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Introduction.

'In this article we determine completely the main
components of type I degenerations of Kunev surfaces, i.e.,
degenerations of Kunev surfaces with finite local monodromy.
The main results here were already announced in [Us.4] only
with some idea of proofs. |

A Kunev sunface X 1is defined as a canonical surface,
i.e., canonical model of a surface of general type, with

x(OX) = 2 and (wx)2 = 2, Wy the dualizing sheaf, which
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has an involution ¢ such that Y' := X/o 1is a K3 surface
with rational double points (RDP, for short). It is well-known

that X has only RDP hence w is a line bundle. It is also

X

known that the linear system Iwizl

cover f : X ——>2P2 , factoring through Y' , with Galois group

gives a finite Galois

(2/2)®%  whose branch locus consists of two cubics Ecj and a
line 1L satisfying the conditions:

(0.1) ch has only simple singularity. C, N C, N L = ¢
The pull-back of L on the minimal model Y of Y' 1is reduced.
Conversely, given two cubics ZCj and a line L on 1P2 satis-
fyingv(0.1), we can reconstruct a Kunev surface X in the
following way:

(i) Take a double covér Y' of DP° branched along ZCj .
Then Y' |1is a. K3 surface only with RDP.

(1ii) Let Y be the minimal model of Y' . Set

aq ¢ Y—>IP2 . Let E

i (1 $1i s9) Dbe the exceptional curves
Jfor oy whose multiplicity in a# Cj is odd. These are called
distingudished (=2)-curves.

(iii) Take a double cover X' of Y branched along
ofL + JE; . Then the canonical model X of X' becomes a
Kunev surface.

By the structure of Kunev surfaces described above, we
can construct their coarse moduli space M in two ways:; by
the geometric invariant theory applied for the branch loci

ch + L and by the period map for K3 surfaces Y . In order

to see it more precisely, set

G := {ZCjEZSym‘|0 2(3)HECj has only simple singularity}
r

_ii_



He 1= G x [0 ,(1)]
P

H := {ZCj+L €'H*|2Cj+L satisfies (0.1)}
- Recall the fact that a plane sexetic curve is properly stable
with respect to the natural action of SL3(¢), if and only if

it has only simple singularity {(cf. [H.2] , [Sh]). Hence we

can see in the first method that

N

G/SL3(E)

9
is the coarse moduli space of triples (Y',a#O 2(1),21 Ei) ,
' P
which are called K3 sunrfacesof Kunev type, and that the coarse

moduli .space of Kunev surfaces is
m = H/SL3(¢) .
On the other hand, by the second method, the projection

¢2 : M —> N

can be seen as a period map of the second cohomology for Kunev
surfaces. This is proved by suitable versions of the Torelli
theorem and surjectivity of the period map for K3 surfaces

of Kunev type and the lattice theory of Nikulin in [T.2] and
[Mo.2] (there are some ambiguous points in the former; the
latter is rigorous) (cf. (2.8)). This together with the Kulikov
list of degenerations of K3 surfaces ([Kul], [PP]) implies

that
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m* :="H*/SL3(¢)

is a partial compactification of M obtained by adding those
points which correspond to type I degenerations of Kunev surfaces.
Now we define two functions on H* by

m(ECj,L) := ) , min{I(P,L n gj)|j = 1,2}

pelp

n(ECj,L) #{triple points of Cj on L, j =1,2}

where I(P,L N Cj) is the intersection multiplicity of L and

C. at P €ZE2 . It is easy to see that the value of m( )

J
(resp. n( 7)) is 0,1,2 or 3 (resp. 0,1 or 2). These functions

induce ones on M* and they define two stratifications:

m* = S

{s € M*|m

s, 11l 82 where Sm min{2,m(s) }}

* =
m* =Ty 11 T, 11 T, where T

{s € M*|n nis)} .

1

The main result in this paper is stated as
(0.2) In the above notation, the pariial compacitification

m* 44 divided into fLive parts by the above stratifications and

they cornespond to two sendies of degenerations:
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31: 32=

numerdical K3 surfaces Z{K3 surfaces}
////7 with one double fibexn

So n TO =M =

{Kunev surfaces}

T1 n SO = T2 =

\\\\9 elliptic surfaces >{épﬂizting abeﬂéan}
wlLh Pg =9 = 1 surnfaces

The perdiod map of the second cohomology fon respective surgaces

is edsentially equal to the restriction of the projection
n* —> N

(by the Mayer-vietoris sequence and the Clemens-Schmid segquence)
and ¢2I3m (rnesp. ¢2[Tn, ¢2|SmnTn] has pure relative dimension
2-m (resp. 2-n, 2-(m+n)) (Theorem (2.6), Corollaries (2.10),

(2.13)).

Here we use the terminology a numendical K3 sunface with

one double fiber, which means a minimal elliptic surface with

pg =1, qg=0 and c? = 0 and with one double fiber. For

ch+L € H* , the minimal medel i- of the corresponding surface

can be obtained in an analoguous way as the reconstruction

(i) - (iii) above of Kunev surfaces, i.e., we can construct a
diagram:
X' < X* > i
(0.3} Y' ¢— Y < Vil
| =]
IP2< p*




where Y' 1is the double cover of P? branched along {Cj ,
Y is the canonical resolution of Y' ——>:P2, X' 1is the
double cover of Y branched along a¥L + E?Ei, X* is the
canonical resolution of X' — Y , and X is the minimal
model of X* . Diagram (0.3) suggests an idea of a proof of
(0.2). The essential part is the computation of the branch
locus o¥L + JE; on the minimal K3 surface Y .

Historically the phenomenon of appearance of positive
dimensional fibers of a periocd map is first observed for Kunev
surfaces in [T.1], [Us.1] and [Us.2] (for Todorov surfaces in
[T.2]) then for elliptic surfaces with Py = 4 = 1 in ([Sa.Ml.
It is new for numerical K3 surfaces with one double fiber., The
present result (0.2) explains uniformly these phenomena by
degeneration (Corollary (2.13)).

We explain here the background of Kunev surfaces. The
minimal model of a Kunev surface is a simply connected surface

2

with p, =cj =1 . Let i be the coarse moduli space of

surfaces with pg = c

and with dim ® = 18 which contains Kunev locus M with

=1, then M is irreducible, rational

codimension 6 ([Ca.1], [Ca.2]). On the Hodge theoretic view-
point, these surfaces are interesting materials. After Kunev
constructed an example of a Kunev surface as a counterexample
to the infinitesimal Torelli theorem, the following results
are known:

(0.4) The genendic Ainfinditesimal Torelli theorem holds fon

surfaces in W ([Ca.1]).
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(0.5) The period map &, of surfaces in W has some

2
posditive dimensional f§ibers ([T.11, [Us.1], [Us.2]; [T.1] treats

only Kunev surfaces).

(0.6) m in W 4is chanacterized by dim ¢7'e, (IX]) = 2 ,

which L& the maximaf dimension of the {iberns of ¢, ([Us.1]).

2

(0.7) The inginitesimal mixed Torelli theorem holds foxr
pains (X,C) of surfaces X 4in M and their smooth canonical
curves C ({Us.31).

(0.8) The generdic mixed Torellfi theorem holds for Kunev
surfaces ([L], [SSU]; there is a point about monodromy which is
not clear in [L]).

(0.9) Thene exdists a lanishi open subset U of M such
that ¢_1®(U)= U, where ¢ : W ——> T~D 44 the mixed period map
([ssul).

Hence, in order to solve the mixed Torelli problem for surfaces
in W via Kunev locus @ , it is necessary to study the following:

(0.10) A compactification of the mixed period map
o ¢ M —> I'~D .

(0.11) The monodromy T 4in (0.9), where we used a geometric
one.

(For a general reference of the above as well as for the
terminology such as mixed period map, mixed Torelli etc., see
[sSU].) .Problem (0.10) is one of the motivations of the present
work. Our result here is not its answer but a by-product.

Section 1 1s preliminaries. We shall recall the canonical
resolution of a double cover and related results, the Clemens-
Schmid sequence and monodromy criteria, the canonical bundle

formula for elliptic surfaces and definitions of Kunev surfaces
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and numerical K3 surfaces and some of their properties for
our latter use.

In Section 2, we shall construct an integral family of
surfaces £ : X ——>:ﬁ2 over a fixed K3 surface of Kunev type,
which is a degeneration of Kunev surfaces. We shall state the
main theorem (2.6) and explain.this result perspectively in
the framework of a type I partial compactification 0i* of
the coarse moduli space M of Kunev surfaces {Corollary (6.10)).
We shall also explain uniformly the phenomenon of appearance of
positive dimensional fibers of the period map for Kunev surfaces,
numerical K3 surfaces with one double fibers and elliptic surfaces
with pg = g = 1 . The main part of the proof of Theorem (2.6)
will be postponed to Sections 4 and 5.

In Section 3, we shall study locally over the singular

points P of Ec'j + L cP?

for {Cj + L € H* and give tables
of configurations of -Ecj + L , the branch loci BY{P) on

minimal K3 surfaces Y and the canonical divisors Ki (P) of
1

type I degenerations of Kunev surfaces corresponding to ZCj + L .
..All of these will be described locally over the critical points
P in this section. The result here plays.the key role in the
proofs of Theorem (2.6.3).

Section 4 contains tables of global configurations of
ch + L € H* , the branchH loci BY on Y and the canonical
divisors of the minimal model X of type I-degenerations of
Kunev surfaces corrésponding to Ecj + L . These tables give a

proof of Theorem (2.6.3), which is clumsy but elementary and

fruitful.
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Section 5 contains another proof of Theorem (2.6.3). We
shall use the local classification in Section 3 as well as an
elliptic fibration on the minimal model X induced by the
pencil of lines on IPZ through a critical point P of
{cj+L for {cj+1.esmurn (m >0, n>0) .

We use the following terminology:

(~1)-curve: an irreducible exceptional curve of the first
kind on a smooth surface.

(-2)-cunrve: an irreducible rational curve with self-inter-
section -2 on a smooth surface, i.e., a nodal curve.

{n})-(bi)section: a (bi)section of a fibration on a smooth

surface with self-intersection n .
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1. Preliminaries,

(1.1 $8anonical aegolution. In this subsection, we shall
sumarize the process of a canonical resolution and related results in
[H.1] in a slightly general form for our later use.

Let Y be a smooth surface, B = z biDi an effective divisor

on Y and 'F a line bundle on Y such that @Y(B) = 592. Then we

can associate the double cover X = Spec(@Y ® 7!y —— Y branched

along B, where 0, ® ¥°! is endowed an @,-algebra structure by

Y Y
(-2 __, 6, for s € HO(Y, 782y with (s =0) = B. 1f B

is non-reduced (resp. reduced but singular), X 1is non-normal (resp.

s + &

has isclated singularity).

The process to obtain the canonical resolution X* of X 1is as
follows:

0) Set Yg =Y, Bg = Bodd,red = B - ZZEbi/ZJDi and ¥, = F @
@Y(-Z[bi/ZJDiS. and take-the>doub1e cover X = Spec(@Y ® Fa ')
branched along Bg. Let pp : Xg —— X be the birational morphism
induced by fg — Z.

i) Let gy : Y, —== Y be a blowing-up with center at a
singular point P, of Bjg. Let e; be the multiplicity of P, €
B and E{ = qi!(Py) the exceptional divisor. Set B, = q:Bg -

2{e;/21E; and F,; = q??o o @Y§-[e1/2]E1) and take the double cover
X, = Spec(GYl @ F1lH, Let p; : Xy — X5 be the birational

morphism induced by &¥; —— qf?o.

After a finite number, say n, of repetition of the process i),

*

we get a non-singular model X := Xn which is called the caerornical



2eg90lution of X. The whole procedure is given by the diagram:

Po Pi P2 Pn *
X « Xog ¢ X, + ...«—xn=x
ain | ] | |
q, 92 q
= Yy — Y, ¢ i Y v*
*
= -9 2
B.1 qui-l '[ei/“]Ei
*
= - 2 i
: qi?i—l 2] GY( [ei/“]Ei) (1 £ 1 £
A singularity at a point on a reduced curve is called simAle
its multiplicity is not greater than three and if it is not an
infinitely near triple point. Note that, in the procedure of the

canonical resolution (1.1.1), the curve By has at most simple

singularity if and only if [ei/2] =1 for all i.

(1.1.2) Lemma. In the above notation, if By has at most
simple singularity, then the canonical resolution of X coincides

with the minimal resolution of X and we have

Ky# = w*(KY e 74y, where ¢ : X' — Y.
I1f, moreover, Y is a minimal K3 surface and pg(x*) =1, then
a(X®) = -((Bgr2/8 + 2).

Proof. The first assertion follows from KY e ?i = q?(KY
i i-

?1_1) and this follows from the remark just before this lemma (cf

[H.11). We shall prove the second assertion. By construction,
i i i1y - o1 2-1i
h (Ox*) = h (GY ) + h (?n ) = h (OY ) + h (KY ® ?n)
n n n
i 2-1i i 2-1
= h' (0, + h" (K, ® Fo) = h (0 + h Y F )

if

1

.

Since h'(0x) = h'(0,) = 1 for i =0, 2, wesee h'(Fo) = 0 for

i =0, 2. Hence, by the Riemann-~Roch theorem on Y, we have

®



a(X®) = hi(Fg) = -x(Fg) = -((Fg)2/2 + X(0,)) = ~((Bp)2/8 + 2).

QED.

(1.2) ¢@lemeno—Ychnid geguence and monodaomy crileria. We
shall summarize the Clemens-Schmid sequence and related results
(ICl1.11, [Scl) in the form for our later use. There are good
expositions on this topic in (Pl and [Mo.1l].

Let U Dbe the unit disk. Let f : X —— U be a semi-stable
degenération of surfaces, i.e., f 1is a proper flat helomorphic
map, I is a Kahler manifold, Xt = £71(t) is smooth for t # 0
and Xq := £f7'(0) = Z Vi is a reduced divisor with simple normal
crossings. In this situation, we have the Clemens-Schmid exact
sequence

N

. H2
lim Hlim

8

1.2.1 0 — H?im B, Hy % w2 L p2

where

H Hl(Xt, Q) endowed with the limiting mixed Hodge structure,

i =
lim
yl

Hl(xo. Q) endowed with the functorial mixed Hodge structure of

Deligne [D],

H

; H, (Xo, Q@) endowed with the dual mixed Hodge structure,

N =1id - T for the local monodromy T. acting on. Hiim’
8, o, t and N are morphisms of mixed Hodge structure of type
(-2,-2), (3,3), (0,0) and (-1,-1) respectively.

As a corollary of the Clemens-Schmid sequence, we have:

(1.2.2) Lemma-Definition. In the above notation, N? = 0 and
pg(Xt) > T Pg(vi) always hold. N2 = 0 if and only if H2() = 0
for the dual graph I of Xq = X V.. N =20 if and only if pg(Xt)



= Z pg(Vi). The semi-stable degeneration f : { —— U is called
type I (resp. I1I, III) if N = 0 (resp. N # 0 and N?2 = 0, N2 # 0

and N° = 0).

(1.3 Some redulla for ellipatic fibrations. We include here
the canonical bundle formula [(Ko.2, Theorem 12] and the positivity of
the direct image of relative dualizing sheaf [Ue, Remark in Appendix]
for elliptic fibrations for our later use.

Let X be a non-singular compact complex surface and let f : X
—— C be a trelafively minimael elliptic fibration, i.e., a general
fiber of f 1is a non-singular eliliptic curve and no fiber of f
contains (-l)-curves.

(1.3.1) 8anonical 6undle foanula. The canonical bundle K

X
of an elliptic surface X has the form

- X 1 -1 -
Kx = f (KC ® (R f*Gx) ) @ ‘19)((.'>.“.(rn.1 1)Fi)
where miFi' i=1, 2, ..., n, are all multiple singular fibers.
. 1 . —
The line bundle R f*Gx is dual to f*mX/C where Oy /c = KX ®

* -1
(% Kc) , and

i = -
deg R I*Gx = X(Gx).

A simpler proof of the above formula can be found in [Ue,
Appendix].

For the degree of the line bundle le*Ox, or equivalently of

f*mx/c, we can see more:
(1.3.2) Poaitivity of f*mX/C' We have
deg f*mX/C 2 0.



The equality holds if and only if the elliptic fibration f : X — C
has constant J-invariant and has only multiple singular fibers of
type mI0 (for the notation, see [Ko.1]).

There is a full proof of (1.3.2) in [BPV, p.110] by reducing the
assertion to the case of a semi-stable fibration.

By the definition of the Kodaira dimension, the following
assertion can be obtained as an exercise of intersection theory (for

a proof, see, e.g., [(BPY, p.1%41]),

(1.3.3) 1f a non=singular compact complex surface X has

Kodaira dimension x(X) = 1, then X is an elliptic surface.

(1.4) Yone surfaces and their Aroheriies. We include here the
definitions of somewhat unfamiliar surfaces and their properties

which will appear later.

(1.4.1) Definition. A Xunev guaface X is a canonical surface
with x(0,) = 2 and (mx)2 = 1, oy the dualizing sheaf, which has
an involution o such that X/¢ 1is a K3 surface with at most

rational double points (R.D.P. for short).

Let X be the minimal model of a Kunev surface X. The
following properties are known ([Ca.l1):

(1.4.2) X is simply connected. pg(i) = 1. e2(X) = 1.

(1.4.3) The canonical model X can be represented as a

weighted complete intersection of type (6,6) in P(1,2,2,3,3) with

- 5 -



at most R.D.P., whose partially normalized equations are

£ (3
g

where deg Xo = 1, deg Y, = 2 U

Z% + f (Xa, Yio YZ)

u

Za + E(B)(Xa- Yi, Y2

1}

1, 2), deg 2, = 3 (i =3, 4),

and £%) and g(a) are cubics in yg := x§, V¥i, VY2-.
(1.4.4) Definition. A minimal surface X is called a
numesrical X3 durface if p_ =1, q =0 and ctf = 0.

g

The following are Known:

(1.4.5) Every simply connected numerical K3 surface X belongs
to one of two oriented homotopy types according to its Whitney class,
i.e., ¢, (X) mod 2 ([Mil]).

1
(1,4.6) A simply connected numerical K3 surface is

characterized as either a K3 surface or an elliptic surface with pg =
1 and g = 0 which has at most two multiple fibers and, in the case
that there are two, their multiplicities m; and m; are mutually

prime ([Ko.3, Proposition 1, Lemma 6]).

(1.4.7) Remark. Kodaira [Ko.3] called a simply connected
surface with the same oriented homotopy type as K3 surface a AomofosAy
X3 aquatace. By definition, a homotopy K3 surface (resp. K3 surface)
is equivalent to a simply connected numerical K3 surface with ¢ (X)
= 0 mod 2 (resp. c¢;(X) = 0). While we shall come across numerical

K3 surfaces with one double fiber later.



2. Construction of families of surfaces and statements of

the main results.

(2.0 In this section, we shall construct families of surfaces
which are degenerations of Kunev surfaces over a fixed K3 surface and
gstate the main resutls. We postpone the proof of Theore& (2.6.3) in
Section 4 and Section 5, where we shall give two different proofs
after a preparation in Section 3.

(2.1> Let X be a Kunev surface defined in (1.4.1). ‘Then by
(1.4.3) the bicanonical bundie wiz gives a Galois cover X —— P2
with Galois group (2/22)62. The branch locus consists of two

f(s)(yo. Y1, ¥Y2) = 0} and C, = {g(a)(yo, Yi, ¥Y2) = 0}

cubics C; = |
and a line L = {yg = 0}. The K3 surface Y' := X/ in (l.4.1) can
be seen as a weighted hypersurface of type (6) in P(,1,1,3
defined by an equation h = ug + fCS)(Yo. Yi,» ¥Y2) g(3)(Yo: Yi, Y22
with deg yi =1 (0 £ 1 £2) and deg uz = 3. By construction,
the K3 surface Y' with R.D.P. is the double cover of P? branched
along the two cubics Z Cj. hence I Cj on P2 has only simple
singularity.

(2.2) For sexetic curves on P2, curves with at most simple

singularity coincide with properly stable curves with respect to the

action of SLz(C> ([H.23, [(Shl). Set
g = (3 Cj € Sym2|0P2(3)I Iz Cj has only simple singularity}
N = ¥/SL3(O)

Then, as a consequence of Theorem (2.6.3) below, N can be seen as
the coarse moduli space of the polarized K3 surfaces with R.D.P.

which are quotients of Kunev surfaces X by their involution ¢



plus the data of the distinguished (-2)-curves defined in (2.4.2)
below (cf. (2.7), (2.8) below). We call the K3 surfaces equipped
with these data X3 gJuafaces of Xunev {(yre. We have a projection
p B — N, [(X] b= [X/0].

(2.3) For any fixed £ Cj € %, we define functions in t € ﬁz

by

m(t) = Zoope mind{I(P, L, N cy l 3 =1, 2)

n(t) = #{triple points of Cj on Lt’ j =1, 2}
Notice that if Cj has a triple point then Cj consists of three
distinct lines with a common point. These functions define two

stratifications of P2:
ﬁz
ﬁz

Se U S; U S, where S_ (t € P2 | m

"
i

min{2, m(t)}}

(t € P2 | n

To I T, B T, where T

n(t)}

n

n
Notice that codim Sm =m, codim Tg = 0, and codim Tn =n if Tn
is non-empty (n =1, 2).

(2.4) For Z_Cj € ¥, we denote by Y the minimal K3 surface
which is obtained as the minimal resolution of the double cover of
P2 branched along Z Cy- Let oy : Y —— P2 be the projection

and E.l be the exceptional curves for o;, 1.e., (-2)-curves.

Then we have the following lemma whose proof is easy and we omit it.

(2.4.1) Lemma. The sets (E, | the multiplicity of E, in the
total transform of Cj is odd} (j =1, 2) <coincide and the number

of their elements is nine.

(2.4.2) Remark. The nine (-2)-curves in the above lemma is an

equivalent datum to the one of the didfinsuished Aartial



deginsulaerization of a X3 surface of Kunev (more generally, Todorov)
type in [Mo.21]. We call the former the digiinguioshed (—2)-curveq.
They appeared in A.D.E. configuration of exceptional curves over

R.D.P. as in Table (3.2.2) in Section 3.

(2.5) We reorder the numbering so that E, (1 <i<9) are
the nine distinguished (-2)-curves on Y, and set 51 = ﬁz X Ei (1
£ i < 9). Denote by £ cC ﬁz x P2 the total space of the universal
family of lines on P2, We can constiruct families of surfaces

¥+ X —— P2, ¥ : ¥ ——> P2 and f : L — P2 in the following

way: (0) Set o = 1 xa, : P2 x Y — P2 x P2, (i) Let B8 : ¥
—— P2 x Y be the blowing-up along a !¢ N (%% Gi). Denote by
. (1 < i £ 9) the exceptional divisors. (ii) Take the double

1

cover ¥ : X' —— % branched along (aB) '% + B~ 1 (T §.0. (iid
Let & : ' —— T be the contraction of (B8y) '(Z §.). (iv) Let
€ : ¥ —— 1 be the contraction of 8y ! (Z ro. (In the notation
above, we used & ‘'Z etc. as the proper transforms..)

Set £y = (8(xBy) " '¢2 with reduced structure) and gi,i =
6?'1Yi.

(2.6) Theorem. In the above notation, f : X — P2 is an
integral family of degenerations of Kunev surfaces over the fixed
z Cj € %. This family has the following properties:

(1> The singularity of the total space %4 consists of disjoint
nine compounds Veronese cone over S, U S, = (Cy N Cy)v, i.e.,
analytically isomorphic to the product of a line and the cone over

the Veronese embedding of P2 ¢ P> by [6p2(2) 1. g : ¥ — I is



a desingularization and the exceptional divisor Wq i is a family of

P2 over a line in (C; N Co)v (1 £ i £ 9). Ky - Tk, = 2 +
;H‘I.i'

(2) The fiber Xt = Foli(t) = V, + Z W, ,, where V,  is the
main'component. i.e., the component with pg = 1, and wi ¢ =
¥y ilxt' Hence the dualizing sheaf of V, coincides with O(Zilvt)‘

3 Vt is a (singular) Kunev surface, numerical K3 surface with

one double fiber, K3 surface, elliptic surface with pg =q =1, or
splitting abelian surface according to t € Sog N Tg, S;, 85,

T, " Sg or T,.

Proof of (7) and (2). In the notation in (2.5), notice that
£ and P? x (Z Cj) intersect transversally on P2 x P2 hence so
do o '2 and (Z% €i) on P2 x Y. This implies that o !¢ n
(Z 6> consists of nine disjoint P'-bundles over the lines Ek on
P2, P, € Cy N Co. Therefore the branch locus' <(aB) '€ +« 87! (Z .)
on ¥ is a smooth divisor. It follows that %' is smooth.

Since & = P2 x E, and E; ~is a (-2)-curve on Y, we see

9p1('2)~ Hence 8-151 on % is a P'-bundle

14

Nsi/szY ® GEi
whose normal bundle restricted to any fiber is isomorphic to 9p1(‘2)-
This implies that (By)'lai on X' is a P'-bundle over P2 whose
normal bundle restricted to any fiber is isomorphic to 0p1(‘1)-

Thus we get a smooth variety ¥ in Step (iii).

1. -1 i
The P'-bundle o ‘2 n 6i over the line Pk has Na"ZOSi/P2XY

® OEi & OPl ® 0P1( 2), Dbecause NEi/PQXY x @Pl & OPI( 2) and
a ‘g n ., N (Hx 1Y) = E; transversally, for any line H on p2

..10-.



other than 5 and

K NHxY/ﬁQxY ® GEi =S ®P1‘ Hence Yi is a

v

Z,-bundle over Py,
that ?‘lYi is a 2Z;-bundle over ﬁk intersecting with (B?)'ISi
along the Pl-bundle over ﬁk whose fiber is the (-l)-section on

Thus we get a PZ-bundle 6?’1Wi over the line Ek on ¥ in
Step(iii).

. - -1 .
Since NHxY/szY ? GEi x GP‘ as above, B87'(H X ¥Y) intersects

v

with fi along a (2)-section on X, over the point H N Pk’

(BY) !(H X Y) intersects with y'iri along a (4)-bisection on IX,.

Therefore &(B8y) 1(H x Y) intersects with Sy'lfi along a conic on

P2 over the point H N Ek Thus we see that 6?"11 contracts to

4

a compound Veronese cone over the line Pk’

Now the other assertions in (1) and (2) follows easily by the

adjunction formula. QED.
2.7 Set
* 2
® = (X C; *+ L € Sym 10p2(3)1 X 16py (1)} > c, € %)

(for the notation @, see (2.2)).

where Z, := Proj(@Pl ® 9P1(‘2))- This implies

hence

Now we consider the functions m(t) and n(t) in (2.3) as functions

mE C,, L) and n(ZC,, L) on #* and define

J
#:=(Zc s+ Ler’ | m@EC, L) =nE C;» Ly = 0
R 1= (X Cj + L € % | both cubics Cj are smooth and
they intersect transversally.
L and Z Cj intersect transversally.}
By the natural action of SL3(C), we can take their quotients (cf.
(2.2)):

% 1= F/SLa<C), M o= #/SLy(C), M :i= #°/SLa(C),



where the midle equality is a consequence of Theorem (2.6.3).

(2.8) In order to explain Teorem (2.6.3) more perspectively, we
recall here briefly the construction of the coarse moduli space of
Kunev {(more generally, Todorov) surfaces by the period map. These
were first constructed by Todorov [T.2] by using the Torelli theorem
and surjectivity of the period map for K3 surfaces, but it contains
some ambiguous points in lattice theoretic part. Morrison (Mo.2]
then gave a rigorous proof based on Nikulin’'s works.

For the economy of pages, we take a reference point 0 =
(Z Cj, L)y € £° and constiruct the following diagram in a similar way
as (0)-(iv) in (2.5):

XO <n—X§

(2.8.1 Yy — Yo

P2 — p*

where Y45 is the double cover of P2 branched along I Cj 0’

Yo 1is the minimal resolution of Y4 on which sit the nine

distinguished (-2)-curves Z Ei coming from the nine

0
ordinary double points on Y§,

X9 is the double cover of the minimal K3 surface Yy

branched along B 1= aTLO + E.1 and

Yo 0’

Xo is the contraction of the nine (-l)=-curves on X:

lying over X Ei on Yp.

0
Set

A = H?(Yq, D)



A

class(aTOPQ(l)) € A

N

(g €Al &a=¢&E =0 (1<i<9))
Notice that

@ ePNBO | eo=0, ea>0
has two connected components, interchanging by compiex conjugation.
Choose the component D «containing H?2'%(Yg), a feriod domain.
This choice is called the 9ign gfructure.

Now let Y' be any K3 surface with R.D.P., 4 : Y —— Y' the
minmal resolution and {Dk} the set of exceptional (-2)-curves for
u. Set

12(Y') := (§ € H¥(Y, I) | £'D, = 0 for all k)
A nerding of Y is an embedding of lattice

Qo : I2(Y'") =—— A
for which there exists an isometry ¢ : H2(Y, Z) —— A such that
¢|12(Y.) = 9g. |

Glueing together local deformations by virtue of a suitable
version of the Torelli theorem and surjectivity of the period map for
K3 surfaces with R.D.P., we can construct the unversal family g : %'
— D of marked K3 surfaces of Kunev type and a relatively ample
line bundle Lg. on %' whose first Chern class on each fiber is
mapped to A by the marking. Here the markings of the fibers are
required to have images in the span of A and N, and to send the
holomorphic 2-forms on the minimal model of each fiber into D (cf.
(Mo.2, 8§71). This yields a P?-bundle
P(g*L

} —— D.

g *

Let ¥ be the Zariski open set of P(g*L ) consisting of those

%[ L]
points (o, Lm) which satisfies the condition: the pull-back u*Lm

_13_



of the divisor Lm on the minimal modei a4 : Ym — Yé of the K3
surface has at most simple singularity and it is disjoint from the
distinguished (-2)-curves on ‘{m

We denote by [ the subgroup of orthogonal group O(A) of the

K3 lattice A consisting of those elements which preserves the

polarizatiaon A, the (unordered) set of distinguished (-2)-curves
{E., ..., Eg} and the sign structure. By definition there is the
natural homomorphism [ —— 0(N)/{£1}, where O(N) is the

orthogonal group of the lattice N. We denote its image by T.
Then we can see that the action of ' on D 1lifts to the PZ-bundle
P(g*Lg,) — D which preserves the open set ¥ and that the
gquotients ¥/ —— D/’ are the coarse moduli spaces of Kunev
surfaces and K3 surfaces of Kunev type, which are irreducible (cf.
(Mo.2, (7.3), (7.3), (7.8)1).

{(2.9) Thus we get the coarse moduli spaces in two ways, via

geometric invariant theory and via period map:

M = #H/SLg(C) =~ ¥/T
N N
* *
R = # /SL3(C) =~ P(g*Lg.)/F
o l
N = /SLy(C) =~ D/T

AS a consequence, we see in particular that the partial
compactification m* of M consists of all the points whose period
is an interior point of D/T =%, i.e., type I degeneration.

By construction, the functions m(Z Cj, LY and n(Z Cj. L) on

#* defined in (2.7) and (2.3) induce ones on P(g*L ) and on ﬂ*.

g L]
and these functions on m* define two stratifications of ﬁ* as in

_14_



¥ = o 0 9, U ¢, where 9m = {s € ﬂ* | m = min{2, m(s)})
% = To U T, 4 7, where Tn = (s € " | n = n(s)}
Theorem(2.6.3) implies:

(2.10) Corollary. The partial compactification %% of the

coarse moduli space ® of Kunev surfaces éonsists of all the points
of type I degenerations and m* is divided into five parts

o NTg =M, 9y, 92, T N %5, T,
whose points correspond to Kunev surfaces, numerical K3 surfaces with
one double fiber, K3 surfaces, elliptic surfaces with pg =q =1,
and splitting abelian surfaces respectively. m° is a Zariski open

subset of M consisting of those points which correspond smooth

Kunev surfaces, i.e., the canonical model is smooth.

(2.11) In the remaining part of this section, we shall explain
uniformly by Theorem (2.6.3) the appéarance of positive dimensional
fibers of the period map for the second cohomology of Kunev surfaces,
numerical K3 surfaces with one double fiber and elliptic surfaces
with pg = q = 1. This phenomenon was observed separately before in
{T.11, [Us.1], [Us.2] for the first surfaces and in [Sa.M] for the
third. It is new for the second surfaces.

Let £ : X — P2 and ¥ : ¥ —— P? be the families of
degenerations of Kunev surfaces constructed in (2.5) for a fixed
2 Cj € 9. Starting from these, we can construct semi-stable

degenerations as follows (¢cf. [Us.5]):

(2.11.1) Be0e t € Sy: We may assume that Z cj are smooth

- 15 -



cubics intersecting transversally because other cases are limit of
this. For a general point ty; € S, say 1tpo € P c (Cy N Cov,

let U be a small polydisk neighberhood with center (0,0) = tg € P2,
Then the restriction over U of the family ¥ : ¥ —— P2 gives a

2-parameter family of semi-stable degeneration of Kunev surfaces

whose singular fibers lie over the line P n U = ((t,00 | Itl < 1).
5 : oo ¥-1 -

For (t,0) € PN U, the fiber Xt,o t= Fl(t,0) = Vt.o + ”t,o
where Vt 0 is a minimal numerical K3 surface with one double fiber
and wt’o ~ P<. The double locus Vt,O ) wt,o is a smooth
bisection with self-intersection -4 on Vt 0 and a smooth conic
on wt’o.

(2.11.2> 8ase { € Ty N Sg: For a general point ty € T,,

say tg € 5 for the triple point @ of Cj. take a small polydisk
neighborhood U with center (0,0) = ty € P2. Then the restriction
over U of the family f : { — P2  (equivallently, ¥ : ¥ —
‘ﬁz) gives a 2-parameter family of degeneration of Kunev surfaces
whose singuiar fibers are non-normal and lie over the line 6 N U.
Extending the base to the double cover mn : U, —— U branched along
the line & N U, we can construct a semi-stable family E : i —_
U, whose singular fibers lie over the line n;l(é n Uy = {((s,0) |

sl < 1). For (s,0) € ®°'(Q N U), the fiber X_ . = £ !(s,0)

s,0

vs.O + ws,O where Vs,O is a minimal elliptic surface with p

= 1 and with a section which is a smooth elliptic curve with

n
£

self-intersection -1 and Qs 0 is a rational surface constructed,

for example, from P2 by blowing-up twice at each of the four

2-torsion points on a smooth cubic endowed with a well-known abelian

-~ ~

group structure. The double locus Vs 0 N ws 0 is the section

- 16 -
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mentioned above on VS 0 and the proper transform of the above cubic

on ws,O'

(2.12) Recall the spectiral sequence for a reduced simple normal
crossing variety Z = Z Zk:

g2 d = y3¢ztP) @y —> EP*Y - 4Pz, @)

(p] il X Dol X
Ko<...<k 0 p

where Z

It is known that it degenerates at E, = E_ (cf. [D], [GS1).
Applying this to Z = ?t’O or %s,o' the singular fibers of the
semi-stable degenerations in (2.11), we can observe easily in both
cases that E%°'0 = E4'! = E}’? = 0 hence we have an exact sequence
(2.12.1) 0 — H2(Z) =5 H2(Z,) ® H2(Z,) — H2(Z, N Z,) — O.
On the other hand, since the local monodromies of the
semi~stable families obtained in (2.11) are trivial, the

Clemens-Schmid sequence (1.2.1) becomes in both cases

0 R , w2 t.oy2
(2.12.2 g — Hlim » Hg » H » Hlim — 0.

The morphism of Hodge structure (H.S. for short) v in (2.12.1)
relates the variation of Hodge structure (V.H.S. for short)
associated to the smooth family {Vt O}Itl<1 of numerical K3

surfaces with one double fiber (resp. (G of elliptic

8,0 1sl<1
qQ = 1) with the V.H.S. associated to the flat

surfaces with pg

family .(xt,o}ltl<1 (resp. {is,o}lsl<1) and they coincide
essentially because wt'o (resp. Qs’o) is a rational surface hence
its Associated V.H.S. is trivial. While the morphism in
(2.12.2) relates the V.H.S. associated to the flat family {Xt,o}
(resp. {islo)) with the variation of limiting H.S. associated to

the 2-parameter family of sem-stable degeneration of Kunev surfaces

_17_
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(Xt,t'} (resp. (X

a, and they cocincide essentially because Hg,4 in (2.12.2) carries a

s S.}), taking limit as t' — 0 (resp. s' —

trivial H.S. in both cases.

Thus we get:

(2.13> Corollary. In the above notation, the following
assertions hold and they are related by degeneration as above:

(1) The 2-parameter smooth families (xt,t'}t'io and

{is s'}s'¢0 of minimal Kunev surfaces have 2-dimensional meduli and

the associated V.H.S. are trivial.

(2) The l-parameter smooth family ¢( } of minimal numerical

Vi, o
K3 surfaces with one double fiber has l-dimensional moduli and the

associated V.H.S. is trivial.

~

(3> The l-parameter smooth family {VS o) of minimal elliptic

surfaces with pg = q =1 has l1-dimensional moduli and the

associated V.H.S. is trivial.

FProof. The assertion on the V.H.S. has already proved before
the corollary. As for the assertion on the moduli, the case (1) is
obvious by construction (cf. (2.2)). The case (2) follows from an

observation that the moduli of the double fiber of varies (cf.

Vi, o
Proposition (5.3) and its proof). The case (3) follows from an

~

observation that the moduli of the section of VS 0 varies (¢f. the

proof of Proposition (5.3)). QED.



3. Local study over critical points.

(3.0) Let 2% Cj be two cubics on P2 with at most simple

singularity, i.e., Z Cj € % in the notation of (2.2), and let L
be a line. In this section we study locally over the singular
points of X Cj + L on PZ2. The tables obtained in this section

will play the key role in the proof of Theorem (2.6.32.

(3.1) For the cubics 2 Cj, we constructed the minimal K3
surface Y and the families of surfaces ¥' : ¥ — P2, ¥ . X
—— P2 and f : 4 — P2 in (2.5). Let V', V and X be the
main components of the fibers T ~!'(t), T !'(t) and £ '(t) over

the point t € P2, L, = L, respectively. Then the morphisms v,

t
d and & in Steps (ii), (iii) and (iv) in (2.35) induce the

morphisms (abuse of the notation):

3.1.1) y Yy &,y &, .

By construction, we see that & and € in (3.1.1) are birational
morphisms and that 7y 1is the finite double cover braqchgd along BQ
1= a?L + 2% Ei - 221 Ei’ where in the last term the inaex i runs
over the set (i | 1 £ i £ 9, E. < aTL}. Here we use the notation
®; : Y —— P?, the canonical resolution of the double cover Y
of P? branched along I Cj, and E, (1 £ i <9), the nine
distinguished (-2)-curves, in (2.4),

The minimal model i of X 1is obtained by the succesive
contraction of (-1l)-curves, starting from the canonical resolution

*

X of the double cover ¥y in (3.1.1). This procedure is indicated

by the diagram:



(3.1.2) Y oe
| &7
P2 —— p*

* oy . . .
where m; : X —— X; is the succesive contraction of the

(~1)-curves each of which is mapped to a singular points of Z Cj + L

A

on P? and Mo ¢ il —— X is the succesive contraction of the
(-1)-curves each of which is mapped onto the line L on PZ2.
We use the notation:

* . '
(3.1.9) By := (@il * Z? Ep) 4y red = BYlodd,red

Here, for an effective divisor D, (D)odd.red means the reduced

divisor whose support consists of those components with odd

(By)

multiplicity in D.

(3.2) Notice that, in Diagram (3.1.2), all the processe; but
n, : X; — X are local over a singular point of I Cj + L on P2,
For a singular point P € Sing(Z Cj + L), we denote by aTL(P)
(resp. B

(P, Kil(P)) the pull-back of the line aTL on Y (resp.

Y

the divisor BY on Y in (3.1.3), the canonical divisor Kgl of
ﬁl) restricted over an open neighborhood of the point P € P2, We
can classify the singular points P € Sing(Z Cj + L), where Z Cj
has at most simple singularity, and compute the divisors aTL(P),

By(P) and K; (P) = n1¢*BY(P)/2 locally over the point P. Note

that the last equality follows from the observation that BY(P) has
at most simple singularity, which is a consegquence of the computation.

All of these classification and computations are elementary,
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hence we give here the tables. For the computation of BY(P), we
use Table (3.2.2) below of the distinguished (-2)-curves.
In order to devide the cases, we define functions mP(Z Cj, L>

and np(Z Cy, L) in PeP2 and (ZC;, L) e #¥ by

mP(Z cj, L) = min{I{(P, L N cj) | 3 =1, 2)
1 if multp C. =3 for j=1o0or 2 and if P € L
np(Z C., L) = { J
J 0 otherwise

Hence the summations of these functions over P e P2 give

mEC,, L) = Zpgpe Mp(E Cyy L)

n(Z C,, L) = Ipep: np(E Cyy L)

(see (2.7)). We also use the following notation:

-1
LY t= a3 L the proper transform of L on Y

-1 ~
Lﬁ1 1= my (o) 'L the proper transform of L on X

(3.2.1) Case mP(Z Cj' L) = nP(Z Cj' L) = 0, P € Sing C; - (C.+L):

exceptional exceptional

2
o ~
n P curves on Y BY(P) curves on X; X,

A, 0 2A, 0

Ci

N,

>< ' I A, 0 2A, 0
P

C1 .

R
0]

{

A3 0 2A3 0

)
c g |
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(3.2.2) Case (x C., L) = n_{(zx C., L) 0, Pe€C; nC;, - L
Mpt& &y j

P
(distinguished (-2)-curves):

exceptional curves on Y, exceptional
on P? . SR K (P)
BY(P) : bold lines curves on X; X1
C]_ C2
X . B2a-1 Ba-1 0
I(P, C,NC3y)
= a
cl/ci Ca
Cf{% ' D2a-i-2 Da+2 0
I(Pl c]'.nCZ)
= a i
Ca
Czl Ds As 0
P
: - Cy |
—~~—
Cc De 4, 0
P :
c, 2
P* E, Eg¢ 0
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(3.2.3)

mP(Z C

oL with
multiplicity,

bold curves

- 23 -

K L) = nP(Z Cj' L)

P € L;

my {(a19)*L on ﬁl,

bold curves

with multiplicity

A,



+ 1
Al
Sy
¥ 1
1
A,
LY 1
Aj
Aj
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I(P, CiNC,)

(3.2.4)

on P?

(3.2.5)
on P?
Cq C»

a

Case nP

aYL with

(£ C., L) = 1:
3 )

-multiplicity,

BY(P) : bold curves

Dy
1
Dy
2
2
2
Case mP(Z Cj' L) = 1:
aTL with
multiplicity,
BY(P) : bold curves

- 25 -

T (a1} *L  on ﬁl,
Kil(P) : bold curves

with multiplicity,

self-intersection

()

Eg
Lﬁl A;
Ty {x19)*L on X ,
Kﬁl(P) : bold curves
with multiplicity,
() self-intersection
1
Case —
a=1: Lﬁl‘l 'H”_
“P
1
Case
+-3)
a 2z 2: '
L%l : Aa—Z
1 €3}



™~ 1
A
L
P L

Y
C CZ Ay
1
!.}. L 1
L p ‘ Y
C
2 1|AL l l 27,
L=C 2 0
- ]
La
X1
o Case 4A,
C{ C2 a = 1:
CI’I

(-3)
L
I(P, CiNCy) I 1

%1
= a

Case
azz 2:
a+1
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I(P, CinCz)

= a

= a

W
Case
1
az
2
2
2 D2a+2
Case
a 2
D2a+2
2
2
: )
Lﬁl

- 27 -

2

a+1



22,
C:2
-3)
L P
1
Lgl
C, .
L p
A
Ei 2Dy
C
L p
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C
L P
(3.2.6) Case mP(Z Cj’ L) 2 2:
on P? Set a := I(P, Ci N C,)
c, b := I(P, L N Cy)
L >P.< c := I(P, L N C,)
C2 and assume b 2 ¢, then 3 2 b 2 c 2 2.
afL, with T, (030)*L on R,
, multiplicity, Kﬂl(P) : bold curves
on P B, (P) : bold curves with multiplicity,
() self-intersection
Cre §2
: A
L 3
P LY
(a;b,c)
= (2;3f2)
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L /p
C.

Case (a;b,c)

= (2:2,2):

Case (a;b,c)
= (a;2,2)
with a 2z 3:

C

L=C, P

- 30 -

(~3)

(-4)




-~

Pl

2As



v
n

W

2

r/" "
ci ST
P 4
C» '
[N
I(P, CiNCy)
I(P, LNCy) \ .

- 32 -

2

As



2Ds

<—L}’E1—-—p




0
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(*)
2D5
-3) ' )
1 Lgl
(*)
E, 2E¢
' '(-4)
N/
Li1
\
(*) :
Ci W
P ;
L=C2
\( Ev 2E, 0
LA
X
/ Ja N
~ ~

(Curves with (*) are unstable as plane curves of degree 7, cf. [Sel.)



(3.3> Observation. We employ the above notation. By Tables
in (3.2), we can observe the following:

(1> In ail cases, the divisor BY on the minimal K3 surface

Y has only simple singularity and the canonical divisor Ki of the

~

minimal model X is connected and not multiple.

(2) In the case m(Z Cj, L) = n(Z Cj, Ly = 0, a?L has only
simple singularity on the minimal K3 surface Y and the morphism
o X* —— 2 in Diagram (3.1.2) contracts only the nine.(-l)—curves

coming from the nine distinguished (-2)-curves on Y.

(3.4) Proposition. In the above notation, if m(Z Cj, L) =

~

n{(X Cj. L) = 0, the corresponding X is the minimal model of Kunev

surface.

.?¢oof. We use the notation in Diagram (3.1.2). Denote by &

®2

) Fo. Then, since V' =

the line bundle on Y such that 0, (B

Spec(t‘JY & F° 1), we have

- - -1 -
X(0g) = X(0,,) = X(0y) + x(F™H) 2 + x(F).
By the Riemann-Roch theorem on Y,
X(F) = (Fr2/2 + xcoy) = (BY)2/8 + 2 = (2.4 9(=2))}/8 + 2 = 0.

On the other hand, since Kx* = ¢*? Hy Observation (3.3.2) and Lemma

(1.1.2), we see

e?(X) = c?x™ + 9 = ()2 + 9 = 2(F)2 + 9 = (By)2/2 + 9
= {2 + 9(-2)}/2 + 9 =1,
Let X be the canonical model of i. Then, by construction and

-~

Observation (3,3,2), the bicanonical map f of X 1is a morphism

which factors as
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£, fo fs

£: X ¢ » Y » P2
where f; is a birational morphism and f,; and f3 are finite
double covers. Hence X 1is a Kunev surface with an involution @
which is the covering transformation of fo ¢! X — Y'. QED.

As a corollary, we have the following result, which will be used

in Sections 4 and 5:

(3.4.1) Corollary. We use the above notation and the notation
in (2.7). For any (Z Cj, L) € ﬂ*, the corresponding minimal

model X has pg(i) = 1.

Proof. We use the flat family of surfaces f{ : { —— p2
constructed in (2.5). Take a small disk U 1in ﬁz with center

0 = (2 Cj’ L) € P2 such that- (z Cj) N L are six nodes for all t €

U - {0}, and denote by fU : 1U —— U the restriction of the
family f over U. Then, by construction and Proposition (3.4),

the fibers of fU over all t € U - (0 are desingularizations of

Kunev surfaces. Let % : & ey Ur be a semi-stable reduction with

B {U —— U (cf. [Mul) and let

%'1(0) = Gk be the decomposition of the central fiber. Then we

base extension Ur — U of f

See

~ ~ A _ .
1 < pg(X} < X pg(Vk) < pg(f (t)) =1 for t # 0.

For the first inequality, we use the fact.that the minimal model X
carries a holomorphic 2-form coming from one on a K3 surface Y.
The second inequality follows from the fact that there is a component

A~

Vk dominating X, and the third follows from (1.2.2). QED.
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4. Global computation of the branch locus BY on Y and

the canonical bundle KQ on .

(4.0 We use the notation in (3.0) and (3.1) throughout this
section. In this section we shall compute globally the branch
locus BY on the minimal K3 surface Y and the canonical divisor

K of the minimal model X of the fiber X = Xy = £-1¢ty, t € P2?.

(4.1 We divide the distinguished (-2)=-curves Ei (1 £ 1 € 9)

on Y (cf. Table (3.2.2)) into two types:
Type 1. al(Ei) € L.
Type 11. ai(Ei) € L.

Then the branch locus B on Y 1is divided into

Y

4.1.1D BY = BY(I) + BY(L)

where BY(I) is the reduced divisor consisting of the mutually

disjoint (-2)-curves of Type I and B_,(L) is the reduced divisor

Y
consisting of the components of BY which are ﬁapped to L by ¢o,.
Notice that BY(I) is disjont from BY(L) and become mutually

disjoint (-1)-curves on the canonical resolution X* and contract to
points on il.

(4.2 As for BY(L)’ we can compute it following the procedure
of Diagram (3.1.2). Each process is elementary. We give here the
tables of the configurations of the two cubics and the line X Cj +
L near L on P?, the divisor BY(L) and the number of the

components #BY(I) of the divisor BY(I) on the minimal K3 surface

Y (see (4.1.1)), and the canonical divisor K% of the minimal

~

model X of X, "which is always not multiple by Observation (3.3:1).



(4.2.1) Case miZ Cj, L) = n{Z Cj’ L) = 0 (36 types):

on P?, BY(L),»

C,: bold curves ( ): self-intersection

#BY(I) Kgo
( ): self-intersection

~L1 L2
l I (2} 9 Q)
l l genus 2
. (-1) ‘
\/ (2) FD 9 (: A

elliptic

I I I \ (2) (-
JT 9 elliptig .><: Az
-1)

L1\ ’
| l I /A\ | (:» Ay 9 (::‘ §;> Aj

ellipti;
{0) Dy
L1\ L ;
i -
elliptic N
4
. (0 , (=1}
EEIa C Ca s AN
1 N\ |
elliptic ~

("1) N
| I | < ) A, 9 elliptic E;

(-1)

elliptic
- 40 -
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(-3

ar

[\ |
AN

o

X
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{=2)

A

=2)

(-2}

(=2)

a3

@)
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pa (=3) Z

pa ("3’ N
Es

(=13)
)

)

3 § Asg
Fi 7
Du yd Dh
=3)
/7 N\

(

N

Dy As
-3) '
, } 3

Dy
Es
(-3} i}

As
Dy
-3) 5 J




Az>< (-2) \<A
A,
A2>‘*<-2) ,g )
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(4.2.2) Case m(Z Cj’ L) = 0, n( Cj’ L) >0 (8 + 1 =9 types):

2 . .
on P4, BY(L). bold curves, #BY(I) KX’
C,: bold curves ( ): self-intersection ( ): self-intersection
L L2
Dy
I I | 9 ()
L P | elliptic
0

(0}

K -

(0)

N
) y 9 «2) /
. (0) /\

/‘
S
/<<\ NN

(-2}

(=2)

:

(=2)

(=2

(=2
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(4.2.3) Case m(Z Cj' L) =1 (55 types):

on P?, BY(L): bold curves, Ko,

#B, (I) X

C,: bold curves ( ): self-intersection ¥ ( ): self-intersection

(0)

{0} .
Ci C,
Y 1 S C
L 11 ] : Ayt - a el ITptic
1NCy) ,:S:

9
P
a=1I(p, C -2)
9 -'a <::
(-2}
9 - a (:, f;
(=2} .
9 - a (:
7
(=2) .
9 - a [i
(-2)
9 - a v (=2)

9 - a -2) ig;
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-2)
-2,
(-2)
(=2)

(=2) ;;i
/§
/g
V4
S ~-2) g
) Fd
s
-~
;
o % é
(-2
e

(-2)
{=2)
(-2
-2)
(~2)
(=2)

§L
4

L
I4d

Vi
L4
rd

L

a
a
a
a

-2)
-2)
-2)

-2

{-2}
~2)
(-2)




{0}

elliptic

(-2)

C

(=23 :

(=2)
{(—=2)
(=2}
{=2)

S

(-2
(=2)

2

(=2)
=2)

:

(o}
elliptic

=2)
{=2)

-2) )

(0)

a = I(pP, CINCz)
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(=2)

(-2}

-2)
= I(P, CINC})

(-2
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,%L.L <§ 8 - a /S e |
X
/\
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(=22

{0)

elliptic

(0)
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(=2}

(-2)

(~2)

(=2)
(=2)
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N N
~ r~ r~ ~
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~=2)

§

(-2}
=2}

K

(~2)

=-2)

4

2) é
(=2)

-2}

(0}

(g)

|
I

1D

~2)

(~-2) ; j

(=2)
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(4.2.4) case m(T Cir L) 22 (69 types):

In this case, all curves in BY(L) are (-2)-curves hence K, 1is. 0.

X
on P?, Ci: By(L): bold . on P?, Ci: By(L): bold
bold. curves curves, ( ): #BY(I) bold curves curves, { }: #BY(I)
self-inter- self-inter-
section ) section

a=I(P,ClﬂCi)c_% -

- 52 -



! -az"'a.a 5
a.-I(P ,Ca ﬂCzls E E ;

(i =1, 2, 3) A a -1
o o) ' _
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> 3
Py P : : l
ali’=I(P1 ,CiﬂCz)-‘%%
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l ) .
. T ‘ >P< , 9 - a
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plane curves of degree 7, cf.

|
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(4.3) As a consequence of the above classification of the

branch locus BY on Y and the canonical divisgor Ki on 2, we

get a proof of Theorem (2.6.3).
Proof of Theorem (2.6.3). We use the above notation and the

notation in (2.3). Thé case t € 59 N Ty is already settled in

~

Proposition (3.4). In all cases, pg(X) = 1 by Corollary (3.4.1).

By Lemma (1.1.2), c?(ﬁ) and q(i) can be computed from the result

of the above classificétion of By. Ki is always connected and

not multiple by Observation (3.3.1) or by the above result of

classification. By construction, we see dim l2KiI = 2 - max{m, n}

for t € Srn N Tn’ This together with the value of cf(i) determines

K(ﬁ). Thus we get:
Case K(ﬁ) cf(&) Kﬁ pg(i) q(i) Type of i
t € SgNTe 2 1  nef & big 1 0  Kunev
it e s 1 0 connected & 0 numerical K3 with
! not multiple one double fiber
t € S, 0 0o 0 1 0 K3
connected & elliptic with
t € T1NSo 1 O not multiple ! P, = a =1
t € Ts 0 0 0 1 2 abelian

Here we use (1.3.3) and the cénonlcal bundle formula (1.3.1) for
determination of the type of X in case k(X) = 1. In fact, for an
elliptic fibration f : X — A with multiple fibers miFi’
(1.3.1) says

Ke = £72 + T (m, - DF,

for a divisor Z on the base curve A with
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{2g(A) in case t € §,

- AY = 2
deg Z = x(83) 2x (0,0 2g(a) -1 in case t € T, N Sy

X
the type of the elliptic fibration:

Since K is connected & not multiple, we have the only possibility for

In case t € §,, there éxists unique double fiber and the base
curve is rational.

In case t € T{ N 3Sgp, Ki is a fiber and the base curve is
elliptic. QED.

(4.4) Remark. The global classification in (4.2) is clumsy but
fruitful. Besides the elementary proof of Theorem (2.6.3) given in
(4.3), we can observe, for example, series of degenerations of the

canonical curves in each case by Tables in (4.2).

5. Elliptic fibrations in case m(t) > 0 or nd(t) > 0,

(5.0> We continue to use the notation in the previous sections.
Throughout this section we assume that X Cj € %, i.e., the sum of
two cubics z Cj on P2 has at most simple singularity. In the
case that the functions m(t) > 0 or n(t) > 0 (see (2.3)), the
pencils of lines through a critical point on p? induces elliptic
fibrations both on the minimal K3 surface Y and on the minimal
model X. We shall study these elliptic fibrations in this section.
This together with Proposition (3.4) gives another proof of Theorem
(2.6.3), which does not depend on the global classification in the

previous section.
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(6.1) We first treat the case n(t) > 0 and m(t) = 0.
Recall that in case n(t) = 1 and m(t) = 0 one of the cubics on
P2, say Cy, consists of three different lines passing through a
common point P; and the line L =L, also passes P; but L s

not a component of C; nor passes the triple point of Co, if exists,.

In case n(t) 2 each cubic Cj on P2 consists of three
different lines passing through a common point Pi (j =1, 23, P =
P,, L = I..t is the line joining these two points P, and P,, and

the seven lines Z Cj + L. are different.

(5.2) Proposition. In the notation in (5.1), if n(t) =1
and m(t) = 0, the pencil of lines through P; on P2 induces an
elliptic fibration both on the minimal K3 surface Y and on the
minimal model ﬁ with section. The section on Y 1is a (-2)-curve
and that on X is a'smooth elliptic curve with self-intersection -1.
These elliptic fibrations have constant J-invariants if and only if
the other cubic C,; has also a triple point. In any case, ﬁ is

~ ~ A~

an elliptic surface with k(X)) = pg(X) = gq(X) = 1.

~

Paroof. pg(X) = 1 is already Known in Corollary (3.4.1).
Let P, be the pencil of lines through the point P, on P2,
Following the procedure of Diagram (3.1.2), we shall first prove
that §1 induces elliptic fibrations on Y and on i. Let Z3 D{
be the exceptional curves on P* over the point P; on P? such
that Dg-D; = 1 (i =1, 2, 3). Then the branch locus ‘BP* on P*

becomes Bp* = Dg + Q- !C, + D", where q~!C, 1is the proper

transform of C, by q :P* —— P2 and D" is the effective



divisor defined by the above equation. For a line M € ﬁl, the
proper transform q‘lM intersects with BP* at four distinct points
provided that M is not contained in €; nor passes a singular
point of X Cj other than P; nor touches Cj,. Hence these lines
M € 51 become smooth irreducible elliptic curves on Y. This shows

that the pencil of lines 51 on P? induces an elliptic fibration

on Y. This fibration has a section D which is the component of
the ramification divisor on Y 1lying aover Dj. D is a (-2)-curve.
. . _ * )
Since the branch locus on Y s BY = (ot L + ZY Ei)odd,red

(see (3.1.3)), the branch locus on Y* is contained in a finite
number of fibers of the elliptic fibration on Y*. Therefore the
elliptic fibration on Y* induces one on X*. The canonical
divisor Kx* of X* is contained in ¢*BY/2 (actually they
coincide bgcause BY hés at most simple singularity, which is a
consequence of the local classification in Section 3). Heﬁce the
exceptional divisor for n : X® —— X is contained in a finite
number of fibers on X*. Thus we get an elliptic fibration on %.
Next we shall prove that the elliptic fibration on % has a

section which is a smooth elliptic curve. For this purpose, note
that

®i'L + 2D + Z{ D, + F = oL

2 (" 1Cy) + 6D + 2XY D. + SY E. + 2G = «'C,

red 1 i

where o7!( ) means the proper transform, D, is the pull-back of

Di on Y (i =1, 2, 3) and F and G are the effective divisors

defined by the above equations. From this we get

*
Y (aiL + Z Ei)odd,red

af(L + C;) - 2¢4D + (@i'Cy)

(56.2.1) B = ai'L + I} D, + F + =9 E;

a4 =3 D, + G).
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This shows that BY is linearly equivalent to twice of a divisor
wvhose support is contained in a finite number of fibers on Y. This
property is preserved on Y* and we see that X* = Spec(GY* & F°1)

for a line bundle F on Y* whose restriction to a fiber on Y* is

trivial. This implies that the pull-back of the fibers on Y*,
appart from BY*. divide into two disjoint copies on x* hence D*
i = w*D is a section and so is ﬁ = nD*. B is isomorphic to D*

and DY is a smooth elliptic curve with selfintersection -4 on Y

because D 1is a (-2)-curve on Y whose neighborhood is isomrphic to
one on Y* and D¥ — D is a double cover branched four different
points D N (xj!L + X% D).

For the assertion on J-invariant on i, it is enough to show
it on Y because most of the fibers on Y devide inlo two copies
on X. We recall here an elementary fact that for a line M € ﬁl
the cross-ratio of the branch points on M, 1i.e., the points M N C,
and Py, gives the J-invariant of the elliptic curve on Y induced
by M up to ordering of the four points (cf., e.g., [C1.21]). It is
easy to see that these cross-ratio upto ordering are constant if and

only if Cy is cocurrent three lines. Thus we get our assertion.

We shall now compute q(i) by using a theorem of Ueno (1.3.2)

-

and the Leray spectral sequence applying to the elliptic fibration

—_ ﬁ. In order to check the condition of the above theorem,

5<>

f
the only thing we should do is that the elliptic fibration on i has

singular fiber other than mI0 in the case that the two cubics C1

and C2 are pairs of cocurrent three lines. But in this case we

can perform easily the procedure of Diagram (3.1.2) and we see that

A~

there are two singular fibers of type 13 on X coming from the



line joining two triple points Py and P on P2,

-~

Finally we shall prove that the section D on i has
self-intersection -1. By Observation (3.3.1), the canonical

bundle Kﬁ is connected & not multiple. Hence Kﬁ consists of one

fiber by the canonical bundle formula (1.3.1), because we have

~

already known that the base curve, i.e., the section D, is an
elliptic curve and pg(i) = q(X) = 1. Now (D)2 = -1 follows from
the adjunction formula (Kg + D):D = deg Ky = 0.  QED.

(5.3) Remark. A smooth elliptic curve with self-intersection

-1 on a smooth surface is the exceptional divisor of the minimal
resolution of a oimAle elliAtic dingulaerity of tyhe Eg in the sense

of K. Saito (cf. [Sa.Ki}.

(5.4) Proposition. In the notation in (5.1), if n(t) = 2,
the minimal model i is isomorphic to a product 61 X 62 of two
smooth elliptic curves ﬁj (j =1, 2), whose two trivial elliptic

fibrations coincide with those induced by the pencils of lines

through the point Pj (j =1, 2> on P2,

Proof. In the present case, we can go on the same line as the
proof of Proposition (5.2). Actuallf'it is simpler than before
because the configuration of the two cubics X Cj and the line L
is unique. We do not repeat it here. Consequently the two pencils

4

of lines Pj through the triple point Pj of Cj induce two

~

elliptic fiber bundles with a section Dj coming from the first

order infinitely near point of Pj’ which becomes a fiber of the
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other elliptic fiber bundle (j = 1, 2). Hence the projections

-~ ~ ~ ~

induce an isomorphism X —— D; X Ds. QED.

(6.5 Remark. Proposition (5.4) shows that if the two cubics
Cy and C, 'consist of two pairs of cocurrent three lines and X Cj
has at most simple singularity then the minimal K3 surface Y 1is an

elliptic Kummer surface associated to the splitting abelian surface

X =~ 51 X 52 obtained in that proposition.

(6.6) Next we deal with the case m(t) > 0. In this case the
sexetic Z Cj has at most simple singularity and the line L = Lt
passes through common points Pi of two cubics C€; and C,. m{t)
=1 if and only if the number #{Pi} =1 and L is transversal to

one of Cj (j =1, 2) at Py,

(5.7 Proposition. In the notation in (5.6), if m(t) = 1,
the pencil of lines througﬁ Py on P2 induces elliptic fibrations
both on the minimal K3 surface Y and on the minimal model X over
a rational curve with non-constant J-invariant. The latter has one

~

double fiber. Hence X is a numerical K3 surface with one double

fiber.

A~

Froof. pg(X) = 1 is already known in Corollary (3.4.1).
Let P; be the pencil of lines through the point P; on P2. The
argument in the present case is similar to that in the proof of

Proposition (5.2) but there are some points essentially different,

hence we shall write down a full proof.
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As before, following the procedure of Diagram (3.1.2), we shall
first prove that the pencil of lines §1 induces elliptic fibrations
both on Y and on X. Let ¥, —— P2 bpe the blowing-up at the
point P; and let D; be the exceptional curve. Then the pencil

of lines ﬁ, induces the ruling of ZX;. By construction we have a

commutative diagram:

Y
oy o 1g
p2 & B o dz %
M 1
N L~
q

Because of the procedure of the canonical resolution, the proper
transform D' := q§1D1 does not appear in the branch locus BP* on
P* if P, is a double point of I Cj on P?, while D' remains

as a component of BP* if P,y 1is a triple point of X Cj. Set

(5.7.1) Bp* bX q’1Cj + F! in double point case, and

%

Bp X q‘lc‘j + D' + F" in triple point case.

Then we see in both cases that, for a fiber M on ZX,,” g3'M
intersects with Bp* at four distinct points provided that M does
not touch X q“Cj nor passes a singular point of X q'lcj. Hence,

for these fibers M on X, ai*M are smooth irreducible curve on

Y. This shows that the pencil of lines §1 on P? induces an

. a{
elliptic fibration Y » I, Pr, D,-

(3.2.5), we can observe that D := (g"‘D')r

By the local classification

ed © o] 'D;, which is a

component in the exceptional divisor for o; meeling with a]lL,

does not appear in the branch locus B, = (a L + % E.) on Y.

Y odd, red

Hence the support of BY is contained in a finite number of fibers.

Therefore the elliptic fibration on Y induces one on X* then on



X by the same argument in the proof of Proposition (5.2).

Next we shall find out the base curve of the elliptic fibration

-~

on X. We observe again the local classification (3.2.5) or its
process to get the following:

afL = aj!L + g*D' + E
(5.7.2) alc, = 2(01'Cp) |y * gD + F

Dcz{E and g¥D' = D if P, 1is a double point of X c,.

D¢ If E, and g'D' = 2D if P, is a triple point.
Here E and F are effective divisors defined by the above
equations. Notice that their supports are contained in a finite
number of fibers on Y. From (5.7.2) we get:

By = (aiL + I EiY0dd, red

= af(L + Cp) - 2007 1Ca) Ly gD+ G)

d
- g'n - @

2 (20} H - @i1Cy) oy

2(atH - (x]'Cy) - G")

red

where H is a line on P? and G and G are some divisors on Y
whose supports are contained in a finite number of fibers. Set F°

- * - -1 = '
= GY(alH (o} C2)red G'). By (56.7.1), we see that the

restriction of the line bundle &' to smooth fibers on Y is

non-triviat 2-torsion. This property is preserved by the line

82

bundle F with F°° = 0 x(B *

Y*) on Y . This implies that the

pull-back of the fibers on Y* are still connected on i. Thus we

~

see that D is the base curve of the elliptic fibration X.

1
For the J-invariant, we use the argument of the cross-ratio as
in the proof of Proposition (5.2}. Note that a smooth fiber on ﬁ

are isogeneous to the corresponding fiber on Y. Hence it is enough

to show that the J-invariant on Y 1is non-constiant. I1£f this is



constant, then 2 Cj should contain cocurrent four lines. But this
contradicts our assumption that X Cj has at most simple singularity.

Now we see q(X) = hl(GDl) = 0 by the same reasoning in the

proof of Proposition (5.2).
As for the multiple fibers on i, we use the last part of the
argument in (4.3).

Thus we get our assertion. QED.

(5.8) Proposition. In the notation in (5.6), if m(t) = 2, the

pencils of lines through Pi on P? induces elliptic fibrations

~

both on the minimal K3 surface Y and on the minimal model X over

a rational curve with non-constant J-invariant and without multiple

A

fibers. The canonincal divisor K% = 0, hence X is a K3 surface.

Proof. It is enough to show Kﬁ = 0. In fact, we can prove
the assertions on elliptic fibrations in the same way as the proof of
Proposition (5.7) and the assertion on multiple fibers follow from

K = 0 by the canonical bundle formula (1.3.1).

X
In order to see Ki = (0, we devide the cases:
(a) L is a compaonent of X Cj'
() mv) = 2.
(c) m(t) = 3 and not the case (a).
In case (a), Kﬁ = 0 follows from the local classification in
Section 3. By the local classification, we can observe that the

proper transform oj!L on Y is one (-2)-curve (resp. two

(-2)-curves) in case (b) (resp. case (c¢)), and that in both cases B
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_ * . . oy . -
= (4L + X Ei)odd.red consists of disjoint (-2)-curves. From these
observations, we get KR = 0 in these cases. QED.

(5.9 Remark. A more sophisticated proof of Proposition (5.8)
will be given by using Kulikov's list of degeneration of K3 surfaces
([Kul, [(PP1), i.e., by virtue of this list it is enough to show that

A~

X 1is a K3 surface in generic case with m(Z C L = 2 and in this

j L]

case the verification is easy. We omit the details.
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