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Abstract. In this note we study the Reidemeister spectrum for metabelian

groups of the form Qn oZ and Z[1/p]n oZ. Particular attention is given

to the R∞ property of a subfamily of these groups.

1. Introduction

Let φ : G→ G be an automorphism of a group G. A class of equivalence

x ∼ gxφ(g−1) is called the Reidemeister class (or the φ-conjugacy class

or the twisted conjugacy class of φ). The number of Reidemeister classes,

denoted by R(φ), is called the Reidemeister number of φ. The interest in

twisted conjugacy relations has its origins, in particular, in the Nielsen-

Reidemeister fixed point theory (see [23, 4]), in Selberg theory (see [28, 1]),

and Algebraic Geometry (see [20]). A current important problem of the field

concerns obtaining a twisted analogue of the Burnside-Frobenius theorem

[7, 4, 11, 12, 31, 10, 9], that is to show the coincidence of the Reidemeister

number of φ and the number of fixed points of the induced homeomorphism

of an appropriate dual object. One step in this process is to describe the

class of groups G, such that R(φ) =∞ for any automorphism φ : G→ G.

The work of discovering which groups belong to the mentioned class of

groups was begun by Fel’shtyn and Hill in [7]. Later, it was shown by various

authors that the following groups belong to this class: (1) non-elementary

Gromov hyperbolic groups [5, 26] (2) Baumslag-Solitar groups BS(m,n) =

〈a, b|bamb−1 = an〉 except for BS(1, 1) [6], (3) generalized Baumslag-Solitar

groups, that is, finitely generated groups which act on a tree with all edge

and vertex stabilizers infinite cyclic [25], (4) lamplighter groups Zn o Z iff
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2|n or 3|n [19], (5) the solvable generalization Γ of BS(1, n) given by the

short exact sequence 1 → Z
[

1
n

]
→ Γ → Zk → 1 as well as any group

quasi-isometric to Γ [30], groups which are quasi-isometric to BS(1, n) [29]

(while this property is not a quasi-isometry invariant), (6) the R. Thompson

group F [2], (7) saturated weakly branch groups (including the Grigorchuk

group and the Gupta-Sidki group) [13], (8) mapping class groups, symplectic

groups and braids groups [14], (9) relatively hyperbolic groups [15], (10)

some classes of finitely generated free nilpotent groups [18, 27] and some

classes of finitely generated free solvable groups [24], (11) some classes of

crystallographic groups [3].

The paper [30] suggests a terminology for this property, which we would

like to follow. Namely, a group G has property R∞ (or is an R∞ group) if

all of its automorphisms φ have R(φ) =∞.

For the immediate consequences of the R∞ property for the topological

fixed point theory see, e.g., [29].

Following [24], we define the Reidemeister spectrum of a group G, de-

noted by Spec(G), as the set of natural numbers k such that there is an

automorphism φ ∈ Aut(G) with R(φ) = k (k can be infinite). In terms of

the spectrum, the R∞-property of the group G simply means that Spec(G)

contains only one element which is the infinity.

It is easy to see that 1) Spec(Z) = {2} ∪ {∞}, 2) for n ≥ 2 the spectrum

is full, i.e. Spec(Zn) = N ∪ {∞}. Let N = Nrl be the free nilpotent group

of rank r and class l . Then for N22 (also known as discrete Heisenberg

group) Spec(N22) = 2N∪{∞} [21, 8, 24]. It is also known that Spec(N23) =

{2k2|k ∈ N}∪{∞} [24] and Spec(N32) = {2n−1|n ∈ N}∪{4n|n ∈ N}∪{∞}
[24].

Let X = L(m, q1, . . . , qr) be a generalized lens space and f : X → X a

continuous map of degree d, where | d |6= 1 . Let f∗ : π1(X) → π1(X) be

induced homomorphism on the fundamental group π1(X) = Z/mZ.

In 1943 Franz [16] has observed thatN(f) = R(f) = R(f∗) = #Coker (1−
f∗) = #(Z/mZ)/(1 − d)(Z/mZ) = (1 − d,m), where N(f) and R(f) are

Nielsen and Reidemeister numbers of the map f and where (1 − d,m) de-

note the gcd of 1 − d and m. This gives a strong arithmetical restriction

on the Reidemeister spectrum for endomorphisms of the group Z/mZ. We
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observe that the knowledge of the Reidemeister spectrum of a group can be

quite useful for fixed point theory.

It is interesting open problem to investigate Spec(X) = {N(f)|f ∈ C0(X)}
- the Nielsen spectrum of the space X.

In this paper we study the Reidemeister spectrum and R∞-property for

a subfamily of the family of the metabelian groups of the form Qn o Z and

Z[1/p]n o Z for p a prime.

Acknowledgement. We would like to thank the Max-Planck-Institut für

Mathematik (MPIM) in Bonn for its kind support and hospitality while the

greater part of this work was completed.

2. Preliminaries

In this section we show that for certain short exact sequences the kernel is

characteristic. Then we compute Aut(Q), Aut(Z[1/p] and the Reidemeister

spectrum of the groups Q and Z[1/p], where Q denote the rational numbers

and p a prime.

Let us consider a short exact sequence of the form 1→ K→ G→ Z→ 1,

which of course splits.

Lemma 2.1. Suppose the group K has the property that for every x ∈ K
there is a natural number s > 1 such that x is divisible by s(i.e. there is

y ∈ K such that ys = x). Then K is characteristic in G.

Proof. Let φ : G→ G be an automorphism. We know that G ≈ KoθZ. Let

x ∈ K and φ(x) = (z, r). We are going to show that r = 0. It follows from

the definition of the operation on the semi-direct product that if s divides

x then s also divides φ(x) = (z, r). Again by the definition of the operation

on the semi-direct product s divides r. From the hypothesis it follows that

there is an infinite sequence of positive integers numbers such that for each

integer s of the sequence, r is divisible by this integer. Therefore, r has an

infinite number of divisors and must be zero. �

For the rational numbers we have:

Lemma 2.2. The group of automorphims of Q is isomorphic to the multi-

plicative group of the rationals different from zero denoted by Q∗.
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Proof. First, let us observe that an automorphism φ : Q→ Q is determined

if we know the value of it at 1. For this let us consider an arbitrary element

p/q ∈ Q. Then φ(p/q) = pφ(1/q) and it suffices to determine φ(1/q). Since

Q is torsion free follows that the divisibility in Q is unique then φ(1/q) is

uniquely determined. Conversely a multiplication by any rational number

different from zero provides an automorphism, since multiplication by the

inverse number provides the inverse homomorphism and the result follows.

�

Now we consider the group Z[1/p] for p a prime. We have a following

similar result.

Lemma 2.3. The group Aut(Z[1/p]) is isomorphic to the multiplicative

group of the elements of Z[1/p] generated by {±p}. This group is isomorphic

Z + Z2.

Proof. The first part is similar to the proof of the previous Lemma. Namely,

a homomorphism φ is determined by the value of the homomorphism at 1,

and it is multiplication by this number. In order to have φ an automorphism

then we need that φ(1) is invertible. Let r/s ∈ Z[1/p] where r/s is written

in the reduced form. If r/s ∈ Z[1/p] then we have either r = 1 and s = pt

or s = 1 and r = pt and the result follows. �

Now we determine the Reidemeister spectrum of Q and Z[1/p]. We need

a Lemma which is going to be used also for the computation of the Rei-

demeister spectrum of other groups. Given x ∈ Z[1/p] it can be written

uniquely in the form ±q/pn where n ∈ Z, q ∈ N(the natural numbers) and

p, q relatively prime. Denote this number q by vP (x). Here P is the set of

all primes relatively prime with p. This number will be also used later.

Lemma 2.4. Let ψ : An → An be a homomorphism where A is either Q or

Z[1/p]. Then ψ is invertible if and only if the determinant of the matrix of

ψ is invertible. Furthermore, for A = Q the cardinality of the cokernel of

ψ is infinite if det(φ) = 0, and it is 1 if det(ψ) 6= 0. For A = Z[1/p] the

cardinality of the cokernel of ψ is the natural number vP (x), defined above,

for x = det(ψ), if x 6= 0. If det(ψ) = 0 then the cardinality of the cokernel

is infinite.
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Proof. That ψ is invertible if and only if det(ψ) is invertible is a classical fact

since A is a commutative ring. Therefore if A = Q then det(ψ) 6= 0 implies

ψ invertible and we have the cardinality of the cokernel 1. If det(ψ) = 0

then the result follows promptly from the fact that Q is an infinite field.

Let A = Z[1/p] and we consider first the case where the homomorphism

is injective. The matrix M of ψ have entries in A. Multiplication by p on

An is an isomorphism as well multiplication by pl for any l. So the cokernel

of ψ and the cokernel of the composite of ψ with multiplication of pl are

isomorphic. For a sufficient large l we can assume that the matrix of the

composite has entries of the form xpi for x an integer(possibly negative)

relatively prime with p and i ≥ 0 Observe that the determinant of the new

matrix M1 is pldet(ψ) and vP of the two determinants are the same. Now

consider the homomorphism ψ1 : Zn → Zn defined by M1 and ψ2 : An → An

the homomorphism defined by the same matrix.

Then we have the following commutative diagram:

1 // Zn
ψ1 //

ι

��

Zn
π1 //

ι

��

coker(ψ1) //

��

1

1 // Z[1/p]n
ψ2 // Z[1/p]n

π2 // coker(ψ2) // 1

where coker(ψ2) has no p torsion, as result of the p−divisibility of the group

Z[1/p]. After we take the tensor product with Z[1/p] over Z the two first

vertical homomoprhisms becomes the identity. So we have an isomorphism

between the tensor product of the cokernels. The first cokernel, since it is

a finite abelian group is the direct product of two finite groups where the

first has order a power of p and the other has order relatively prime to p.

After take the tensor product we obtain only the finite subgroup of order

relatively prime to p which is simultaneously the order of the coker of ψ2 and

vP (det(ψ1)). But vP (det(ψ1)) = vP (det(φ2)) = vP (det(ψ)) and the result

follows.

For the second part if the homomorphism is not injective we have sim-

ilar sequence without assume that the first horizontal homomorphisms are

injective. Then the rest of the proof is similar to the proof above. Because

the coker(ψ1) is infinite we obtain that coker(ψ2) is also infinite. The case

when A = Q is simpler and we leave to the reader. �
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Proposition 2.5. a) The Reidemeister spectrum of Q is

Spec(Q) = {1} ∪ {∞}.
b) The Reidemeister spectrum of Z[1/p] for p an odd prime is Spec(Z[1/p]) =

{pl + 1, pl+1 − 1, l ≥ 0} ∪ {∞}
and Spec(Z[1/2]) = {2l + 1, 2l − 1, l ≥ 1} ∪ {∞}

Proof. Part a)- Given an automorphism φ : Q→ Q we know that it is multi-

plication by a rational number r. If r = 1 then the cokernel of multiplication

of r − 1 = 0 is Q so we obtain Reidemeister number infinite. Otherwise we

have multiplication by r − 1 6= 0 which is surjective. Therefore the Reide-

meister number is 1 and the result follows.

Let us consider Z[1/2] and P = P−{2}. An automorphism is multiplica-

tion by a rational number r such that vP (r) is 1. So we have r = ±2l l ∈ Z.

If r = 1 then we obtain that the Reidemeiter number is infinite, and for

r = −1 we obtain multiplication by -2 so we obtain Reidemeister number 1.

So let l 6= 0. Then the numbers 2l± 1 are always odd and the result follows.

The case p an odd prime is similar and simpler. We leave to the reader. �

3. The semi-direct product Qn o Z, Z[1/p]n o Z, n ≤ 2

We begin by recall some basic facts. Given any automorphism φ of one of

the groups QnoZ, Z[1/p]noZ, we know from section 2 that the subgroup ei-

ther Qn or Z[1/p]n is characteristic. So we obtain a homomorphism of short

exact sequence. Whenever the induced homomorphism φ̄ on the quotient is

the identity then by well known facts, see [17] implies that the Reidemeister

number is infinite. Also from [17] in the case where φ̄ : Z → Z is multi-

plication by -1(the only other possibility) then the Reidemeister number is

computed as the sum of the Reidemeister number of φ′ and the Reidemeis-

ter number of θ(1) ◦ φ′. We will use the above procedure for the calculation

which follows.

3.1. The case n = 1. In this subsection we have an action θ : Z→ A where

A is either Q or Z[1/p]. The homomorphism θ is completely determined by

θ(1) which, in turn is determined by its values at 1 ∈ A. So we identify θ(1)

with its value at 1 ∈ A.
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Proposition 3.1. a) The Reidemeister spectrum of Q oθ Z is

Spec(Qoθ Z) = {∞} if θ(1) is a non zero rational number different from ±1

and Spec(Q o Z) = {2} ∪ {∞} otherwise.

b) For p an odd prime the Reidemeister spectrum of Z[1/p] oθ Z is

Spec(Z[1/p] oθ Z) = {∞} if θ(1) ∈ Z[1/p] is a non zero invertible element

different from ±1. If r = 1 then Spec(Z[1/p] oθ Z) = {pl + 1, pl+1 − 1, l ≥
0}∪{∞}. If r = −1 then Spec(Z[1/p]oθZ) = {2pl+1, l ≥ 0}∪{∞} otherwise.

c) The Reidemeister spectrum of Z[1/2]oθZ is Spec(Z[1/2]oθZ) = {∞} if

θ(1) ∈ Z[1/2] is a non zero invertible element different from ±1. If θ(1) = 1

then Spec(Z[1/2] oθ Z) = {2(2l + 1), 2(2l − 1), l ≥ 1} ∪ {∞}
and if θ(1) = −1 then Spec(Z[1/2] oθ Z)) = {2l+1, l ≥ 1} ∪ {∞}.

Proof. Let φ : Qoθ Z be a automorphism. From the discussion in the begin

of the section we know that ∞ belongs to the spectrum and we will look at

automorpisms such that φ̄ is multiplication by -1. We compute the auto-

morphisms φ′ : Q → Q which arises as restriction of such automorphisms.

In order to an automorphsm φ′ be the restriction of an automorphism of the

big group we must have the relation φ′ ◦θ(1) = θ(−1)◦φ′. This implies that

kr = r−1k where φ′(1) = k(so different from 0) and θ(1) = r. This implies

that r2 = 1. So if r 6= ±1 then there is no such automorphism and the

Reidemeister spectrum of the group is {∞}. If r = ±1 then k can assume

any non zero value. If r = 1 then the two automorphisms on the fibers are

multiplication by k and each one has Reidemeister number 1 if k 6= 1. If

r = −1 then the two automorphisms on the fibers are multiplication by k,

−k respectively. So for k 6= ±1 the Reidemeister number is 2 and part a)

follows.

Part b) The infinite certainly belongs to the spectrum because the Rei-

demeister number of the identity is infinite. The element θ(1) is invertible

since it is an isomorphism. As in case a) we have that if θ(1) 6= ±1 there is

no such auomorphism and follows that the group has spectrum {∞}. Again

as in part a) for θ(1) = ±1 we have φ′ an arbitrary automorphism of Z[1/p].

For r = 1 the two automorpisms are the same and we obtain as Reidmeister

number 2(pl ± 1) l > 0 and 4. If r = −1 then we have to look at k − 1 and
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k+ 1 for k an invertible, so of the form εpt. If t = 0 then we get Reidemeist-

ter infinite. If t 6= 0 then we get as Reidemeister number 2pl. So the result

follows.

Part c). The proof is similar to the proof of case b) where the only

difference is because 20+1 is not a Reidemeister number of a homomorphism

for case c) but p0 + 1 it is for case b). This justifies why the formulas are

slight different. �

3.2. The case n = 2. First we analyze the case where the kernel is Q2. Let

G = Q2 o Z and for an automorphism φ : G → G let φ′ be the restriction

of φ to Q2. If M is the matrix of φ′ then we call det(φ′) the determinant of

M .

Proposition 3.2. The Reidemeister spectrum of Q2 oθ Z is either {∞} or

{2} ∪ {∞}.
The Spec(Q2 oθ Z) = {∞} if there is no an invertible matrix N over Q such

that N = MNM and det(Id − N) and det(Id −MN) are non zero. Here

θ(1) = M . Otherwise the Reidemeister spectrum is {2} ∪ {∞}.

Proof. From the considerations on the begin of this section and basic fact

about Reidemeister number for homomorphisms of Q2 the result follows. �

Examples-Now we show a family of groups which have Reidemeister

spectrum {∞} and also a family of groups which have spectrum {2}∪{∞}.

Example 1- Let θ(1) = M be the automorphism given by(
r 0

0 s

)

r2 6= 1, rs 6= 0 and 1. There is no automorphism such that the induced

homomorphism on the quotient is multiplication by -1. This can be proven

by showing that the only solution for the matrix N which satisfies N =

MNM is N the trivial matrix.

Example 2- Let θ(1) be the automorphism given by(
r 0

0 s

)



REIDEMEISTER SPECTRUM FOR METABELIAN GROUPS 9

r2 6= 1, rs = 1. By direct calculation we can find all matrices N and they

are of the form (
0 b

c 0

)
for arbitrary b, c. The matrix MN is(

0 rb

cs 0

)
Then det(Id − N) = det(Id −MN) = 1 − bc and whenever 1 − bc 6= 0

we obtain an example where the Reidemeister number is 2. Therefore one

example of a group where the spectrum is {2} ∪ {∞}.
Example 3- Let θ(1) be the automorphism given by(

0 u

v 0

)
.

Let us consider two cases. Suppose that |uv| 6= 1. Then follows that there

is no invertible N and follows that the Reidemeister number is infinite.

For the second case let u = v = 1 Then by direct calculation we can find

all matrices N which are of the form(
a b

b a

)
.

and the matrix MN is (
b a

a b

)
.

The first matrix has determinant a2 − b2. The determinant of Id −N and

Id−MN are respectively 1− 2a+ a2 − b2 and 1− 2b+ b2 − a2. There are

plenty of rational values of a and b such that these 3 values are different

from zero and consequently we obtain for each such values one example of

a group which admits an automorphism which has Reidemeister number 2.

Now we consider the case Z[1/p]2 oθ Z for p a prime. We will compute

the Reidemeister spectrum of Z[1/p]2 oθ Z for two families of action θ.

The Proposition 3.2 holds partially in this case.

Proposition 3.3. The Reidemeister spectrum of Z[1/p]2 oθZ is {∞} if and

only if there is no an invertible matrix N over Z[1/p] such that N = MNM

and det(Id−N) and det(Id−MN) are non zero. Here θ(1) = M .
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Proof. The proof is similat to the proof of Proposition 3.2. �

The Reidemeister spectrum for the groups where there exist a solution

N is not very simple in general but we can answer for two large families of

actions θ. For example if θ(1) is the identity then the spectrum obtained by

multiply by 2 the numbers(including infinite) which belong to the spectrum

of the first factor. So the first step is to compute the Reidemeister spectrum

of Z[1/p]2.

Proposition 3.4. The Reidemeister spectrum of Z[1/p]2 is

Spec(Z[1/p]2) = {n|n ∈ N and (n, p) = 1} ∪ {∞} where (n, p) denote the

gcd of n and p.

Proof. Any matrix N ∈ Gl(2,Z) can be regarded as an automorphism of

Z[1/p]2. It is well known that the Reidemeister spectrum of Z + Z is N.

So the Reidemeister spectrum of Z[1/p]2 contains vp(n) for every natural

number by Lemma 2.4. So it contains all positive numbers relatively prime

to p. But again by Lemma 2.4 an element of the spectrum has to be a

positive integer relatively prime to p. So the result follows. �

An immediate consequence of the Proposition above is that Spec(Z[1/p]2×
Z) = {2n|(n, p) = 1 n ∈ N} ∪ {∞} where (n, p) denote the gcd of n and p.

Let us start with the group Spec(Z[1/2]2 oθ Z).

Proposition 3.5. Let θ(1) be of the form:(
r 0

0 s

)

Then we have the following cases:

a) If r = s = ±1 then Spec(Z[1/2]2 oθ Z) = {2n|(n, 2) = 1 n ∈ N} where

(n, 2) denote the gcd of n and 2.

b) If r = −s = ±1 then the Reidemeister spectrum of the group Z[1/2]2 oθZ
is Spec(Z[1/2]2 oθ Z) = {2l+1, 2k(2l ± 1), l ≥ 1k ≥ 2} ∪ {∞}.

c) If rs = 1 and |r| 6= 1 then Spec(Z[1/2]2 oθ Z) = {2(2k + 1) k ≥
0, 2(2k − 1) k ≥ 1} ∪ {∞}
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d) If either r or s does not have module equal to one, and rs 6= 1 then

there is no automorphism of the group such that the induced on the quotient

is multiplication by −1 and follows that Spec(Z[1/2]2 oθ Z) = {∞}.

Proof. Let N be the matrix (
a b

c d

)
.

The equation N = MNM corresponds to the system a = ar2, b = brs,

c = crs and d = ds2. Suppose that |r| 6= 1 and rs 6= 1. This implies that

a = b = c = 0 and so the system has no solution for a matrix N invertible.

Similarly if we assume |s| 6= 1. So part d) follows.

For the part a) we have that all invertible matrices N are solutions. So

the result follows from the Proposition 3.4 above.

For the part b) we have that the matrix N is diagonal. By straightforward

calculation we can assume that the elements are of the form ε12i for i ≥ 0.

A direct calculation shows the values for the spectrum.

For the part c) we have that the matrix M is of the form(
ε2` 0

0 ε2−`

)
.

and N of the form (
0 δ12u

δ22v 0

)
.

The product MN is given by(
0 εδ12u+`

εδ22v−` 0

)
.

Follows the matrices of Id−N and Id−MN :(
1 −δ12u

−δ22v 0

)
.

and (
1 −εδ12u+`

−εδ22v−` 1

)
respectively. The result follows by straightforward calculation.
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�

Proposition 3.6. Let θ(1) be of the form:(
0 u

v 0

)
Then we have the following cases:

a) If uv = 1 then the Reidemeister spectrum of the group Z[1/2]2 oθ Z is

Spec(Z[1/2]2 oθ Z) = {2k(2l ± 1) k ≥ 2, l ≥ 1} ∪ {∞}.

b) If uv = −1 then the Reidemeister spectrum of the group Z[1/2]2 oθ Z
is Spec(Z[1/2]2 oθ Z) = {2(22m − 1)m > 0} ∪ {∞}.

c) If u2v2 6= 1 then there is no automorphism of the group such that the in-

duced on the quotient is multiplication by−1 and follows that Spec(Z[1/2]2oθ

Z) = {∞}.

Proof. In this case the entries of the matrix N(
a b

c d

)
must satisfy the equations uvd = a, u2c = b, bv2 = c, auv = d. It follows

that a = (uv)2a, d = (uv)2d, b = (uv)2b, c = (uv)2c. So part c) follows

promptly from these equations.

Let us consider the case a). In this case the system of equations provide

a = d. So the determinant of N becomes a2−bc = a2−b2v2 = (a+bv)(a−bv)

which is an invertible element, so (a + bv) and (a − bv) are also invertible.

Since uv = 1 follows that u = δ2−t and v = δ2t for some integer t and

δ ∈ {1,−1}.
The matrix N is of the form (

a b

bv2 a

)
and the matrix MN is (

bv a/v

av bv

)
.
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Our task is to compute vP of det(Id − N) and det(Id −MN). We have

det(Id−N) = 1−2a+a2− b2v2 and det(Id−MN) = 1−2bv+ b2v2−a2 so

−det(Id−MN) = −1+2bv+a2−b2v2. We compute vP of −det(Id−MN).

Since a+ bv and a− bv are invertible they are of the form a+ bv = ε12l1

and a − bv = ε22l2 . Therefore a = ε12l1−1 + ε22l2−1 and b = δ(ε12l1−t−1 −
ε22l2−t−1). Also det(N) = a2 − b2v2 = ε1ε22l1+l2 .

So we obtain det(Id−N) = ε1ε22l1+l2 − ε12l1 − ε22l2 + 1

and −det(Id−MN) = ε1ε22l1+l2 + ε12l1 − ε22l2 − 1. It is not difficult to see

that the rational numbers, up to multiplication by a power of 2(positive or

negative) are the integers 2|l1|+|l2| − ε22|l1| − ε12|l2| + 1

and 2|l1|+|l2| + ε22|l1| − ε12|l2| − 1, respectively. Whenever these positive

integers are odd they are the Reidemeister number of the correspondent

matrices, which happens for |l1|, |l2| > 0. Then in this case the Reide-

meister number is the sum equals to 2|l2|+1(2|l1| − ε1). In order to find

the complete spectrum we have to analyze the particular cases. Suppose

that l1 = l2 = 0. Then in this case we have four possibilities for the pair

ε1, ε2. By straightforward calculation for each case either det(Id − N) or

det(Id−MN) is zero (if not both) and we obtain Reidemeister infinite. In

details, for (ε1, ε2) = (1, 1) then (det(Id−N),−det(Id−MN)) = (0, 0), for

(ε1, ε2) = (1,−1) then (det(Id−N),−det(Id−MN)) = (0, 0), for (ε1, ε2) =

(−1, 1) then (det(Id−N),−det(Id−MN)) = (0,−4) for (ε1, ε2) = (−1,−1)

then (det(Id−N),−det(Id−MN)) = (4, 0)

Now let l2 = 0 and l1 6= 0. By direct inspection for ε2 = 1 we obtain

det(N) = 0 and for ε2 = −1 we obtain det(MN) = 0, hence we obtain

Reidemeister infinite.

Finally let l1 = 0 and l2 6= 0. If ε1 = 1 then det(Id−N) = det(Id−MN) =

0 and Reidemeister is infinite. If ε1 = −1 we get det(Id−N) = −2(ε22|l2|−1)

and det(Id−MN) = −2(ε22|l2|+1). After we compute vP of these numbers

and add them up we obtain the Reidemeister number 2|l2|+1 for |l2| ≥ 1 or

2k k ≥ 2. But these numbers were obtained already in previous cases and

the result follows.

Let us consider the case b). Some of the calculations are similar and in

this case we do not give all details. In this case the system of equations

provide a = −d. So the determinant of N becomes −a2− bc = −a2− b2v2 =
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which is an invertible element. Since uv = −1 follows that u = −δ2−t and

v = δ2t for some integer t and δ ∈ {1,−1}.
The matrix N is of the form (

a b

bv2 −a

)
and the matrix MN is (

−bv a/v

av bv

)
.

Our task is to commute vP of det(Id − N) and det(Id −MN). We have

det(Id − N) = 1 − a2 − b2v2 and det(Id −MN) = 1 − b2v2 − a2. So we

compute vP of det(Id−N).

Let a = r2m and bv = s2n where r, s are odd numbers (possible negative)

and m,n integers. Because a2+(bv)2 is invertible then we obtain that r2+s2

is necessarily 1 and we obtain as possible solutions a = ε12m and bv = 0 (or

b = 0 since v 6= 0) a = 0 and bv = ε22n.

For the case b = 0 we obtain det(Id−N) = 1− a2 = 1− 22m. For m = 0

we obtain Reidemeister infinite otherwise we obtain the total Reidemeister

number 2(22m − 1) for m > 0. For a = 0 we obtain det(Id − N) = 1 −
b2v2 = 1− 22n. Then we obtain the same numbers as above and the result

follows. �

The example studied by Jabara in [22] is included in part a) above. More-

over, part a) above computes the Reidemeister spectrum such example.

For an arbitrary prime p 6= 2 we will have similar results.

Proposition 3.7. Let θ(1) be of the form:(
r 0

0 s

)
Then we have the following cases:

a) If r = s = ±1 then Spec(Z[1/p]2 oθ Z) = {2n|n ∈ N, (n, p) = 1}∪{∞}
where (n, p) denote the gcd of n and p.

b) If r = −s = ±1 then the Reidemeister spectrum of the group Z[1/p]2oθ

Z is Spec(Z[1/p]2 oθ Z) = {2pl(pk ± 1), 4pl|l, k > 0} ∪ {∞}
c) If rs = 1 and |r| 6= 1 then Spec(Z[1/2]2oθZ) = {2(pl±1), 4|l > 0}∪{∞}
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d) If either r or s does not have module equal to one, and rs 6= 1 then

there is no automorphism of the group such that the induced on the quotient

is multiplication by −1 and follows that Spec(Z[1/2]2 oθ Z) = {∞}.

Proof. As in Proposition 3.5 we have the system a = ar2, b = brs, c = crs

and d = ds2. Part a) and d) follows as in Proposition 3.5.

For the part b) from the equations a = ar2, b = brs, c = crs and d = ds2

follows that the matrix N is diagonal. Let a = ε1p
l1 and d = ε2p

l2 since these

elements are invertible. The det(Id−N) = 1−a−d+ad = ε1ε2p
l1+l2−ε1pl1−

ε2p
l2 +1 and −det(Id−MN) = ad+a−d−1 = ε1ε2p

l1+l2 +ε1p
l1−ε2pl2−1.

Without loss of generality let us assume that l1, l2 ≥ 0. First let l1 =

l2 = 0. Then one of the two determinants is zero and the Reidemeister

number is infinite. Now let l1 = 0 and l2 6= 0. We have det(Id − N) =

ε1ε2p
l2 − ε1 − ε2pl2 + 1 and −det(Id −MN) = ε1ε2p

l2 + ε1 − ε2pl2 − 1. If

ε1 = 1 then det = 0 in both cases and we have Reidemeister infinite. If

ε1 = −1 then we obtain det(Id−N) = −2ε2pl2 + 2 and −det(Id−MN) =

−2ε2pl2 − 2. Both numbers are not divisible by p and the Reidemeister

number is the module of 4ε2pl2 , l2 > 0. Now let l2 = 0 and l1 6= 0. We have

det(Id−N) = ε1ε2p
l1−ε2−ε1pl1 +1 and −det(Id−MN) = ε1ε2p

l1 +ε1p
l1−

ε2 − 1. If ε2 = 1 then det(Id − N) = 0 and we have Reidemeister infinite.

If ε2 = −1 then det(Id − MN) = 0 and we have Reidemeister infinite.

Finally if l1, l2 > 0 then the two numbers ε1ε2pl1+l2 − ε1pl1 − ε2pl2 + 1 and

ε1ε2p
l1+l2 + ε1p

l1 − ε2p
l2 − 1 are not divisible by p and the Reidemeister

number is the module of 2ε1ε2pl1+l2 − 2ε2pl2 = 2ε2pl2(ε1pl1 − 1). So the

Reidemeister numbers are of the form 2pl(pk ± 1), l, k > 0, and the result

follows.

For the part c) from the equations a = ar2, b = brs, c = crs and d = ds2

follows a = d = 0. So the matrix N is of the form

(
0 b

c 0

)
.

and MN is

(
0 rb

sc 0

)
.
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By direct calculation, using that rs = 1, follows that det(Id−N) = det(Id−
MN) = 1−bc. Since bc is invertible then we can write b = ε1p

l1 and c = ε2p
l2

and follows that det(Id−N) = 1− ε1ε2pl1+l2 . If l1 + l2 = 0 then we obtain

for the determinant 0 or 2. So we obtain for Reidemeister number infinite

and 4. If l1 + l2 6= 0 then we obtain as Reidemeister numbers the numbers

of the form 2(pl ± 1), l > 0 and the result follows.

�

Proposition 3.8. Let θ(1) be of the form:(
0 u

v 0

)
Then we have the following cases:

a) If uv = 1 then the Reidemeister spectrum of the group Z[1/2]2 oθ Z is

Spec(Z[1/2]2 oθ Z) = {2pl(pl ± 1), l > 0} ∪ {∞}.

b) If uv = −1 and then the Reidemeister spectrum of the group Z[1/2]2oθ

Z is Spec(Z[1/2]2 oθ Z) = {2(pl ± 1), l > 0} ∪ {∞}.

c) If u2v2 6= 1 then there is no automorphism of the group such that the in-

duced on the quotient is multiplication by−1 and follows that Spec(Z[1/2]2oθ

Z) = {∞}.

Proof. The proof follows the same steps as the proof of Proposition 3.6 and

it is simpler. The matrix N (
a b

c d

)
must satisfy the equations uvd = a, u2c = b, bv2 = c, auv = d. It follows

that a = (uv)2a, d = (uv)2d, b = (uv)2b, c = (uv)2c. So part c) follows

promptly from these equations.

Let us consider the case a). In this case the system of equations provide

a = d. So the determinant of N becomes a2−bc = a2−b2v2 = (a+bv)(a−bv)

which is an invertible element, so (a + bv) and (a − bv) are also invertible.

Since uv = 1 follows that u = δp−t and v = δpt for some integer t and

δ ∈ {1,−1}.
The matrix N is of the form
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(
a b

bv2 a

)
and the matrix MN is

(
bv a/v

av bv

)
.

Our task is to compute vP of det(Id − N) and det(Id −MN). We have

det(Id−N) = 1−2a+a2− b2v2 and det(Id−MN) = 1−2bv+ b2v2−a2 so

−det(Id−MN) = −1+2bv+a2− b2v2. We compute vP of −det(Id−MN)

which is the same as vP of det(Id−MN).

Since a+ bv and a− bv are invertible they are of the form a+ bv = ε1p
l1

and a − bv = ε2p
l2 . Therefore 2a = ε1p

l1 + ε2p
l2 and 2bv = ε1p

l1 − ε2pl2 .

In order to have ε1pl1 + ε2p
l2 divisible by 2 we need to have l1 = l2 = l

and either ε1 = ε2 or ε1 = −ε2. In the first case we have a = ε1p
l and

2bv = 0 so b = 0. In the latter case we have a = 0 and bv = ε1s
l. Now

we compute the Reidemeister for each of these two cases. Let a = ε1p
l and

b = 0. Then det(Id − N) = 1 − 2a + a2 and −det(Id −MN) = a2 − 1. If

l = 0 then det(Id−MN) = 0 and we get Reidemeister infinite. If l 6= 0 then

the determinants are not divisible by p and we get as Reidemister number

the module of 2a2 − 2a = 2a(a − 2) = 2εpl(εpl − 1). So the Reidemeister

numbers are of the form 2pl(pl ± 1), l 6= 0. So the result follows.

Let us consider the case b). Some of the calculations are similar to the

corresponding case ofthe Proposition 3.6 and in this case we do not give the

details. The system of equations provide a = −d. So the determinant of N

becomes −a2−bc = −a2−b2v2 which is an invertible element. Since uv = −1

follows that u = −δ2−t and v = δ2t for some integer t and δ ∈ {1,−1}.
The matrix N is of the form

(
a b

bv2 −a

)
and the matrix MN is

(
−bv a/v

av bv

)
.
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Our task is to commute vP of det(Id − N) and det(Id −MN). We have

det(Id − N) = 1 − a2 − b2v2 and det(Id −MN) = 1 − b2v2 − a2. So we

compute vP of det(Id−N).

Let a = rpm and bv = spn where r, s are relatively prime with p. Because

a2 + (bv)2 is invertible then we obtain that r2 + s2 is necessarily 1 and we

obtain as possible solution a = ε1p
m and bv = 0 (or b = 0 since v 6= 0), or

a = 0 and bv = ε2p
n.

For the case b = 0 we obtain det(Id−N) = 1− a2 = 1− p2m. For m = 0

we obtain Reidemeister infinite otherwise we obtain the total Reidemeister

number 2(p2m − 1)m > 0. For a = 0 we obtain det(Id − N) = 1 − b2v2 =

1− p2n. Then we obtain the same numbers as above and the result follows.

�

4. Final comments about Qn o Z, Z[1/p]n o Z, n > 2

There are some of the above results that extend easily to the groups

Qn o Z, Z[1/p]n o Z, n > 2. One of the results refer to the group Qn o Z.

The abelian group Qn has the property that it does not have a subgroup

of finite index. Then an immediate consequence of this fact is that the

Reidemeister number of any homomorphism is either 1 or infinite. So the

following result holds.

Proposition 4.1. The Reidemeister spectrum of Qn oθ Z is either {∞} or

{2} ∪ {∞}.
The Spec(Qnoθ Z) = {∞} if there is no an invertible matrix N over Q such

that N = MNM and det(Id − N) and det(Id −MN) are non zero. Here

θ(1) = M . Otherwise the Reidemeister spectrum is {2} ∪ {∞}.

Proof. (sketch) The only possible automorphism which can have Reidemeis-

ter finite is one such that the induced homomorphism on the quotient Z is

multipliction by −1. From the procedure described in the begin of section

3 we have to compute the Reidemeister of the homomorphism given by N

and MN . But a homomorphism of Qn is either surjective or has cokernel

infinite. So the sum of the Reidemeister of the two homomorphisms is ei-

ther infinite or 2. The case where both homomorphisms have Reidemeister

1 corresponds to say that det(Id−N) and det(Id−MN) are non zero and

the result follows. �
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It is easy to construct examples which illustrated both situation.

Now let p be an arbitrary prime. It is not difficult to construct action

θ(1) which has diagonal matrix such that there is no automorphism of the

group such that the induced autmorphims on the quotient Z is −id. This

gives the examples of groups with the R∞ property.

The complete calculation of the Reidemeister spectrum for all such groups

is not clear for the moment.
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