theorem A is applicable to M n, and each pair of points of Mn

can be connected by k distinct geodesics of length ≤ 20k!d.

2. Our calculations yield the upper bounds of the form (8k! + o(k!))d for
general p, q and (4k! + o(k!))d in the case, when p = q in Theorem 0.1. As
we do not believe that even these upper bounds are optimal, we decided to
simplify the formulae for these upper bounds by choosing higher values of
the constant factors at k!d.

A nice proof of Serre’s theorem can be found in a paper by Albert
Schwarz ([Sch]). Schwarz also proved that the length of kth geodesic can
be majorized by C(Mn)k, where C(Mn) does not depend on k but only on
the Riemannian manifold Mn. Here is a rough sketch of Schwarz’s proof
in the case when Mn is simply connected. First, he makes an observation
that the Cartan-Serre theorem (cf. [FHT], Theorem 16.10) implies that
there exists an even-dimensional real cohomology class u of the loop space
ΩMn such that all its cup powers ui are non-trivial. The space of paths
Ωa,b(M

n) is homotopy equivalent to ΩMn. An explicit homotopy equiva-
lence h : ΩMn = Ωa,a(M

n) −→ Ωa,bM
n can be constructed as follows: Fix

a minimizing geodesic between a and b. Attach this geodesic at the end of
each loop based at a.

Now one can apply the Morse theory to produce critical points of the
length functional on Ωa,bM

n corresponding to cohomology classes h∗(ui)
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for i = 1, 2, . . . . As ui = uj
⋃

ui−j, when i > j, the standard Lyusternik-
Schnirelman trick (cf. [Kl]) implies that either h∗(ui) and h∗(uj) correspond
to different critical points (i.e. to distinct geodesics between a and b) or
the critical level corresponding to h∗(uj) contains a set of critical points of
positive dimension. (In the last case there exists an infinite set of geodesics
between a and b of the same length). So, the set of geodesics between a and
b is infinite. In order to estimate their lengths it is sufficient to consider the
case when h∗(ui) and h∗(uj) correspond to different critical points whenever
i 6= j.

Now recall that the Pontryagin product in rational homology group of the
loop space is the product induced by the geometric product ΩM n×ΩMn −→
ΩMn. (By the geometric product of two loops α and β we just mean their
join α ∗ β.) To estimate the length of the geodesics corresponding to ui

Schwarz defines a “dual” homology class c of u of the same dimension.
(“Dual” means here that < u, c >= 1.) Then he proves that for every
positive i the ith Pontryagin power of c and a real multiple of ui are dual.
So, the critical point corresponding to ui also corresponds to ci. Choose
a representative of c. Let L be such that this representative is contained
in the set of loops of length ≤ L. Then ci can be represented by a chain
contained in the set of loops of length ≤ iL, and h∗(u

i) can be represented
by a chain contained in the set of paths of length ≤ iL + 2d between a and
b, whence the length of the ith shortest geodesic between a and b does not
exceed iL + 2d.

Note that although Schwarz’s result indicates that it is natural to look
for an upper bound of the form c(n)kd for the length of the kth shortest
geodesic between a and b it does not imply that such an upper bound exists,
and, in fact, the factorial behaviour in k of our upper bound might be
optimal.

Let H : S3 −→ S2 denote the Hopf fibration. Assume that M n is simply-
connected and there exists a map φ : S2 −→ Mn such that φ◦H : S3 −→ Mn

represents a non-trivial class of infinite order in π3(M
n). Note that the Hopf

fibration corresponds to a non-trivial element h of π2(ΩS2), and the image
µ of h under the Hurewicz homomorphism π2(ΩS2) −→ H2(ΩS2, R) is non-
trivial. Our assumption about φ implies that (Ωφ)∗ maps h into a nontrivial
homotopy class of infinite order in π2(ΩMn). Now the Cartan-Serre theorem
implies that this element corresponds to a two-dimensional real cohomology
class of ΩMn such that all its cup powers are non-trivial, and any integer
multiple of this class has the same property and can be used instead of u in
the proof. A dual two-dimensional homology class s of u is the image of µ
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under the homomorphism induced by Ωφ.

The class µ ∈ H2(ΩS2, R) admits the following explicit description. Con-
sider the 1-dimensioanl real homology class % of ΩS2 defined as the image
of the fundamental homology class of S1 under a map ω : S1 −→ ΩS2 cor-
responding to the identity map S2 −→ S2. The map ω admits the following
explicit geometric description: For every α ∈ S1 ω(α) is the loop based at
the South pole that first goes to the North pole via the meridian with longi-
tude α and the returns to to the South pole via the meridian with longitude
zero. The class µ is equal to the Pontryagin square of % multiplied by two
(cf. [FHT], pp. 234-235). Thus, µ can be represented by a singular chain in
ΩS2 such that each loop in the image of each singular simplex in this chain
consists of four meridians of S2. In [NR2] we represented µ by another ex-
plicit chain so that the loops in the image of each singular simplex consisted
of either two meridians of S2 or a subset of a meridian of S2 travelled in the
opposite directions.

Thus, if there exists φ : S2 −→ Mn such that [φ ◦ H] ∈ π3(M
n) is an

element of infinite order, then for every k there exist k different geodesics
between a and b of length ≤ 2kL + 2d, where L is the supremum of lengths
of images of meridians of S2 under φ. (More precisely, by “the length of the
image of a meridian of S2” under φ we mean here and below the measure of
this meridian under the pullback measure induced by φ. In other words, if
the image of the meridian backtracks over itself, we count the length of the
backtracking piece twice.) If φ maps the North pole or the South pole of S2

to a or to b, then the estimate can be improved to 2kL + d. If, in addition,
a = b, then the upper bound becomes 2kL, as we do not need to use the
homotopy equivalence Ωa,aM

n −→ Ωa,bM
n. (However, one of the k distinct

geodesic loops in this case will be trivial.)

Thus, we obtain the following proposition:

Proposition A. Let Mn be a simply connected Riemannian manifold of
diameter d. Assume that there exists a map φ : S2 −→ Mn such that the
composition φ ◦ H of φ and the Hopf fibration H : S3 −→ S2 represents
an element of infinite order in π3(M

n). Assume, further, that the length
of the image of every meridian of S2 under φ does not exceed L. Then for
every two points a, b and for every k there exist at least k distinct geodesics
between a and b of length ≤ 2kL + 2d. If a coincides with the image of the
South pole of S2 under φ, then the lengths of k distinct geodesics between a

and b does not exceed 2kL + d. In this case there exist at least k distinct
geodesic loops based at a of length ≤ 2kL.
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Note, that essentially the same argument will be true for some non-simply
connected manifolds. For example, it will be true for manifolds homotopy
equivalent to S2 × Nn−2, where Nn−2 is an arbitrary closed manifold. In
this case one can define φ as the composition of an inclusion S2 −→ S2 ×
Nn−2 that sends S2 into S2 × {pt} for some pt ∈ Nn−2 and the homotopy
equivalence S2 × Nn−2 −→ Mn. (Of course, as we mentioned at the end of
our discussion one can reduce the case of non-simply connected manifolds to
the simply-connected case paying the price of mutiplying the upper bound
by (k − 1). Here we are saying that if our manifold is homotopy equivalent
to S2 × Nn−2, then we will not need to multiply the upper bound that we
are going to derive below by (k − 1) even if N n−2 is not simply-connected.)

Note that even if Mn is diffeomorphic to S2 one cannot hope to find a
map φ : S2 −→ M2 of non-zero degree such that the images of all meridians
are bounded by const d for some constant const. (It seems that a counterex-
ample can be constructed by attaching to 2-discs constructed in [FK] any
fixed 2-disc thus obtaining a family of 2-spheres. But we have not checked
the details.)

Therefore we cannot hope to majorize the length of k shortest geodesics
be merely finding an appropriate map φ such that the lengths of images
of meridians of S2 under φ are controlled in terms of d (or even n and d).
Our paper [NR] dealt with the case when M n was diffeomorphic to S2. Our
strategy there was to try to construct φ with a control over lengths of images
of meridians so that our attempt could be thwarted only by an obstruct-
ing geodesic between a and b. Then we were making another attempt of
constructing a map φ so that the lengths of the images of meridians were
bounded by a larger constant. The second attempt could be blocked only
by a different geodesic between a and b, and so on. After k attempts we
would either obtain k distinct obstructing geodesics between a and b or a
desired φ with a control over the length of images of meridians. (Of course,
in the last case we would immediately obtain the desired upper bound for
an infinite set of distinct geodesics connecting a and b).

Our strategy of constructing φ in [NR2] was based on the two-
dimensionality of the manifold, and cannot be used in the situation of the
present paper. Instead, we adopt a more complicated startegy.

Our general strategy will be to start with a map φ satisfying the condition
of a proposition. We would be trying to establish a control over the length
of the images of meridians not under φ but of the composition of φ with a
map φs of S2 into itself of degree s. The number s grows from an attempt
to an attempt. Again, eventually we will either get k geodesics between a
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and b as obstructions, or will succeed in finding a self-map of S2 φs of degree
s = (k − 1)! such that the length of the images of meridians under φ ◦ φs is
controlled.

Let us make the following obvious remark: Consider a slicing (= a par-
tition) of S2 into circles emananting from the South pole and perpendicular
to a big circle passing through p. If one manages to establish a control over
lengths of images of the circles under a map τ , then one can establish a
control over lengths of images of meridians of the map τ ◦ λ, where λ is a
self-map of S2 of degree one that sends one meridian to the South pole and
sends all meridians to the circles from the slicing.

Therefore, in practice we will be trying to sweep-out various non-trivial
spherical 2-cycles in Mn of interest for us by loops of controlled length. The
existence of such a sweep-out for φ ◦ φs would imply that φ ◦ φs ◦ λ maps
meridians into loops of controlled length.

The next section contains further ideas of the proof of the main theorem.

1 Further ideas of the proof of main theorem.

Here we are going to briefly describe some key elements of the proof as
well as the proof in a very simple case. For simplicity of the exposition we
assume that Mn is homotopy equivalent to S2 × Nn−2. (This assumption
is not really necessary, but, in our opinion, it makes the exposition more
transparent.)

For simplicity of an exposition, let us, first, deal with geodesic loops,
which can be regarded as geodesic segments, in which the two end-points
are the same. Note that a related problem of estimating the length of a
shortest geodesic loop on a closed Riemannian manifold was first studied by
S. Sabourau in [S]. (Sabourau did not consider the base point of a geodesic
loop as being fixed and minimized over the set of all base points as well.)
The upper bound 2nd for the length of the shortest non-trivial geodesic
loop at any prescribed point was first proven in [R] for an arbitrary closed
n-dimensional manifold.

1. Obstruction argument. Let us begin with a homotopy equivalence
F : S2 × Nn−2 −→ Mn. Consider f = F |S2×{pt} for any point pt ∈ Nn−2.
Obviously, f is noncontractible, and, moreover, f ◦H represents an element
of infinite order in π3(M

n). (Recall that H denotes the Hopf fibration.)
By virtue of the discussion in the previous section, it would be enough to
sweep-out S2 by curves (or loops) so that the lengths of their images under
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f are controlled in terms of d. However, as we have no information about
the geometry of this map, this is not possible. The next objective, therefore,
is to obtain a new map g : S2 −→ Mn, that can be swept-out by “short”
curves, and, which belongs to the same homotopy class as the original map.

Let us begin by endowing S2 with a fine triangulation. We will try to
extend f : S2 −→ Mn to a 3-dimensional disc.

As an obstruction to this extension we hope to obtain a noncontractible
map g : S2 −→ Mn, naturally endowed with a sweep-out by short curves.
The use of a similar obstruction technique for the purpose of obtaining
stationary objects was originated by M. Gromov in [G]. The technique that
we will use in this paper is, however, significantly modified.

2. The extension procedure. Let D3 be triangulated as a cone over
S2. The extension will be inductive to skeleta of D3. Let us begin with
the center of the disc p̃ that will be mapped to a point p of the manifold.
We will extend to the 1-skeleton, by mapping edges of the form [p̃, ṽi] to
corresponding minimal geodesic segments of the form [p, vi], where vi =
f(ṽi). Next let us extend to the 2-skeleton. Let us consider an arbitrary
2-simplex [p̃, ṽi, ṽj ]. Its boundary is mapped to a closed curve of length
≤ 2d + δ. A length shortening process being applied to any curve with a
fixed point p either stops at a geodesic loop of a shorter length or contracts
the curve to the point p. Let us apply the Birkhoff Curve Shortening Process
(BCSP) for loops with fixed basepoint to the image of the boundary of the
above simplex, (for the detailed description of the BCSP see [C]). Assume
that when we apply the BCSP to this curve with a fixed point p, it is not
terminated by a geodesic loop. Then the curve is contracted to a point p as a
loop and we can map the 2-simplex to a surface generated by this homotopy.
Let us now look at the next skeleton. We claim that there are 3-simplices
in the 3-skeleton of D3, such that, the restrictions of the map f on their
boundaries are non-contractible, and the corresponding elements of π2(M

n)
sum to the element represented by f . Also, by virtue of Lemma 2.1 below
the boundaries of these 3-simplices can be swept-out in a natural way by
curves of length ≤ 3d + δ, for some small δ that depends on the size of the
triangulation. Therefore, it follows that at each point p ∈ M n there exist at
least k geodesic loops of length bounded by k(6d + 2δ). We will eventually
let δ approach 0, and obtain the assertion of the theorem.

3. How to extend to the 2-skeleton in the presence of “short”

geodesic loops. Of course, the assumption made in order to extend to
the 2-skeleton is rarely satisfied. In general, we cannot hope that we can
extend to the 2-skeleton as above, because the curves can get stuck on
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geodesic loops of length ≤ 2d+δ. In fact, even one “small” geodesic loop can
obstruct the extension, which makes it unclear how to continue. Therefore,
let us look again at extension to the 1-skeleton and try to modify that as
follows: consider a simplex [p̃, ṽi1 , ṽi2 ]. Its boundary is mapped to a closed
curve [vi1 , vi2 ] ∗ [vi2 , p] ∗ [p, vi1 ], (see fig. 2 (a)). Let us denote the edges
that connect p with vij by ej and the edges that connect p̃ with ṽij by ẽj

respectively, where j = 1, 2. Next suppose the curve e1 ∗ [vi1 , vi2 ] ∗ −e2

gets stuck on a geodesic loop li1,i2 of length ≤ 2d + δ. We will change our
extension to 1-skeleton as follows: the extension will stay the same on ẽ1, but
on ẽ2 it will become li1,i2 ∗ e2. Now, indeed, we can extend to the 2-simplex
[p̃, ṽi1 , ṽi2 ], as the curve e1 ∗ [vi1 , vi2 ] ∗−e2 ∗−li1,i2 is homotopic to the point
p, (see fig. 2 (b)). We will map the 2-simplex to the disc generated by this
homotopy. Now, if we only had to extend to this one 2-simplex, we would
be done, but, of course, in general it is impossible to extend to the whole
2-skeleton in this way for the following reason:
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Figure 2: Modified extension.

Consider a simple 1-cycle in the 1-skeleton of the triangulation of S2,
(see fig. 3).

Let us denote the vertices of this graph by ṽi1 , ṽi2 , ..., ṽik , let vij =
f(ṽij ), j = 1, ..., k. Next, let us denote the segments that connect p̃ with
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Figure 3: Why we cannot always extend.

ṽij and p with vij by ẽj and ej respectively. Suppose, we want to change
the extension on 1-skeleton along this cycle, in such a way that will enable
us to extend to 2-skeleton. Let us begin with the 2-simplex [p̃, ṽi1 , ṽi2 ]. Sup-
pose that the image of the boundary of this simplex contracts to a geodesic
loop li1,i2 . We then modify an extension, so that ẽ2 is mapped to li1,i2 ∗ e2.
Next, let us consider [p̃, ṽi2 , ṽi3 ]. Its boundary is mapped to a closed curve
li1,i2 ∗ e2 ∗ [vi2 , vi3 ] ∗ −e3. Suppose that when we try to contract this curve
it gets stuck on the same geodesic loop li1,i2 . Then, we have to change an
extension on ẽ3 to be mapped to li1,i2 ∗ e3. It can so happen, that when we
continue in such a way, we will have to change an extension on ẽk and next
on ẽ1, ẽ2 and so, this process will not terminate, and the desired extension
to the 2-skeleton will still be prevented by a single loop.

4. Partial modified extension. It is, thus, clear that the idea de-
scribed in (1) cannot always work, but we would like to get something out
of it. That is, if we cannot construct an extension to the whole 2-skeleton
in such a way, we would at least try to extend it to part of it. In fact, we
would like to extend to at least one face of every 3-simplex in the 3-skeleton
of D3. (Our reasons for doing so will become apparent at the end of section
2; cf. Remark 2.5.) It is not difficult to see that we can use the idea in
the previous section to extend our map to the cone over any tree in the
1-skeleton of a considered triangulation of S2 (after an appropriate modifi-
cation of the already constructed extension to the 1-skeleton of this cone).
So, the following lemma will be helpful for our purposes:

Lemma 1.1 Given δ > 0, there exists a triangulation of the 2-sphere, such
that each simplex of the triangulation has a diameter < δ and satisfies the
following property: There exist two nonintersecting trees in the 1-skeleton of
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the triangulation, such that any 2-simplex has an edge in one of the trees.

Proof. A triangulation satisfying the required properties will be constructed
from the standard triangulation of the round 2- sphere as the boundary of a
3-simplex by successively performing any necessary number of operations of
one of three types described below. It will be clear from the description of
these operations that we can use an appropriate sequence of such operations
to make the diameter of any 2-simplex less than δ for any positive δ.

Let a, b, c, d be the vertices of the standard triangulation of the boundary
of a 3-simplex. In such a triangulation there exist two trees denoted T1 and
T2 satisfying the conclusion of the Lemma . We can simply let T1 consist of
one edge [b, d] and T2 consist also of one edge [a, c], (see fig. 5 (a)). Note
also that each 2-simplex of this triangulation satisfies the following property:
the vertex of a simplex that is opposite to the edge that belongs to one of
the trees, is in the different tree.

To make this triangulation finer, but still satisfying the same properties
we can perform the following three operations:

(1) Subdivide an edge of a tree into two equal segments and join the middle
with the opposite vertex, (see fig. 5 (b)). In this case, obviously, the tri-
angulation satisfies the required properties, because the subdivided edge of
the tree simply becomes two edges instead. “The opposite vertex” property
will also not be violated by this operation.

To subdivide further, we will need to simultaneously subdivide pairs of
simplices that share an edge which is not in one of the trees. There are
two possibilities: either these simplices contain two edges that belong to the
same tree as in fig. 4 (a), in which case the edges will share a vertex, or
they contain two edges that belong to different trees, as in fig. 4 (b), in that
case edges will be “opposite”. This observation follows from the “opposite
vertex” property. These two cases will be discussed separately and result in
two different subdivisions.

(2) Consider two 2-simplices with a common edge not in one of the trees, like
depicted on fig. 4 (a). Let us denote them [a, c, x] and [a, x, d] respectively.
Suppose edges [a, x] and [x, d] are both in T1 and the vertex c is in T2. Then
we can subdivide the common edge [c, x] into two equal segments, connect
the middle with vertices a and d, and add the edge obtained by subdividing
[c, x] and containing c to T2, (see also fig. 5 (c)).

(3) Consider two 2-simplices with a common edge not in one of the trees,
like depicted on fig. 4 (b). Let us denote them as [a, x, d] and [a, y, d]
respectively. Suppose now that [y, d] is an edge in T1 and [a, x] is an edge in
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T2. We can subdivide the common edge into three equal segments. Denote
the points of subdivision by w, z respectively, connect vertices x, y with w, z

and add the edge [y, w] to T1 and the edge [x, z] to T2, (see fig. 4 (b) as
well as fig. 5 (d)).

Note that none of the original specified properties of the triangulation
are violated by these operations.

Performing the three operations allows one to make the diameter of
simplicies of a triangulation as small as desired, while the desired properties
remain satisfied.

2

da
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da

x

y

w z

a

c

x
d a

c

x

d

(a)

(b)

Figure 4: Simplicial subdivisions

Fig. 5 illustrates the three operations performed in a row starting from
the original triangulation of a sphere as the boundary of a tetrahedron.

Now,we can triangulate D3 as the cone over a sufficiently fine triangula-
tion of S2 obtained using Lemma 1.1. Then we can extend to the 1-skeleton
of this triangulation D3. Now we would like to use the idea explained in
section 1.3 to extend to a subcomplex of the 2-skeleton in such a way that
each 3-simplex has a face that belongs to this subcomplex. Of course, this
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Figure 5: Constructing triangulation of S2

extension will require a modification of our map on some 1-simplices of the
triangulation of D3 that are not in the triangulation of S2.

Lemma 1.2 Let S2 be triangulated as in Lemma 1.1. Let D3 be triangulated
as a cone over S2. Furthermore, let f : S2 −→ Mn be a map from S2 to
a closed Riemannian manifold Mn. Let p be the image of the center of
D3. Then there exists a subcomplex K of a 2-skeleton of D3, satisfying
the property that at least one 2-face of each 3-simplex of D3 lies in K with
the following additional property: For every N either there exist N non-
trivial geodesic loops in Mn based at p of length ≤ N(2d + δ) or f can be
continuously extended to K so that f maps each 2-simplex σ ∈ K to a disc
generated by a 1-parameter family of loops of length ≤ (N +1)(2d+ δ) based
at p constituting a homotopy contracting the restriction of f to the boundary
of σ to a constant map.

Proof. First, let us extend to the 0, 1-skeleta of D3 as it was described
in the introduction. We will now modify the extension to the 1-skeleton as
follows:

(1) Let T1, T2 be the two trees of Lemma 1.1. Let us begin with the root
of T1 that we will denote by ṽ0. Let ṽi1 , i1 = 1, ..., k1 be the neighboring
vertices of ṽ0, where k1 denotes their number.
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Consider all the edges g̃i1 , i1 = 1, ..., k1, that connect ṽ0 with the corre-
sponding vertices ṽi1 .

Those edges correspond in a natural way to two-simplices that are ob-
tained by coning an edge with p̃. Suppose we try to extend to the 2-simplex
corresponding to g̃i1 . Its boundary is mapped to a closed curve of length
≤ 2d+ δ. Assume that when we try to contract the boundary by the BCSP,
it gets stuck at a geodesic loop αi1 . We will then modify an extension to the
edge ẽi1 that connects the vertex p̃ with the vertex ṽi1 , to be αi1 ∗ ei1 , where
ei1 denotes the image of ẽi1 under the original extension. Let us once again
consider the 2-simplex [p̃, ṽ0, ṽi1 ]. Under the new extension its boundary is
mapped to a closed curve e0 ∗ [v0, vi1 ] ∗ −ei1 ∗ −αi1 of length ≤ 4d + δ, (see
fig. 6 (a)). This curve is contractible as a loop over the curves of length
≤ 4d + δ. Also, note that e0 ∗ [v0, vi1 ] is contractible to αi1 ∗ ei1 along the
curves of length ≤ 5d + 3δ. See fig. 6 (b) below. Indeed, one can see that
e0 ∗ [v0, vi1 ] is path-homotopic to αi1 ∗ −αi1 ∗ e0 ∗ [v0, vi1 ] over the curves of
length ≤ 5d + 3δ. The above curve is, in its turn, path-homotopic to the
curve αi1 ∗ ei1 ∗ [vi1 , v0] ∗ −e0 ∗ e0 ∗ [v0, vi1 ] also over the curves of length
≤ 5d + 3δ, which finally is path-homotopic to αi1 ∗ ei1 .
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Figure 6: New extension to the 2-skeleton.

Now suppose, we have modified our extension on all 1-edges ẽij , j =
1, ..., s, ij = 1, ..., kj , where ẽij are edges joining p̃ with vertices ṽij , that are
located at a distance ≤ j from ṽ0 in the tree, and kj denotes the number
of such vertices. Suppose, in the process we were obstructed by at most N

distinct geodesic loops of length ≤ N(2d + δ). Suppose also that we have
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extended to all of the 2-simplices of the form [p̃, ṽij , ṽij+1
], where j + 1 =

1, ..., s. We now would like to extend to all of the edges of the form ẽis+1
and

all of the 2-simplices of the form [p̃, ṽis , ṽis+1
]. Let us consider the image of

the boundary. By induction assumption, it is mapped to a curve of length
≤ (N +1)(2d+δ). Let us apply the BCSP with a fixed point p to this curve .
If there are no geodesic loops of length ≤ (N +1)(2d+δ) then the boundary
is contractible to p without the length increase and, therefore, we will not
modify the image of ẽis+1

. Suppose, it does get stuck on a loop. Let us
denote it αis+1

. If it does get stuck on the loop of length > N(2d + δ) then
this loop is distinct from the N loops we obtained during the previous steps
of the induction and we will have (N + 1) loops of length (N + 1)(2d + δ).
On the other hand, if the loop is one of the previous loops, its length must
be ≤ N(2d + δ). In any of the two latter cases we will modify the extension
on ẽis+1

to be αis+1
∗ eis+1

. We continue in the following manner, until we
have modified an extension on all of the ẽij and all of the [p̃, ṽij , ṽij+1

].
Now we can repeat the same process for the tree T2. 2

2 The proof of Theorem 0.1 for loops.

To prove Theorem 0.1 one will need the following simple lemma.

Lemma 2.1 Let Mn be a Riemannian manifold.
Let γ1(t), γ2(t) be two curves connecting the points p, q ∈ M n of lengths

l1, l2 respectively. Consider a (not geodesic) loop γ1 ∗ −γ2 based at p that is
a product of γ1 and −γ2. Let us apply the BCSP to this loop, that keeps the
point p fixed. Suppose also that it converges to a geodesic loop α based at p.

Then there is a path homotopy Hτ (t), τ ∈ [0, 1], such that H0(t) =
γ1(t),H1(t) = α ∗ γ2(t) and the length of curves during this homotopy is
bounded above by 3l1 + 2l2.

Proof. Let h̃τ (t) denote a homotopy that connects γ1 ∗−γ2 with a geodesic
loop α, (see fig. 2 (a) and (b)). Then below is a path homotopy between
γ1 and α ∗ γ2 satisfying the required properties. γ1 −→ α ∗ −α ∗ γ1 −→
α ∗ h̃1−τ ∗ γ1 −→ α ∗ γ2 ∗−γ1 ∗ γ1 −→ α ∗ γ2, (see fig. 2 (a)-(g)). The length
of curves during this homotopy is ≤ 3l1 + 2l2.

2

This lemma generalizes a similar statement in [R]. Also a similar argu-
ment is used by C.B. Croke to prove Lemma 3.1 in [C].
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Figure 7: Illustration of the proof of Lemma 1.1.

Before stating the proof of Theorem 0.1 let us describe the idea behind
it. Let us begin, as in the introduction, with the map f : S2 −→ Mn.
Let S2 be triangulated as in Lemma 1.1and let us start with the modified
extension from D3 to Mn as in Lemma 1.2 for N = k − 1. We will now
attempt to extend to the rest of the 2-skeleton of D3. So, let us consider a
2-simplex [p̃, ṽi1 , ṽi2 ] to which we did not previously extend our map. From
Lemma 1.2 we know that its boundary is mapped to a closed curve of length
≤ k(2d+δ), or there will be k distinct geodesic loops of length ≤ (k−1)(2d+
δ) (including the trivial one), and we are done. Let us apply the BCSP
with fixed endpoints to this curve. The process, can possibly converge to a
geodesic loop of length ≤ 2(k−1)(2d+δ), not allowing us to proceed further.
If this loop happens to be a periodic geodesic, then we are done, (see, in
particular, Example 1). Suppose, therefore, that this loop is not periodic
geodesic. Consider a (definitely not geodesic) loop based at p that consists
of going twice around the geodesic loop obtained on a previous step. When
we try to contract this loop one of the following things can happen:

(1) This new curve is contractible.

(2) This new curve contracts to the loop in the previous step.

(3) This new curve contracts to a different loop.

Case (3) results in a new “short” loop (of length at most twice the length
of the original loop). In this case we can try to proceed in the above manner,
i.e. by tracing the original loop three, four, etc. times and applying the
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BCSP to these curves hopefully obtaining new geodesic loops. Therefore,
let us examine cases (1) and (2). The case (1) allows us to construct the
desired extension. In the case (2) we use the following lemma;

Lemma 2.2 Let Mn be a Riemannian manifold. Let α : [0, 1] −→ M n be a
geodesic loop based at p ∈ Mn. Suppose a curve α ∗ α is contractible to the
loop α without the length increase, then the loop α is contractible to p as a
loop along the curves of length ≤ 3length(α).

Proof. Let αt = α|[0,t], γ = α∗α and γτ denote the curve in the homotopy

αt αt α* *- α α α* *-

γτα- *

αα- *

α
(a) (b) (c)

(d) (e) (f)

Figure 8: Double loop homotopy

that connects γ with α. We will now describe a path homotopy between α

and p that passes through “short” curves.
α −→ −αt∗αt∗α −→ −α∗α∗α. The length of curves during this homotopy,
obviously, does not exceed 3length(α), (see fig. 8 (a)-(c)).
−α∗α∗α −→ −α∗γτ −→ −α∗α. The length of curves during this homotopy
is bounded by 3length(α), since the length of γ does not increase during the
homotopy, (see fig. 8 (d), (e)).
Finally, −α ∗ α can be contracted to p along itself, (see fig. 8 (f)).

2

The above lemma is a particular and most obvious case of the following
situation: Suppose, we consider a sequence of curves obtained from α(t) by
going an integer number of times around α(t), i.e. going twice, three times,
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four times, etc., K times. Then either this sequence of curves results in K

distinct “short” geodesic loops, after an application of the Birkhoff curve-
shortening process to each curve of the sequence, or there exists an integer
r < K, such that a curve obtained from the original loop by tracing it r

times is contractible to p along “short” loops based at p.

Lemma 2.3 Let Mn be a Riemannian manifold, K be a positive integer
number, and α1 be a geodesic loop in Mn based at p. Then either there exist
K distinct non-trivial geodesic loops, α1, ..., αi, ..., αK of length l1, .., li, ..., lK ,
such that li ≤ il1, 2 ≤ i ≤ K, or there exist a number r ≤ K, such that the
(non-geodesic) loop αr = α ∗ ... ∗ α is path-homotopic to p along the curves
of length ≤ (2K − 1)l1.

Proof. Suppose that there are no K distinct geodesic loops based at p of
length ≤ Kl1. Consider the first k powers of α1, α1, α

2
1, ..., α

i
1, ..., α

K
1 . Sup-

pose that none of these loops is path-homotopic to p without the length
increase. That means that, for every i when we apply the BCSP to
αi, it stops at a non-trivial geodesic loop αi respectively. Our assump-
tion implies that all these loops cannot be distinct. Therefore there exist
i 6= j ∈ {1, ...,K}, such that αi = αj . Without any loss of generality,

let us assume that j > i. Then α
j−i
1 is path-homotopic to p as follows:

α
j−i
1 −→ αj ∗ −αi −→ αj ∗ −αi −→ p. The length of curves during this

homotopy is bounded by (j + i)l1 ≤ (2K − 1)l1. 2

Let Mn be a closed Riemannian manifold, satisfying the hypothesis of
Theorem 0.1. Fix a point p ∈ Mn. Let S2 be triangulated as in Lemma 1.1.
Let f : S2 −→ Mn be a map such that its composition f ◦H with the Hopf
fibration H : S3 −→ S2 is an element of infinite order in π3(M

n). Suppose
that we have extended f : S2 −→ Mn to the 1-skeleton of S2 as in Lemma
1.2. Suppose that there exist at most (k−2) non-trivial geodesic loops based
at p of length ≤ (k−1)(2d+δ). Then to extend to 2-skeleton, we will proceed
as follows: In the 2-skeleton of Mn there will be 2-simplices of two types.
The boundary of the simplices of Type I will be mapped to a curve that is
contractible to p in a natural way as it is described in Lemma 1.2. To extend
to the simplices of Type II, we will proceed as follows: let σ̃2

i = [p̃, ṽi1 , ṽi2 ]
be such a simplex. Its boundary is mapped to a curve passing through the
point p of length ≤ (k − 1)(2d + δ). Let us try to contract this curve as
a loop. If, indeed, it is contractible as a loop then we are done. If it gets
stuck on one of the geodesic loops based at p we can proceed as follows: let
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us denote this curve by α and let us consider its powers αj , j = 1, ..., k − 1.
Let us apply the BCSP with the fixed endpoints to each of these curves. It
cannot happen that under BCSP ends at a different geodesic loop every time
as we have at most (k − 2) distinct non-trivial geodesic loops based at p of
length ≤ (k−1)(2d+ δ). According to Lemma 2.3 the only other possibility
is that some power αi of α with i ≤ k is contractible to a point via the loops
based at p of length smaller than (2k − 3)k(2d + δ). Note, however that for
different α, this power si can be different. Without any loss of generality
we can assume that k > 2, as the In this case for every considered loop α

α(k−1)! will be contractible via loops of length ≤ k ((k−1)!+2k−4)(2d+δ).
(We can contract k!

i
copies of αi in parallel. When we contract each copy

of αi we get an extra summand (2k − 3 − i)k(2d + δ) to the length of the
considered curve.) This observation helps us to finish the proof of Theorem
0.1.

Proof of Theorem 0.1 in the case, when p = q. The proof will be by
contradiction. Let f : S2 −→ Mn be a non-contractible map. Assume S2 is
triangulated into fine simplices as in Lemma 1.1, and that f(S3) has induced
triangulation, such that diameter of any simplex in this triangulation is
smaller than δ. Let D3 be triangulated as a cone over the triangulation
of S2. Denote another copy of S2 by S2

∗ . Let fs : S2
∗ −→ S2 denote a

standard map of degree s. Assume that the chosen triangulation of S2 and
a triangulation of S2

∗ are chosen so that fs is a simplicial map. Let D3
∗

be triangulated as a cone over S2
∗ . We will now attempt to extend a map

f ◦ fs to D3 for s = (k − 1)!, and as an obstruction to this extension we
will obtain a map g : S2 −→ Mn of non-zero degree that is swept-out by
“short” loops in a natural way. This sweep-out can then be used to obtain
the desired upper bound for k short geodesic loops based at p as described
in the introduction.

We will first extend f ◦ fs to the 0-skeleton and to the 1-skeleton of
D3

∗. The 0-skeleton of D3
∗ consists of a single additional point q, which is the

center of the disc. We will let the image of q be the center of D3, p̃. Next,
let us extend to the 1-skeleton as follows: Consider all of the edges of the
form [q, wi] that connects the center of the disc with the vertex wi, where
wi is mapped to a vertex ṽi by fs. There, in general, will be s such vertices.
All edges of this form will be mapped to the edge that connects p̃ with ṽi.

Now we will extend to the 2-skeleton of D3
∗. Suppose that we have

already extended f : S2 −→ Mn to the part of the 2-skeleton that includes
one 2-simplex in the boundary of every 3-simplex in the considered triangu-
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lation of D3 \ ∂D3 as guaranteed by the proof of Lemma 1.2. (Recall, that
in order to do that we need to change the previously constructed extension
to some of 1-simplices.)

Consider the 2-simplices of D3
∗ of the form [q, wj1 , wj2 ], where the

boundary is mapped to the boundary of the simplex [p̃, ṽi1 , ṽi2 ], to which
f : S2 −→ Mn was extended by the virtue of Lemma 1.2. We will then
map [q, wj1 , wj2 ] to the simplex [p̃, ṽi1 , ṽi2 ] using the extension of f . There
will be s simplices that are mapped to [p̃, ṽi1 , ṽi2 ].

Finally, let us consider simplices of the second type. These are simplices
of the form [q, wj1 , wj2 ], which boundary is mapped to the boundary of a
simplex [p̃, ṽi1 , ṽi2 ] of type II. There will be s simplices like that. Consider
the images of their boundaries under the map f ◦ fs : D3

∗ −→ Mn. Their
image will be a curve [p, vi1 ]∗[vi1 , vi2 ]∗[vi2 , p] raised to a power s, i.e. traced s

times. It is contractible with a “controlled” length increase, (length of curves
in this homotopy is bounded by k((k−1)!+2k−4)(2d+δ), see the discussion
before this proof of Theorem 0.1. (Otherwise there exist k − 1 distinct non-
trivial geodesic loops based at p, and, therefore, k distinct geodesic loops
based at p, and we are done.)

Therefore, although we cannot extend f ◦ fs to the union of these 2-
simplices, we can fill the boundary of their sum by a 2-disc, that will admit
a desired sweep-out by “short” loops based at p.

Thus, we have finished working with the 2-skeleton. Now, instead of
considering f ◦ fs as a map of S2

∗ into Mn, let us consider this map as a
map f ◦ fs :

∨
j ∂σ3

j −→ Mn from the product of the boundaries of all inner
3-simplices of the considered triangulation of D3

∗. Of course, the product of
the boundaries of the 3-simplices can be connected with S2

∗ by a homotopy
that removes pairs of ”inner” 2-simplices with opposite orientations. Vice
versa, we can map S2

∗ into the product of the boundaries of 3-simplices
by “inserting” all inner 2-simplices twice with opposite orientations. When
f ◦ fs is regarded as a map of the product of boundaries of the inner 3-
simplices, it comes with a natural sweep-out by curves with short images
described below. This sweep-out corresponds to a sweep-out of S2

∗ by loops
with ”short” images of the same length that can be used to obtain the
desired upper bound for the lengths of k geodesic segments as it had been
explained in the introduction.

More precisely, let us begin by considering an arbitrary simplex in the
triangulation of D3 denoted σ3

l . Then f−1
s (σ3

l ) will be the wedge of s 3-
simplices D3

i in the triangulation of D3
∗. Next consider f ◦ fs :

∨
i ∂D3

i −→
Mn. This map has a natural sweep-out by short loops that will be de-
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scribed as follows. Let us look at the image. It is constructed from a small
simplex σ2

i = [vi1 , vi2 , vi3 ] = f(σ̃2
i ) in the following way. Firstly, one con-

nects p with each of the vertices vij , j = 1, 2, 3 by curves f(ẽj), where ẽj

are segments connecting p̃ with ṽij . We then obtain three closed curves:
ej ∗ [vij , vijmod3+1

] ∗ −ejmod3+1, j = 1, 2, 3. By Lemma 1.2 at least one of
these curves is contractible to p along “short” curves, and without any loss
of generality we can assume that e3 ∗ [vi3 , vi1 ] ∗−e1 is such a curve. The ho-
motopy generates a 2-dimensional disc that we will denote σ2

31. This disc, as
well as σ2

i will be taken with a multiplicity s. The remaining two curves are
both path-homotopic to p along “short” curves after they have been traced s

times. We would like to comment that σ2
i is arbitrarily small and, therefore,

can be treated as a point q, (see the Remark below). We now present a
sweep-out by short curves. See also fig. 10. p ∼ e1 ∗ −e2 ∗ ... ∗ e1 ∗ −e2,
(fig. 10 (a)) We next use Lemma 2.1 to “replace” e1 by e3, (fig. 10 (b)).
e1 ∗ −e2 ∗ ... ∗ e1 ∗ −e2 ∼ e3 ∗ −e2 ∗ ... ∗ e3 ∗ −e2. Finally, this curve is
path-homotopic back to p, (see fig. 10 (c)).

We then can separatly sweep-out f ◦ fs : f−1
s (∂σ3

l ) −→ Mn for all such
3-simplices in the triangulation of D3 to obtain a sweep-out of the whole
map.

Note that the longest loops in the sweep-out appear when we contract
e1 ∗−e2 or e3 ∗−e2 iterated s times. Thus, we obtain L ≤ (2k!+4k2 −8k)d,
and Proposition A implies that the length of the shortest k geodesic loops
on Mn (including the trivial) does not exceed 2kL ≤ (4k! + 8k2 − 16k)d.
If k ≥ 3, then (4k! + 8k2 − 16k)d ≤ 10k!d. (If k = 2, then a better bound
4d for the length of a shortest non-trivial geodesic loop based at p can be
obtained as a particular case of the main result of [R]). 2
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v~2
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Figure 9: Extending a map f ◦ fs : S2 −→ Mn
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Figure 10: Sweep-out of a sphere

Remark 2.4. Note that we absolutely needed in this proof a possibility
to contract the boundary of one of three “not small” 2-simplices in the
boundary of the considered 3-simplex to a point without iterating it s times.
Otherwise we would not be able to obtain a desired sweep-out. This explains
the necessity of Lemmae 1.2 and 1.1.

Remark 2.5. In this remark we will explain why the small simplex
[vi1 , vi2 , vi3 ] mentioned in the proof of Theorem 0.1 can be treated as a
point. In fact, [vi1 , vi2 , vi3 ] can be “replaced” by q = vi2 , (see fig. 11).
In fig. 11 we show that there is a “short” path-homotopy between two
curves e1 ∗ [vi1 , q] and e3 ∗ [vi3 , q], (see fig. 11 (a)), that goes as follows:
firstly, note that by Lemma 2.1 there is a path-homotopy passing through
“short” curves between e1 ∗ [vi1 , vi3 ] and e3 during which the points p and
vi3 remain fixed. Let us denote the curves in this homotopy by c1

τ . Sec-
ondly, because [vi1 , vi2 , vi3 ] can be made arbitrarily small, (in particular, its
diameter can be made much smaller than convexity radius) it can be swept-
out by curves of length ≤ ε(δ), where ε(δ) approaches 0 as δ approaches
0, with fixed points vi1 and vi2 = q. Let these curves be denoted as c2

s.
(See fig. 11 (d)). Now the homotopy will go as follows, (see 11 (b)-(f)).
e1 ∗ [vi1 , q] ∼ e1 ∗ c2

s ∼ e1 ∗ [vi1 , vi3 ] ∗ [vi3 , q] ∼ c1
τ ∗ [vi3 , q] ∼ e3 ∗ [vi3 , q].
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Thus, the point q replaces [vi1 , vi2 , vi3 ], e1 is replaced by e1 ∗ [vi1 , q] and
e3 is replaced by e3 ∗ [vi3 , q].
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Figure 11: Small simplices can be ignored.

3 Geodesic segments between different points.

In the previous sections we assumed that the points x and y coincide, i.e. we
are interested in geodesic loops based at x. In this section we outline how
this proof generalizes for the case, when x and y are allowed to be distinct
points. The main problem is with the first step of the extension process:
When we contract a loop based at x using a loop shortening process, we are
either able to contract it all the way to a point, or get stuck at a geodesic
loop, not at a geodesic between x and y. The remedy can be found at our
paper [NR1]. Namely, we replace the Birkhoff curve-shortening process for
loop by another curve shortening process described in the proof of Lemma
1 in [NR1]. It works as follows: Attach to a considered loop a fixed minimal
geodesic σ between x and y. We obtain a path between x and y. Now
apply a version of the Birkhoff curve-shortening process for curves with
fixed endpoints to this path. The result will be a geodesic between x and y.
If for some S there is only one geodesic between x and y of length ≤ S, then
this process will be continuous with respect to initial loop based at x, when
we consider only loops of length ≤ S − dist(x, y). Further, assume that λ1
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and λ2 are loops based at x. Assume that when we apply this process to λ1

and λ2 we get stuck at the same geodesic µ between x and y. Then there is
the following path homotopy between λ1 and λ2 that passes through loops of
length ≤ max{length(λ1), length(λ2)} + 2dist(x, y) (compare with [NR2]):
Choose a minimizing geodersic σ between x and y. Now proceed as follows
:

λ1 −→ λ1 ∗ σ ∗ σ−1 −→ µ ∗ σ−1 −→ λ2 ∗ σ ∗ σ−1 −→ λ2.

Here arrows denote obvious path homotopies between loops based at x.

A modification of same idea can be used in the proof of an analog of
Lemma 1.2: If λ1, λ2 are two paths between p and x, σ is a minimal geodesic
between p and q, we can consider path λ1 ∗ λ−1

2 ∗ σ between p and q. Apply
the Birkhoff curve shortening process with fixed endpoints to this path.
Assume that the process stops at a geodesic τ between p and q. Of course,
the length of τ does not exceed the sum of lengths of λ1, λ2 and σ. Consider
now a new path λ∗

2 = τ ∗ σ−1 ∗ λ1. Now λ1 ∗ λ∗−1
2 ∗ σ can be contracted

to σ by a length non-increasing path homotopy. Therefore λ1 ∗ λ∗−1
2 can be

contracted to a point by a path homotopy that increases the length by not
more than 2d. This observation leads to an analog of Lemma 1.2 where we
conclude either the existence of N + 1 distinct geodesics between p and q of
length ≤ (4N +1)(d+ δ) or the extendability of f on each simplex σ ∈ K so
that the extension is generated by a 1-parametric family of loops of length
≤ 4N(d+ δ). Note that this upper bound is approximately twice the bound
in the original estimate. As the result the upper bound that we obtain when
p and q can be different is asymptotically twice the upper bound in the loop
case ((8k! + o(k!))d versus (4k! + o(k!))d).

This idea can also be used to modify Lemma 2.3 as follows: Now we do
not attempt to contract powers of α to a point by a length non-increasing
path homotopy as in its original version. Instead we attach σ ∗ σ−1 to αi at
its endpoint and apply the Birkhoff curve shortening process for curves with
fixed endpoints to αi∗σ. Assume that this process converges to a geodesic τi.
Then, if τi = τj, then αi is homotopic to αj via τi ∗ σ−1 as above, and α|i−j|

is contractible via curves of length not exceeding (2max{i, j} − min{i, j})
length(α) + 2 dist(p, q), and an analog of Lemma 2.3 easily follows.
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