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Abstract. One of the basic geometric objects in conformal field theory (CFT) is the mod-
uli space of Riemann surfaces whose boundaries are “rigged” with analytic parametrizations.
The fundamental operation is the sewing of such surfaces using the parametrizations. We
generalize this picture to quasisymmetric boundary parametrizations. By using tools such
as the extended λ-lemma and conformal welding we prove: (1) The universal Teichmüller
space induces complex manifold structures on the Riemann and Teichmüller moduli spaces
of rigged surfaces. (2) The border and puncture pictures of the rigged moduli and rigged
Teichmüller spaces are biholomorphically equivalent. (3) The sewing operation is holomor-
phic.

Because of the simplified picture we obtain it appears this is the natural setting for the
geometric objects in CFT.
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1. Introduction

1.1. Statement and discussion of results. This paper is devoted to the rigorous con-
struction of some of the fundamental objects and operations in the geometric approach to
two-dimensional conformal field theory. The central object is the rigged Riemann surface.
We use this term to refer to both: (1) a bordered Riemann surface with parametrizations
of its boundary components, and (2) a punctured surface with specified local biholomorphic
coordinates at the punctures. The space of conformal equivalence classes of rigged Riemann
surfaces is called the rigged moduli space. In this paper it is shown that the operation of
sewing two Riemann surfaces with quasisymmetric boundary parametrizations is holomor-
phic (Theorem 6.7). This requires the construction of mathematically consistent and rigorous
models of these rigged moduli spaces and their complex structures. The motivation for this
problem along with applications are discussed in Section 1.2.

In the classical theory of moduli spaces of Riemann surfaces, Teichmüller spaces are instru-
mental in defining and investigating the complex structures. Thus to construct a complex
structure on the rigged Riemann moduli space, we introduce a rigged Teichmüller space for
both the border and puncture models. Roughly, these rigged Teichmüller spaces have the
same relation to the rigged moduli spaces as the Teichmüller space of a surface of finite type
has to its Riemann moduli space.

Although intuitively the border and puncture models of rigged moduli spaces are the same
thing, the relation between the rigged Teichmüller spaces is less obvious. We will show that
the puncture and border models of the rigged Teichmüller spaces are indeed biholomorphi-
cally equivalent, and this also provides a rigorous proof that the two models of the rigged
moduli space are biholomorphically equivalent. Furthermore, somewhat surprisingly, the
rigged Teichmüller spaces can be seen to lie in the ordinary Teichmüller space of a bor-
dered Riemann surface. The collection of theorems which embody this construction are
summarized in Diagram (5.10) and Theorem 5.26.

An unexpected consequence of our results is that our model of the rigged moduli spaces
gives an apparently new description of the ordinary Teichmüller space of a bordered Riemann
surface. Given a bordered Riemann surface ΣB, it can be completed to a punctured surface
ΣP by sewing on punctured disks. We show that up to Dehn twists of the boundary curves,
the ordinary Teichmüller space of ΣB is essentially the rigged Teichmüller space of ΣP .
This can be thought of as an application of Segal’s definition of conformal field theory to
Teichmüller theory.
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As outlined below, the standard approach in conformal field theory is to use analytic
boundary parametrizations. It was shown by the first author in [46] that sewing is holomor-
phic in this setting. The genus-zero case was first done in [22]. In this paper we generalize
to quasisymmetric boundary parametrizations. This is not a pointless generalization; in fact
it reveals a greatly simplified picture. The choice of quasisymmetric parametrizations arises
naturally, since quasisymmetric functions are the boundary values of quasiconformal maps.

The generalization to quasisymmetric boundary data for a bordered Riemann surface is
essential for several reasons. First, it allows one to recognize that the rigged Teichmüller
spaces are contained in the ordinary Teichmüller space of a bordered surface, as mentioned
above. In other words, the boundary data is naturally included in the ordinary Teichmüller
space. As a consequence one can use standard theory in order to construct the complex
structures on all of the spaces involved. Secondly, the generalization to quasisymmetric
maps makes it possible to define and relate the puncture and border models, not only at
the moduli space level, but also at the Teichmüller space level. This was not previously
possible and it enables us to fill out a conceptually satisfying commutative diagram relating
all these spaces (see Section 5.5). Finally, the entire picture can be embedded into the
universal Teichmüller space, which is now fairly well understood. This can be thought of as
an application of geometric function theory to conformal field theory.

The idea of applying constructions in geometric function theory to conformal field theory
and string theory is not new (e.g. [10], [35], [39], [43], [50] and [51]). It has been suggested
(see the comprehensive review of Pekonen [43] and references therein) that the universal
Teichmüller space would provide the natural arena for conformal field theory, and the results
of this paper indicate that this is in fact correct.

We also hope that this paper will encourage more interaction between conformal field
theory and geometric function theory. To further this goal we have outlined in Section 7.3
the relation of our model to the standard conformal field theory model involving punctured
surfaces and analytic local coordinates. This problem in itself is not entirely trivial and the
full details will appear in a forthcoming article.

1.2. Background. In this section we motivate the problem from the point of view of con-
formal field theory (CFT).

This paper can be seen as part of the program of constructing the geometric objects
and operations in CFT. The results will have applications to the program of rigorously
constructing CFT from vertex operator algebras. We briefly discuss the basic concepts of
CFT in order to provide context.

Conformal field theory originally arose in physics from various two-dimensional statistical
mechanics models. In the seminal paper of Belavin, Polyakov and Zamolodchikov [6] much
of the structure of CFT was encoded in the notion of a chiral algebra, at the physical
level of rigor. These algebras are essentially equivalent to vertex operator algebras which
were developed independently in mathematics by Borcherds [9] and Frenkel, Lepowsky and
Meurman [14].

At around the same time in string theory the study of the geometry of CFT was introduced
by Friedan and Shenker [15]. In this context the two dimensional objects of study are the
world sheets of strings which are Riemann surfaces with boundary.

In the path integral approach to quantum field theory, one must “sum” over all possible
paths. In the case of string interactions the possible paths are the possible Riemann surfaces
joining the prescribed boundaries (strings). The conformal invariance inherent in the physics
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requires that the path integrals be taken over the moduli space. However, it is doubted that
these path integrals can be made rigorous in a direct way.

In 1987, Segal [47] and Kontsevich independently extracted the mathematical properties
such a theory should have and gave a purely mathematical definition of CFT. Substantial
work was done recently by Hu and Kriz in [18] and [19] to rigorize the categorical structures
in this definition. Details of the analytic aspects have been worked out by Radnell [46] and
will appear in a forthcoming article.

In CFT each boundary circle must be associated with a Hilbert space and each interac-
tion (Riemann surface with parametrized boundary components) must be associated with an
operator. Such Riemann surfaces can be sewn using the boundary parametrizations and cer-
tain geometric properties of this operation translate into relations between the corresponding
operators.

Collecting these ideas we present an outline of the definition of a conformal field theory
in the sense of Segal (see [47] or the review article [25]). Consider the category, C, whose
objects are ordered sets of copies of the unit circle S1 and whose morphisms are conformal
equivalence classes of Riemann surfaces with oriented, ordered, and analytically parametrized
boundaries such that the negatively (positively) oriented boundaries are parametrized by
the copies of S1 in the domain (co-domain). Composition of morphisms is defined by the
sewing of oppositely oriented boundary components in the unique way specified by the
parametrizations. A conformal field theory is a projective functor from this category to the
category of complete locally convex vector spaces over C, satisfying certain natural axioms.

Although this definition has existed since 1987, no general construction for arbitrary genus
has been given. This attests to the richness of the mathematical structure of CFT and the
difficulties faced in its construction. The genus-zero theory has been completely worked out
by Huang in, [20], [21], [22], [23], and [26]. The genus-one theory is also essentially complete
due to the work of Zhu [55] and Huang [24]. Free fermion theories were outlined by Segal
[47] and have recently been elaborated on by Kriz [31]. Many people have worked on the
algebro-geometric and topological aspects of the higher-genus theory. Some key works are
in this direction are [3], [4], [5], [13], [16], [27], [40], [52], and [53].

To construct CFT completely however, many holomorphicity issues must be addressed.
A richer mathemtical structure is contained in the chiral and anti-chiral parts of CFT,
and in the construction of CFT from vertex operator algebras it is actually these parts
which are constructed first. Axiomatically such structures are weakly conformal field theories
as defined by Segal [47]. In the chiral case, the operators in the CFT are required to
depend holomorphically on the associated Riemann surface with parametrized boundary
components. For such a statement to make sense the moduli space of Riemann surfaces with
parametrized boundaries must be a complex manifold and the sewing operation is required
to be holomorphic.

A particular problem in higher-genus CFT is completing the modules of vertex operator
algebras to obtain the required Hilbert spaces and constructing trace-class maps, associated
to Riemann surfaces with parametrized boundaries, between tensor powers of the Hilbert
spaces. In this completion process and the construction of the maps, being able to perform
the sewing operation with parametrizations that are more general than analytic is necessary.
Our generalization to quasisymmetric boundary parametrizations in this paper was partly
motivated by this application. It is crucial that the sewing operation be holomorphic, and
we prove this fact in Section 3.
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1.3. Outline. In order that this paper be accessible to both those working in conformal
field theory and geometric function theory, brief sketches of material considered standard
are provided to make the paper self-contained. Also, although all definitions are given in the
main body of the paper, a partial list of notation appears in Section 9 for the convenience
of the reader.

To get a conceptual picture of the results as quickly as possible, it may be best to look
at Diagram (5.10) once the appropriate definitions have been absorbed. The holomorphicity
of the sewing is indicated in Diagram (6.2), and this can be understood once the sewing
operation from Section 3 is read along with Theorems 5.12 and 5.13.

An outline of the contents of the paper follows.
Section 2 contains some basic concepts, definitions and standard results. We present the

definitions and background on mapping class groups, Teichmuller theory, the extended λ-
lemma and quasisymmetric maps (with some extensions of the standard terminology). In
Section 3, we generalize the ‘conformal welding’ construction of geometric function theory
in order to sew general Riemann surfaces with quasisymmetric boundary parametrization.

The main technical results appear in Section 4. We derive various lemmas regarding the
construction of quasiconformal mappings with specified properties. These lemmas are first
applied to give the relation between the mapping class groups of bordered Riemann surfaces
and the mapping class groups of the punctured Riemann surfaces obtained by sewing on
‘caps’ (that is, copies of the disk). Although this relation has been given in the case of the
homeomorphic and diffeomorphic setting, it does not seem to exist in the quasiconformal
setting. The technical lemmas of this section are also crucial to proving the relation between
the Teichmüller and Riemann moduli spaces of the border and puncture model.

Sections 5 and 6 contain the main results. In Section 5, we present the definitions of the
of the rigged Teichmüller and Riemann moduli spaces of bordered and punctured surfaces.
The relation between all the spaces and the construction of their complex structures is given.
These results are summarized in Diagram (5.10) and Theorem 5.26. Once the complex
structures are constructed, it is proved that the sewing operation is holomorphic in Section
6. This is the content of Theorem 6.7.

In Section 7 we take an important step towards understanding the local (fiber) structure
of the rigged Teichmüller space. In particular we prove in Corollary 7.8 that a holomorphic
family of riggings gives a holomorphic family in the rigged Teichmüller space.

Although the results of this paper clearly indicate that the quasisymmetric approach to
the riggings is both natural and necessary, it is of interest to establish the exact relation
between this new approach and the standard analytic rigged moduli space. A sketch of the
relation is given in Section 7.3, with details to appear in a later publication. In particular
the compatibility of the complex structure on the space of germs of holomorphic functions
with that on rigged Teichmüller space is demonstrated.

Finally, Section 8 contains some concluding remarks, and a notation key is provided in
Section 9.

2. Preliminaries

Let n− and n+ be non-negative integers and let n = n− + n+. An oriented point on a
Riemann surface is a point together with an element of {+,−}. Let Σ be a compact Riemann
surface of genus g, and choose a set of ordered, oriented and distinct points p = (p1, . . . , pn)
where n− points are negatively oriented and n+ points are positively oriented. Let ΣP = Σ\p
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be the corresponding punctured surface. We say ΣP is of type (g, n−, n+). Where it causes
no confusion we will sometimes think of ΣP as a surface with marked points rather than
punctures.

Let ΣB be a Riemann surface bounded by n closed curves which are homeomorphic to
S1 and such that sewing in n disks would result in a compact Riemann surface of genus g.
We assign an order to the set of boundary components and assign an element of {+,−} to
each boundary component such that n− components are negative and n+ are positive. We
will also say ΣB is of type (g, n−, n+) in this case. We denote the boundary of ΣB by ∂ΣB

and the ith boundary component by ∂iΣ
B. When we write ∂ΣB for ∂1Σ

B ∪ · · · ∪ ∂nΣB an
ordering of the components is implicit.

The orientation is often not important and we will simply refer to the surface as having n
punctures or boundary components.

Remark 2.1. Each boundary curve has an orientation which is the (topological) orientation
induced from the Riemann surface structure. To avoid a conflict in terminology we will refer
to boundary components with an assignment of ‘−’ (respectively, ‘+’) as incoming (respec-
tively, outgoing). For the relation to conformal field theory and boundary parametrizations
see Remark 3.2.

2.1. Mapping class groups. When dealing with surfaces with punctures or boundary there
are several different mapping class (or modular) groups that can be considered, depending
on how the boundaries and punctures are to be preserved under homeomorphisms and ho-
motopies. In this section some standard definitions and results are presented. As is natural
in Teichmüller theory we work solely with quasiconformal homeomorphisms. The boundary
curves and punctures will always be ordered and all maps are required to preserve the given
ordering. Some general sources for this material are [8], [28], [38] and [42].

Definition 2.2. For a Riemann surface ΣB bounded by an ordered set of n curves, let
PQCB(ΣB) be the space of quasiconformal self-mappings of ΣB which preserve the ordering
of the boundary components, and PQCB

0 (ΣB) be the subspace of these which are isotopic
to the identity relative to the boundary (that is, so that the isotopy fixes the boundary
components pointwise). Finally, let

PModB(ΣB) =
PQCB(ΣB)

PQCB
0 (ΣB)

.

We often abbreviate “isotopic relative to the boundary” by “isotopy rel ∂ΣB”. The “P” in
the notation stands for “pure”, which refers to the fact that the mapping class group preserves
the order of the boundary curves. PModB(ΣB) is often called the pure (quasiconformal)
mapping class group or Teichmüller modular group.

Definition 2.3. For a Riemann surface ΣP with n ordered punctures, let PQCP (ΣP ) be the
space of quasiconformal self-mappings of ΣP which preserve the punctures and their ordering,
and PQCP

0 (ΣP ) be the subspace of these which are isotopic to the identity. Finally, let

PModP (ΣP ) =
PQCP (ΣP )

PQCP
0 (ΣP )

.

We emphasize that throughout an isotopy the punctures must remain fixed. This is
automatic for a punctured surface but must be imposed as an extra condition if one instead
thinks of a surface with marked points.
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Remark 2.4. For a surface of finite topological type, the Baer-Mangler-Epstein Theorem
states that two orientation preserving self-homeomorphisms are homotopic if and only if they
are isotopic (see [38, Theorem 1.5.4]). With this in mind we will use ‘isotopy’ throughout
this paper. It is proved in [12] that any homotopy can be replaced with an isotopy such that
the maps are uniformly quasiconformal, but we will not need this fact.

Definition 2.5. Let PModI(ΣB) be the subgroup of PModB(ΣB) consisting of equivalence
classes of quasiconformal mappings of ΣB whose representatives are the identity on ∂ΣB .

Definition 2.6. Let DB(ΣB) be the subgroup of PModI(ΣB) generated by the eq-uivalence
classes of mappings which are Dehn twists around curves that are isotopic to boundary
curves.

Explicitly, let ∂iΣ
B be a boundary curve and γi be a curve isotopic to ∂iΣ

B. Let Aγi
be

the annular neighborhood bounded by γi and ∂iΣ
B. DB(ΣB) consists of maps which are

equivalent in PModI(ΣB) to quasiconformal maps which are the identity on ΣB\ ∪i Aγi
.

Definition 2.7. Let DI(ΣB) be the subgroup of PModI(ΣB) generated by Dehn twists
around curves γ which are not isotopic to a boundary curve or a point. These are the
non-separating curves.

As an aside, we note that the groups PModP (ΣP ) and PModI(ΣB) are isomorphic to their
analogues which are defined using homeomorphism or diffeomorphisms.

Proposition 2.8. The mapping class group PModI(ΣB) is generated by Dehn twists about
finitely many non-separating closed curves together with Dehn twists about curves isotopic
to the boundary components.

Proposition 2.9. The subgroup DB(ΣB) generated by boundary Dehn twists is contained in
the center of PModI(ΣB) and is isomorphic to Zn.

Proof. Dehn twists about disjoint curves commute because the twist homeomorphisms can
be taken to have disjoint support. The second part is the content of [42, Theorem 3.8]. �

Corollary 2.10. PModI(ΣB)/DB(ΣB) ' DI(ΣB)

2.2. Teichmüller spaces. We define the ordinary Teichmüller spaces (i.e. without riggings)
of punctured and bordered surfaces and describe their complex structure, as well as discuss
the mapping class groups. Since this material is standard we only provide a sketch, and refer
the reader to [32] or [38] for details.

The Teichmüller space of a bordered Riemann surface is defined as follows. Let ΣB be
a fixed base surface, which establishes the genus and number of boundary components.
Consider the set of triples (ΣB, f1,Σ

B
1 ) where ΣB

1 is a Riemann surface, and f1 : ΣB → ΣB
1

is a quasiconformal mapping. We say that

(ΣB, f1,Σ
B
1 ) ∼T (ΣB, f2,Σ

B
2 )

if there exists a biholomorphism σ : ΣB
1 → ΣB

2 such that f−1
2 ◦ σ ◦ f1 is isotopic to the

identity ‘rel ∂ΣB ’. Recall that the term ‘rel ∂ΣB ’ means that the isotopy is constant on
∂ΣB ; in particular it is the identity there.

Remark 2.11. If we impose an ordering of the boundary components of ΣB then a map
f1 : ΣB → ΣB

1 induces an ordering on the boundary components of ΣB
1 . In the definition

of the equivalence relation the ‘isotopy rel boundary’ condition implies that σ automatically
preserves the ordering.
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Definition 2.12. The Teichmüller space of a bordered Riemann surface ΣB is

TB(ΣB) ∼= {(ΣB, f1,Σ
B
1 )}/ ∼T .

Taking the quotient by the weaker equivalence relation that f−1
2 ◦ σ ◦ f1 is isotopic to the

identity (not necessarily rel boundary), produces the reduced Teichmüller space T B
# (ΣB).

The case of punctured surfaces is similar. Let ΣP be the punctured base surface. We say

(ΣP , f1,Σ
P
1 ) ∼T (ΣP , f2,Σ

P
2 )

if and only if there exists a biholomorphism σ : ΣP
1 → ΣP

2 such that f−1
2 ◦ σ ◦ f1 is isotopic

to the identity. Note that the punctures are necessarily fixed throughout a isotopy.

Definition 2.13. The Teichmüller space T P (ΣP ) of punctured Riemann surfaces is

T P (ΣP ) ∼= {(ΣP , f1,Σ
P
1 )}/ ∼T .

These two definitions are special cases of a more general definition but we will not discuss
this here.

The Beltrami equation is the partial differential equation

∂w

∂z̄
= µ

∂w

∂z̄
.

The following two theorems are crucial.

Theorem 2.14. For any µ ∈ L∞(C) with ||µ||∞ < 1, there exists a unique solution to the
Beltrami equation fixing 0, 1 and ∞. This normalized quasiconformal map will be denoted
wµ.

Theorem 2.15. For every fixed z ∈ C, the map µ 7→ wµ(z) is holomorphic. In particular,
if µ depends on a parameter t holomorphically, then t 7→ wµ(z) is holomorphic.

Let X be a Riemann surface with punctures or boundary. We temporarily denote its
Teichmüller space by T (X) and its mapping class group by PMod(X). We have dropped
the superscript “B” or “P” as the following considerations apply in both cases.

Let L∞
(−1,1)(X)1 be the unit ball in the complex Banach space of differentials of type (−1, 1)

on X, which as a linear space possesses a complex structure. Elements µ dz̄/dz ∈ L∞
(−1,1)(X)1

are called Beltrami differentials. If f : X → X1 is quasiconformal then, in terms of a local
parameter z,

µ(f) =
∂f

∂z̄
/
∂f

∂z
is called the complex dilation of f . The existence and uniqueness of solutions to the Beltrami
equation guarantees a well-defined association of an element [ΣB, f1,Σ

B
1 ] to each element of

L∞
(−1,1)(X)1. This association is called the fundamental projection and is denoted by

Φ : L∞
(−1,1)(X)1 −→ T (X).

The Teichmüller space T (X) possesses a natural complex structure, and this complex struc-
ture has the following crucial properties.

Theorem 2.16. The fundamental projection Φ : L∞
(−1,1)(X)1 −→ T (X) is holomorphic.

Theorem 2.17. The fundamental projection possesses local holomorphic sections; i.e. for
any point p ∈ T (X) there is a holomorphic map σ : U → L∞

(−1,1)(X)1 on a neighborhood U
of p such that Φ ◦ σ is the identity.
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Next, we define the ‘Teichmüller distance’, a metric on T (X). Any topological statements
about the various Teichmüller spaces in this paper refer to the unique topology compatible
with this distance.

For any quasiconformal mapping f defined on a Riemann surface X, we define its ‘maximal
dilatation’ Kf by

||µ(f)||∞ =
Kf − 1

Kf + 1

where µ(f) is the complex dilatation of µ.

Definition 2.18. The Teichmüller distance τ between two elements [X, f,X1] and [X, g,X2]
of T (X) is given by

τ ([X, f,X1], [X, g,X2]) =
1

2
inf{logKg◦f−1}

where the infimum is taken over all representatives f and g of the equivalence classes
[X, f,X1] and [X, g,X2].

A full exposition of the preceding material can be found in [38, Chapter 3] or [32, Chapter
V].

A quasiconformal map h : X → X induces an bijection h∗ : T (X) −→ T (X) defined by
[X, f,X1] 7→ [X, f ◦ h,X1]. For an element [ρ] ∈ PMod(X) we denote its corresponding
action by [ρ] · [X, f,X1] = [X, f ◦ ρ,X1]. (It is actually an anti-action but there is no need to
dwell upon this fact.) It is not hard to see that this action is well defined and the quotient of
T (X) by this action of the mapping class group is isomorphic to the Riemann moduli space.
The following Lemma is a deeper result (see for example [38, page 225]).

Lemma 2.19. The group PMod(X) acts as a group of biholomorphisms on T (X). That is,
ρ∗ : T (X) → T (X) is a biholomorphism for each ρ ∈ PMod(X).

Since there are many definitions of proper discontinuity to choose from, we include the
following definition for definiteness.

Definition 2.20. The action of a group G on a topological space S is called properly dis-
continuous if for any s ∈ S there exists a neighborhood Vs of s such that (g · Vs) ∩ Vs = ∅
except for finitely many g ∈ G.

The next result can be found in [38, page 152].

Lemma 2.21. Let ΣP be a punctured Riemann surface of finite type. The action of the
group PModP (ΣP ) on T P (ΣP ) is properly discontinuous.

The behavior of the action of PModI(ΣB) and its subgroups on TB(ΣB) is an important
part of this paper. The relation to PModP (ΣP ) will also be discussed and utilized. For the
structure of certain quotient spaces we will need the following (see [54, Proposition 5.3] or
[38, page 160]).

Proposition 2.22. Let M be a complex manifold. Let G be a group acting properly dis-
continuously and fixed-point freely by biholomorphisms on M . Then M/G is a Hausdorff
topological space which can be given a unique complex structure, so that the projection map-
ping p : M →M/G is holomorphic. Moreover, p possess local holomorphic sections.
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Remark 2.23. Proposition 2.22 holds in the case that M is infinite-dimensional. Uniqueness
relies on the fact that a homeomorphism is holomorphic if it is holomorphic on all finite-
dimensional affine subspaces (see [38, page 87]).

2.3. Holomorphic motions and the λ-lemma. The λ-lemma and its extension are dis-
cussed. This result will be used in a fundamental way in this section to produce quasicon-
formal maps with specified boundary values. The material in this section is taken from [2]
and [7]. Originally the λ-lemma is due to Mañé, Sad and Sullivan [36] where it was used in
the context of complex dynamics.

Remark 2.24. The λ-lemma was used in a different way in [46] for proving holomorphicity
of the sewing operation. Similar ideas will be used in Section 7.3 to demonstrate the com-
patibility of the complex structure on the rigged moduli space with those given in [22] and
[46].

Let ∆ be the open unit disk in C.

Definition 2.25. Let A be a subset of Ĉ. A holomorphic motion of A is a map f : ∆×A→ Ĉ

such that:

(1) for any fixed z ∈ A, the map t 7→ f(t, z) is holomorphic on ∆,
(2) for any fixed t ∈ ∆, the map z 7→ f(t, z) is an injection, and
(3) the mapping f(0, z) is the identity on A.

Since t is a kind of deformation parameter we often use the notation ft(z) for f(t, z). Also,
as f0 is the identity, we think of ft(z) as a holomorphic perturbation of the identity. The
following theorem is the λ-lemma of [36]. It says that any holomorphic perturbation of the
identity must be a quasiconformal map.

Theorem 2.26 (λ-lemma). If f is a holomorphic motion as above then f has an extension

to F : ∆ × A→ Ĉ such that:

(1) F is a holomorphic motion of A,

(2) each Ft(·) : A→ Ĉ is quasiconformal, and
(3) F is jointly continuous in (t, z).

In fact the holomorphic motion extends to the whole plane. This was originally proved by
Slodkowski in [48] although other proofs now exist.

Theorem 2.27 (Extended λ-lemma). If f is a holomorphic motion as above then f has an

extension to F : ∆ × Ĉ → Ĉ such that:

(1) F is a holomorphic motion of Ĉ,

(2) each Ft : Ĉ → Ĉ is quasiconformal with dilatation not exceeding (1 + |t|)/(1 − |t|),
and

(3) F is jointly continuous in (t, z).

The Beltrami differential of the quasiconformal extension µ(Ft) is holomorphic in t. See
for example [7, Theorem 2].

Theorem 2.28. Let f be a holomorphic motion of a set A with non-empty interior A0.
Then in A0, the Beltrami coefficient µ(t, z) of f(t, z) is a holomorphic function of t ∈ ∆.
That is, the map ∆ → L∞(A0)1 given by t 7→ µ(t, z) is holomorphic.

Note that in particular this theorem applies to Ft(z) in the extended λ-lemma and so

µ(Ft) ∈ L∞(Ĉ)1 is holomorphic in t.
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2.4. Quasisymmetric maps. We briefly review some standard definitions and adjust them
to our purposes. Useful facts about extensions of quasiconformal maps are stated. Let R

denote the extended real line R ∪∞.

Definition 2.29. An (orientation preserving) homeomorphism

h : R → R

is k-quasisymmetric if there exists a constant k such that

1

k
≤
h(x + t) − h(x)

h(x) − h(x− t)
≤ k

for all x, t ∈ R. If h is quasisymmetric for some unspecified k it is simply called quasisym-
metric.

We find it more convenient to work on S1 than on R. It is also necessary to speak of
quasisymmetry of a mapping on a closed boundary curve of a Riemann surface. The map
T (z) = i(1 + z)/(1 − z) sends the unit circle to R with T (1) = ∞.

Definition 2.30. Let h : S1 → S1 be a homeomorphism.

(1) Let eiθ be chosen so that eiθh(1) = 1. Then we say that h is quasisymmetric if
T ◦ eiθh ◦ T−1 is quasisymmetric according to Definition 2.29.

(2) Let C be a connected component of the border of a Riemann surface, and h a homeo-
morphism of C into S1. We say that h is quasisymmetric if, for any biholomorphism
F : AC → A1

r from a neighborhood AC of C into a standard annulus with outer
radius 1, h ◦ F−1 is quasisymmetric on S1 in the sense of part one.

Three observations should be made at this point.

Remark 2.31 (Regularity of the inner boundary curve). Given F , we can always restrict to
a smaller neighborhood such that the inside boundary of AC is an analytic curve.

Remark 2.32 (Independence of the choice of F ). The boundary values of a biholomorphism
of a sufficiently nice domain are quasisymmetric. In particular, if H : A1

C1
→ A1

C2
is a

biholomorphic map between doubly connected domains bounded by S1 and analytic curves
Ci, then H extends to a quasisymmetric map on S1. Also the composition of two quasisym-
metric functions is quasisymmetric [34, II.7]. Thus if part two of Definition 2.30 holds for
one biholomorphism F1, it holds for any biholomorphism F2 of an annular neighborhood,
since h ◦ F−1

2 = h ◦ F−1
1 ◦ F1 ◦ F

−1
2 . In fact, this is true in greater generality: it holds if H is

quasiconformal (see Theorem 2.40 ahead), and further if Ci are quasicircles.

Remark 2.33 (On k-quasisymmetry). These definitions cannot be refined to k-quasisymmetry
in a canonical way.

The following theorem explains the importance of quasisymmetric mappings in Teichmüller
theory (see [34, II.7]).

Theorem 2.34. A homeomorphism h : R → R is quasisymmetric if and only if there exists
a quasiconformal map of the upper half plane with boundary values h.

Since quasiconformality is preserved under biholomorphisms, a map h : S1 → S1 is qua-
sisymmetric if and only if there is a quasiconformal map from the unit disk to itself with
boundary values h.



12 DAVID RADNELL AND ERIC SCHIPPERS

We require a local version of this statement, involving only a doubly connected neigh-
borhood of a closed boundary curve. Towards this end we collect some more results on
extensions of quasiconformal mappings. We will also require a result on continuation of
quasiconformal maps across certain sets of measure zero. The following results are taken
directly from Theorems 8.1, 8.2 and 8.3 in [34, II.8].

Definition 2.35. A curve γ ⊂ C in called a quasicircle if it is the image of a circle under a
quasiconformal mapping of the plane. A quasiarc is a subarc of a quasicircle.

Note that in [34] quasiarcs are called quasiconformal curves.

Theorem 2.36. Let w0 : G → G′ be a quasiconformal mapping and F a compact subset of
the domain G. Then w0|F extends to a quasiconformal mapping of the whole plane.

Theorem 2.37. Let G and G′ be two domains with free boundary curves C and C ′. Let
w : G −→ G′ be a quasiconformal mapping such that w(C) = C ′. If C and C ′ are quasicircles
then w can be extended to a quasiconformal mapping of any domain G1 containing G ∪ C.

Combining the above two theorems we obtain the following.

Theorem 2.38. Let G and G′ be two n-tuply connected domains whose boundary curves
are quasicircles. Then every quasiconformal mapping w : G −→ G′ can be extended to a
quasiconformal mapping of the whole plane.

The next theorem states that quasiarcs are removable for quasiconformal mappings. See
for example [37], [49] or [34, V.3].

Theorem 2.39. Let G be an open subset of C and let E be a closed subset of G such
that the two-dimensional measure of E is zero. If w is a homeomorphism of G that is K-
quasiconformal on G \ E, then w is K-quasiconformal on G. In particular this holds when
E is a quasiarc.

We now return to the problem of giving a version of Theorem 2.34 for boundary curves of
a Riemann surface. Consider any quasiconformal map f : A1

C1
→ A1

C2
where Ci are Jordan

curves enclosed by S1. Theorems 2.36 and 2.37 guarantee that for any r such that A1
r ⊂ A1

C1
,

there exists an extension of f to the disk, ∆, which agrees with f on A1
r. So we have the

following theorem.

Theorem 2.40.

(1) A map h : S1 → S1 is quasisymmetric if and only if it is the restriction of some
quasiconformal map f : A1

C1
→ A1

C2
for Jordan curves C1 and C2 enclosed by S1.

(2) Let C be a connected component of the border of a Riemann surface and h : C → S1

be a homeomorphism. The map h is quasisymmetric if and only if it is the restriction
of some quasiconformal map f : AC → A1

C1
on some doubly connected neighborhood

AC of C.

Remark 2.41. Definition 2.30 and Theorem 2.40 can be extended in the obvious way to
mappings between connected components of a bordered Riemann surface.

3. Quasisymmetric sewing

As discussed in the introduction, the operation of sewing Riemann surfaces along ana-
lytically parametrized boundary components is a fundamental operation in conformal field
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Ω∗

Bα

F2
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1
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ψ−1

2
◦ J ◦ ψ1

ΣB
2

ΣB
1

#ΣB
2

Uα

C

∆∗

∆

γ

Figure 3.1. Sewing using quasisymmetric boundary identification.

theory. In this section it is shown how to sew Riemann surfaces where the identification of
the boundary components is by quasisymmetric maps. For the case of disk this is a well-
known construction in geometric function theory called conformal welding [32, III.1.4], [33],
[44]. Sewing the boundaries of a strip to produce annuli was investigated by Oikawa [41].
The case of higher-genus surfaces is no more difficult but, at least in the context of conformal
field theory, it has not been discussed in the literature.

A second fundamental use of sewing is to produce punctured surfaces by sewing caps onto
bordered surfaces. Being able to do this with quasisymmetric maps enables us to relate the
puncture and border models of rigged Teichmüller space.

3.1. The sewing operation. Let ∆∗ = Ĉ \ ∆ be the upper-hemisphere. The following
theorem (see [32, III.1.4]) describes the classical conformal welding of disks.

Theorem 3.1. If h : S1 −→ S1 is quasisymmetric then there exists conformal maps F and G
from ∆ and ∆∗ into complementary Jordan domains Ω and Ω∗ of Ĉ such that G−1◦F |S1 = h.
Moreover, the Jordan curve separating Ω and Ω∗ is a quasicircle.

We now describe the sewing of arbitrary Riemann surfaces using the conformal welding
idea. Let ΣB

1 and ΣB
2 be bordered Riemann surfaces of type (g1, n

−
1 , n

+
1 ) and (g2, n

−
2 , n

+
2 )

respectively where n+
1 > 0 and n−

2 > 0. Let C1 be an outgoing boundary component of
ΣB

1 and C2 be an incoming boundary component of ΣB
2 . Let ψ1 and ψ2 be quasisymmetric

parametrizations of C1 and C2 (that is, quasisymmetric maps ψi : Ci → S1, for i = 1, 2, in

the sense of Definition 2.30). Define J : Ĉ → Ĉ by J(z) = 1/z and note that ψ−1
2 ◦ J ◦ ψ1 :

C1 → C2 is an orientation reversing map.
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Remark 3.2. In conformal field theory it is customary to include the information of ‘in-
coming/outgoing’ (that is, choice of sign) in the orientation of the parametrization. For
our purposes it is easier to work solely with positively oriented quasisymmetric maps and
record the orientation separately (see Remark 2.1). This is the view taken in [22] and is the
most natural approach when working in the puncture picture of the rigged moduli space.
We could recover the standard picture by left-composing all the parametrizations, of the
incoming boundary, with J .

Let ΣB
1 #ΣB

2 = ΣB
1 tΣB

2 / ∼ where x ∼ y if and only if x ∈ C1, y ∈ C2 and (ψ−1
2 ◦J◦ψ1)(x) =

y. Let ιi be the inclusion maps ΣB
i −→ ΣB

1 #ΣB
2 . Both C1 and C2 map to a common curve

on ΣB
1 #ΣB

2 = ΣB
1 t ΣB

2 / ∼ which we denote by C and call the seam.

Remark 3.3. There is a natural way to make ΣB
1 #ΣB

2 into a topological space. If ψ1 and ψ2

are analytic parametrizations then ΣB
1 #ΣB

2 becomes a Riemann surface in a standard way
using ψ1 and ψ2 to produce charts on the seam, C. See for example Ahlfors and Sario [1,
Section II.3D].

We now describe how to put a complex structure on the sewn surface. Consulting Figure
3.1 may be helpful. Let AC1

and AC2
be annular neighborhoods of C1 and C2 and choose

biholomorphic maps H1 : AC1
−→ ∆ and H2 : AC2

−→ ∆∗ such that Hi(Ci) = S1. Note
that the images of H1 and H2 are annular neighborhoods of S1. With the orientation on
Ci induced from ΣB

i , H1|C1
: C1 → S1 is orientation preserving while H2|C2

: C2 → S1 is
orientation reversing.

The map

(3.1) h = H2 ◦ ψ
−1
2 ◦ J ◦ ψ1 ◦H

−1
1 |S1 : S1 −→ S1

is orientation preserving and is quasisymmetric since it is the composition of quasisymmetric
maps. By Theorem 3.1 there exist conformal maps F1 and F2 from ∆ and ∆∗ into comple-
mentary Jordan domains in Ĉ such that h = F−1

2 ◦F1|S1. Let γ be the quasicircle separating
the Jordan domains Ω and Ω∗.

The charts on ΣB
1 #ΣB

2 will now be described. On ι1(Σ
B
1 ) or ι2(Σ

B
2 ) we take the original

(interior) charts on ΣB
1 and ΣB

2 . To be precise we really have to compose with the inclusions
ιi. On the join we must be more careful. We consider all sets, Bα, of the following form.
Let Bα be a simply connected domain in Ĉ such that Bα ∩ γ 6= ∅ and Bα ⊂ F1(H1(AC1

)) ∪
F2(H2(AC2

)). Let B+
α = Bα ∩ Ω and B−

α = Bα ∩ Ω∗. We can use these half-balls to define a
chart in a neighborhood of a point in C. Let A = ι1(AC1

) ∪ ι2(AC2
), and note that it is an

annular neighborhood of C. For i = 1, 2, define ζi : A→ Ĉ by

(3.2) ζi = Fi ◦Hi ◦ ι
−1
i ,

and let U+
α = ζ−1

1 (B+
α ) and U−

α = ζ−1
2 (B−

α ). Let Uα = U+
α ∪U−

α and define ζα : Uα −→ Bα by

(3.3) ζα(p) =

{
ζ1(p) if p ∈ U+

α

ζ2(p) if p ∈ U−
α .

We take all such Uα together with the original (interior) open sets on ΣB
1 and ΣB

2 to form a
basis of open sets and hence a topology on ΣB

1 #ΣB
2 . In this topology we have:

Lemma 3.4. The map ζα : Uα −→ Bα is a homeomorphism.
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Proof. Since ζα is constructed from two homeomorphisms we need only check that it is well
defined on U+

α ∩ U−
α ⊂ C. Let w ∈ U+

α ∩ U−
α and let x and y be points in C1 and C2

respectively such that ι1(x) = ι2(y) = w. This implies ψ1(x) = J ◦ ψ2(y). We need to show
that ζ1(w) = ζ2(w).

By definition of ζα we must show that (F1 ◦H1)(x) = (F2 ◦H2)(y). The conformal welding
maps F1 and F2 have the property that F−1

2 ◦ F1(z) = h(z) where h is defined in (3.1).
Therefore

(F1 ◦H1)(x) = ((F2 ◦ h) ◦H1)(x)

= (F2 ◦ (H2 ◦ ψ
−1
2 ◦ J ◦ ψ1 ◦H

−1
1 ) ◦H1)(x)

= ((F2 ◦H2) ◦ (ψ−1
2 ◦ J ◦ ψ1))(x)

= (F2 ◦H2)(y)

as required. �

Theorem 3.5. The charts (Uα, ζα) together with the original (interior) charts from ΣB
1 and

ΣB
2 give ΣB

1 #ΣB
2 a complex manifold structure. That is, ΣB

1 #ΣB
2 with these charts is a

Riemann surface.

Proof. The transition function corresponding to a chart (Uα, ζα), and a chart from ΣB
1 or ΣB

2 ,
is holomorphic because it is a composition of functions that are holomorphic with respect to
the complex structures on ΣB

1 or ΣB
2 .

Let (Uα, ζα) and (Uβ, ζβ) be two charts with Uα ∩ Uβ 6= ∅. From equations (3.2) and (3.3)
we see that the ζα are defined using the globally defined maps Fi, Hi and ιi. Moreover, the
transition function ζα ◦ ζ−1

β is the identity and is thus holomorphic. �

Remark 3.6. If ψ1 and ψ2 are analytic then we can choose H1 = ψ1 and H2 = J ◦ ψ2. In
this case h = id, F1 = id and F2 = id. So our more general sewing procedure reduces to the
standard one outlined in Remark 3.3.

Theorem 3.7. The complex structure on ΣB
1 #ΣB

2 defined in Theorem 3.5 is the unique
complex structure which is compatible with the original complex structures on ΣB

1 and ΣB
2 .

Proof. Let {(Vβ, ξβ)} be an analytic atlas for ΣB
1 #ΣB

2 that is compatible with the complex
structures on ΣB

1 and ΣB
2 . The compatibility means that if Vβ ⊂ ιi(Σ

B
i ) then ξβ ◦ ιi is a

holomorphic function from ΣB
i to C.

The case that needs attention is for the transition functions for the charts (Uα, ζα) and
(Vβ, ξβ) where Uα ∩ Vβ ∩C 6= ∅. The compatibility of ζα and ξβ with the complex structures
on ΣB

1 and ΣB
2 means that at points not in C, the holomorphicity of the transition function

ξβ ◦ ζα
−1 is immediate. On the other hand let x ∈ C ∩ (Uα ∩Vβ) and let p = ζα(x). We need

to show that ξβ ◦ ζα
−1 is holomorphic at p. Let Nα = ζα(Uα ∩Vβ) and Nβ = ξβ(Uα ∩Vβ). By

Lemma 3.4 the transition map ξβ ◦ ζ−1
α : Nα → Nβ is a homeomorphism and its restrictions

to N+
α = Nα ∩ Ω and N−

α = Nα ∩ Ω∗ are holomorphic. By Theorem 3.1 we know that the
boundary ∂N+

α ∩ Ω is a quasiarc. Theorem 2.39 therefore implies that ζ−1
α ◦ ξβ is in fact

holomorphic on all of Nα. �

Remark 3.8. In the case of welding to produce annuli, an analogous result is proved in [41,
Lemma 2 and Theorem 1]. A key ingredient in that case is also the removability of quasiarcs
for quasiconformal maps.
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3.2. Sewing on caps. We describe in detail the sewing of caps onto a surface with boundary
to produce a punctured surface. The general setup and notation will be used throughout
the paper.

The punctured disk ∆0 = {z ∈ C | 0 < |z| ≤ 1} will be considered as a bordered Riemann
surface whose boundary is parametrized by the identity map. Given ΣB of type (g, n−, n+)
we choose a collection of ‘boundary trivializations’ τ = (τ1, . . . , τn); each component is a
quasiconformal map from a collared neighborhood of a boundary curve to the annulus A1

r for
some r < 1. By Theorem 2.40 we could equivalently say τi : ∂iΣ

B → S1 is a quasisymmetric
boundary parametrization.

At each boundary curve ∂iΣ
B we sew in the punctured disk ∆0 using id◦J ◦τi as the identi-

fication map as described in Section 3.1. We denote the simultaneous sewing by ΣB#τ (∆0)
n

and let ΣP = ΣB#τ (∆0)
n be the resultant punctured surface. The images of the punctured

disks in ΣP will be called caps. Let Di denote the ith cap, D = D1 ∪ . . .∪Dn and D0 be the
interior of D. Note that ΣB = ΣP \D0. With some slight abuse of notation we use ∂iΣ

B to
denote the image of the ith boundary curve in ΣP .

4. Quasiconformal extensions

Here we collect some non-standard results on quasiconformal maps and prove some new
ones that we need. A key tool is the extended λ-lemma.

Two of the important technical results of this section are the related Lemmas 4.14 and 4.16,
which address the problem of deforming quasiconformal maps to take specified boundary
values. Their immediate application is to the relation between the mapping class groups of a
bordered surface and its corresponding punctured surface. Moreover, these results are crucial
in showing the equivalence between the border and puncture models of rigged Teichmüller
space in Section 5.

4.1. Holomorphic families and extension results. The main idea here is that any qua-
sisymmetric/quasiconformal map can be embedded in a holomorphic motion. Combining
this with the extended λ-lemma, we are able to show that a quasisymmetric mapping of the
boundary of an annulus extends to the entire annulus.

A version of the following Lemma can be found in [45, Example 1]. Our inclusion of the
normalization is important in the application of the result.

Lemma 4.1. Any quasiconformal map u : C → C can be embedded in a holomorphic motion.
That is, there exists a holomorphic motion ut(z) such that u(z) = ut0(z) for some t0 ∈ ∆.
Furthermore, if u(0) = 0, we may take holomorphic motion to satisfy ut(0) = 0 for all t.

Proof. We proceed in two steps. First we normalize u and then find a holomorphic fam-
ily relating u to the normalizing map. Second we produce a holomorphic motion of the
normalizing map. Combining these produces the required holomorphic motion of u.

Let σ be the Möbius transformation such that σ ◦ u fixes 0, 1 and ∞. Actually since u
already fixes ∞, σ(z) = az + b for some a, b ∈ C.

The complex dilation µ(σ ◦ u) is equal to µ(u) because σ is conformal (but actually this
is not important in our case). By the definition of quasiconformality, ||µ(u)||∞ = k for some
k < 1. Choose ` such that k < ` < 1 and let n = 1/`.

For t ∈ ∆, µt = ntµ(u) defines a holomorphic family of Beltrami coefficients. This follows
since ||ntµ(u)||∞ < |n||t||k| < 1. The factor n ensures that µt = µ(u) when t = `, which is
in the interior of ∆.
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Let wt be the normalized solution to the Beltrami equation with coefficient µt (see Theorem
2.14). The following properties hold:

(1) for fixed z, wt(z) is holomorphic in t (see Theorem 2.15),
(2) w0(z) = z, and
(3) w` = σ ◦ u.

We now need to embed σ−1 in a holomorphic motion. Let

ρt(z) =
(`− t)z + tσ−1(z)

`

and note that ρt is also holomorphic in z. We claim that ut(z) = (ρt ◦ wt)(z) is the desired
holomorphic motion. To see this note that:

(1) for fixed z, ut(z) is holomorphic in t because ρt(z) is holomorphic in t and z,
(2) u0(z) = z, and
(3) u` = σ−1 ◦ w` = u.

The final statement of the theorem follows from the fact that if u(0) = 0, then σ(0) = 0.
Since wt is normalized so that wt(0) = 0 for all t, we have ut(0) = 0 for all t. �

Remark 4.2. This proves that any quasicircle can be embedded in a holomorphic motion of
S1.

Choose R > 1 and consider the standard annuli AR
1 . Recall that SR is the circle of radius

R and B(0, R) is the closed ball of radius R.

Lemma 4.3. Let f : SR → SR be a quasisymmetric mapping and let ι : S1 → S1 be the
identity map. There exists a quasiconformal mapping F : AR

1 → AR
1 extending f1 and ι.

That is, F |S1
= ι and F |SR

= f . In fact F can be extended to Ĉ.

Proof. The idea is to embed f in a holomorphic motion and apply the extended λ-lemma to
the motion of S1 ∪ SR, with the motion being the identity on S1. However this cannot be
done directly as the motion of SR may intersect S1 and so the motion of S1 ∪ SR may not
be injective. We use compactness of the motion and a rescaling to avoid this problem.

Let uf : C → C be a quasiconformal extension of f . We may assume that uf(0) = 0 (this
can be achieved by composing uf with an appropriate linear transformation).

From Lemma 4.1 there exists a holomorphic motion ut such that ut0 = uf for some t0 ∈ ∆.
We know from the λ-lemma that ut(z) : ∆ × C → C is continuous and thus takes compact
sets in z to compact sets. We also have ut(0) = 0. Therefore there exists ε > 0 such that

ut(SR) ∩B(0, ε) = ∅ for all t with |t| ≤ t0.
Consider the function vt(z) = (1/ε)ut(εz). For |z| = R/ε and |t| ≤ |t0|, |v

t(z)| > (1/ε)ε =
1. So the motion of SR/ε under vt is disjoint from S1. Also v0(z) = z. The function

gt(z) =

{
z for z ∈ S1

vt(z) for z ∈ SR/ε

is injective and thus a holomorphic motion of S1∪SR/ε. The extended λ-lemma (see Theorem
2.27) guarantees an extension of gt to a holomorphic motion Gt : ∆ × C → C. Note that
Gt|S1

(z) = z and Gt0(SR/ε) = SR/ε. Now Gt0 must be modified to map SR to itself. Write
z = reiθ and let

w(reiθ) =

{
reiθ for r ≤ 1

(ar + b)eiθ for r ≥ 1
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where a and b are defined by a + b = 1 and aR + b = R/ε. Note that w is quasiconformal
and w(Reiθ) = (R/ε)eiθ.

We now claim that F = w−1 ◦ Gt0 ◦ w is the desired extension. That is, F |S1
= ι and

F |SR
= f . The map F is quasiconformal since it is the composition of quasiconformal maps.

When z ∈ S1,
F (z) = w−1(Gt0(w(z))) = w−1(Gt0(z)) = w−1(z) = z.

If z = Reiθ then uf(z) = f(z) and

F (z) = w−1(Gt0(w(Reiθ)))

= w−1(vt0((R/ε)eiθ)

= w−1((1/ε)ut0(ε(R/ε)eiθ))

= w−1((1/ε)(uf(z)))

= uf(z)

The penultimate equality follows from equalities |uf(z)| = R and w−1(Reiθ/ε) = Reiθ. �

Remark 4.4. The roles of the inner and outer boundary of the annuli can be interchanged
without difficulty.

Corollary 4.5. Let A and B be doubly-connected regions bounded by quasicircles α1 and α2,
and β1 and β2 respectively. Let f1 : α1 → β1 and f2 : α2 → β2 be quasisymmetric maps.
There exists a quasiconformal map F : A → B extending f1 and f2. That is, F |γ1

= f1 and
F |γ2

= f2.

Proof. Choose numbers R1 and R2 and quasiconformal maps g1 : A→ A
R2

R1
and g2 : B → A

R2

R1

Pick R′ such that R1 < R′ < R2. By applying Lemma 4.3 on AR′

R1
we get a quasiconformal

map extending g2◦f1◦g
−1
1 which is the identity on SR′ . Similarly g2◦f1◦g

−1
1 can be extended

to the identity on SR′ . Gluing these maps and pulling back by g1 and g2 gives the desired
map F : A→ B. �

Let ΣB be a Riemann surface of type (g, n−, n+) with boundary ∂ΣB = ∂1Σ
B ∪· · ·∪∂nΣB

as usual.

Corollary 4.6. For i = 1, . . . , n, let fi : ∂iΣ
B → ∂iΣ

B be a quasisymmetric self-map of the
ith boundary component of ΣB. There exists a quasiconformal map f : ΣB → ΣB such that
f |∂iΣB = fi.

Proof. For each i, choose γi to be a quasicircle that is isotopic to the boundary component
∂iΣ

B. The curves γi can be taken to be mutually disjoint. Let A
γi

∂iΣB be the annulus bounded

by γi and ∂iΣ
B. After conformally mapping A

γi

∂iΣB to the plane we can apply Corollary 4.5

to obtain a quasiconformal map Fi : A
γi

∂iΣB → A
γi

∂iΣB with Fi|γi
= id and Fi|∂iΣB = fi.

Combining the Fi and extending by the identity gives the desired extension. �

Corollary 4.7. Let γ1 and γ2 be quasicircles in ∆ with 0 contained in their interiors. Let
f1 : ∂∆ → ∂∆ and f2 : γ1 → γ2 be quasisymmetric maps. Then there exists a quasiconformal
map f : ∆ → ∆ such that f |∂∆ = f1, f |γ1

= f2, and f(0) = 0.

Proof. Choose ε > 0 such that Sε ∩ γ1 = ∅ and Sε ∩ γ2 = ∅. Apply Corollary 4.5 to the
doubly connected domains bounded by S1 and γ1, and S1 and γ2 to get an extension of f1
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and f2. Now apply Corollary 4.5 again to the connected domains bounded by γ1 and Sε, and
γ2 and Sε to get an extension of f2 and the identity map on Sε. Gluing these two extensions
and the identity map on B(0, ε) produces the desired extension f . �

Remark 4.8. One can extend f to the entire plane.

4.2. The correcting map and extension of PModB(ΣB) to PModP (ΣP ). Given a Rie-
mann surface ΣB bounded by n closed curves, we can extend it to a punctured Riemann
surface ΣP = ΣB#τ (∆0)

n by sewing on caps as described in Section 3.2. In the current
section the orientation of the punctures and boundary components plays no role and can be
safely ignored.

In this section we establish various extension theorems for quasiconformal mappings. The
main result is the following: any quasiconformal self-map of ΣP is isotopic to a quasiconformal
self-map of ΣP which preserves ΣB. In fact, the boundary values of the restriction of the
new map can be arbitrarily assigned. These results are contained in the key Lemmas 4.14
and 4.16, which will be crucial in establishing the bijection between the border and puncture
models of Teichmüller space.

It is also necessary to relate the mapping class group of ΣB to that of ΣP . These results,
summarized by Theorem 4.21, are present in the literature for the mapping class groups
of diffeomorphisms or homeomorphisms (see for example [17, Section 2.1], [29, section 3]
and [11, Section 6]). For the most part we are able to apply these known results to our
quasiconformal setting. Where this is not possible we supply short proofs. These proofs
appear to be new and rely on the extended λ-lemma in an essential way.

Lemma 4.9. If f1 and f2 are quasiconformal self-maps of ∆ which agree on ∂∆ then f1 and
f2 are isotopic rel ∂∆.

Proof. This follows from [32, Theorem V.1.4], with the trivial group. Alternatively, one can
explicitly construct the homotopy as in [32, Theorem IV.3.5]: Let ft(z) be the point dividing
the geodesic joining f1(z) to f2(z) into segments whose hyperbolic lengths have the ratio
t : 1− t. We note again that homotopies can always be replaced with isotopies (see Remark
2.4). �

Remark 4.10. If f1(0) = 0 and f2(0) = 0, one can take the homotopy to satisfy ft(0) = 0
for all t. That is, f1 and f2 are homotopic rel ∂∆ ∪ {0}. This follows from the explicit
construction in the proof.

Corollary 4.11. Any f ∈ PQCB(ΣB) has an extension f̃ ∈ PQCP (ΣP ). Any two such
extensions of f are isotopic.

Proof. Apply Lemma 4.9 and Remark 4.10 on the (punctured) caps with boundary values
determined by f . �

Proposition 4.12. A map f ∈ PQCB(ΣB) is isotopic to the identity via an isotopy keeping
each boundary component setwise (but not pointwise) fixed, if and only if any extension

f̃ ∈ PQCP (ΣP ) is isotopic to the identity on the punctured surface ΣP .

Proof. This appears in [8, Proposition 1.3], and references therein, for the more general case
of homeomorphisms. �

Corollary 4.13. The map PModB(ΣB) → PModP (ΣP ) given by taking [f ] to an extension

[f̃ ] is well defined.
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Recall that Di is the ith cap on ΣP and is bounded by ∂iΣ
B (considered as a curve in ΣP ).

Lemma 4.14. Let f ∈ PQCP (ΣP ) and for i = 1, . . . , n, let Ni be an open neighborhood
of Di ∪ f(Di). There exists a quasiconformal mapping α : ΣP → ΣP with the following
properties:

(1) α is the identity outside ∪Ni,
(2) α takes the curves ∂iΣ

B to the curves f(∂iΣ
B), and

(3) α is homotopic to the identity.

Proof. We want to construct a separate homotopy on an open neighborhood of ∂iΣ
B∪f(∂iΣ

B)
for each i, but unfortunately the curves f(∂iΣ

B) may intersect ∂jΣ
B for i 6= j. So the first

step is to produce a map that separates ∂iΣ
B from f(∂jΣ

B) for i 6= j. Since f preserves
the punctures, f(Di) contains only the puncture pi, and for each fixed i there exists a
neighborhood Bi ⊂ Di ∩ f(Di) of pi such that Bi ∩ f(Dj) = ∅ for all j 6= i. We choose
a punctured domain Vi such that Di ⊂ Vi ⊂ Ni and Vi maps to a quasidisk under a local
coordinate. Let si : Vi → Vi be a quasiconformal map that is the identity on ∂Vi and shrinks
Di so that it lies inside Bi (that is, si(Di) ⊂ Bi). The maps si can easily be constructed
after mapping Vi to the plane and constructing a suitable map using Corollary 4.7. By
choosing the Vi to be mutually disjoint we can glue the si with the identity map to produce
a quasiconformal map s : ΣP → ΣP with the property that s(∂iΣ

B)∩f(∂jΣ
B) = ∅ for all i, j

with i 6= j. The fact that s is quasiconformal on ∂Vi follows from Theorem 2.39. It follows
from Lemma 4.9 that s is homotopic to the identity.

By applying s we have now reduced the problem to finding a map β : ΣP → ΣP that
takes the curves s(∂iΣ

B) to the curves f(∂iΣ
B). For each i, choose a punctured domain

Ui ⊂ Ni that contains f(Di) (and thus also s(Di)), and that maps to a quasidisk under a
local coordinate. Moreover we can choose the Ui to be mutually disjoint (this is why we
needed step one). Choose conformal mappings gi : Ui → ∆0. On each copy of the disk
we apply Corollary 4.7 to obtain a map βi : ∆0 → ∆0 which is the identity on ∂∆, and
takes gi(si(∂iΣ

B)) to gi(f(∂iΣ
B)). The maps βi must be homotopic to the identity rel ∂∆

by Lemma 4.9. Pulling back under the maps gi and gluing to the identity, we obtain β.
Theorem 2.39 ensures that β is quasiconformal across the joins.

Now α = β ◦ s is the required map. It is homotopic to the identity and equal to the
identity outside Ui ∪ Vi ⊂ Ni. �

Corollary 4.15. Every mapping f ∈ PQCP (ΣP ) is homotopic to a mapping f̃ ∈ PQCP (ΣP )

which restricts to an element of PQCB(ΣB). That is, f̃ |ΣB ∈ PQCB(ΣB).

Proof. Apply Lemma 4.14 to obtain α. The mapping f̃ = α−1 ◦ f is homotopic to f and
preserves the boundary curves of ΣB. �

Lemma 4.16 (Strengthening of Lemma 4.14). For i = 1, . . . n, let hi : ∂iΣ
B → ∂iΣ

B be
a quasisymmetric self-map of the boundary component ∂iΣ

B. If g ∈ PQCP (ΣP ) then there
exists α ∈ PQCP

0 (ΣP ) such that the map g′ = α ◦ g preserves ∂iΣ
B (that is, g′ restricts to an

element of PQCB(ΣB)) and g′|∂iΣB = hi for each i.

Proof. Rather than refining the proof of Lemma 4.14 we instead use Lemma 4.14 directly,
followed by an application of Corollary 4.7 to obtain the specified boundary values.

Applying Lemma 4.14 with f = g, we obtain a map α0 ∈ PQCP
0 (ΣP ) such that α0(∂iΣ

B) =
g(∂iΣ

B). The quasiconformal map g0 = α−1
0 ◦ g is homotopic to g and preserves the bound-

aries. Let Ui ⊂ ΣP be a mutually disjoint collection of punctured quasidisks containing Di
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(i.e., Ui map to quasidisks under a local biholomorphic chart.) Let Gi : Ui → ∆0 be biholo-
morphic (or quasiconformal) mappings . By Corollary 4.7 there is a mapping βi : ∆ → ∆
such that βi|S1 = id, βi(0) = 0, and

βi|Gi(∂iΣB) = Gi ◦ g0 ◦ h
−1
i ◦G−1

i ;

in particular, βi maps the quasicircle Gi(∂iΣ
B) to itself. By Lemma 4.9 and Remark 4.10,

βi is homotopic to the identity rel ∂∆ ∪ {0}. Set

α1 =

{
G−1

i ◦ β−1
i ◦Gi on U i, i = 1, . . . , n

id on (∪iU)c

and note that α1 is homotopic to the identity and is quasiconformal on ∂Ui by Theorem
2.39. Let α = α1 ◦ α

−1
0 and check that on ∂iΣ

B,

α ◦ g =
(
G−1

i ◦ (Gi ◦ hi ◦ g
−1
0 ◦G−1

i ) ◦Gi

)
◦ g0 = hi.

So g′ = α ◦ g is homotopic to g and agrees with hi on the boundary curves. �

Corollary 4.17. If g ∈ PQCP (ΣP ) then g is isotopic to a map which is the identity on
∂ΣB .

Proof. Apply Lemma 4.16 with h the identity map. �

Corollary 4.18. The map χ : PModI(ΣB) → PModP (ΣP ) sending [f ] to any extension [f̃ ]
is surjective.

Proof. The map is well defined by Corollary 4.13 and surjective by Corollary 4.17. �

Proposition 4.19. Let f ∈ PQC(ΣB) and assume f |∂ΣB is the identity. An extension

f̃ ∈ PQC(ΣP ) is isotopic to the identity if and only if the isotopy class of f is an element
of DB(ΣB).

Proof. This is a special case of [42, Theorem 4.1(iii)]. �

Corollary 4.20. The kernel of χ is DB(ΣB).

Theorem 4.21. The sequence

1 −→ DB(ΣB) −→ PModI(ΣB)
χ

−→ PModP (ΣP ) −→ 1

is exact.

Proof. This follows directly from the above results. �

5. The Moduli spaces and their complex structures

In this section we define two models of the rigged Riemann and Teichmüller moduli spaces.
The two models can be described as the ‘puncture’ and ‘border’ models. In either picture,
the relevant Riemann moduli space consists of Riemann surfaces together with a specification
of how to sew them together; this is called the ‘rigged’ Riemann moduli space. In the border
model, the boundary data or ‘rigging’ consists of a collection of mappings of the connected
components of the border into S1. In the puncture model, this boundary data takes the
form of local biholomorphic coordinates around distinguished points. These two models are
described in Section 5.1.
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We give a generalization of the standard versions of these models. This generalization
is easiest to state in the border model: we allow the boundary data of the rigging to be
quasisymmetric rather than analytic. This allows us to show that the familiar Teichmüller
space of a bordered Riemann surface covers the rigged Riemann moduli space. The complex
structure of Teichmüller space then projects down to rigged Riemann moduli space. This is
accomplished in Section 5.2.

It is an interesting fact that the boundary data is contained in the standard Teichmüller
space of a bordered Riemann surface. In order to connect with the more familiar approach
in conformal field theory, we construct two ‘rigged’ Teichmüller spaces corresponding to the
puncture and border model in Section 5.3. The satisfying relation between these spaces is
completed in Section 5.4. The entire picture is summarized in Section 5.5.

5.1. Puncture and border models of the rigged Riemann moduli space.

Puncture model: As in Section 2, let ΣP be a Riemann surface of type (g, n−, n+) with
oriented and ordered punctures p = (p1, . . . , pn). The non-negative integers n−, n+ and g
are fixed throughout. We need to describe the rigging.

For ease of language, we temporarily think of marked points instead of punctures. For any
point q ∈ ΣP , let O(q) denote the set of germs of mappings which are holomorphic maps
from a neighborhood of q into a neighborhood of 0 ∈ C, mapping q to 0.

Definition 5.1. Let O∆
qc(q) be the set of φ ∈ O(q) such that ∆ ⊂ Im(φ), φ is biholomorphic

on φ−1(∆), and φ extends quasiconformally to a neighborhood of φ−1(∆). For the set of
punctures p, let

O∆
qc(p) =

{
(φ1(p1), . . . , φ

n(pn)) ∈ O∆
qc(p1) × · · · × O∆

qc(pn) |

(φi)−1(∆) ∩ (φj)−1(∆) = ∅, ∀i 6= j
}

For clarification we note that φ and φ′ in O∆
qc(q) are equivalent if and only if they are equal

on some neighborhood of q (and thus on φ−1(∆)). An element

φ(p) =
(
φ1(p1), . . . , φ

n(pn)
)
∈ O∆

qc(p)

will be referred to as the local coordinates or rigging of ΣP . For brevity we will denote the
data of the surface, punctures, and local coordinates by (ΣP ,φ). We will refer to (ΣP ,φ) as
a rigged Riemann surface.

Remark 5.2. It should be observed that O∆
qc(q) is strictly smaller than the set {φ ∈ O(q) |φ−1

is biholomorphic on ∆}. Considering φ−1, a conformal map of the disk need not have a
quasiconformal extension to a neighborhood.

We define an equivalence relation on the set, {(ΣP ,φ)}, of rigged Riemann surfaces of
type (g, n−, n+): we say (ΣP

1 ,φ1) ∼P (ΣP
2 ,φ2) if and only if there exists a biholomorphism

σ : ΣP
1 → ΣP

2 such that on φ−1
1 (∆0), we have φ1 = φ2 ◦ σ. That is, for i = 1, . . . , n,

φi
1 = φi

2 ◦σ on each domain (φi
1)

−1(∆0). Note that this requires σ to take the ith puncture of
ΣP

1 to the ith puncture of ΣP
2 . The equivalence class of (ΣP ,φ) will be denoted by [ΣP ,φ].

Definition 5.3. The puncture model of the moduli space of rigged Riemann surfaces is

M̃P (g, n−, n+) = {(ΣP ,φ)}/ ∼P .
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Remark 5.4. This equivalence relation can be stated in the seemingly weaker form that there
exists a biholomorphism σ : ΣP

1 \ φ−1
1 (∆0) → ΣP

2 \ φ−1
2 (∆0) such that on φ−1

1 (S1), we have
φ1 = φ2 ◦ σ. This gives the same relation, since if (φi

1)
−1 and (φi

2)
−1 are analytic on ∆ for

each i, then the map σ extends to a biholomorphism σ̂ : Σ1 → Σ2. Explicitly

σ̂ =

{
σ on Σ1 \ φ

−1
1 (∆0)

φ−1
2 ◦ φ1 on φ−1

1 (∆0).

This map is well defined because φ1 = φ2 ◦ σ.

Remark 5.5. In this definition we are consciously imitating the ‘complex analytic’ model of
the universal Teichmüller space due to Bers. His key insight was to extend the complex
dilatation of a quasiconformal self-map of the disk to the entire plane by setting it to zero
outside the disk.

Border model: As in Section 2 let ΣB be a Riemann surface of type (g, n−, n+). That is,
∂Σ = (∂1Σ

B ∪· · ·∪∂nΣB) where n = n− +n+, there are n− incoming boundary components,
n+ outgoing boundary components, and sewing in n disks would result in a compact Riemann
surface of genus g. We fix n−, n+ and g throughout.

A rigging of ΣB is an assignment of a quasisymmetric map ψi : ∂iΣ
B → S1 for each

boundary component. Note that according to Definition 2.30 a quasisymmetric map is
orientation preserving. We denote this ordered set of maps concisely by ψ = (ψ1, . . . , ψn).
The pair (ΣB ,ψ) will be called a rigged Riemann surface. The notation should prevent any
confusion with the puncture case where the same terminology is used.

Remark 5.6. See Remark 3.2 for the relation to the orientation of parametrizations in con-
formal field theory.

We define an equivalence relation on the set {(ΣB, ψ)} of type (g, n−, n+) rigged Riemann
surfaces: (ΣB

1 ,ψ1) ∼B (ΣB
2 ,ψ2) if and only if there exists a biholomorphism σ : ΣB

1 → ΣB
2

such that ψ1 = ψ2 ◦ σ. The equivalence class of (ΣP ,ψ) will be denoted [ΣB,ψ].

Definition 5.7. The border model of the moduli space of rigged Riemann surfaces is

M̃B(g, n−, n+) = {(ΣB,ψ)}/ ∼B .

We will sometimes write M̃P (g, n−, n+) and M̃B(g, n−, n+) as M̃P (ΣP ) and M̃B(ΣB) or

even M̃P and M̃B, where the type is assumed to be specified by a base space ΣB or ΣP .
We now describe how to convert a punctured surface with local coordinates into a surface

with boundary and quasisymmetric parametrizations and vice versa. This produces a bijec-

tion between M̃P (g, n−, n+) and M̃B(g, n−, n+); this is the content of Theorem 5.9. Recall

that the inversion map J : Ĉ → Ĉ is defined by J(z) = 1/z.
Consider a rigged surface (ΣP ,φ) and for notational convenience let

φ−1(∆0) =

n⋃

i=1

(φi)−1(∆0).

We form the surface ΣB = ΣP \φ−1(∆0) whose n boundary components are specified to be
incoming (respectively, outgoing) if the corresponding puncture is negatively (respectively,
positively) oriented. The map

J ◦ φi|∂iΣB : ∂iΣ
B −→ S1
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is a quasisymmetric parametrization by Theorem 2.40. The map J is needed to correct the
orientation (see Remark 5.8 below). So

(
ΣP \ φ−1(∆0), J ◦ φ|φ−1(S1)

)

is a rigged Riemann surface.
Considering the converse situation, we begin with the rigged surface (ΣB,ψ). Choose a set

of disjoint annular neighborhoods A∂iΣB of ∂iΣ
B, i = 1, . . . , n and let A∂ΣB =

⋃n
i=1 A∂iΣB .

Using Theorem 2.40, we can choose a quasiconformal extension of ψi to A∂iΣB . Let ψext

be such an extension of ψ to A∂ΣB . Note that each annular neighborhood maps to the

interior of S1. As in Section 3.2 we use ψ to sew disks onto ΣB to produce the punctured
surface ΣP = ΣB#ψ(∆0)

n. The orientation of a puncture is determined by whether the
corresponding boundary component is incoming or outgoing. Recall that the set of caps is
denoted by D = (D1 ∪ · · · ∪Dn). We claim that

(5.1) ψ̃ =

{
J ◦ψext on A∂ΣB

id on D

is quasiconformal and thus (ΣP , ψ̃) is a rigged Riemann surface. A direct check using the

definition of sewing shows that ψ̃ is well defined. In terms of local coordinates on ΣP given

by equation (3.3) in Section 3.1, the image of ∂iΣ
B ⊂ ΣP is a Jordan curve on Ĉ. This curve

is guaranteed to be a quasicircle by Theorem 3.1. Thus ψ̃ is quasiconformal by Theorem
2.39.

Remark 5.8. The reason for using J in J ◦ φi and J ◦ ψ̃ in the constructions above can be
seen most clearly in the case of the sphere. Let ΣP be the Riemann sphere with a puncture
at 0, and consider the local coordinate φ = id. Then ΣB = ΣP \ φ−1(∆0) is the upper-
hemisphere and ∂ΣB is S1 but with clockwise orientation. So φ|S1 : ∂ΣB → S1 is orientation
reversing. Equivalently, this can be understood in terms of which side of S1 the extension of
the boundary parametrization maps to.

Theorem 5.9. The map I : M̃P (g, n−, n+) → M̃B(g, n−, n+) defined by

I([ΣP ,φ]) = [ΣP \φ−1(∆), J ◦ φ|φ−1(S1)]

is a bijection.

Proof.

I is well defined: Assuming (ΣP
1 ,φ1) ∼ (ΣP

2 ,φ2) in M̃P (g, n−, n+), there exists a biholomor-
phism σ : ΣP

1 → ΣP
1 such that φ1 = φ2◦σ on φ−1

1 (∆0). After restricting σ to ΣP
1 \φ1(∆0) this

is exactly the condition that (ΣP
1 \φ

−1
1 (∆0), J ◦ φ1|φ−1

1 (S1)) ∼ (ΣP
2 \φ

−1
2 (∆0), J ◦ φ2|φ−1

2 (S1))

in M̃B(g, n−, n+).

I is injective: Assuming I([ΣP
1 ,φ1]) = I([ΣP

2 ,φ2]), there exists a biholomorphism σ :
ΣP

1 \φ
−1
1 (∆) → ΣP

1 \φ
−1
2 (∆) such that J ◦φ1 = J ◦φ2 ◦ σ on φ−1

1 (S1). Thus by Remark 5.4.
[ΣP

1 ,φ1] = [ΣP
2 ,φ2].

I is surjective: Let [ΣB,ψ] ∈ M̃B(g, n−, n+). By the procedure described above, sewing in

unit disks with ψ produces a punctured surface ΣP = ΣB#ψ(∆0)
n and an element [ΣP , ψ̃]

in M̃P (g, n−, n+). It follows directly that I([ΣP , ψ̃]) = [ΣB,ψ]. �
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5.2. Teichmüller space of bordered Riemann surfaces and the complex structure

on the rigged Riemann moduli space. The (usual) Teichmüller space of bordered Rie-
mann surfaces actually contains the data of the boundary parametrizations. See Section 2.2
for the definition of Teichmüller space, its complex structure, and for the properties of the
mapping class group action.

As subgroups of PModB(ΣB), the groups PModI(ΣB), DB(ΣB) and DI(ΣB) also act on
TB(ΣB). Each element is a biholomorphism of TB(ΣB).

Lemma 5.10. The action of PModI(ΣB) on TB(ΣB) is fixed-point free. In particular,
DI(ΣB) and DB(ΣB) also act fixed-point freely on TB(ΣB).

Proof. Only the group PModI(ΣB) needs to be considered as the other two are subgroups.
Assume that [ρ] ∈ PModI(ΣB) fixes [ΣB, f,ΣB

1 ]. Then [ΣB, f ◦ ρ,ΣB
1 ] = [ΣB, f,ΣB

1 ] and so
there exists a biholomorphism σ : ΣB

1 → ΣB
1 such that (f ◦ ρ)−1 ◦ σ ◦ f is isotopic to the

identity rel ∂ΣB . Since ρ is the identity on ∂ΣB we see that σ must be the identity on ∂ΣB
1 .

Therefore σ is the identity on ΣB
1 and thus ρ is isotopic to the identity. So [ρ] is the identity

in PModI(ΣB). �

Lemma 5.11. The action of PModI(ΣB) on TB(ΣB) is properly discontinuous. In particu-
lar, DI(ΣB) and DB(ΣB) also act properly discontinuously on T B(ΣB).

Proof. Since the action of PModI(ΣB) on TB(ΣB) is fixed-point free, PModI(ΣB) acts on
TB(ΣB) properly discontinuously (see Definition 2.20) if and only if

[ρn] · [ΣB, id,ΣB] −→ [ΣB, id,ΣB]

implies that there exists N ∈ N such that [ρn] = [id] for all n ≥ N .
By sewing on tori to the boundary components we will reduce the problem to the compact

surface case. Let Y be a genus-one Riemann surface with one boundary component. Let ΣY

be the Riemann surface (without punctures) obtained by sewing copies of Y to the boundary
components of ΣB. The parametrizations we use for sewing are not important here. Define
i∗ : PModI(ΣB) → PModP (ΣY ) by i∗([ρ]) = [ρ̃] where

ρ̃ =

{
ρ on ΣB

id on the copies of Y

From [42, Theorem 4.1] we know that i∗ is injective. Note that this is not true if we sew on
caps rather than tori.

It follows directly from the definition of the Teichmüller metric (see Definition 2.18) that

τB
(
[ΣB, ρ,ΣB], [ΣB, id,ΣB]

)
≥ τY

(
[ΣY , ρ̃,ΣY ], [ΣY , id,ΣY ]

)

where τB and τY are the Teichmüller metrics on TB(ΣB) and T P (ΣY ) respectively. To see this
observe that the the equivalence class in the definition of τY is larger than in the definition
of τB.

Let [ρn] be a sequence in PModI(ΣB) such that

(5.2) [ΣB , ρn,Σ
B] −→ [ΣB , id,ΣB].

That is,
τB([ΣB, ρn,Σ

B], [ΣB, id,ΣB]) → 0.

The above inequality implies that

τY ([ΣB, ρ̃n,Σ
B], [ΣB, id,ΣB]) → 0.
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By Theorem 2.21 we know the action of PModP (ΣY ) on T P (ΣY ) is properly discontinuous.
Thus there exists N ∈ N such that [ρ̃n] is in the stabilizer for n ≥ N . From the definition of
proper discontinuity we know that the stabilizer is finite.

By the injectivity of i∗ we see that [ρn] is in a finite set for n ≥ N . Because PModI(ΣB)
acts fixed-point freely, the convergence in (5.2) implies that [ρn] = [id] for all n ≥ N .

Therefore PModI(ΣB) acts properly discontinuously on TB(ΣB). �

Let ΣB be of type (g, n−, n+) and as in Section 3.2, we choose a boundary trivialization
τ = (τ1, . . . , τn) of ΣB. We define the map

(5.3) PΣB : TB(ΣB) −→ M̃B(g, n−, n+)

by [ΣB, f,ΣB
1 ] 7→ [ΣB

1 , τ ◦ f
−1]. The ordering (and signs) of the boundary components of ΣB

1

is defined by pushing forward the ordering (and signs) on ΣB by f .

Theorem 5.12. The mapping PΣB induces a bijection

P ∗
ΣB :

TB(ΣB)

PModI(ΣB)
−→ M̃B(g, n−, n+).

Proof.
Well defined: Assume there is an [h] ∈ PModI(ΣB) such that [ΣB , f1◦h

−1,ΣB
1 ] = [ΣB, f2,Σ

B
2 ].

Then there is a biholomorphism σ : Σ1 → Σ2 such that f−1
2 ◦ σ ◦ f1 ◦ h

−1 is isotopic to
the identity rel ∂ΣB . In particular f−1

2 ◦ σ = h ◦ f−1
1 = f−1

1 when restricted to ∂Σ1, so
τ ◦ f−1

2 ◦ σ = τ ◦ f−1
1 ; that is, [ΣB

1 , τ ◦ f−1
1 ] = [ΣB

2 , τ ◦ f−1
2 ].

Injective: Assume that PΣB([ΣB, f1,Σ
B
1 ]) = PΣB([ΣB , f2,Σ

B
2 ]). Then there exists a biholo-

morphism σ : ΣB
1 → ΣB

2 such that τ ◦ f−1
2 ◦ σ = τ ◦ f−1

1 on ∂Σ1; thus f−1
1 ◦ σ−1 ◦ f2 is the

identity on the boundary. Let [h] = [f−1
1 ◦ σ−1 ◦ f2] ∈ PModI(ΣB); thus

[h][ΣB , f1,Σ
B
1 ] = [ΣB, f1 ◦ h,Σ

B
1 ] = [ΣB, σ−1 ◦ f2,Σ

B
1 ] = [ΣB, f2,Σ

B
2 ].

Surjective: Let [Σ1,ψ] ∈ M̃B(g, n−, n+) and recall that such data includes an ordering of the
boundary components. There exists an f ′ : ΣB → ΣB

1 which is quasiconformal but we must
modify it such that the ordering of the boundary components on ΣB and ΣB

1 correspond
under f ′.

We claim that there exists a quasiconformal map γ : ΣB → ΣB that permutes the bound-
ary components in any specified way. Consider the surface obtained by sewing caps onto
the boundaries of ΣB. For this punctured surface there exists a quasiconformal map which
permutes two punctures. To see this, note that there exists a conformal mapping of a neigh-
borhood of both punctures onto an open neighborhood of the closed unit disk. Clearly there
exists a quasiconformal mapping which is the identity on ∂∆ and switches the punctures.
Sewing this map back to ΣB we obtain a quasiconformal map which interchanges the two
punctures in question.

Such a map can be modified to preserve the boundaries by an application of Lemma 4.14.
A sequence of such swaps can produce a map γ giving any desired permutation. We now
choose γ so that f = f ′ ◦ γ : ΣB → ΣB

1 preserves the given orderings.
By Corollary 4.6, there exists a quasiconformal map g : ΣB

1 → ΣB
1 with boundary values

g = ψ−1 ◦ τ ◦ f−1. Thus PΣB([ΣB, g ◦ f,ΣB
1 ]) = [ΣB

1 ,ψ]. �
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From Theorem 5.12, Proposition 2.22, and the fact that the group PModI(ΣB) acts prop-
erly discontinuously and fixed-point freely as a group of biholomorphisms (see Lemmas 5.10,
5.11 and 2.19), we immediately have:

Theorem 5.13. The rigged moduli space M̃B(g, n−, n+) is an infinite-dimensional complex
manifold, with complex structure inherited from T B(ΣB). That is, there exists a unique

complex structure on M̃B(g, n−, n+) such that PΣB is holomorphic. Moreover, PΣB possesses
local holomorphic sections.

At first sight it appears that the complex structure on M̃B(g, n−, n+) depends on the
choice of base surface ΣB and its boundary parametrization τ . It is well known in Teichmüller
theory that the complex structure on TB(Σ) is canonical in the sense that different choices
of base surface give rise to biholomorphically equivalent spaces. This fact enables us to prove
the following theorem.

Theorem 5.14. The complex structure on M̃B(g, n−, n+) inherited from TB(ΣB) is inde-
pendent of choice of ΣB and τ .

Proof. Consider two base surface X and Y of type (g, n−, n+) with boundary trivializations

τX and τ Y respectively. Let M̃B
X and M̃B

Y be the underlying set M̃B(g, n−, n+) together
with complex manifold structures inherited from (X, τX) and (Y, τ Y ) respectively. We need

to show that the identity map id : M̃B
X → M̃B

Y is biholomorphic.
Using Corollary 4.6 as in the proof of surjectivity in Theorem 5.12, we produce a quasi-

conformal map g : Y → X such that τX ◦ g|∂Y = τ Y . This quasiconformal map induces an
allowable bijection g∗ : Y → X defined by g∗([X, f,Σ

B
1 ]) = ([Y, f ◦ g,ΣB

1 ]). The map g∗ is
a biholomorphism (see for example [38, page 122 and 186]). It is straightforward to check
that the diagram

TB(X)
g∗

//

PX

��

TB(Y )

PY

��

M̃B
X

id
// M̃B

Y

commutes. The maps PX and PY are defined in (5.3). By taking local holomorphic sections

of PX and PY we see that the bottom map, id, is biholomorphic. So M̃B
X and M̃B

Y have
identical complex structures. �

5.3. Rigged Teichmüller spaces: puncture and border models. We define the rigged
Teichmüller spaces corresponding to the puncture and border models of the rigged moduli
space.

In the puncture model, we construct a space of rigged, punctured Riemann surfaces as
follows. As in Section 2, let ΣP be a punctured Riemann surface of type (g, n−, n+) with
oriented punctures p = (p1, . . . , pn). Let

M
P
(ΣP ) = {(ΣP , f,ΣP

1 ,φ)},

where ΣP
1 is another punctured Riemann surface, f : ΣP → ΣP

1 is a quasiconformal mapping,
and φ ∈ O∆

qc(p1) (see Definition 5.1). Here p1 denotes the punctures on ΣP
1 with order

induced from ΣP by f , that is, pi
1 = f(pi) for i = 1, . . . , n.
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We define an equivalence relation on M
P
(ΣP ) by declaring

(ΣP , f1,Σ
P
1 ,φ1) ∼

P (ΣP , f2,Σ
P
2 ,φ2)

in the case that there exists a biholomorphism σ : ΣP
1 → ΣP

2 such that φ2 ◦ σ = φ1 on
φ−1

1 (S1) and f−1
2 ◦ σ ◦ f1 is isotopic to the identity. Recall that for a punctured surface an

isotopy necessarily fixes each puncture throughout.

Remark 5.15. As in Remark 5.4, the condition φ2◦σ = φ1 on φ−1
1 (S1) is equivalent to having

equality on φ−1
1 (∆). This follows from the fact that holomorphic maps are determined by

their boundary values.

Definition 5.16. The rigged Teichmüller space (for punctured Riemann surfaces) is

T̃ P (ΣP ) = M(ΣP )/ ∼P .

The mapping class group PModP (ΣP ) acts on T̃ P (ΣP ) via

[ρ] · [ΣP , f,ΣP
1 ,φ] = [ΣP , f ◦ ρ,ΣP

1 ,φ],

just as in the usual Teichmüller space case (see Section 2.2). It can be easily shown, as in
Lemma 5.10, that this action is fixed-point free. Later we will show that this action is also
properly discontinuous.

Define

(5.4) Pmod : T̃ P (ΣP ) −→ M̃P (g, n−, n+)

by Pmod

(
[ΣP , f,ΣP

1 ,φ1]
)

= [ΣP
1 ,φ1]. We immediately have:

Proposition 5.17. The map Pmod induces a bijection

P ∗
mod :

T̃ P (ΣP )

PModP (ΣP )
−→ M̃P (g, n−, n+).

Proof. The map is surjective because given any ordering of the punctures on ΣP
1 , there exists

a quasiconformal map f : ΣP → ΣP
1 that induces the given ordering (as in the proof of

surjectivity in Proposition 5.12.) The fact that the map is well-defined and injectivity are a
simple consequence of the definitions. �

The border model of rigged Teichmüller space is given by a reduced Teichmüller space
with boundary data. Fix a base Riemann surface ΣB of a given type (g, n−, n+), which
thus fixes an assignment of ± to each boundary component as well as an ordering of the
set of components. Consider the space of quadruples (ΣB , f1,Σ

B
1 ,ψ1) where ΣB

1 is another
Riemann surface, f1 : ΣB → ΣB

1 is a quasiconformal map and ψ1 is a set of quasisymmetric
parametrizations of ∂ΣB

1 (see ‘Border model’ in Section 5.1 for details). The ordering of the
boundary components on ΣB

1 is induced by f .
We say that

(ΣB, f1,Σ
B
1 ,ψ1) ∼# (ΣB, f2,Σ

B
2 ,ψ2)

if there exists a biholomorphism σ : ΣB
1 → ΣB

2 such that f−1
2 ◦σ◦f1 is isotopic to the identity

and ψ2 ◦ σ = ψ1. It is important to observe that we do not require that the isotopy is ‘rel
boundary’.
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Definition 5.18. The rigged reduced Teichmüller space of a bordered Riemann surface ΣB

is

T̃B
# (ΣB) ∼= {(ΣB, f1,Σ

B
1 ,ψ1)}/ ∼# .

The border and puncture models are equivalent. This can be seen by sewing ‘caps’ onto

ΣB and ΣB
1 to produce an element in T̃ P (ΣP ). We describe this procedure carefully before

giving the proof of equivalence. The analogous but simpler process for rigged moduli spaces
was covered in Section 5.1. Certain technical points and notation will not be repeated.

As in Section 3.2, let τ = (τ1, . . . , τn) be a trivialization of ∂ΣB , let ΣP = ΣB#τ (∆0)
n,

and let D = (D1 ∪ · · ·∪Dn) be the images of the disks in ΣP . Given (ΣB, f,ΣB
1 ,ψ1) we now

describe a way to construct an element of T̃ P (ΣP ). Let ΣP
1 = ΣB

1 #ψ1
(∆0)

n be the punctured

surface obtained by sewing on caps using the parametrization ψ1. Note that ∂iΣ
B
1 and ∂∆0

are identified by id ◦ J ◦ ψi
1. For i = 1, . . . , n, the map

hi = J ◦ ψi
1 ◦ f ◦ (τ i)−1 ◦ J : S1 → S1

is quasisymmetric and thus can be extended to a quasiconformal map h̃i : ∆0 → ∆0. Using
these maps we extend f to a quasiconformal map f̃ : ΣP → ΣP

1 defined by

(5.5) f̃(x) =

{
f(x) for x ∈ ΣB

h̃i(x) for x ∈ Di

The boundary values hi were chosen precisely to ensure f̃ is well defined. By construction,
f̃ is quasiconformal everywhere except possibly on the seams ∂iΣ

B ⊂ ΣP , but Theorem 2.39

guarantees that f̃ is in fact quasiconformal everywhere.
Let D1 be the union of the caps on ΣP

1 and let A∂ΣB

1
be the union of disjoint annular

neighborhoods of the boundary components of ΣB
1 . As in (5.1), we use ψ1 to construct the

local coordinates

(5.6) ψ̃1 =

{
J ◦ψext on A∂ΣB

1

id on D1

on ΣP
1 . That is, we first use Theorem 2.40 to extend ψi

1 to a quasiconformal map, ψi
ext, on

an annular neighborhood A∂iΣB . Then J ◦ ψi
ext is extended to the caps by the identity map.

We finally have an element [ΣP , f̃ ,ΣP
1 , ψ̃1] ∈ T̃ P (ΣP ) as desired. The following theorem

shows that this procedure defines a bijection between the border and puncture models of
rigged Teichmüller space.

Theorem 5.19. The map

J : T̃B
# (ΣB) −→ T̃ P (ΣP )

[ΣB, f,ΣB
1 ,ψ1] 7−→ [ΣP , f̃ ,ΣP

1 , ψ̃1]

is a bijection. Here, ΣP and ΣP
1 are as above and f̃ : ΣP → ΣP

1 is any quasiconformal

extension of f that takes the punctures to the centres of the caps. For i = 1, . . . , n, ψ̃i
1 is

an extension of J ◦ ψi
1 to a quasiconformal mapping that takes a neighborhood of the ith cap

into a neighborhood of ∆ and is conformal on (ψ̃i
1)

−1(∆).
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Proof. By the above discussion we know that maps f̃ and ψ̃1 with the stated properties
exist.

J is well-defined: It is immediate that the image of the map is independent of the choice of
ψ̃1. By Lemma 4.9 and Remark 4.10, [ΣP , f̃ ,ΣP

1 , ψ̃1] is independent of the choice of extension

f̃ . It remains to check that if [ΣB , f1,Σ
B
1 ,ψ1] = [ΣB, f2,Σ

B
2 ,ψ2] then [ΣP , f̃1,Σ

P
1 , ψ̃1] =

[ΣP , f̃2,Σ
P
2 , ψ̃2].

Assume that there is a biholomorphism σ : ΣB
1 → ΣB

2 such that f−1
2 ◦ σ ◦ f1 is isotopic

to the identity and ψ2 ◦ σ = ψ1 on ∂ΣB . The second condition implies that σ extends to a
biholomorphism σ̃ : ΣP

1 → ΣP
2 by setting it to the identity on the caps. Applying Proposition

4.12 to the extension f̃−1
2 ◦ σ̃ ◦ f̃1 of f−1

2 ◦ σ ◦ f1, we see that f̃−1
2 ◦ σ̃ ◦ f̃1 is isotopic to the

identity. Thus [ΣP , f̃1,Σ
P
1 , ψ̃1] = [ΣP , f̃2,Σ

P
2 , ψ̃2].

J is injective: Assume that J
(
[ΣB , f1,Σ

B
1 ,ψ1]

)
= J

(
[ΣB , f2,Σ

B
2 ,ψ2]

)
. Then there exists

a biholomorphism σ : ΣP
1 → ΣP

2 such that ψ̃2 ◦ σ = ψ̃1 on ψ̃
−1

1 (S1) (in fact on ψ̃
−1

1 (∆)

by Remark 5.15) and f̃−1
2 ◦ σ ◦ f̃1 is isotopic to the identity on the punctured surface ΣP .

Proposition 4.12 applies to f̃−1
2 ◦σ ◦ f̃1 and we conclude that f−1

2 ◦σ ◦ f1 is homotopic to the
identity (in general not rel boundary) on ΣB. Therefore [ΣB, f1,Σ

B
1 ,ψ1] = [ΣB, f2,Σ

B
2 ,ψ2]

and J is injective.

J is surjective: Let [ΣP , g,ΣP
1 ,φ1] ∈ T̃ P (ΣP ) and ΣB

1 = ΣP
1 \ φ−1

1 (∆0). The essential step
is to show that g can be replaced by a map ĝ such that its restriction to ΣB maps onto ΣB

1

without changing the equivalence class in T̃ P (ΣP ). One subtlety to keep in mind is that
ΣB

1 #(∆0)
n is conformally equivalent, but not equal, to ΣP

1 .
Let k : ΣP → ΣP be a quasiconformal extension of g−1 ◦ φ−1

1 ◦ τ |∂ΣB . The existence of k
is guaranteed by Corollary 4.6. Let α be the correcting map obtained by applying Lemma
4.14 withf = k, and let ĝ = g ◦ α. From the properties of α it follows that ĝ is homotopic
to g and ĝ(∂iΣ

B) = (φi
1)

−1(S1).
The rest of the proof only involves keeping track of the details of the sewing operations.

On φ−1
1 (S1) let ψ = 1/φ. For each i let

ψ̃i(x) =

{
ψi

1(x) for x ∈ φi
1|ΣB

1

x for x ∈ ∆0

be the local coordinates on ΣB
1 #ψ1

(∆0)
n. Let f = ĝ|ΣB and f̃ be defined as in (5.5). We

claim that with this f̃ and ψ̃1,

J [ΣB , f,ΣB
1 ,ψ1] = [ΣP , g,ΣP

1 ,φ1]

The equivalence is determined by the biholomorphism σ̃ : ΣP
1 → ΣB

1 #ψ1
(∆0)

n defined by

σ̃ =

{
id on ΣB

1

φ1 on φ−1
1 (∆0).

It is well defined because the sewing using ψ1 identifies x ∈ ∂iΣ
B
1 with 1/ψi(x) = φi(x).

Holomorphicity on ∂ΣB
1 follows from Theorem 2.39. Moreover, f̃−1 ◦ σ̃ ◦ g is homotopic to

the identity because g is homotopic to ĝ and f̃−1◦ σ̃◦ ĝ is the identity except on the caps. �
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5.4. Relation between the Teichmüller spaces. We can create a projection map from
TB(ΣB) onto T̃ P (ΣP ) from two equivalent points of view.

In the first method, we let [ΣB, f,ΣB
1 ] ∈ TB(ΣB). Create the base space ΣP = ΣB#τ (∆0)

n

as usual and let D = D1 ∪ . . .∪Dn be the union of the caps. Consider the local coordinates

τ̃i =

{
J ◦ τi on an annular neighborhood of ∂iΣ

B

id on Di

on ΣP as in equation (5.6). The map τi◦f
−1|∂iΣB

1
is a quasisymmetric boundary parametriza-

tion of ∂iΣ
B
1 . Let ΣP

1 = ΣB
1 #τ◦f−1(∆0)

n, and extend f to ΣP according to

f̃ =

{
f on ΣB

id on D.

The projection is then given by [ΣB , f,ΣB
1 ] 7→ [ΣP , f̃ ,ΣP

1 , τ̃ ◦ f̃−1].

In the second method, let f̃ ′ be a quasiconformal map on ΣP whose dilatation agrees

with that of f on ΣB and is 0 on D. Let Σ′
1
P = f̃ ′(ΣP ). The projection is given by

[ΣB, f,ΣB
1 ] 7→ [ΣP , f̃ ′,Σ′

1
P , τ̃ ◦ (f̃ ′)−1].

It is not hard to check that both of these maps are well-defined. The biholomorphic map
σ = f̃ ′ ◦ f̃−1 : ΣP

1 → Σ′
1
P establishes that [ΣP , f̃ ′,Σ′

1
P , τ̃ ◦ (f̃ ′)−1] = [ΣP , f̃ ,ΣP

1 , τ̃ ◦ f̃−1].
In the following, we will adopt the first method. Define

(5.7) PDB : TB(ΣB) −→ T̃ P (ΣP )

by PDB

(
[ΣB, f,ΣB

1 ]
)

= [ΣP , f̃ ,ΣP
1 , τ̃ ◦ f̃−1].

Theorem 5.20. The map

P ∗
DB :

TB(ΣB)

DB(ΣB)
−→ T̃ P (ΣP )

induced by PDB is a bijection.

Proof.

P ∗
DB is well-defined: The choice of quasiconformal extension in the definition of τ̃ is imma-

terial as the equivalence relation in T̃ P (ΣP ) only involves the local coordinates restricted to
the caps.

If [ΣB , f1,Σ
B
1 ] = [ΣB, f2,Σ

B
2 ] in TB(ΣB), then the biholomorphism σ : ΣB

1 → ΣB
2 extends

by the identity to a map σ̃ : ΣP
1 → ΣP

2 . By using σ̃, a direct check shows that [ΣP , f̃1,Σ
P
1 , τ̃ ◦

f−1
1 ] = [ΣP , f̃2,Σ

P
1 , τ̃ ◦ f−1

2 ].

Let [h] ∈ DB(ΣB), so that [h][ΣB, f,ΣB
1 ] = [ΣB , f ◦ h,ΣB

1 ]. Define h̃ : ΣP → ΣP by

h̃ =

{
h on ΣB

id on D.

It follows from Proposition 4.19 that h̃ is isotopic to the identity. Clearly

PDB

(
[ΣB , f ◦ h,ΣB

1 ]
)

= [ΣP , f̃ ◦ h̃,ΣP
1 , τ̃ ◦ h̃−1 ◦ f̃−1].

We need to show that [ΣP , f̃ ,ΣP
1 , τ̃ ◦ f

−1] = [ΣP , f̃ ◦ h̃,ΣP
1 , τ̃ ◦ h̃

−1 ◦ f̃−1] in T̃ P (ΣP ). Setting

σ : ΣP
1 → ΣP

1 to be the identity, we see that f̃−1 ◦ σ ◦ f̃ ◦ h̃ = h̃ is isotopic to the identity,
and τ̃ ◦ f−1 = τ̃ ◦ h−1 ◦ f−1 on ∂ΣP

1 since h = id on the boundary.
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P ∗
DB is injective: Assume that PDB

(
[ΣB, f1,Σ

B
1 ]

)
= PDB

(
[ΣB, f2,Σ

B
2 ]

)
; that is, there exists

a biholomorphism σ̃ : ΣP
1 → ΣP

2 , such that f̃−1
2 ◦ σ̃ ◦ f̃1 is isotopic to the identity, and

τ̃ ◦ f̃−1
2 ◦ σ = τ̃ ◦ f̃−1

1 on ∂ΣB
1 . Therefore σ = σ̃|ΣB maps ΣB to itself and f−1

2 ◦ σ ◦ f1 = id

on ∂ΣB . By Proposition 4.19, f̃−1
2 ◦ σ ◦ f̃1|ΣB represents an element [h] of DB(ΣB); thus

[h][ΣB , f2,Σ
B
2 ] = [ΣB, f2 ◦ h,Σ

B
2 ] = [ΣB, σ ◦ f1,Σ

B
2 ] = [ΣB , f1,Σ

B
1 ].

P ∗
DB is surjective: Let [ΣP , g,ΣP

1 ,φ1] ∈ T̃ P (ΣP ). We will produce [ΣB, f ′,ΣB
1 ] ∈ TB(ΣB)

that maps to the given element under PDB. As in the proof of surjectivity in Theorem 5.19
we need to modify g such that it preserves the boundary curves. Moreover, to obtain φ1 we
need to specify the boundary values of modified map. We apply Theorem 5.19.

With J as in Theorem 5.19, it is routine to check that

PDB

(
[ΣB, f,ΣB

1 ]
)

= J
(
[ΣB , f,ΣB

1 , τ ◦ f−1]
)
.

As J is onto, J
(
[ΣB, f,ΣB

1 ,ψ1]
)

= [ΣP , g,ΣP
1 ,φ1] for some f and ψ1. Let f̃ : ΣP → ΣP be

an extension of f as in the definition of J .
On ΣP , we apply Lemma 4.16 with g = id and hi = f−1 ◦ (ψi

1)
−1 ◦ τi to produce g′ :

ΣP → ΣP which is homotopic to the identity and equals hi on ∂iΣ
B. The map f ′ = f̃ ◦ g′ is

homotopic to f̃ and f ′|∂iΣB = (ψi
1)

−1 ◦ τi. Thus τ ◦ (f ′)−1 = ψ1 and

PDB

(
[ΣB, f ′|ΣB ,ΣB

1 ]
)

= J
(
[ΣB , f,ΣB

1 ,ψ1]
)

= [ΣP , g,ΣP
1 ,φ1]

as required. The first equality follows from the fact that the extension of f ′|ΣB , in the

definition of PDB, is homotopic to f ′ and thus is also homotopic to f̃ . �

As a subgroup of PModI(ΣB), we know that DB(ΣB) acts properly discontinuously and
fixed-point freely as a group of biholomorphisms on TB(ΣB) (Lemmas 5.10, 5.11 and 2.19).
As in Theorem 5.13, Proposition 2.22 immediately implies the following result.

Corollary 5.21. The puncture model of rigged Teichmüller space, T̃ P (ΣP ), inherits an
infinite-dimensional complex manifold structure from T B(ΣB). That is, there is a unique

complex structure on T̃ P (ΣP ) such that PDB is holomorphic. Moreover, PDB possesses local
holomorphic sections.

Lemma 5.22. The group PModP (ΣP ) acts on T̃ P (ΣP ) by biholomorphisms.

Proof. Let [ρ] be an element of PModP (ΣP ) and recall that the action is defined by [ρ] ·

[ΣP , f,ΣP
1 ,φ1] = [ΣP , f ◦ ρ,ΣP

1 ,φ1]. This induces a bijection ρ∗ : T̃ P (ΣP ) → T̃ P (ΣP ). The
claim is that this map is a biholomorphism. By Corollary 4.17, ρ is isotopic to a map ρ′ that is
the identity on ∂Σ. In other words, [ρ] = [ρ′] and ρ′|ΣB represents an element of PModI(ΣB).

From Lemma 2.19 we know that (ρ′|ΣB)∗ : TB(ΣB) → TB(ΣB) is a biholomorphism. Consider
the diagram:

TB(ΣB)
(ρ′|

ΣB )∗
//

PDB

��

TB(ΣB)

PDB

��

T̃ P (ΣP )
ρ∗

// T̃ P (ΣP )

The diagram commutes because f̃ ◦ ρ′ is isotopic to f̃ ◦ ρ. Commutativity and the existence
of local holomorphic sections of PDB implies that ρ∗ is a biholomorphism. �
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Define

(5.8) P#
DB : TB(ΣB) −→ T̃B

# (ΣB)

by P#
DB

(
[ΣB , f,ΣB

1 ]
)

= [ΣB , f,ΣB
1 , τ ◦ f−1]. From Theorems 5.19, 5.20 and the properties of

the action of DB(ΣB) we can immediately deduce:

Corollary 5.23. The map P#
DB induces a bijection

TB(ΣB)

DB(ΣB)
−→ T̃B

# (ΣB)

and T̃B
# (ΣB) has a unique complex structure such that P#

DB is holomorphic. Moreover, P#
DB

possesses local holomorphic sections.

Recall that the subspace DI(ΣB) of PModI(ΣB) generated by “internal” Dehn twists (see

Definition2.7) acts on T̃B
# (ΣB) by

[ρ] · [ΣB, f,ΣB
1 ,ψ1] = [ΣB, f ◦ ρ,ΣB

1 ,ψ1]

as usual.
Define

(5.9) PDI : T̃B
# (ΣB) −→ M̃B(g, n−, n+)

by PDI

(
[ΣB, f,ΣB

1 ,ψ1]
)

= [ΣB
1 ,ψ1].

Corollary 5.24. The map PDI induces a bijection

T̃B
# (ΣB)

DI(ΣB)
−→ M̃B(g, n−, n+)

and M̃B(g, n−, n+) has a unique complex structure such that PDI is holomorphic. Moreover,
PDI possesses local holomorphic sections.

Proof. We could directly prove the bijection along similar lines as Theorem 5.12. However
we will make use of our previous work. First, observe that

TB(ΣB)

PModI(ΣB)
∼=

TB(ΣB)/DB(ΣB)

PModI(ΣB)/DB(ΣB)
∼=
TB(ΣB)/DB(ΣB)

DI(ΣB)

by Corollary 2.10. The required isomorphism now follows from Theorem 5.12 and Corollary
5.23. The action of DI(ΣB) is proper discontinuous and fixed-point free by Lemmas 5.10
and 5.11, Theorem 5.12 and Corollary 5.23. The result now follows from Lemma 2.19 and
Proposition 2.22. �

5.5. Assembly of results: the big picture. In this section we provide a conceptually
satisfying commutative diagram and a slightly informal theorem which together summarize
many of the results in this paper. Recall that ΣB is a bordered surface and ΣP is the
corresponding punctured surface obtained by sewing on caps as described in “Border model”,
Section 5.1.
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Consider the commutative diagram:

(5.10) TB(ΣB)

P#

DB

yyrrrrrrrrrrrrrrrrrr

PDB

&&LLLLLLLLLLLLLLLLLL

T̃B
# (ΣB)

PDI

��

∼=
// T̃ P (ΣP )

Pmod

��

M̃B(g, n−, n+)
∼=

// M̃P (g, n−, n+).

The horizontal isomorphisms are given in Theorems 5.9 and 5.19. The projection maps are
defined in (5.3), (5.4), (5.7), (5.8) and (5.9). Checking commutativity is routine.

Producing such a diagram was one of the goals of this project. It gives a full relation
between the puncture and and border picture at both the moduli space and Teichmüller
space levels.

Before formulating a concluding theorem we need to show that Pmod is holomorphic.

Lemma 5.25. The action of PModP (ΣP ) on T̃ P (ΣP ) is properly discontinuous and fixed-
point free. The projection Pmod is holomorphic and possesses local holomorphic sections.

Proof. The bijection J : T̃B
# (ΣB) → T̃ P (ΣP ) from Theorem 5.19 is a biholomorphism by the

commutativity of the top triangle in Diagram (5.10) and the existence of local holomorphic

sections of PDB and P#
DB (Corollaries 5.21 and 5.23). The actions of DI on T̃B

# (ΣB) and

PModP (ΣP ) on T̃ P (ΣP ) can be seen to be equivalent by directly using the definitions of
the actions and the isomorphism J . The required properties of the action now follow from
Corollary 5.24 and its proof. In Lemma 5.22 we showed that the action of PModP (ΣP ) is by
biholomorphisms. Thus Proposition 2.22 guarantees the stated properties of Pmod. �

Theorem 5.26 (Summary of results).

(1) All the spaces in Diagram (5.10) are obtained from T B(ΣB) by quotienting by the
action of the mapping class group and certain subgroups. (Proposition 5.17, Theorem
5.20 and Corollaries 5.23 and 5.24. )

(2) These actions are by biholomorphisms and are properly discontinuous and fixed-point
free. (Lemmas 2.19, 2.21, 5.10, 5.11 and 5.22 and Lemma 5.25.)

(3) With the complex structures inherited from T B(ΣB), all the spaces in Diagram (5.10)
become complex Banach manifolds. (Proposition 2.22, Theorem 5.13, Corollaries
5.21, 5.23 and 5.24 and Lemma 5.25.)

(4) These complex structures are the unique ones that make all the maps holomorphic.
All the maps possess local holomorphic sections. (Proposition 2.22.)

(5) The horizontal bijections become biholomorphisms. (Commutativity of the diagram
and existence of local holomorphic section)

(6) The complex structures on the moduli spaces are independent of the choice of base
surface ΣB and its boundary trivialization τ . (Theorem 5.14.)
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6. Holomorphicity of Sewing

As discussed in Section 1, the sewing operation is the fundamental geometric operation
in conformal field theory. Holomorphicity of this operation is required in the case of chiral
CFTs, or more formally, in the definition of a weakly conformal field theory. In Section 3
the sewing operation was defined for the case of quasisymmetric boundary parametrizations.
We now express this operation as a map between both the rigged moduli and Teichmüller
spaces. These sewing maps are shown to be holomorphic.

One advantage of working with quasisymmetric maps is the conceptually satisfying way
in which the sewing maps can be defined and the holomorphicity proved.

Recall from Section 2.2 that for a bordered Riemann surface, ΣB , the Teichmüller space
TB(ΣB) is endowed with the standard complex structure through the use of the Bers em-
bedding (see [38, Chapter 3] or [32, V.5.]). With this structure the fundamental projection
ΦΣB : L∞

(−1,1)(Σ
B)1 → TB(ΣB) is holomorphic, and has a local holomorphic section in a

neighborhood of every point.

Note that the projection PΣB : TB(ΣB) → M̃(g, n−.n+) from (5.3) can be defined by first
projecting

TB(ΣB) → TB(ΣB)/PModI(ΣB)

and following with the isomorphism [ΣB, f,ΣB
1 ] 7→ [ΣB

1 , τ ◦ f−1] of Theorem 5.12. It can be
checked directly that PΣB = PDI◦PDB# . From Theorem 5.13 we know that the projection PΣB

is holomorphic and has local holomorphic sections near every point. Actually this projection

was used to induce the complex structure on M̃(g, n−.n+).
We now recall the sewing operation described in Section 3.1. To avoid excessive decora-

tions, we change notation and letX and Y be bordered Riemann surfaces of type (gX , n
−
X , n

+
X)

and (gY , n
−
Y , n

+
Y ) respectively where n+

X > 0 and n−
Y > 0. Let τX = (τ 1

X , . . . τ
nX

X ) and
τ Y = (τ 1

Y , . . . , τ
nY

Y ) be (quasisymmetric) boundary trivializations of X and Y respectively
(see Section 3.2). Choose i and j such that ∂iX is an outgoing boundary component and
∂jY is an incoming boundary component. Let X#ijY be the sewn surface obtained by iden-

tifying ∂iX with ∂jY using (τ j
Y )−1 ◦J ◦ τ i

X . Since the choice of i and j is fixed throughout we
simply write X#Y for X#ijY . Let ιX : X → X#Y and ιY : Y → X#Y be the inclusion
maps. Let gX#Y = gX + gY , n−

X#Y = n−
X + n−

Y − 1 and n+
X#Y = n+

X + n+
Y − 1. The Riemann

surface X#Y of type (gX#Y , n
−
X#Y , n

+
X#Y ) with boundary trivialization

(6.1) τX#Y = (τ 1
X , . . . , τ

i−1
X , τ 1

Y , . . . , τ
j−1
Y , τ j+1

Y , . . . , τnY

Y , τ i+1
X , . . . τnX

X )

will be considered as the base surface for the Teichmüller space T B(X#Y ). There are other
ways of ordering the boundary components but this issue is not important for our purposes.

Remark 6.1. In conformal field theory the self-sewing operation must be considered. That
is, the sewing of two boundary components of a single surface. Everything in this section
can be altered without difficulty to cover this situation.

We describe three sewing maps: on the level of Beltrami differentials, the level of Te-
ichmüller space, and the level of rigged moduli space.

• S : L∞
(−1,1)(X)1 × L∞

(−1,1)(Y )1 → L∞
(−1,1)(X#Y )1 is defined by (µ, ν) 7→ µ ∪ ν where

(µ ∪ ν)(p) =

{
µ(p) if p ∈ ιX(X)

ν(p) if p ∈ ιY (Y )
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The values of µ ∪ ν on the seam of X#Y are not important as it is a set of measure
zero.

• ST : TB(X) × TB(Y ) → TB(X#Y ) is defined by

([X, f,X1], [Y, g, Y1]) 7→ [X#Y, f ∪ g,X1#Y1]

where

(f ∪ g)(p) =

{
f(p) if p ∈ ιX(X)

g(p) if p ∈ ιY (Y )

andX1 and Y1 are sewn using the boundary parametrizations τ i
X◦f−1 and τ j

Y ◦g
−1. By

the definition of the sewing operation, the topologies on X#Y and X1#Y1 are such
that f ∪ g is automatically a homeomorphism. Since it is quasiconformal on ιX(X)
and ιY (Y ), Theorem 2.39 guarantees it is quasiconformal on X#Y , by an identical
argument to the one preceding Remark 5.8. It is straightforward to check that ST

is well defined. For example, if [X, f,X1] = [X, f ′, X ′
1] via the biholomorphism σ :

X1 → X ′
1, then σ# : X1#Y1 → X ′

1#Y1 defined by

σ# =

{
σ on X1

id on Y1

gives the equivalence between (X#Y, f ∪ g,X1#Y1) and (X#Y, f ′ ∪ g,X ′
1#Y1).

• SM : M̃B(gX , n
−
X , n

+
X) × M̃B(gY , n

−
Y , n

+
Y ) → M̃B(gX#Y , n

−
X#Y , n

+
X#Y ) is defined by

(
[X1,ψX1

], [Y1,ψX2
]
)
7→ [X1#Y1,ψ]

where ψ is the parametrization of the remaining boundary components which are
ordered in a way analogous to (6.1). (To be more precise we should write S ij

M where
i and j label the boundary components that are sewed.) It is easy to check that SM

is well defined by using maps such as σ#.

Remark 6.2. The spaces and maps L∞
(−1,1)(X#Y ), TB(X#Y ), S and SY depend on the

choice of boundary trivializations τX and τ Y . On the other hand SM is independent of τX

and τ Y .

Remark 6.3. Being able to sew with quasisymmetric boundary identification is crucial to
defining ST . In the analytic case this is not possible, because even if τX and τ Y are chosen
to be analytic, there is no natural way to sew [X, f,X1] and [Y, g, Y1]. This is because the
maps τX ◦ f−1 and τ Y ◦ g−1 are only quasisymmetric.

Consider the following diagram which relates the three sewing operations.

(6.2) L∞
(−1,1)(X)1 × L∞

(−1,1)(Y )1
S

//

(ΦX ,ΦY )

��

L∞
(−1,1)(X#Y )

ΦX#Y

��

TB(X) × TB(Y )
ST

//

(PX ,PY )

��

TB(X#Y )

PX#Y

��

M̃B(gX , n
−
X , n

+
X) × M̃B(gY , n

−
Y , n

+
Y )

SM
// M̃B(gX#Y , n

−
X#Y , n

+
X#Y )
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Lemma 6.4. Diagram (6.2) commutes.

Proof. The commutativity of the upper rectangle is immediate, since if µ = µ(f) and ν =
µ(g) then µ ∪ ν = µ(f ∪ g).

For the lower rectangle, we take an element ([X, f,X1], [Y, g, Y1]) of TB(X) × TB(Y ) and
let ψX1

= τX ◦f−1 and ψX2
= τX ◦f−1. Going clockwise, the image of ([X, f,X1], [Y, g, Y1])

under PX#Y ◦ ST is [X1#X2, τX#Y ◦ (f ∪ g)−1] where the sewing is performed using the

parametrizations τ i
X◦f

−1 and τ j
Y ◦g

−1. Going anti-clockwise the image of ([X, f,X1], [Y, g, Y1])
under SM ◦ (PX , PY ) is [X1#X2,ψ], where ψ is formed from ψX1

and ψX2
with the appro-

priate ordering of the remaining boundary components. The sewing is performed using the
parametrizations ψi

X1
and ψj

X2
. A direct check using the definitions of τX#Y , f ∪ g and ψ

shows that the clockwise and anti-clockwise images are identical. �

To show holomorphicity of the sewing maps we need the following general result. See for
example Lehto [32, page 206] or Nag [38, page 87].

Lemma 6.5. Let E and F be complex Banach spaces and let U be an open subset of E. Let
F ∗ be the (complex) dual space. A function f : U → F is holomorphic if it is continuous and
for every α ∈ F ∗ and every (x, e) ∈ U × E, the function t 7→ α ◦ f(x+ te) is a holomorphic
function in some neighborhood of the origin in C.

Lemma 6.6. The sewing map S is holomorphic map.

Proof. The directional derivatives can be computed directly but it is easier to use Lemma
6.5. Continuity is immediate because if ||µ1 − µ2||∞ < ε, then ||µ1 ∪ ν − µ2 ∪ ν||∞ < ε and
similarly for ν. For arbitrary (µ, ν) and (λ1, λ2) in L∞

(−1,1)(X)1 × L∞
(−1,1)(Y )1,

(α ◦ S)((µ, ν) + t(λ1, λ2)) = α(µ ∪ ν) + tα(λ1 ∪ λ2).

So clearly t 7→ (α ◦ S)((µ, ν) + t(λ1, λ2)) is holomorphic in t. �

Theorem 6.7. The sewing maps ST and SM are holomorphic.

Proof. Given any point (P,Q) in TB(X)×TB(Y ) let σX and σY be local holomorphic sections
of ΦX and ΦY near p and q respectively. Their existence is guaranteed by Theorem 2.17.
It follows that σ = (σX , σY ) is a local holomorphic section of (ΦX ,ΦY ) : L∞

(−1,1)(X)1 ×

L∞
(−1,1)(Y )1 −→ TB(X)×TB(Y ). Since Diagram (6.2) commutes we have that ST = ΦX#Y ◦

S ◦ σ and so, by Lemma 6.6, ST is holomorphic.

Similarly let ρ = (ρX , ρY ) : M̃B(gX , n
−
X , n

+
X) × M̃B(gY , n

−
Y , n

+
Y ) → TB(X) × TB(Y )

be a local holomorphic section in the neighborhood of any point in M̃B(gX , n
−
X , n

+
X) ×

M̃B(gY , n
−
Y , n

+
Y ). Then SM = PX#Y ◦ ST ◦ ρ is holomorphic. �

Sewing on caps (as in Section 3.2) is a special case of the sewing operation. This results
in a holomorphic map TB(ΣB) → T P (ΣP ), and in particular we obtain the following.

Corollary 6.8. The map

C : TB(ΣB) −→ T P (ΣP )

[ΣB, f,ΣB
1 ] 7−→ [ΣB#τ (∆0)

n, f ∪ id,ΣB
1 #τ◦f−1(∆0)

n]

is holomorphic.
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Proof. The sewing map ST : TB(ΣB)× (TB(∆0))
n → TB(ΣB#τ (∆0)

n) is holomorphic. Note
that TB(ΣB#τ (∆0)

n) is the finite-dimensional Teichmüller space T P (ΣP ). To get the desired
map, we fix the second entry of the sewing map to be the ‘identity’, ([∆0, id,∆0])

n. Note
that the map depends on the choice of τ . �

Not surprisingly this result enables us to show the compatibility of the complex structures

on T̃ P (ΣP ) and the usual Teichmüller space T P (ΣP ). Consider the following diagram whose
left-hand side is the right-hand side of Diagram (5.10).

(6.3) TB(ΣB)

PDB

&&LLLLLLLLLLLLLLLLLL C

%%

T̃ P (ΣP )

Pmod

��

FT
// T P (ΣP )

Pmod

��

M̃P (g, n−, n+)
FM

// MP (g, n−, n+).

The horizontal maps just forget the rigging. That is,

FT ([ΣP , f,ΣP
1 ,φ1]) = [ΣP , f,ΣP

1 ] and FM([ΣP
1 ,φ1]) = [ΣP

1 ].

Commutativity of the diagram can be checked directly.

Corollary 6.9. The map FT : T̃ P (ΣP ) → T P (ΣP ) is holomorphic.

Proof. We know that C is holomorphic and that PDB possesses local holomorphic sections
(Corollary 5.21). By commutativity of the diagram, FT can locally be expressed as a com-
position of these maps, and is thus holomorphic. �

Remark 6.10. The same arguments apply to FM , but one must be careful as M(g, n−.n+)
is not a complex manifold. This is because the action of PModP (ΣP ) on T P (ΣP ) is not
fixed-point free.

7. Local structure of rigged Teichmüller space

Although we have given a complex manifold structure to the rigged Teichmüller and
Riemann Moduli spaces we have not described their local structure. We will focus on T B(ΣB)

and T̃ P (ΣP ).

From Corollary 6.9 we have the holomorphic map FT : T̃ P (ΣP ) → T P (ΣP ). The inverse
image of a point is isomorphic to the space of local coordinates. That is

F−1
T ([ΣP , f,ΣP

1 ]) =
{
[ΣP , f,ΣP

1 ,φ] |φ ∈ O∆
qc(p1)

}

where p1 is the list of punctures on ΣP
1 . The goal is to show that every point [ΣP , f,ΣP

1 ,φ0] ∈

T̃ P (ΣP ) has a neighborhood of the form Ω×U , where U is a neighborhood of φ0 ∈ O∆
qc, and

Ω is a neighborhood of [ΣP , f,ΣP
1 ] in the finite-dimensional Teichmüller space T P (ΣP ).
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To reach this goal we must show the space O∆
qc is a complex manifold. How the fibers de-

pend on the Riemann surface must also be understood. We intend to address these problems
in a future publication.

However, a key result will be proved in Section 7.2: namely, if a family of riggings depends
holomorphically on a parameter, then the corresponding family of Teichmüller space elements
is holomorphic. This is the content of Corollary 7.7. The same result for T̃ P (ΣP ) then
immediately follows, although for length considerations we have not presented all the details.
This appears in Corollary 7.8.

Once these results are established we sketch, in Section 7.3, the relation of the present
results to the standard approach to CFT using analytic riggings.

7.1. Holomorphic motion of an annulus. We first state a crucial lemma.
Let γ1 and γ2 be Jordan curves such that γ1 is contained in the interior of γ2. Consider a

holomorphic motion βt of γ1 (see Definition 2.25), such that βt(γ1) ∩ γ2 = ∅ for all t ∈ ∆.
Let A = γ1 ∪ γ2 and define ht : A→ C by

ht(z) =

{
βt(z) for z ∈ γ1

z for z ∈ γ2.

It follows directly that ht is a holomorphic motion of A.
Let Aγ2

γ1
be the annulus bounded by γ1 and γ2. Applying the extended λ-lemma (Theorem

2.27) we obtain the following.

Lemma 7.1. If γ1, γ2 and βt are given as above, then there exists a holomorphic motion
Ht of Aγ2

γ1
having the properties guaranteed by Theorem 2.26. In particular, Ht|γ1

= βt and
Ht|γ2

is the identity.

Remark 7.2. Although the proof of this lemma is simple it truly relies on the power of the
extended λ-lemma. Moreover this lemma in one of the main technical results needed in the
proof of the analyticity of the sewing operation in [46].

7.2. Holomorphic family of surfaces. We use Lemma 7.1 to produce a holomorphic
family of surfaces obtained by cutting out holomorphically varying disks. The basic idea is
to use the quasiconformal map Ht between annuli to produce a quasiconformal map between
Riemann surfaces.

A family of surfaces is produced in the following way. Assume for simplicity that ΣP has
a single puncture p. Let t be a complex parameter and let φt be a family of local coordinates
in O∆

qc(p) such that for fixed z, t 7→ φt(z) is a holomorphic function of t. We say that φt is
a holomorphic family of local coordinates.

Our aim is to show that t 7→ [ΣP , id,ΣP , φt] is a holomorphic map from a neighborhood

of 0 ∈ C to T̃ P (ΣP ). We do this by finding a suitable holomorphic family of elements in
TB(ΣB) where ΣB = ΣP \ φ−1

0 (∆).
Let Dt = φ−1

t (∆), and γt = φ−1
t (S1). Consider the bordered Riemann surfaces ΣB

t =
ΣP \Dt with (analytic) boundary parametrizations given by φt. Note that here we allow for
a boundary parametrization to be orientation reversing.

By the definition of O∆
qc(p), there exists r > 1 such that φ−1

0 is quasiconformal on B(0, r).
Let U = φ−1(B(0, r)) and choose a biholomorphic map G : U → C. For |t| sufficiently small,
Dt in contained in U . Let At be the annular region on ΣP bounded by ∂U and γt.
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The map βt = G◦φ−1
t ◦φ0 ◦G

−1|G(γ0) is a holomorphic motion of G(γ0). Applying Lemma
7.1 we get a holomorphic motion Ht of G(A0) such that Ht|G(γ0) = βt and Ht|G(∂U) is the
identity.

Proposition 7.3. For |t| sufficiently small, the map Ft : ΣB
0 → ΣB

t defined by

Ft =

{
id on ΣP \ A0

G−1 ◦Ht ◦G on A0

is quasiconformal and is holomorphic in t.

Remark 7.4. As ΣB
0 and ΣB

t are subsets of ΣP , it makes sense to talk about the identity map
as well as holomorphicity in t.

Proof of Proposition 7.3. We first show that Ft is well defined. For x ∈ ∂U , the fact that Ht

is the identity on G(∂U) implies that G−1 ◦Ht ◦G(x) = x. Because Ht(z) is analytic in t for
each fixed z, and the other maps are independent of t, we see that Ft(z) is analytic in t. The
map Ft(z) is quasiconformal on ΣB

0 \ ∂U because it is defined by a composition of conformal
and quasiconformal maps. Theorem 2.39 guarantees that Ft is quasiconformal on ∂U . �

Some standard facts about the complex dilation of a composition of maps lead to the
following.

Lemma 7.5. Let {wt}t∈∆ be a family of quasiconformal homeomorphisms of C. If t 7→
µ(wt(z)) is holomorphic and f : C → C is quasiconformal then the map ∆ → L∞

(−1,1)(C)1

given by t 7→ µ(wt(f(z))) is holomorphic.

Proposition 7.6. For |t| sufficiently small, the complex dilation µ(Ft) of Ft is holomorphic
in t. That is, the map t 7→ µ(Ft) is holomorphic.

Proof. By Theorem 2.28, µ(Ht) is holomorphic in t. Apply Lemma 7.5 to µ(G−1 ◦Ht ◦G) =
µ(Ht ◦G). �

From the holomorphicity of the fundamental projection (see 2.16) we get the corresponding
result for Teichmüller space.

Corollary 7.7. For |t| sufficiently small, the map t 7→ [ΣB, Ft,Σ
B
t ] is holomorphic.

Consider the base surface ΣB = ΣB
0 whose single boundary component is parametrized

by φ0. With some work it can be checked directly that the holomorphic projection PDB :

TB(ΣB) → T̃ P (ΣP ) defined in (5.3) sends [ΣB, Ft,Σ
B
t ] to [ΣP , id,ΣP , φt]. To see this, a

change of base point must be used along with the fact that the extension of Ft to the
punctured surface is homotopic to the identity. Corollary 7.7 now immediately gives the
following.

Corollary 7.8. For |t| sufficiently small, the map t 7→ [ΣP , id,ΣP , φt] is holomorphic.

We briefly recap the results of this section. Given a holomorphic family of local coordinate
φt, define a family of surfaces ΣB

t = ΣB \φ−1
t (∆). Using the extended λ-lemma, quasiconfor-

mal maps Ft : ΣB → ΣB
t are obtained. The family of Teichmüller space elements [ΣB , Ft,Σ

B
t ]

is a holomorphic curve in TB(ΣB). This holomorphic family projects to a holomorphic family

[ΣP , id,ΣP , φt] in T̃ P (ΣP ).
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7.3. Relation to analytic rigging. In the standard approach to conformal field theory (as
defined by Segal in [47]), the boundary components of the Riemann surfaces are parametrized
with analytic maps, which extend to biholomorphic maps of a collared neighborhood of the
boundary. In the puncture model, the equivalent picture is given by rigging the punctured
surfaces with analytic local coordinates. We denote the corresponding rigged Teichmüller
space by T̃ P

O (ΣP ). The complex structure of this space and the rigged moduli space are
known. It was worked out in detail in the genus-zero case in [22] and in the higher-genus
case in [46]. In this section we outline the compatibility between those complex structures
and the one in the current paper. The precise statement is the following.
Claim: The inclusion map

inc : T̃ P
O (ΣP ) −→ T̃ P (ΣP )

is holomorphic.

It would take significant preparation to properly define the complex structure on T̃ P
O (ΣP ),

so this section is not as detailed as the previous ones. Moreover, the full details of the
relationship we explore here will be included in a future publication.

The compatibility hinges on showing that cutting out varying disks using a holomorphic
family of (analytic) local coordinates gives a holomorphic family in Teichmüller space. This
is a special case of Corollary 7.8.

We now briefly describe (following [46]), the complex manifold structure on the Teichmüller
space of analytically rigged Riemann surfaces.

Let O be the complex vector space of all formal series of the form
∑∞

i=1 anz
n, which

are absolutely convergent in some neighborhood of 0 ∈ C. Let H∆ be the subspace of O
consisting of series that have a radius of convergence strictly greater than one. Let L∆

be the subspace of H∆ consisting of functions that are one-to-one. These spaces of germs
of holomorphic functions can be described as (LB)-spaces, that is, as inductive limits of
complex Banach spaces. The theory of holomorphic maps on such spaces closely follows that
of Banach spaces. See for example [30].

We refer the reader to Section 5.1 for notation and related ideas. In analogy with the local
coordinates O∆

qc(q) from Definition 5.1, we define

O∆(q) = {φ ∈ O(q) |∆ ⊂ Im(φ) , φ−1 biholomorphic on a neighborhood of ∆}.

Let O∆(p) be the space of local coordinates corresponding to O∆
qc(p) in Definition 5.1. It can

be shown that O∆(q) and O∆(p) are complex (LB)-manifolds modelled on L∆ and (L∆)n

respectively.
An analytically rigged surface is a pair (ΣP ,φ) where ΣP is of type (g, n−, n+), and φ ∈

O∆(p) is the set of local coordinates at the punctures p = (p1, . . . , pn). The corresponding
rigged Moduli space and rigged Teichmuller space are defined exactly as in Definitions 5.3

and 5.16. We use the notation T̃ P
O (ΣP ) to distinguish from the earlier case.

In T̃ P
O (ΣP ), Schiffer variation of complex structure can be used to separate the “Teichmüller

space part” from the “local coordinate part”. More precisely, T̃ P
O (ΣP ) is a complex manifold

which, in a neighborhood of [ΣP , f,ΣP
1 ,φ], has charts of the form

(7.1) S : Ω × U −→ T̃ P
O (ΣP )

where U is a neighborhood of φ ∈ O∆(p1) and Ω is a neighborhood of [ΣP , f,ΣP
1 ] in T P (ΣP ).

Recall that T P (ΣP ) is a complex manifold of dimension 3g − 3 + n.
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The initial claim of compatibility of the complex structures on T̃ P
O (ΣP ) and T̃ P (ΣP ) there-

fore reduces essentially to the compatibility of O∆(p) and T̃ P (ΣP ). A key step in proving this
compatibility is Corollary 7.8. In the current setting this corollary shows that a holomorphic
curve in O∆(p) maps to a holomorphic curve in T̃ P (ΣP ).

8. Concluding remarks

We conclude with some observations.
The first observation is regarding a possible further application of these results to confor-

mal field theory. It is well known that the Teichmüller space T B(ΣB) is contained in the
universal Teichmüller space T (1) = T (∆). Thus a representative of every possible topologi-
cal type (g, n) is contained in T (1). It was conjectured by Pekonen [43] (possibly following
Nag) that the universal Teichmüller space is the proper arena for the path integral formula-
tion of free bosonic string theory, and might be the basis of a non-perturbative formulation.
In other words, the ‘sum over topologies’ could be accomplished by using the universal Te-
ichmüller space (or perhaps some suitable subspace) as the space of all paths. The results
of the present paper suggest that this may be correct.

On the other hand, the results of the present paper appear to be an application of Segal’s
definition of conformal field theory [47] to understanding the Teichmüller space of a bordered

Riemann surface. First, we have shown that TB is ‘almost’ T̃ P (that is, up to the action of
DB.) Second, we have provided two intermediate spaces between T̃ P and MP , namely M̃P

and T P (see Diagram (6.3)).
This can be interpreted in the following way. Given a bordered Riemann surface ΣB,

we want to understand its Teichmüller space by looking at the compactified surface ΣP .
Again ignoring the action of DB, we see that TB contains the following extra information
not contained in MP : the riggings, which we add in the horizontal direction of Diagram
(6.3), and the markings, which we add in the vertical direction of Diagram (6.3). In some
sense, the riggings can be regarded as ‘external’ information in that they specify how ΣB

sits inside a compact Riemann surface. The markings can be regarded then as containing
‘internal’ information.

Finally, we have shown that TB/DB is fibred over T P with fibres O∆
qc, and that the

projection is holomorphic (Corollary 6.9). It is thus of interest to describe the complex
structure of the fibres O∆

qc and to show that TB is a holomorphic fiber space which is locally

biholomorphic to an open subset of T P × O∆
qc. We hope to pursue this point in a future

publication.

9. Notation

Basic notation:

• ΣB - Bordered Riemann surface of finite topological type.
• ΣP - Riemann surface with punctures or marked points.
• Sr- circle or radius r (in C).
• B(0, r) - disk radius r (in C)
• Ar2

r1
- Standard annulus in C bounded by Sr1

and Sr2
.

• AC - An annular neighborhood of a boundary component of ΣB .
• S1 - unit circle.
• ∆ - Open unit disk.
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• ∆0 = ∆ \ {0} - punctured closed unit disk.

• Ĉ - Riemann sphere.
• J : Ĉ → Ĉ is defined by J(z) = 1/z.

General setup:

• ΣB is the base surface with n boundary components.
• ∂ΣB =

⋃n
i=1 ∂iΣ

B where ∂iΣ
B are the ordered boundary components. Each compo-

nent is specified as incoming or outgoing.
• τ = (τ1, . . . , τn) are fixed quasisymmetric parametrizations of the boundaries. A base

parametrization for the base surface.
• ΣB#ψ(∆0)

n - sewing in n disks using boundary parametrizations (ψ1, . . . , ψn).
• ΣP = ΣB#τ (∆0)

n is the punctured surface obtained by capping the boundaries.
• ΣB

1 #ΣB
2 - Result of sewing ΣB

1 and ΣB
2 along specified boundary components.

• O∆
qc(p) - Rigging data (puncture model). Space of holomorphic coordinates at p with

quasiconformal extensions.
• TB(ΣB) - Teichmüller space of a bordered surface.

• T̃ P (ΣP ) - Teichmüller space of rigged surfaces (puncture picture).

• T̃B
# (ΣB) - reduced Teichmüller space of rigged surfaces (border pictue).

• M̃B - rigged moduli space (border picture).

• M̃P - rigged moduli space (puncture picture).
• PModB(ΣB) - pure mapping class group.
• PModI(ΣB) = {[ρ] ∈ PMod(ΣB) | ρ|∂ΣB = id}.
• DB(ΣB) - subgroup of PModI(ΣB) generated by “boundary” Dehn twists.
• DI(ΣB) - subgroup of PModI(ΣB) generated by “internal” Dehn twists.
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28. N. V. Ivanov, Mapping class groups, Handbook of Geometric Topology (R. J. Daverman and R. B. Sher,
eds.), North-Holland, Amsterdam, 2002, pp. 523–634.

29. M. Korkmaz, Low-dimensional homology groups of mapping class groups: a survey, Turk. J. Math. 26

(2002), no. 1, 101–114.
30. A. Kriegl and P. W. Michor, The convenient setting of global analysis, Mathematical Surveys and Mono-

graphs, 53, American Mathematical Society, 1997.
31. I. Kriz, On spin and modularity in conformal field theory, Ann. Sci. École Norm. Sup. (4) 26 (2003),
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24 (1961), 401–412.
45. C. Pommerenke and B. Rodin, Holomorphic families of Riemann mapping functions, J. Math. Kyoto

Univ. 26 (1986), no. 1, 13–22.
46. D. Radnell, Schiffer varation in Teichmüller space, determinant line bundles and modular functors,

Ph.D. thesis, Rutgers University, New Bunrswick, NJ, October 2003.
47. G. Segal, The definition of conformal field theory, Topology, Geometry and Quantum Field Theory

(U. Tillmann, ed.), London Mathematical Society Lecture Note Series, vol. 308, Cambridge University
Press, 2004, Orginial preprint 1988, pp. 421–576.

48. Z. S lodkowski, Holomorphic motions and polynomial hull, Proc. Amer. Math. Soc. 111 (1991), no. 2,
347–355.

49. K. Strebel, On the maximal dilation of quasiconformal mappings, Proc. Amer. Math. Soc. 6 (1955),
903–909.

50. L. A. Takhtajan and L.-P. Teo, Weil-Petersson metric on the universal Teichmüller space I: Curvature
properties and Chern forms, preprint. arXiv:math.CV/0312172, 2003.

51. , Weil-Petersson metric on the universal Teichmüller space II: Kähler potential and period map-
ping, preprint. arXiv:math.CV/0406408, 2004.

52. A. Tsuchiya, K. Ueno, and Y. Yamada, Conformal field theory on universal family of stable curves with
gauge symmetries, Advanced Studies in Pure Math., vol. 19, Kinokuniya Company Ltd, Tokyo, 1989,
pp. 459–566.

53. V. G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, vol. 18,
Walter de Gruyter and Co., Berlin, 1994.

54. R.O. Wells, Jr., Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics,
vol. 65, Spring-Verlag, New York, 1979.

55. Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996),
no. 1, 237–302.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA

Current address : Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
E-mail address, D. Radnell: radnell@umich.edu

Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2

E-mail address, E. Schippers: Eric Schippers@UManitoba.CA


