ON COMPOSITION SERIES AND NEW
INVARIANTS OF LOCAL ALGEBRA

Jiirgen Stiickrad' and Wolfgang Vogel®

1

Department of Mathematics
University of Leipzig
Augustusplatz 10-11

04109 Leipzig

Germay

2

Department of Mathematics
Massey University
Palmerston North

New Zealand

MPI 96-99

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany






ON COMPOSITION SERIES AND NEW
INVARIANTS OF LOCAL ALGEBRA

JURGEN STUCKRAD AND WOLFGANG VOGEL

§ 1 INTRODUCTION, MOTIVATION AND PRELIMINARY RESULTS

In 1965, D.A. Buchsbaum posed the problem to describe the difference between
the length and multiplicity of parameter ideals of local rings, sce, e.g., [SV]. 30 years
later, the same problem was discussed in [Vo], [MV] for the quotient. Analyzing
this approach the aim of our paper is to study two new invariants of local rings.
Moreover, we describe some applications.

Let A be alocal ring or a graded K-algebra, K is a field, with maximal ideal m 4.
We note that a graded I{-algebra is a Noetherian graded ring, say A = Ao A1 B. ..
with Ag = K, generated by A;. By an A-module we always mean a unitary finitely
generated module over A. Let M be a (graded) A-module. The length of M over
A is denoted by £4(M) or £(M). We consider a (homogeneous) ideal @ of A with
U M/QM) < co. Then the multiplicity of @ on M is well-defined and denoted by
e(Q; M), see, e.g., [Ei], [SV].

We want to study the following two invariants:

na(M) :=sup{€(M/QM)/e(Q; M)|Q (homogeneous) ideal of A with
U M/QM) < oo} € RT U {oo}.

na(M) = sup{f(M/QM)/e(Q; M)|Q (homogeneous) parameter ideal for
M} e RT U {oo}.

Remarks 1. (1) We only consider homogeneous ideals ¢) provided A is a graded
K-algebra and M is a graded A-module.
(1) Of course, 1 < na(M) < na(M). We get na(M) = 7a4(M) if A is a local
ring and A/m4 is an infinite field, see our discussion about an application of the
theorem of transition. This follows from well-known results of local algebra (see,
e.g., [Ma], theorems 14.13 and 14.14). However, the following example shows that
n 4 and 7 4 need not to be equal in the graded case even when the field K is infinite.
Moreover, we note that 74(M) = 1 if and only if M is a (graded) Cohen-
Macaulay module over A (see, e.g., [BH]). Using this fact and the considerations
below on flat extensions we also get: na(M) = 1 if and only if M is a (graded)
Cohen-Macaulay module.
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(ii1) Using our notation we note that the lemma of Lech, see [Le], can be stated as
follows:

inf{&(M/QM)/e(Q; M)|Q parameter ideal for M} = 1.

Ezample. Let R be the polynomial ring K{z,y,2]. Consider the ideal I = zR N
(y,2)R and the graded K-algebra A := R/I. Then we have

(1) na(A) = oo,

(2) na(4) =2,

Proof. (1) Let n be an integer > 1. We set @, := (z",y, z) R. We note that @, A is
not a parameter ideal for A. We have £(A/Q,A) = n. Applying the associative law
for multiplicities, see, e.g., [No}, Prop. 11 on page 341, we get for the multiplicity
e(Q@n; A) = 1. Hence we get (1).

(2) We set ¢ := (zo + z1,2z2) - B. Then we have {(A/qA) = 2. Using again the
associative law for multiplicities we obtain e(q; A) = 1. Hence we get fig(A) > 2.
Our theorem 4, (i) of § 2 and example 1 of § 4 yield the desired equality. O

Remarks 2. (i) If M is a FLC A-module (i.e. the local cohomology H} (M) has
finite length for : = 0,... ,dim M — 1) then the corrected version of the theorem,
(1) of [MV] shows that na(M) < oo. From this point of view we want to mention
that R/I in our above example is not FLC (see, e.g., [SV], Prop. 16, page 260).
(i1) Assertion (1) shows that n4{A) < oo is not true in general. However, by
considering the same ideal I we have f14(A) < oo. Hence we want to ask the
following question.

Problem. Characterize the (graded) A-modules M with na(M) < 0o or n4(M) <

OO,

In order to study this problem and to describe our first applications of the
new invariants we need to explain some further notations. First we require some
dimension theory. Let M be an A-module. We set

Assh M :={P € Ass M|dim A/P = dim M }.

M is said to be equidimensional if dim A/P = dim M for all minimal prime ideals
P € SuppM, ie., if min SuppM = Assh M. Following M. Nagata [Na], page 124,
an A-module M is called quasi-unmixed if Mis equidimensional where M is the
completion of M with respect to m 4. Moreover, M is unmixed if dim A/P = dim M
for all P € Ass M, i.e., if Ass M = Assh M (see again [Na], page 82). It is known
that there are local integral domains which are not quasi-unmixed (see our remark
after Theorem 2 of § 2). However, “quasi-unmixed” and “equidimensional” coincide
in the graded case. In this case the chain conditions for prime ideals are satisfied
by A as A is an epimorphic image of a polynomial ring over a field (see [Nal).
Second we need to apply the theorem of transition (see [Na], Ch. II, § 19). Let
A’ be a faithfully flat A-algebra. We assume that A’ is again a local ring or a
graded K’ -algebra with a field K’ D K. If £4(A'/m4A’) < oo then the length
and multiplicities over A’ and A differ only by the factor ¢(A’/m4A’) (see [Na],
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(19.1)). Hence we get na(M) £ na(M') where M’ := M ®4 A’. In order to obtain
upper bounds for 7 4(M) and n4(M) we therefore may assume that A/m4(= K if
A is a graded I -algebra) is an infinite field. We need to apply this fact in order to
get our above remark 1, (ii).

Moreover, if ' is a parameter ideal for M in A then there is a parameter ideal Q
for M in A such that M/Q'M = M /@M. Considering the faithfully flat A-module
A we therefore have 74 (M) = nA(M) and na(M) = nA(M)

Using the Cohen structure theory we therefore may assume that in the local
case the ring A is a complete regular local ring with infinite residue class field or in
the graded case that A is a polynomial ring in finitely many variables over an infi-
nite field since the length and multiplicity are the same by considering epimorphic
images of A.

An important approach to the proofs of § 3 is to apply filtrations: Let M be a
(graded) A-module. A finite sequence (M;)o<i<r of submodules M; of M is said
to be a filtration of M if 0 = My C M; C ... C M, = M. Following [Bo], pp.
265-266 a filtration is called a composition series if for every ¢ = 1,... ,r we have
Mi_1/M; = A/P; for some (homogenous) prime ideal P; of A. It follows that
Ass M CA{Py,...,P.}. Moreover, following [Dr] and [Si] M is defined to be clean
if there exists a composition series of M, say (M;)o<i<r With M;_,/M; = A/P;,
such that {Py,..., P} = min{Supp M).

Let us consider the following special case: R = IK[zq,... ,%n),I 2 monomial ideal
of R and M = R/I. Then M has a composition series where the corresponding
prime ideals Py,..., P, are monomial primes. This follows from the construction
of composition series. Let’s call such composition series of R/I a monomial com-
position series. Therefore our Theorem 4 of § 2 yields a first application of the new
invariants. Before stating this result we need to introduce the degree of a graded
module M over a graded I-algebra A. This degree denoted by deg 4 M or deg M
is defined as the multiplicity e(m4; M).

Corollary 1. Let I be a monomial ideal of R := K|(zo,... ,z,]. For every monomial
composition series (M;)o<i<, of R/I we have

r 2degR/I-np(R/I).
If R/I is quasi-unmixed then we get r > deg R/I +np(R/I) — 1.
Moreover, with the aid of the cleanness concept, our study on the invariants
yields a new proof of the known and interesting fact: -Let I be an unmixed clean

monomial ideal of R then R/I is Cohen-Macaulay (see Corollary 5 of § 2).
Another application of these invariants follows from theorem 1 of § 2.

Corollary 2. Let A be a local ring and let M be an A-module. If n4(M) < oo then
M is quasi-unmixed.

However, the main result of this paper states that 74(M) < oo for all graded
modules M over a graded I -algebra A, see theorem 2 (2) of § 2.

§ 2 MAIN RESULTS

The aim of this section is to describe our four theorems. First we study the
invariant n4(M).



Theorem 1. (1) Let A be a local ring (or a graded K -algebra) and let M be an
(graded) A-module. If na(M) < co then M is quasi-unmixed.

(2) The following conditions are equivalent

(1) For every local ring A (or graded K-algebra) and every quasi-unmixed
(graded) A-module M we have n (M) < oco.

(i) For every complete regular local ring R with infinite residue class field (or
for every polynomial ring R = Klzo,...,z,]| over an infinite field K} we
have np(R/P) < oo for all (homogeneous) prime ideals P of R.

Now we are going to examine the invariant 71 4(M).

Theorem 2. (1) Let A be a local ring and let M be an A-module. If it o4(M) < co
then M is quasi-unmixed.

(2) Let A be a graded K-algebra. Then we have fia(M) < oo for all graded A-
modules M.

Remarks 3. (1) By remark 1, (ii) it is clear that (1) of theorem 2 is equivalent to
(1) of theorem 1 provided that the residue class field of A is infinite. Hence theorem
2, (1) gives only a new result when this residue class field is finite.

(2) M. Nagata has constructed local integral domains A which are not quasi-
unmixed, see [Na|, example 2 of the appendix. Theorems 1, 2, (1) show that
for such local rings we have ng(A) = 214(A4) = oco.

Theorem 3. Weset R := K[zo, ... ,z,]. Let M # 0 be a graded R-module having
the following property: There is a filtration of M, say

O=MOCM1C...CM,-=M,

of graded R-modules My, ... ,M,,r > 1, such that the factors N; := M;/M;_, are
FLC R-modules fori = 1,... ,r. Then we have

r

. deg N;
TLR(M) é Z degM . TIR(IV,') < 00.
=1

In the special case that N; are Cohen-Macaulay modules we get the following
corollary of theorem 3.

Corollary 3. Let M and R be as in theorem 3. We assume that M has a fil-
tration such that the factors N; = M;/M;_, are Cohen-Macaulay R-modules for
t=1,...,r. Then we have

np(M) £ ZdegN.-/degM.

=1
Theorem 4. Let I C R:= K|[zp,... ,zs| be a monomial ideal. Take a composition
series 0 = My C My, C ... C M, = R/I of R/I with graded R-modules My, ... , M,
such that for 1 = 1,... ,r we have M;/M;_y = R/P; for monomial prime ideals
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Py,..., P, of R (a so-called monomial composition series, cf. § 1). Then we have
the following bounds:

(i) p(R/I) S r/deg R/I
(ii) np(R/I)Er —degR/IT + 1,

provided R/I is equidimensional.

Remark 4. The assertion of theorem 4, (ii) remains analogously true for complete
regular local rings. If R = W([zy,... ,zn]] with a discrete valuation ring W then
we may replace zo by a canonical generator of myy.

With the aid of the cleanness concept, we get the following two corollaries.

Corollary 4. Let I be a square-free monomial ideal of R := K{zo,... ,zn]. If R/I
is clean then we have:

nr(R/I) S §AssR/I/§Assh R/I.

The next corollary shows that our approach via composition series yields sharp
bounds on ng(R/I}). Indeed, having additional assumptions, the bound r—deg R/I+
1 of theorem 4, (ii) is equal to 1. Hence we obtain a new proof of the following
known result about unmixed clean monomial ideals, see [Si], Cor. 2.2.4.

Corollary 5. Let I be a monomial ideal of R := K(zg,... ,&,]|. Assume that R/J
is unmixed, i.e., dim R/P = dim R/I forall P € AssR/I. If R/I is clean then R/I

is Cohen-Macaulay.

§ 3 PROOFS

Proof of Theorem 1, (1) and Theorem 2, (1). Assume that M is not quasi-unmixed.
We may assume w.l.o.g. that A = R is a complete regular local ring or a polynomial
ring in finitely many indeterminates over a field I'. By assumption we can con-
sider a minimal prime ideal P € Ass M such that d' := dimR/P < dim M =: d.
Let N be the intersection of all P’ -primary submodules of a primary decom-
position of 0 in M, where P’ € AssM with P & P’. Let U be the intersec-
tion of the remaining primary submodules, t.e., U = 0 :py P! for t >> 0. We
note that AsshM & AssU and dimM/N = d'. We now take (homogeneous)
elements z,y € mp such that aM € U,z ¢ P and yM < N,y ¢ p for all
p € Ass M/U. We note that such elements do exist since AnnM/U € P and
AnnMJU € p for all p € AssM/U. We also note that SuppM/(z + y)M =
Supp M /(z,y)M = Supp M/(z",y)M = Supp M /(2" +y)M for all n € N*. Hence
we have dimM/(z" + y)M = dimM/(z",y)M = d — 1 for all n € N*. Take
(homogeneous) elements fi,..., fag—a € Ann M /N which form a part of a sys-
tem of parameters for M/(z,y)M. Indeed, such elements exist since the radical
of Ann M/N is equal to P and (z,y)R € P. Consider (homogeneous) elements
fa—d'41,-.- 5 fa—1 such that fi,..., fy—1 is a system of parameters for M/(z",y)M
and for M/(z® + y)M for all n € Nt. We set @, := (¢",y, f1,... ,fi—1)R and
Q' = (z"+y, fr,...,fa—1)R,n € N*. Of course, {(M/QnM) and &{(M/Q,, M) are
finite. We also get



eM QM) > O(MIN + QM) =
E(M/N + (mn!fd'—d'-l-lu e :fd—] )AJ)

(Since_(y1 fd:d'+11 v afd_—l )M g N))
=l M/z"M) with M :=M/N+ (fo—gt1,-.-, fa—1)M.
The same result is true by taking @, for Q).

Since dim M 2 dim M/N —(d'—1) = 1 and {(M /z" M) < co we have dim M =1
and z" is a parameter element for M. We now choose m € Nt such that 0:y 2™ =
0:y 2™t = ... Hence we may consider the following exact sequence:

0 = M/0 iy a™ + a8 5 M [« M — M /"B — 0

(up to a shift of degrees in the graded case) for n > m. Then it follows by in-
duction on n that (M /2" M) = (n — m)l(M/0 iy ™ + M) + (M [z™ M) >
n — m. On the other hand, we get for the multiplicity e(Q); M) = e(Q,; M/U) =
e(y, fr ..., fa=1; M/U) since z M /U = 0. The same result is again true by taking
@n for Q). Hence we have that ¢(Q!; M) and e(Q,; M) do not depend on n by
construction of y, f1,... , fa—1 and by using the above facts. Therefore we get
AM/Q,M) > 1 n—m

lim = o0

nooo e(@QL; M) T n-oce(y, fi,... ,fd_l;M/U)
The same is true for @),. . Finally we obtain that ng(M) = oo for the local and

graded case, and nr(M) = oo for the local case since in this situation (z" +
Y, f1,.+. , fa—1)R is a parameter ideal for M for all n € N*. This gives the desired
contradiction and completes the proof. a

Proof of Theorem 1, (2). (1) = (ii) is trivial.

(i1) = (i): We assume again w.l.o.g. that R = A is either a complete regular local
ring or a polynomial ring in finitely many indeterminates over a field /. Choose
a composition series 0 = My C My C ... C M, = M of M consisting of (graded)
submodules My, My,... , M, of M such that M;/M;_; = R/P; (up to shifts of
degree) for some (homogeneous) prime ideal P; of R, = 1,...,r. Since M is
quasi-unmixed and {Py,... , P} S SuppM, for each i = 1,... ,r, there is a prime
ideal P € Assh M such that P & P;. Therefore we get for any (homogeneous) mp
-primary ideal Q:

OM/QM) S UR/P+ Q)< ). > UR/P+Q)
=1 PcAssh M ISi_S_r
PCP;

< ) BpUR/P+Q), where Bp:=i{i]l <i<rPCP}
PeAssh M

for all P € Assh M. Moreover, we define ap := fp,.(Mp) forall P € Assh M. Then
it follows by [Bo], Remark 1 on page 275 that 1 < ap < Bp for all P € Assh M.
We set p := max{f8p/ap|P € Assh M} 2 1. Then we get
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(MIQM)Sp > apl(R/P+Q).

PcAssh M

Applying the associative law for multiplicities we obtain

e(@QM)= > ape(Q;R/P).

PEAssh M

Hence we have

UM/QM) _ pEapl(R/P+Q)

< (URIP 4 Q)
e(@Q; M) ~ Sape(Q;R/P) ~F

e(@; R/P)

ax{ I

P € AsshM} £ pmax{ng(R/P)|P € AsshM} < o0

by our assumption (ii). This completes the proof. O

Remarks 5. Our proof of Theorem 1 (2) remains true if we take the following refined
definition of fp: We are going to count each P;,1 < : < r, precisely once, i.e., if
P C P; and P’ C P; with P,P’' € Assh M then we count P;, say for 8p, but not
for Bpr. Counting the primes P; in this sense we get EpeA”h m Bp = 7. Hence we
have

p§7‘+l— Z eRp(le)-
PeAssh M

Before embarking in the proof of the main result of this paper given by theorem
2, (2) we need some investigations on local cohomology. Let A be a graded K-
algebra and let M, N s 0 be graded A-modules, where M is assumed to be finitely
generated with dim M =: d 2 0 but where N need not be finitely generated. We set
a(M) :=inf{i € Z | [M]; # 0}, and N |p:= ;5 ,[N]i for any p € Z. Let H: (M)
be the local cohomology module for 7 2 0. We introduce the following nonnegative
integer:

.

d-1
1

L(M) = 3 (

0

) O (M) aar)—it)

for an integer t € Z.

Lemma 1. Assume K is an infinite field. Let z1,... ,zq be a homogeneous system
of parameters for M with degz; £t for somet € Z and for all i = 1,... ,d. Then
we have

UM/(zy,... ,2a)M) — e((z1,... ,za); M) S L(M).
Proof. For d = 0 there is nothing to prove. For d = 1 we get
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UM[zM) — e(z; M) = £(0 137 z) < LH2 (M) =
HY (M)|a(ay) = (M) forall ¢€Z.

Let d 2 2. We can assume w.lo.g. that z; ¢ p for all p € Ass M \ {m}. We set
0 :=degzy <t. Then we have an exact sequence

0— M/0:p z1(=8) Z M = M/z\M -0
which gives rise to exact sequences for all ¢ > 0
H: (M) = HY (M/z: M) — HFYY(M/0 31 z1)(=6).

By assumption on the element 2, we have Hi¥1(M/0 :pr z1) = Hi¥'(M). Hence
we get

OH L (M /21 M) |a(myzany—it) < CH Y (M) agaty—ie) + CCHTH(M)(=8) laary—it) <
e(H:n(]M)la(M)—it) + e(H::l(MNa(M)—(iﬂ)t) since a(M/z1M) = o(M)

(notg that [z, M), (ar) = 0 because deg zy > 0) and £(H:F (M) (=6)|,) = L(HLT (M)]p-s) <
(HEH (M)]p=¢) for all p € Z. By induction hypothesis we therefore get:

€M/(z1,... ,za)M) —e((z1,... ,2a); M) =
M/ M[(ze,... ,zq)M/z1 M) —e((z2,... ,zq4); M[x: M) <
d—2

Z (d; 2) C(H (M2 M)|o(pt 2y My—it) <
d—2
: (d : 2) (C(H (M) |agary—it) + CCHZE (M)]aay—(i1ye)
d—1
= Z (d_ 1) E(Hiz(M)|a(M)—it) = It(M)
i=o \ !

d

In order to state the next lemma we need to recall the definition of the Castelnuovo-
Mumford regularity in terms of local cohomology: Let N be an Artinian graded
A-module. Then we set e(N) := max{7 | [N]; # 0} € Z. The Castelnuovo-Mumford
regularity of a graded A-module M, denoted by reg M, is defined as follows:

reg M = maz{i + e(H: (M))|0 <i < dim M}.

Now we are going to examine reg M.



Lemma 2. Let A, M and x,,... ,24 be as in lemma 1. Then we have

d
reg M/(z1,... ,zq)M < Z(deg:c,- — 1)+ reg M.

=1

Proof. We can assume that z; ¢ p for all p € Ass M/(z1,... ,zi=1)M \ {m} and
t = 1,...,d. Under this assumption we will prove by induction on 7,1 < j < d,
that

i
reg M/(zy,...,2;)M < Z(degx.- - 1) +reg M.
=1

It is therefore enough to consider just the case j = 1. Set ¢ := z; and ¢ :=
degz 2 1. The proof of lemma 1 has established the following exact sequence for

all ¢« > 1:
Hi (M) — H! (M/zM) — H:FY(M)(-6).

Hence we get

reg M/axM = max{i + e(H' (M/zM)|0 <i < dimM — 1)
< max{max{i + e(H! (M)),i + e(H}I (M)(=6)}|
0 <i<dimM — 1} = max{e(H® (M)),d + e(H. (M)),
cooyd =1+ 8+ e(HL (M)} <6 -1+ max{i+
e(H: (M)|0<i<d}=8—14regM.

a

In order to prove theorem 2, (2) we need the following application of lemma 2.

d
Corollary 2.1. Take an integer ¢ > 1+ > (deg x; — 1) + reg M — a(M) then we
i=1
have

m!M C (z1,...,xa) M.

Proof. Since reg M/(z1,... ,zq)M = e(M/[(zy,... ,zq4)M) we have

m*M C (z1,...,24)M for all integers s > 1+ e(M/(z1,... ,24)M) — a(M/
(Z1,...,2q)M) =14+e(M/(z1,... ,xq4)M)—a(M). Applying lemma 2 we therefore
get corollary 2.1. d

Proof of theorem 2, (2). Let z1,... 24 be a homogeneous system of parameters
for M. Assume w.lo.g. that §; := degz; > degze > ... > degzq. We set
ty =1 +Zf=1(deg z; —1)+reg M —a(M). Then corollary 2.1 shows that m"' M C
(z1,... ,&4)M. Take a linear form ¢; € [A],; such that €;,z2,... ,zq is again a

9



system of parameters for M. Then we get (£}',@2,... ,24)M C (z1,...,24)M.
Hence we have

A M/(z1,...,xa) M) < UM/ 20, .. ,za)M) Sty - &(M/(ly, 22, .. ,x4)M)

by applying the following exact sequence for all ¢+ € Nt:

M/t g, .. wa)M(=t) =2 M) 2q, .. za)M = M/, 20, ... ,za)M = 0.

Now we need to apply the following Bezout-type theorem, see, e.g. [Sel:
Let f1,...,fa be a homogeneous system of parameters for M generating a para-
meter ideal, say Q. Then we have for the multiplicity

e(@Q; M) =(deg A/Q)deg M =deg f1 ... deg fq- deg M.

An application to zq,... ,z4,and €1, z2, ... ,z4 gives the equality e((z1,... ,z4); M) =
S1e((€1,x2,... ,z4); M). Therefore we get with Q = (z1,... ,z4)A and Q' =
(811:1:2,"' de)A:

£(/Q1M)
"e(Q, M)

4 £(M/Q' M)
& e(@;M)

A

Now we have

d

t degz; —1 regM —a(M)

37:1.*.5 5, + 3 Sd+regM —a(M).
1=2

Therefore we obtain

((M/QM) {(M]/Q'M)

e =T M) gy
Repeating this process we get

¢(M/QM) (M/Q" M)

@) = e M=o S

where * is a parameter ideal for M generated by elements of degree one. Applying
lemma 1 we obtain

((M/Q*M) <1+ Li(M) g I,(M)
e(Q*; M) e(Q*; M) deg M
by Bezout’s theorem. Finally we get
fia(M) £ (d+reg M —a(M)*(1 + ile(gﬂi}) < 00
This completes the proof of theorem 2. O
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Proof of Theorem 8. Since Supp N; C SuppM for all 2 = 1,... ,r we have d; :=
dimpN; < dmM =:d. Let @ := (fi,...,fs)R be a homogeneous ideal of R
generated by a homogeneous system of parameters for M. Then {(N;/@N;) < co
Hence there are d; elements of a suitable minimal generating set of ¢ consisting
of homogeneous elements which generate a parameter ideal, say F;, for N;,i =
1,...,7. Then we have: {(N;/QN;) < {(N;/F;N;), and e(F;; N;) < H;L] deg fi -
deg N; by Bezout’s theorem (see the proof of theorem 2, (2)). Moreover, it follows
by induction on r: &(M/QM) £ Y i_, {(N;/QN;). Using again Bezout’s theorem
we therefore get:

=1

(I/QM) UM/
(@ M) ~ = (Hf=1deg fiYdeg M —

ZdegN EN:/FiNi) ZdegN (V)
deg M e(FiR; N;) = 4= degp AT

Since N; are FLC modules we get 1ip(N;) < nr(N;) < oo by a corrected version of
[MV]. This shows theorem 3. O

Proof of theorem 4. (i) Since R/P; are Cohen-Macaulay modules for 1 = 1,... ;1
we have from Corollary 3 of theorem 3:

degR/P;  r
I .
Ar(R/1) Z degR/T _ degR/I

(ii) Let @ be a homogeneous m-primary ideal of R. Using the notation and method
of the proof of theorem 1, (2) we get:

{R/IR+ Q) _ 2 peassh ry1 @PUR/P + Q)
e(Q; /1) g > peassh ry1 (@5 B/ P)

Since R/P are Cohen-Macaulay modules with dim R/P = dim R/I for all P €
Assh R/I we have ¢{(R/I + Q) < e(@; R/P), i.e., we get

IA

(R/I +Q) o <
by applying remark 5
=r+1—degR/I.

0

Proof of Corollary 4 and 5. With the aid of the cleannes concept, we get both
corollaries from theorem 4.
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§ 4 EXAMPLES AND PROBLEMS

Fzample 1. We consider the example discussed in § 1: R = K[zo,z1,72], and
I = (zo)R N (z1,22)R. In order to complete the proof of the assertation of this
example of § 1 we need to show that ig(R/I) £ 2. Applying theorem 4, (1) we
describe a filtration of R/I as follows:

0 C woR/I C R/I

having the factors zoR/I = R/(z1,z2)R, and R/I/zoR/I & R/xoR with the cor-
responding monomial prime ideals Py = (z1,z2)R and P, = zoR. Hence theorem
4, (i) gives nr(R/I) < 2.

With a view to theorem 3 and Corollary 3 we want to describe the following class
of examples.

Ezample 2. We set R = K[zg,...,z,]. Let I and J be homogeneous ideals of R
with the following two properties:

(i) R/I and R/J are locally Cohen-Macaulay
(i1) There is a form, say f of R such that

I+J=J+fR and J:g f=J

Then we have

-

degR/I degR/J

RR(R/INJ) S 5 gR/INJ AR(R/) degR/INJ

ﬁR(R/J) < 0

Proof. We may assume that f € I. Consider the following filtration of R/I N J:

oc(InJy+ fR/INJCR/INJ

having the two factors (INJ)+ fR/INJ 2 R/J(—deg f) and R/INJ/(INJ) +
fR/IINJ=R/(INJ)+ fR = R/I. Hence assumption (i) and theorem 3 provide
our assertion of example 2.

We note that R/ N J is not a FLC module provided that ht I < htJ £ n, or
htJ < ht I £ n. Moreover, we note that example 1 is a special case of example 2.

In the light of theorem 1 we want to state the following problem. A positive
solution of this problem proves our conjecture at least in the graded case below.

Problem 1. We set R = K[zo,... ,zn). Let P be a homogeneous prime ideal of R.
Is then nr(R/P) < c0?

The first open case of this problem is given by n = 4 and dim R/P = 3. To show
this we want to study the following example.

Ezample 8. Let S be the toric surface of P4, given parametrically by
{sm,tlo, 1L10,36tu3,3t6u3}.
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Let P be the defining prime ideal of S in K[z, ... ,z4]. Considering the system of
parameters zo, 21,22 for R/P we get ng(R/P) > ng(R/P) 2 3. We believe that
nr(R/P) = nr(R/P) = 3. A possible way to prove such results is given by the
following problem stated in terms of the theory of Grobner bases.

Problem 2. We set R = K[zg,...,z,|. Let P be a homogeneous prime ideal of
R. Let in(P) be the initial ideal of P for some term order. Describe a relationship

between fip(R/P) and fig(R/in(P)). For example, is ig(R/P) < fig(R/in(P)?
The same problem is given in terms of np(...).

Continuation of ezample 8. Taking any term order with z4 > z3 we get the follow-

ing initial ideal in(P) = (zox2,z3%, 2822, ... ,zl°)R =: Q; N Q2, where
(10 2 o (oo 10 B2 10
Q1 := ($3 a$4)R7 Q2 = (10a$3 1 P3Tygy .- 5 Ty )R
Morecover, we set Q3 := (zg,25,752%,... ,28)R. Then we consider the following

filtration of R/ inP:
0 CinP + 22R/inP C R/inP having the factors inP + z2R/inP & R/Q3, and

R/mP/inP +z’R/inP = R/inP +z2R=R/Q,N(Q:+ 24R) = R/Q,.
Both factors are Cohen-Macaulay modules. Hence Corollary 3 shows that

< deg R/Q1  degR/Qs 20440

RR(R/nP) S R t GegRfmP ~ 0

Taking the parameter ideal @ := (zg,z1,22)R for R/inP we get

P ER/inP+Q) UR/Q:+Q) _ 60
> = = —_— =
Ar(R/inP) 2 e(@Q;R/inP) (R/Q)+Q) 20
Hence 7ig(R/inP) = 3. It is not too difficult to show that ngr(R/inP) £ 3. This
gives np(R/inP) = nr(R/inP) = 3.

Ezample 4. We set R := K|[zg,...,z4]. Considering theorem 4 we want to give a
square-free monomial ideal I of R such that

nr(R/I) < np(R/T) < oo.
Take I = (zo, )R N (z2,%3)RN (z3,74)R.
Clatm. ng(R/I)=3/2 > np(R/I) = 4/3.
Proof. Taking the following filtration of R/I:

0C I+$3R/I C (:122:1:4,:123)1?./] C ($3,$4)R/I C R/I

having the factors R/(zo,z1)R, R/(%a,%1,%3)R, R/(z2,23)R and R/(z3,z4)R (up
to shifts in gradings). Hence theorem 4, (i) gives the upper bound fir(R/I) £ 4/3.
Considering the homogeneous system of parameters f := o — 22,9 = T3 — 24, h =
xy — w3 for R/I we get ip(R/I) 2 4/3. Hence we have nr(R/I) = 4/3.
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We note that theorem 4, (ii) just gives ng(R/I) < 2. However, taking the ideal
Q' := (20,2%,9,h)R we obtain ng(R/I) Z 3/2. A more careful study shows that
ns(S/1S) £ 3/2, where S = K[[zo,... ,z4]]. Since ng(R/I) £ ns(S/IS) we have
4/3 =nag(R/I) < nr(R/I) = 3/2. This completes the proof of our claim.

We want to conclude with one of possible conjectures.

Conjecture. Let A be a local ring or a graded K-algebra. Then ns(M) < oo for
every quasi-unmixed (graded) A-module M.
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