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Abstract

Tbe prepotential F(ai), defining tbe low-energy effcctive action of the SU(N) N = 2 SUSY gluodynamics,

satisfles an enlarged set of tbe \VDVV-likc equations FiFk-
1Fj = FjFk-

1 Fi for an)' tripie i, j, k = 1, ... ,N-1,

where matrix Fi is equal to (Fi) mn = 8 .g~ F8 . Tbc same equations are actually true for generic topological"I a Tn an

theories. In cOlltra."t to the conventional formulatioll, whcn k is restricted to k = 0, iu the proposed system

thcre is no distinguished "first" time-variable, and the indices cau bc raiscd with thc help of any "metric"

tl~~ = (Fk)mn, not obligatory fl.at. All the equations (for all i,j, k) are true simultaneously. This rcsult

providcs a new parallel betweell the Seiberg-Witten thcory of low-energy gauge models in 4d and topological

theorics.
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1 Definitions

According to [1]' [2] the low-energy effective action of N ::: 2 SUSY Yang-Mills model (the Seiberg-\Vitten

effcctive theory) is given by

(1)

where the superfieId <Pi = <pi + BaJJ/.I&G~/.I + ....

The prepotential F (2) is defined in terms of a family of Riemann surfaces, endowed with tbe meromorphic

differential dS. For the gauge group G ::: SU(N) the family is [2], [3], [4]

. 1
tu + - ::: 2PN().),

w
N-l

PN ().) ::: AN + L hk Ak - 1
,

k=l

and

dS ::: ). dw
w

The prepotential F(ai) is implicitly defined by t.he set of equations:

Qi ::: J ciS,
JA.

af ::: 1 dS.
TB;

(2)

(3)

(4)

According to [4]' this definition identifies F(ai) a.s logarithm of (trullcated) T-functioll of Whitham integrahle

hierarchy. Existing cxpericnce with \Vhitham hierarchies [5] irnplies that F(ai) should satisfy same sort of t.he

\Vitten-Dijkgraaf-Verlinde-Verlinde (WnVV) cqllations [6].

2 The statement

Below in this paper we demonstrate that \VnVV eqllations for the prepotcntial actually look like

Vi,j,k:::l, ... ,N-l. (5)

Here F i denotes thc matrix

3 Comments

(6)

3.1 Let us remind, first, that the conventional \VDVV eqllations for topological field theory express t.lle a..'iSO­

ciativity of the algebra <Pi<Pj ::: Ct<Pk (for symmetrie in i and j structure constants): (<Pi<Pj)<Pk = cPi(cPjcPk), or

CiCj = CjCi , for thc matrix (Ci)~ == Ci~. These conditions become highly non-trivial since, in topological

t.heory, the strllcture constants are expressed in tenns of a single prepotential F(ti): C: j = (T/0))kl Fijk , and
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Ft')'k = 8
3

F W hile the metric is l]k(OI) = ROkl J W here A..o =8t;8t j 8t" ' '+'

conventional \VDVV eqllations can be written as

I is the unity operator. In other wOHls, the

(7)

In contrast to (5L k is restricted to k =0, associated with the elistinguished unity operator.

On the other hand, in the Seiberg-\Vitten theory there eloes not clearly exist any distinguished index i: all

the arguments Gi of the prepotential are on equal footing. Thus, if some kind of the \VDVV equations holels in

this case, it ShOllld be invariant under any permutation of indices i J j, k - criteriulIl satisfied by the system (5).

Moreover, the same set of equations (5) is satisfied far generic topological theory: sec s.4.1 below.

3.2 In the general theory of \Vhitham hierarchies [5] the \VDVV equations arise also in the form (7). Again,

therc exists a distinguished time-variable to = x ~ associated with the first time-variable of the original KP/KdV

hicrarchy. Moreover, usually - in contrast to the simplest topological models - t,he set üf these variables für

t.lle Whitham hierarchy is infinitely large. In this context our cqs.(5) state that, for peculiar subhierarchies (in

the Seiberg-\Vitten gillodynamics, it is the Toda-chain hierarchy, associated with a peculiar set of hyperclliptic

sllrfacesL there exists a non-trivial truucatiou of the quasiclassical T-function, when it depends on the finite

nmnber Cfll - 1 = 9 = genus of the Riemann surface) of equivaleut arguments ai, anel satisfies a much wider set

of \VDVV-like equations: the whole set (5).

3.3 From (4) it is clear that ai 's are definccl modlilo linear transformations (Olle Gan change A-cycle for any

linear combination of t.hem). Eqs.(5) possess adequate "covariance": the least trivial part is that F k can be

substituted by Fk + Li f.IFI. Then

Clearly, (5) - valid for all tripIes of indices simultaneously - is cIlough to guarantec t.hat. Fi(Fk + L f.tFd- J Fj =
Fj(Fk +L f.IFl )-1 F i . Covariance under any replacement of A ami B-cycles together will bc seen from thc gencral

proof in s.4 below: in fact the role of Fk can be played by Fdw , associated with any holomorphic I-differential

dw on the Riemann surface.

3.4 For metric 11, which is a second derivative,

(as is the case for our 1]~~h == (Fk)mn: h = h(k) = 8F/8ad, r)k =, ~1Jimh,jkm ami the Riemann tensor

R i ri + r i r n (k l) 1 imh 1 iPI nn1h (k l)jki = ji,/.: kn ji - -Ho ="21J ,jkim - 4"1] l,pn/.:1J ,mji - -Ho =

= -rinrjl + (k -Ho l) = - ~1JiP h,pnk1]nlll h.mjt + (k -Ho I)

In terms of the matrix 1] = {(1Jhd the zcro-curvatllre condition R-ijki =0 would bc

-1 ? -1
1],il1 1],j = 1J,j1J 1/,i'

(8)

(9)

(10)

This equation is remarlu'lbly similar to (5) aud (7), hut whell 1/!J) = Fijk is substitutcd into (10), it contains

the fourth derivatives of F:
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(no summation over k in this formula!), while (5) is expressed through the third derivatives only.

In ordinary topological tlleories 1](0) is always Hat, i.c. (11) holds for k = 0 along with (7) - and this allows

olle to choose "flat coordinates" where 1](0) = const. Sometimes - see Appendix B for an illtercsting cxample ­

(dl t.he met.rics 71( k) are flat. simultaneously. However, cxplicit exampie of s. 5.1.2 demonstrates that t.his is not

always the case: in this cxarnple (quantum cohomologies of CP2) egs.(5) are true for all k = 0,1,2, but only

11(0) is flat (satisfies (10)), while 11(1) and 1](2) lead to non-vanishing curvaturcs.

3.5 Throughout this paper we do not indude AQCD (the remnant of the dilaton v.e.v.) in the set of moduli.

Thus, our prepotential is a function of ai alone and does not need to be a hOlIlogeneous function.

3.6 It is weIl knowIl that the conventional WDVV cquations (7) are pret.ty restrictivc: tlIis is an ovcrdcter­

IIlined system of equations for a single function F(ti), alld it is a kind of surprise that thcy possess any solutions

at all, and in fact there cxist vast variety of them (associated with \Vhitham hierarchies, topologieal models and

quantum eohomologies). The set (5) is even more overdctcrmined than (7), sinee k ean take any value. Thus, it

is even more surprising that. thc solutions still exist (in ord,.er to eonvinee the reader ~ we supplement thc formal

proof in s.4 below by explicit examples in Appelldices A and B).

Of course, (5) is tautologically true for N = 2 alld N = 3, it beeomes a non-trivial system for N ~ 4.

3.7 Our proof in s.4 aetnally suggests that in majority of eases when the ordinary \VDVV (7) is trne, the

whole system (5) bolds automatically. This implies that this entire system SbOllld possess some interpretation

in tbe spirit of hierarchies or bidden symmetries. It still remains to be found. Tbe geometrieal or cohomological

origin of relations (5) also l'cmains obseure.

3.8 In this paper wc discuss solutions to (5), provided by conventional topologieal theories and - as a far

lcss trivial example - by the simplest. Seiberg-\\fitten prepotentials.

\Ve beleive that more solutions to (5) can arise from more sopbistieated examples of the Seiberg-\Vitten

theory (N = 2 SUSY Yang-rvlills with other groups and with matter supermultiplets); tbe most interesting

should be the UV-finite IIlodels, wben hyperelliptic surfaces (the double coverings of CPl) are snbstit.uted by

eoverings of elliptie eurve (torus), and a new elliptic parameter T emerges.

If this eonjeeture is truc, one ean look for some relation between (5) aIl(1 Picard-Fuchs equatiolls, ami thcn

address to the issue of thc \VDVV equations for tbe prepotential, assodatcd with families of thc Calabi-Yau

manifolds.

. 3.9 Effeetive theory (1) is·naively non-wpological. From the 4-dimensional point of view it deseribes the low­

energy limft of the Yang-lvlills theory whieh - at least, in t.he N = 2 sllpersymmctrie ease - is not topologieal and

eont.ains propagating massless partides. Still this theory is entircly definen by aprepotential, whieh - as we IlOW

sec - possesses all essential properties of the prepotCIltials in topological thcory. Thus, from thc "string)'" point

of vicw (when everything is described in terms of univcrsality dasses of cffeetive aetions) the Seibcrg-\Vitten

models belong to tbe same dass as topological models: only the way to extract physically meaningful correlators

from the prepotential is different. This can serve as a new evidence that the notion of topological theories is

decpcr than it is usually assumed: as empbasized in [4] it ean be actually more rclated to tohe low-energy (IR)

limit of field tbeories thall to the property of the eorrelation functiolls to be COllstants in physical space-time.
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3.10 The issue of the \VDVV equations-in context of·the Seiberg-Witten theory has been addressed in (7}.

Unfortunately, we do not llnderstand the statements in tbis paper and their relation to eqs.(5).

4 The proof of eqs.(5)

4.1 Let. us begin with reminding the proof of the \VDVV equations (7) for ordinary topological theories. \Ve

take the simplest of all possible examples, when 4Ji are polynomials of a single variable A. The proof is essentially

the check of consist.eney between the following formula.s:

Here Ao are the roots of ~V'(A).

4Jj(A)4Jj(A) = ct4Jd..\) fiod ~V'(AL

p .. _ 4Ji4Jj4Jd..\) _ ~ 4Ji4Jj4Jk(A('t)
tJk - res Hf'(A) - 7" 11"'(..\0) ,

4Jk4Jt(..\) ~ 4Jk4Jl(>"a)
11kt = res Hf/(..\) = L W"(..\a) ,

a

(12)

(13)

(14)

(15)

(16)

In addition to tlle consistency of (12)-(15), one should know that such Fijb given by (13L are the tllird

derivatives of a single function F(aL Le.

a3 F
Fijk = .

8ai8aj{)ak

This integrability property of (13) follows from separate arguments and can be checked independently. But if

(12)-(14) is given, the proof of (15) is straightforward:

(17)

Note that (12) is defined modulo 11"(..\), but W'(>"a) = 0 at all thc points ..\0'

Imagine now that we clHUlge the definition of the metrie:

(18)

Then t.he \VDVV eqllations would still be correct, provided tohe definit.ion (12) of the algebra is also changeel for

(19)

This describes an associative algebra, whenever the polynomials w(>..) anel W'(..\) are co-prime, La. do not have

common divisors. Note timt (13) - and tlms tbe fact that Fijk is the third derivative of the same F - remains

illtact! One can now take for w(A) any of tlle operators 4Jd..\) , tlms rcproducing eqs.(S) für all t.üpülogical

theories 1 (see Appendix A for explicit example).

lTo make (5) sensible, one should require that W'(..\) has only simple zeroes l otherwise some of the matrices PI.; can be degenerate

and non-invertiblc.
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4.2 In the ease ofthe Seiberg-\Vitten model the polynomials 4>i(A) are substituted by the"eanonieal holoIUor­

phie differentials dwi,(A) on hyperelliptie surfacc (2). This surface ean be represented in a standard hyperelliptic

form,

(20)

(where y = ! (tu - ~) and is of genus 9 = N - 1.2

4.2.1 Instead of (12) and (19) we now put

(21)

In contrast to (19) we can not. now choose w = 1 (to reproduce (12», hecausc llOW we Hecd it to be a 1­

differentiaL Instead we just take dw to be a holoffiorphic I-differential. However, there is no distinguished one

- just a g-parametric family - and dw can be any one from this family. We require only that it is co-prime with
dPN {).,)

y

If the algebra (21) exists, the strueture constants Cfj(dwr satisfy the associativity eondit.ion (if dw and

tlEt:i. are co-prime). But we still need to show that it indeed exists, Le. t.Imt if dw is givcn, one can findy

(A-independent) ct. This is a simple exercise: all dwi are linear combinations of

dVk(A) = A
k
-

1
dA, k= l, ... ,g:

y

dVk()..) = O"kidwi(A), dwi = (a- 1 )ikdvk, aki = f dVk,JAi

also dw(A) = skdvdA). Thus, (21) is in fact a relation hetween the polynomials:

(
-1 \il-l) ( -1 \il-l) Ck ( -1 \k'-l) (\i-l) (\)Pl (\)aii,,,, ajf'" = ij akk,,,, SI'" +Pij'" N.i\·

(22)

(23)

At the I.h.s. we have a polynomial of degree 2(g - 1). Since P]..,(A) is a polynomial of degrec N - 1 = 9, this

implies that Pij (A) shmtld be a polynomial of degree 2(g - 1) - 9 = 9 - 2. The identification of two polynomials

of degree 2(9 - 1) impose a set of 29 - 1 equations for the coefficients. \Ve have a freedom to adjust ct and

"Pij(A) (with i,j fixed), i.c. 9 + (g - 1) = 29 - 1 free parameters: exactly what is necessary. The linear system

of equations is Ilon-degcnerate for co-prime dw and dPN fy.

Thus, we proved that the algebra (21) exists (for Cl given dw) - and thus Ct((lw) satisfy the associativity

conditioIl

(24)

4.2.2 Instead of (13) we have (5]:

(25)

2Note that in this way one defines a peculiar g-parametric family of hyperelliptic surfaces (the moduli space of all thc lüemalln

surfaces has dimension 39 - 3, while that of all the hyperelliptic ones - 2g - 1). One can take for thc 9 moel uli thc set {hd or

instead thc set of periods {ad. This particular family is associatcd with thc Toda-chain hicrarchy, N being thc length of thc chain

(while aU the Riemann surfacC'-s of all genera are aBsociated with KP, and alt the hyperellipUc one.e; - with KdV hierarchy).
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The surn at the r.h.s. goes over all the 29 + 2' ramification points',\o of tbe hyperelliptic curve (Le. ·over thc

zeroes of y2 = P~ C,x) - 1 = rr:=l (,\ - '\0)); dWi (,\) = (Wi ('\0) + 0('\ -'\0)) Jl~Xo ' 1? ('\0) = rrß:;to ('\0 -'\ß)·

Though eq.(25) can be ext.ra.cted from [5], für the sake of cümpleteness wc prescnt a proüf of tbis fünnula in

Appendix C at the end of this paper.

4.2.3 We define thc metric in the following way:

(26)

In particular, for dw = dWk' l1ij(dwk) = Fijk : this choke will give rise to (5).

GivCIl (21), (25) and (26), one can check:

8 3 pNote that Fijk = 8 ai8aj8a l< at the 1.h.s. of (27) is independent of dw! The r.h.s. of (27) is equal to:

k dwkdw1dw I (21)
l1kl(dw)Cij (dw) = res (d) Cij(dw) =

d>.=O d'\ .....!Q
W

dwk ( dPNd,\) dwk dPNd,\
= Ac:.o -d-,\-(-dw-W-) dw,dwj - P'j~ = F'jk- d~c:,O dA (d~N) P'j(A)-y-2- =

= Fijk - res Pij ('\)dwd'\)
d>.=O y

(27)

(28)

It remaillstoprovethatthelastitemisindeedvanishingforanyi.j.k.This follows from tbe fact. that

Pij{>'>:WIo(>') is singular only at zeroes of y, it is not singular at ,\ = 00 because Pij('\) is a polynomial of low

ellough degree 9 - 2 < 9 + 1. Thus the sum of its rcsidues at ramification points is thus the SUHl over all the

residues alld therefore vanishes.

This completes the proof of associativity condition for any dw. Taking dw = dwk (which is obviously co-prime

with d~N), we obtain (5).

5 Appendix A. Explicit example of (5) for topological theory

In this appendix we address to the quest ions about thc system (5) with thc two goals: First, we provide explicit

examples to cOllvince thc reader timt entire system (5) is gcuerically truc for topological theories, not only

(7), as aue llsually belicves. Second - since one gets convinced - wa ask if (5) is just a direct corollary of (7),

supplemcnted by pecllliar symmetry properties (Fi)jl.; = (Fj )ik = (Fdij. We denlOI1strate that this is indced

tbe case for 9 = N - 1 = 3 (eqs.(5) are tautologically correct for y = 1 and 9 = 2). However, this docs not

seem to be the case for 9 2: 4: (5) relies heavily on the fact that Fijk are the third derivatives, Fijk = 8ti~::~tk J

namely Oll relations like (13).
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5.1 Examples far 9 = N - 1 = 3

5.1.1 Let 11S begin with the topologieal model with W'(A) = A3
- q (q f; 0 - the roots of H'1(A) are all differcnt

- in order to avoid degeneracies of the matriees F 1 anel F2). In the basis 1>i = Ai 1 i = 0, 1,2 one casily obtains

from (13):

0 0 1 0 1 0 1 0 0

Fo = 0 1 0 F1 = 1 0 0 F2 := 0 0 q (29)

1 0 0 0 0 q 0 q 0

The eorresponding prepotcntial is
1 2 1 2 q 2

F = "2tOt1 + 2tot2 + "2t1t2'

The inverse IIlatrices are Fi-
1(q) = Fi (1/q).

(30)

In order to shorten thc ealculations it is useful to note that - sinec thc matriecs Fi are symlIlctrie ~ thc

relations (5) mcan that all thc matriees

are also symmetrie. It is a trivial exercise to eheek timt

U - Utr
ikj - ikj' (31)

U021 := U120 :=

are indecd all symmetrie.

IJq 0 0

001

010

(32)

5.1.2 Consider now a generalization of the previous example: the quantum eohomology of Cp2 [8]. The

prepotential is

alld the eorrcsponding matriees are:

1 1 00 N t 30- 1

F := -t t2 + -t2t +" 0 2 eotl

2 0 1 2 0 2 I~ (3n - I)! (33)

001 o 1 o 1 o o

where

Fo := 010

100 o Fl12 F122

3M
F -" n H n 30-1 otl

111 - L...J (3n _1)!t2 e I

Tl

F -" n
2
N n 3n-2 otl

112 - ~ (3n _ 2)! t2 e 1

Tl

F -" nNn 3n-3 otl
122 - L.J (3n _ 3)!t2 e I

o

f'. -" N n t3n- 4 ntl
222 - L...J (3n _ 4)! 2 e .

o

7
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Oue can easily check that every equation in (5) is true if and only if

(36)

Indeed ,

o

F1Fo-
1 F 2 = F I12 FI22 + F 111 F112 F222 + FI11FI22

F l22 F't12 FI12FI22

-Ft12 F lZ2 F222

-1 1
FI22 0 0PoFt F z = F

122

F'tl2 - FI11Ft22 0 F l
2
22 - F IIZ F 222

(37)

-F122 o

o o
Eq.(36) is the famous equation: providing the rccursive relations for J\rn [8]:

N n = a2 b(3b - 1)b(2a - b) NaN
u
.

(3n - 4)! L (3a - 1)!(3b - I)!
a+b=n

For example, N 2 = Nf, N 3 = 12N1N 2 = 12N;, ...

(38)

The zero curvaturc condition (11) is obviously satisfied for lP = Fo: ~jkl(7](O)) = 0, but it is not fulfillcd

already for 1]{ I) = F1 :

(39)

5.1.3 Two above examples illustrate that - if (7), Lc. relation for k = 0, is established - the equations (5)

for all othcr k hold as weIl. This of course follows - for thc topological systems - from ollr analysis in s.4.1, but

in fact for 9 = N - 1 = 3 this is just an arithmetic property: one should only take into account the fact. t.hat

Fijk is symmetrie in all t.hree indices.

Namely, let us write down the only non-trivial mat.rix element in relation (7):

(40)

(FO-
1 )ij :::. (det FO)-l F~j I where the entries in Fo are quadratic eombinations of Fk1m . Substituting the explicit

expression for FOl we get for (40) ccrtain sophisticated expression (tao lang to be prcscnted here) t.hrough t.he

4-th powers of Fklm .

Now, da the same for the other eqs. in (5), C.g. for U012 : the only non-trivial matrix element is

(41)

One can check that the quartic combinations are literally the same in (40) alld (41) - and in a11 other Uij k, Le.

if any one of the equations (5) is satisfied, the others follow arithmetically.
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5.2 9 > 3

Thus, we see that for 9 = N - 1 = 3 any solution to the original \VDVV eg. (7) is just literally solution t.o thc

whole system (5).

\Ve now argue that for 9 ~ 4 this is - though gcnericaUy true - but not for such a simple reasoll. Then we

provide an analogue of the example from s. 5.1.1 for 9 ~ 4 - which is now a lit tle less trivial illustration.

5.2.1 Let us try to repeat the reasoning from s.5.1.3 for generic g. The matrix element

(42)
(det F )-1 rrl .. ·r,,_l ""1"''',,-1 (D F D F)F F= k f € rimrjns-rinrjm" kr181'" kr,,-18 11 -1'

If k =0, bu t. i, j, m, n f. 0, the r. h.s. of (42) contains cxactly 9 + 1 indices 11 0" (g - 1 timcs k =0 plus cxactly

one of aB thc r's and exactly one of aB the s's). Of indices i, j, Tn, n at. most two can be equal to 0 without.

making (42) vanishing identically. Thus, every item at thc r.h.s. of (42) for k =0 contains 9 + I, 9 + 2 01' .Q + 3

indices 11 O" .

Ir k i: 0, and i, j, Tn, Tl f- 0, thc number of indices "0" at the r.h.s. is exactly 2 (one of aB the r's and one

of aU the s's). Adding at most 2 indices "0" from among i, j, rTt, n wc get 2,3 01' 4 such indices in every itcm if

k f- O.

Ir entire system (5) with all k's was arithmetic coroBary of its subset (7) with k = 0 - as is the case for 9 = 3

in s.5.1.3 - the IlUmber of all indices, including "0", should match, Le. 9 + I, 9 + 2 01' 9 + 3 should coiucidc

with 2,3 or 4. This restricts 9 to be 9 ::; 3. For 9 ~ 4 the implicat.ion (7) => (5) - st.ill true according to our

consideration in s.4 - should bc of more transcendental naturc.

5.2.2 Now we take thc topological thcory with lV' (A) = Ag - q. In the basis cPi = Ai, i = 0, ... ,g - 1 matrices

Fi are 9 x 9 allalogs of (29), now units stand at the i-th upper skew-subdiagonal and q's - at thc (q + 1 - i)-th

lower one so, again, Fi-
1 (q) = Fi (l/q): this is cnough for explicit calculation.

For cxample, for 9 = 4 not only convcntional combinations UWj = Fi Fo-
1Fj are symmctrie (Le. satisfy (7),

e.g.

U102 =

o 0 1 0

o 100

100 0

000 q

000 1

o 0 1 0

o 1 0 0

1 0 0 0

9

o 100

1 0 0 0

o 0 0 q

o 0 q 0

1 0 0 0

o 0 0 q

o 0 q 0

o q 0 0

(43)



6 Appendix B. Explicit example of (5) related to the Seiberg-Witten

effective theory

This example involves the leadillg (perturbative) approximation to the exact Seibcrg-Witten prepotcntial, which

- being the leading contribution - satisfics (5) by itself. The perturbative contribution is non-transcendental,

tlms calculation can be performed in explicit form:

1 N

Fpert == F(ad = 2 L (Am - An)2Iog(A m - An)
"..<"

ol,n=l L".. A",=O

1~1 2 1~12
= 2 L (ai - (Lj) log(ai - Gj) + 2 L (Li logai

i<i i=l
i,j=l

(45)

Here we took (Li :::::::: Ai - AN - one of thc many possible choiccs of independent variables, which differ by linear

transformations. According to comment 3.3 abovc, the system (5) is covariant under such changes.

\Ve shall use the notation (Lij = ai - aj. The matrix

{ {)'F }{(Fdmn}:::::::: a a 8 ::::::::
GI Um an

1 1 1 1 1-+L:-
GI au UI2 al3 aI4

l;tl

1 1
+- 0 0

an at2 (46)
1

0
1

+- 0
U13 al3

1
0 0

1
+-

al4 Ut4

10



Le.,

(47)

The inverse matrix

{(Fk~l)mn} == ak + omnu km(1- Omk),

für example

1 1 1 0 0 0

1 1 1 0 a12 0
{(FI-

1
)mn} = al +

1 1 1 0 0 a13

(48)

(49)

As the simplest example let llS considcr the case N = 4. \Ve already know from 8.5.1.3 timt für N == 4 it is

sufficient to check only one üf the eqs.(5), all the others follow alltümatically. \Vc take k = 1. ThcIl,

1 1 1
-+-+­
al U12 U13

1

1 1

a12 a13 a2 + a21 a2 a2

1
0 F.- l -, 2 - a2 a2 a2

U12

1
a2 a2 + an0 a2

an
(50)

1
0

1

a:n a31

0
1 1

a32 a32

1 1 1 1 1
-+-+-

a31 a32 U3 (l31 a32

and, say,
1 ~ a21 +a23

* + 2
G3l a 13

F1F2-
1F3 ==

1 1
(51)*°13 al3

a21 + a23 1

aY3 *a13

where we do not write down manifestly the diagonal terms since, to check (5), üne ünly needs to prüve the

symmetricity üf tbc matrix. This is really thc case, since

(52)

Gllly at this stage we use manifestly that Gi) = ai - Gj.

Now lct us prüvc (5) for the general casc. \Ve check the equation für the inverse matrices. Namely, llsing

11



formulas (47)-(48), one obtains

(
1 1 )-+L- +
aj ni:j (Ljn

+OiO'(1 - OiO')aiO' (Gk - Gkß (1 - okß)(1 - Ojß)) + Ojß(1 - Okß) (Gi - Gio (1 - oio)(1 - Ojo)) =
Gj ajß Gi Gio

= GiGk + Ooß(1 - 5io - Oko - 5io ) GioGkß + 5j o.6jß (~ + L _1_) +
Gj Giß Gj n::j.i Gin

+6joGio. (ak - Gkß (1 _ 5kß - 5iß )) + 5jß (ai - Gio (1 - bio - 5jo ))
Gj ~ß ~ Gjo

(53)

where we used that i f:. j f:. k. Tbe first tbree terms are evidently symmetrie with respect to interchanging

Cl' ++ ß. In order to prove tlla symmetricity of the last t.wo terms, we need to use thc identit.ies ~ - ~
) } ...

~ k~ ~ i!.i. _ Q..i.Q. = ßaßji i=r0 Qi. Then one gets
ßjßjß ß}' ßj ßja ßjß}<> Uj ,

It is intcrcsting to note (see also comment 3.4) that in the part.icular example (45), all thc mctrics 7J{k) are

flat. Moreover, it is easy to find the explicit Aat coordinates:

(55)

7 Appendix C. The proof of eq.(23)

The crllcial property of thc differential dS is that its variation with re.o;;pcct to llloduli is holornorphie 1­

differential: JdS ~ holomorphic, in fact ~ ~ dw i .

Frorn (4) it follows now [2] t.hat thc second derivative of the prcpotential is period matrix of the Riemann

surface:

(56)

ThllS, the third derivative
83F 8rt·)·

(57)
8aJhLj8Gk = uak .

It is very easy to evaluate the derivative of the period matrix of hyperelliptic curve W.r.t. the variation of any

12



ramification point An [9]3:

(58)

However, for the family (2) all tbe 2g + 2 ramification points depend only on 9 IIloduli, tlms we shonld also

know ~8>' . This is easy to evahlate in two steps:
nie

BAn ahl

ahE Bak·

First step: thc derivative
8ak f 8dS
BhE = AI. 8hl

cau be found from tbe explicit expression for dS = Ad::
adS dA 8w
aht =exact form - -;;; 8h

E
=exact form

(since d: = d~N and 8&7 = Al - t ). Thus

and

y

(59)

(60)

(61)

(62)

aht -1 {-a = -(Jkt 63)
ak

Second step: in order to evahIate %9:;-, let us take ht-derivative of PN(A) = Dß(A - Aß) and tben put A = An'

\Ve get first

(64)

aJl(1 the only term in the surn at tbe r.h.s. whicb contributes when A= An and PN{An ) = 0 is that with f3 = Q.

Applying the L'Höpital rule, wo obtain:

or
BAn A~-t -1 (22) i/{An) "' (
Bak PJv{An ) (Jkl = PJv{An ) Wk An)·

Together wit.h (57) and (58) this finally gives:

a3
F = 8Tij =L 8Tij BAn =

BUi8aj8ak {jak BAn oak
n

as stated in (25).

3Indeed, from (22) and (56), olle obtains

&Tij
- 1 -1 (i BUk t i ÖUIt i )8>'0 = (Tjk (Tjm 8>"0. Um - D>..o. Um

B, A., A, B,

Using the loeal representation Um = du m , olle gets

Therefore,
8T; .
{)>.~ =aik1

iJd>"o )a;~ flm(>'0.) = Wj(>'o )Wj (..\0)

where we used the expansion in the vicinity of the point >"0: Um =2vm(>'0.)~ + ...,~ = \%i1:) + ....
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