
CYCLIC q-MZSV SUM

YASUO OHNO, JUN-ICHI OKUDA, AND WADIM ZUDILIN

Abstract. We present a family of identities ‘cyclic sum formula’ and ‘sum

formula’ for a version of multiple q-zeta star values. We also discuss a problem
of q-generalization of shuffle products.

Introduction and notation

The classical idea of introducing an additional parameter to an expression or
formula we wish to deal with, is quite fruitful in many situations. This may simplify
a proof of the corresponding identity or lead to a more general identity which
have several other useful specializations of the introduced parameter. The story
of introducing the parameter q (or, the ‘quantum’ parameter) often has a different
flavor. Our motivation to study q-analogues of multiple zeta values (MZVs)
(1)

ζ(k) = ζ(k1, . . . , kr) =
∑

n1>···>nr≥1

1
nk11 · · ·n

kr
r

, k1, . . . , kr ∈ {1, 2, . . . }, k1 ≥ 2,

and multiple zeta star values (MZSVs)
(2)

ζ?(k) = ζ?(k1, . . . , kr) =
∑

n1≥···≥nr≥1

1
nk11 · · ·n

kr
r

, k1, . . . , kr ∈ {1, 2, . . . }, k1 ≥ 2,

is to a better understanding the structure of linear and algebraic relations between
the numbers (1) (or (2)). An important advantage of the q-model is that proving
the absence of such relations is a much easier task (cf. [17]): the functional case
is normally not as hard as the numerical one. On the other hand, showing that
some relations hold is normally easier for numbers than for functions. The main
problem here is finding an appropriate q-analogue which is often dictated by already
existing proofs of the corresponding original identities. In this paper we hope to
convince the reader that there is no uniform q-generalization of the multiple zeta
(star) values, but having several q-analogues in mind and a simple way to pass from
one q-model to another gives one a very natural parallel between the numbers and
their q-analogues.

Throughout the article we assume that q ∈ C satisfies |q| < 1. Let us first
recall the definition of the q-MZVs and q-MZSVs which is already accepted to be
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dominating [1], [2], [12], [16]:

(3) ζq(k1, k2, . . . , kr) =
∑

n1≥n2≥···≥nr≥1

qn1(k1−1)+n2(k2−1)+···+nr(kr−1)

[n1]k1 [n2]k2 · · · [nr]kr

and

(4) ζ?q (k1, k2, . . . , kr) =
∑

n1≥n2≥···≥nr≥1

qn1(k1−1)+n2(k2−1)+···+nr(kr−1)

[n1]k1 [n2]k2 · · · [nr]kr
,

where [n] = [n]q = (1 − qn)/(1 − q) is a q-analogue of the positive integer n and
conditions for the multi-index k = (k1, . . . , kr) are exactly the same as in (1) and (2)
(such multi-indices are called admissible). The corresponding q-analogues of the
values of Riemann’s zeta function are as follows:

ζq(k) = ζ?q (k) =
∑
n≥1

qn(k−1)

[n]k
.

We add one more notation for our convenience:

ζ?q (k1, k2, . . . , kr) = (1− q)−(k1+k2+···+kr)ζ?q (k1, k2, . . . , kr)(5)

=
∑

n1≥n2≥···≥nr≥1

qn1(k1−1)+n2(k2−1)+···+nr(kr−1)

(1− qn1)k1(1− qn2)k2 · · · (1− qnr )kr
;

the same convention is used for ζq(k1, k2, . . . , kr).
A different version of q-analogues for the numbers (1) and (2) is given by the

formulae

(6) zq(k1, k2, . . . , kr) =
∑

n1>n2>···>nr≥1

qn1

(1− qn1)k1(1− qn2)k2 · · · (1− qnr )kr

and

(7) z?q(k1, k2, . . . , kr) =
∑

n1≥n2≥···≥nr≥1

qn1

(1− qn1)k1(1− qn2)k2 · · · (1− qnr )kr
;

this time we even do not require the condition k1 > 1. Several relations for the
MZSVs have very simple q-analogues in terms of (7). The examples are

z?q(2, 1) = 2z?q(3)− z?q(2)
(

=
∑
n≥1

qn(1 + qn)
(1− qn)3

)
,

z?q(2, 1, 1) = 3z?q(4)− 2z?q(3)
(

=
∑
n≥1

qn(1 + 2qn)
(1− qn)4

)
,

z?q(2, 2, 1) = 2z?q(5)− z?q(3)
(

=
∑
n≥1

qn(1 + 2qn − q2n)
(1− qn)5

)
,

z?q(2, 1, 1, 1) = 4z?q(5)− 3z?q(4)
(

=
∑
n≥1

qn(1 + 3qn)
(1− qn)5

)
,

z?q(2, 1, 2, 1) + z?q(2, 2, 1, 1) = 5z?q(6)− 3z?q(4)
(

=
∑ qn(2 + 6qn − 3q2n)

(1− qn)6

)
,

z?q(2, 2, 2, 1) = 2z?q(7)− z?q(4)
(

=
∑
n≥1

qn(1 + 3qn − 3q2n + q3n)
(1− qn)7

)
.
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One of the natural questions is finding a general formula for these simple relations.
The answer on this original question is given in Section 1. Briefly speaking the
key is the so-called cyclic sum formula for the MZSVs discovered in [13] and its
q-version for (4) given in [12]. Surprisingly, the q-model (7) admits a much simpler
formula and the examples above are just its particular cases.

1. Cyclic sum formula and Sum formula of q-MZSVs

To present our main result, we define for any function f depending on r positive
integer parameters, the cyclic sum cyclf by

cyclf(k1, . . . , kr) =
r∑
i=1

ki−2∑
j=0

f(ki − j, ki+1, . . . , kr, k1, . . . , ki−1, j + 1),

where the empty sums (for ki = 1) are interpreted as zero. Under this notation,
the result is as follows.

Main theorem. For any positive integers r ≥ 1 and k1, k2, . . . , kr with k =∑r
i=1 ki > r, we have

cyclz
?
q(k1, . . . , kr) = kz?q(k + 1)− rz?q(r + 1).

Also, as an easy consequence of our Main theorem, we newly get the sum formula
of the q-MZSVs. We denote by I0(k, r) a set of indices

I0(k, r) =
{

(k1, . . . , kr) ∈ Zr
∣∣∣ k =

r∑
i=1

ki, k1 > 1, k2, . . . , kr ≥ 1
}

for k > r ≥ 1.

Theorem 1 (Sum formula of z?q). For any positive integers k > r ≥ 1, we have∑
k∈I0(k+1,r+1)

z?q(k) =
(
k

r

)
z?q(k + 1)−

(
k − 1
r − 1

)
z?q(r + 1).

Both expressions in the above formulas are close to those formulas of ζ? compared
with the formulas of ζ?q (see, e.g., Theorem 3 below). As a by-product, following
Hoffman’s argument in [9], we obtain a version of Theorem 1.

Theorem 2 (Sum formula of zq). For any positive integers k > r ≥ 1, we have∑
k∈I0(k+1,r+1)

zq(k) = zq(k + 1)−
r∑
j=1

(−1)r−j
(
k − 1− j
r − j

)(
k − 1
j − 1

)
zq(j + 1).

For the non-q-versions of Theorems 1 and 2, cf. [13], [12], [7] and [6], [20], respec-
tively. It is interesting that the sum formula for (3) has exactly the same expression
as for (1) (cf. [1], [16]), while the sum formula for (4) is quite involved (cf. [12]).

2. Proof of the Main theorem

To prove the required identity we rewrite the cyclic sum formula of (4) in terms
of (7). The cyclic sum formula of q-MZSVs in [12] is as follows.
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Theorem 3 (Cyclic sum formula [12]). For any positive integers r ≥ 1 and
k1, k2, . . . , kr with k =

∑r
i=1 ki > r,

(8) cyclζ
?
q (k1, k2, . . . , kr) =

r∑
l=0

(k − l)
(
r

l

)
(1− q)lζq(k − l + 1).

For any non-negative integer b and positive integers r, a1, a2, . . . , ar, we define
the index set J as follows:

J(a1, . . . , ar; b) = {(b1, . . . , br) ∈ Z | ai > bi ≥ 0, b1 + · · ·+ br = b}.

In this notation, we get the following identity to rewrite the left-hand side of for-
mula (8).

Proposition 1. For any positive integers r ≥ 1 and k1, k2, . . . , kr with k =∑r
i=1 ki > r,

cyclζ?q (k1, k2, . . . , kr)(9)

=
k−r∑
b=1

∑
(b1,...,br)∈J(k1,...,kr;b)

(−1)k−r−b
r∏
i=1

(
ki − 1
bi

)
cyclz

?
q(b1 + 1, . . . , br + 1).

Proof. The left-hand side of the above identity is

r∑
i=1

ki−2∑
j=0

ζ?q (ki − j, ki+1, . . . , kr, k1, . . . , ki−1, j + 1)

=
r∑
i=1

ki−2∑
j=0

∑
n1≥n2≥···≥nr≥nr+1≥1

qn1(ki−j−1)+n2(ki+1−1)+···+nr(ki−1−1)+nr−1j

(1− qn1)ki−j(1− qn2)ki+1 · · · (1− qnr )ki−1(1− qnr+1)j+1
,

where the inner sum with respect to r is

ki−2∑
j=0

qn1(ki−j−1)+n2(ki+1−1)+···+nr(ki−1−1)+nr−1j

(1− qn1)ki−j(1− qn2)ki+1 · · · (1− qnr )ki−1(1− qnr+1)j+1

=
ki−2∑
j=0

qn1(1− (1− qn1))ki−j−2(1− (1− qn2))ki+1−1 · · ·
(1− qn1)ki−j(1− qn2)ki+1 · · ·

× (1− (1− qnr ))ki−1−1(1− (1− qnr+1))j

(1− qnr )ki−1(1− qnr+1)j+1

=
∑

bi+1,...,bi−1

ki−2∑
j=0

ki−j∑
εi=2

j∑
j0=0

(−1)k−eqn1
(
ki−j−2
εi−2

)(
ki+1−1
bi+1

)(
ki+2−1
bi+2

)
· · ·
(
ki−1−1
bi−1

)(
j
j0

)
(1− qn1)εi(1− qn2)bi+1+1 · · · (1− qnr )bi−1+1(1− qnr+1)j0+1

=
∑

bi+1,...,bi−1

ki∑
εi=2

ki−εi∑
j0=0

ki−εi∑
j=j0

(−1)k−eqn1
(
ki−j−2
εi−2

)(
ki+1−1
bi+1

)(
ki+2−1
bi+2

)
· · ·
(
ki−1−1
bi−1

)(
j
j0

)
(1− qn1)εi(1− qn2)bi+1+1 · · · (1− qnr )bi−1+1(1− qnr+1)j0+1

.

The first sum on the left-hand side runs over all indices in Zr−1 subject to the
conditions

0 ≤ bi+1 < ki+1, 0 ≤ bi+2 < ki+2, . . . , 0 ≤ bi−1 < ki−1.
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By using a variant of Vandermonde’s identity for binomial sums (cf., e.g., [19, p. 9])
we have

ki−εi∑
j=j0

(
ki − j − 2
εi − 2

)(
j

j0

)
=
(

ki − 1
εi + j0 − 1

)
,

hence the right-hand side of the above equality equals∑
bi+1,...,bi−1

ki∑
εi=2

ki−εi∑
j0=0

(−1)k−r−bqn1
(

ki−1
εi+j0−1

)(
ki+1−1
bi+1

)(
ki+2−1
bi+2

)
· · ·
(
ki−1−1
bi−1

)
(1− qn1)εi(1− qn2)bi+1+1 · · · (1− qnr )bi−1+1(1− qnr+1)j0+1

=
∑

bi+1,...,bi−1

ki−1∑
bi=1

bi−1∑
j0=0

(−1)k−r−bqn1
(
ki−1
bi

)(
ki+1−1
bi+1

)(
ki+2−1
bi+2

)
· · ·
(
ki−1−1
bi−1

)
(1− qn1)bi−j0+1(1− qn2)bi+1+1 · · · (1− qnr )bi−1+1(1− qnr+1)j0+1

.

Thus we obtain the desired identity (9). �

To rewrite the right-hand side in (8) we use the following proposition.

Proposition 2. For any positive integers n, r, t, we have

(10)
r∑
l=0

(t+ l)
(
r

l

)
qn(t+l)

(1− qn)t+l+1
=

t∑
j=0

(−1)t−j(r + j)
(
t

j

)
qn

(1− qn)r+j+1
,

hence
r∑
l=0

(t+ l)
(
r

l

)
ζ?q (t+ l + 1) =

t∑
j=0

(−1)t−j(r + j)
(
t

j

)
z?q(r + j + 1).

Proof. For the function f(x) = xt(1 + x)r = ((1 + x) − 1)t(1 + x)r we have the
expansions

f(x) =
r∑
l=0

(
r

l

)
xt+l and f(x) =

t∑
j=0

(−1)t−j
(
t

j

)
(1 + x)r+j ,

hence

f ′(x) =
r∑
l=0

(t+ l)
(
r

l

)
xt+l−1 =

t∑
j=0

(−1)t−j(r + j)
(
t

j

)
(1 + x)r+j .

It remains to use these two representations for
qn

(1− qn)2
f ′
(

qn

1− qn

)
to arrive at identity (10). �

By using Propositions 1 and 2 we can now write the cyclic sum formula (8) in
terms of z?q as follows.

Proposition 3. For any positive integers r and k1, k2, . . . , kr with k =
∑r
i=1 ki > r,

k−r∑
b=1

∑
(b1,...,br)∈J(k1,...,kr;b)

(−1)b
r∏
i=1

(
ki − 1
bi

)
cyclz

?
q(b1 + 1, . . . , br + 1)(11)

=
k−r∑
j=0

(−1)j(r + j)
(
k − r
j

)
z?q(r + j + 1),
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where the set J(a1, . . . , ar; b) is as above.

To apply the inverse relation of binomial coefficients to our computation, we
introduce notation

F (n1, . . . , nr) =
n∑
j=0

(−1)j(r + j)
(
n

j

)
z?q(r + j + 1), where n = n1 + · · ·+ nr,

and

G(n1, . . . , nr) =

{
cyclz

?
q(n1 + 1, . . . , nr + 1) + F (0, . . . , 0) if n > 0,

F (0, . . . , 0) if n = 0.

Note that F (0, . . . , 0) = rz?q(r + 1) is a correction term required to start the sum-
mation on the left-hand side in (11) from b = 0: Since

k−r∑
b=0

∑
(b1,...,br)∈J(k1,...,kr;b)

(−1)b
r∏
i=1

(
ki − 1
bi

)
F (0, . . . , 0) =

{
0 if k − r > 0,
F (0, . . . , 0) if k − r = 0,

the relation (11) can be translated as

F (k1 − 1, . . . , kr − 1) =
k−r∑
b=0

∑
(b1,...,br)∈J(k1,...,kr;b)

(−1)b
r∏
i=1

(
ki − 1
bi

)
·G(b1, . . . , br).

We now recall an inverse relation of binomial coefficients.

Proposition 4 (L. C. Hsu [11]). The equality

F (n1, . . . , nr) =
∑

0≤mi≤ni
i=1,...,r

(−1)m1+···+mr

r∏
i=1

(
ni
mi

)
·G(m1, . . . ,mr)

implies

G(n1, . . . , nr) =
∑

0≤mi≤ni
i=1,...,r

(−1)m1+···+mr

r∏
i=1

(
ni
mi

)
· F (m1, . . . ,mr).

Using the inverse relation we obtain

G(k1 − 1, . . . , kr − 1) = cyclz
?
q(k1, . . . , kr) + rz?q(r + 1)

(12)

=
k−r∑
b=0

∑
(b1,...,br)∈J(k1,...,kr;b)

r∏
i=1

(
ki − 1
bi

) b∑
j=0

(−1)b−j
(
b

j

)
(r + j)z?q(r + j + 1)

=
k−r∑
j=0

{k−r∑
b=j

∑
(b1,...,br)∈J(k1,...,kr;b)

(−1)b−j
(
b

j

) r∏
i=1

(
ki − 1
bi

)}
(r + j)z?q(r + j + 1).

To deduce the desired formula in the Main theorem it remains to use one more
proposition.
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Proposition 5. For any positive integer r and non-negative integers a1, a2, . . . , ar
and c ≤ a = a1 + · · ·+ ar, we have

a∑
b=c

∑
(b1,...,br)∈J(a1+1,...,ar+1;b)

(−1)b−c
(
b

c

) r∏
i=1

(
ai
bi

)
=

{
1 if c = a,

0 if c < a.

Proof. We use the following expansion:

(x− y + z)a =
r∏
i=1

(x− (y − z))ai =
r∏
i=1

ai∑
bi=0

(−1)bi

(
ai
bi

)
xai−bi(y − z)bi

=
a∑
b=0

( ∑
(b1,...,br)∈J(a1+1,...,ar+1;b)

(−1)b
r∏
i=1

(
ai
bi

))
xa−b(y − z)b

=
a∑
b=0

( ∑
(b1,...,br)∈J(a1+1,...,ar+1;b)

(−1)b
r∏
i=1

(
ai
bi

))
xa−b

b∑
c=0

(−1)c
(
b

c

)
yb−czc

=
a∑
c=0

a∑
b=c

( ∑
(b1,...,br)∈J(a1+1,...,ar+1;b)

(−1)b−c
(
b

c

) r∏
i=1

(
ai
bi

))
xa−byb−czc.

Putting x = y = 1 for the both sides of this computation we deduce

za =
a∑
c=0

( a∑
b=c

∑
(b1,...,br)∈J(a1+1,...,ar+1;b)

(−1)b−c
(
b

c

) r∏
i=1

(
ai
bi

))
zc.

It remains to compare the coefficients of zc on the both sides. �

Putting ai = ki − 1, a = k− r, c = j in Proposition 5, we get our Main theorem
immediately from the right-hand side of equality (12). Furthermore, we deduce
Theorem 1 by the argument similar to [13].

3. q-Shuffle relations

It looks quite sophisticated that identities for the multiple zeta (star) values (1)
and (2) have so different complexity of the corresponding q-analogues. Although
our examples here (Main theorem and Theorem 1) demonstrate an advantage of
the q-model (7) compared with (5), there are many identities for (3) or (4) (hence,
for ζq(k) and ζ?q (k)) having the same or almost the same form as their prototypes
for (1) or (2); see [1] and [16]. On the other hand, there are several examples when q-
analogues involve certain series not all expressible in terms of the q-MZVs (see, e.g.,
[2]), or when q-analogues are not known at all, like for the two-one (conjectured)
formula and the weighted sum theorem in [15]. What is a reason for all this?

Without presenting here a deep but standard algebraic setup for the multiple
zeta values (1) (or (2)), recall that the presumable structure of algebraic relations
for (1) is given by the so-called double shuffle relations, the relations that come out
of identifying the model (1) with a certain algebra on words, with two products
(see, e.g., [4], [8], [10], and [21]). One of these products, harmonic (or stuffle),
originated from the product formula for series, has a very natural q-generalization
for the model (3) or (4) (hence, for ζq(k) and ζ?q (k)), but the corresponding form
for (6) and (7) is rather awkward.
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The main difficulty arises when we look for a reasonable q-generalization of the
shuffle product of (1), the product originated from the differential equations for the
multiple polylogarithms

(13) Lik1,...,kr
(z) =

∑
n1>···>nr≥1

zn1

nk11 · · ·n
kr
r

.

Namely, one has

(14)
d
dz

Lik1,k2,...,kr
(z) =


1
z

Lik1−1,k2,...,kr (z) if k1 ≥ 2,

1
1− z

Lik2,...,kr
(z) if k1 = 1,

and this comes from the “fundamental theorem of calculus”,

(15)
d
dz
(
f(z)g(z)

)
=

d
dz
f(z) · g(z) + f(z) · d

dz
g(z).

The differential equations (14) give rise to an integral representation of the poly-
logarithms (13) (hence, of the multiple zeta values (1)), where the participating
differential forms dz/z and dz/(1−z) are assigned as two non-commutative letters,
so that the integrals themselves are interpreted as words on these letters.

The q-analogue of (15) reads as

(16) Dq

(
f(z)g(z)

)
= Dqf(z) · g(z) + f(z) ·Dqg(z)− (1− q)z ·Dqf(z) ·Dqg(z),

where

Dqf(z) =
f(z)− f(qz)

(1− q)z
.

Defining a q-analogue of the multiple polylogarithms (13) as

(17) Lik1,...,kr (z; q) =
∑

n1>···>nr≥1

zn1

[n1]k1 · · · [nr]kr
,

from (16) we deduce the following analogue of (14):

Dq Lik1,k2,...,kr
(z; q) =


1
z

Lik1−1,k2,...,kr
(z; q) if k1 ≥ 2,

1
1− z

Lik2,...,kr
(z; q) if k1 = 1.

This q-model of the multiple polylogarithms, together with classical formulas in the
theory of basic hypergeometric series [5], were used in [16] to derive a q-analogue
of the main result in [14]. This is a reason to believe that the q-multiple polyloga-
rithms (17) are ‘motivated’ q-analogues of (13). Note also that the q-MZVs in (6)
come as the values of (17),

zq(k1, . . . , kr) = (1− q)−(k1+···+kr) Lik1,...,kr (q; q).

Although the rule (16) might be interpreted as a shuffle product of a suitable
functional q-model of the multiple polylogarithms and the corresponding q-MZVs,
these models are different from and even ‘incompatible’ with already given models.
For example, the q-analogue of the formula

(18) Li1(z)r = r! Li{1}r
(z)
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in terms of (17) involve certain undesired ‘parasites’: if r = 2, from

Dq

(
Li1(z; q) Li1(z; q)

)
=

1
1− z

Li1(z; q) + Li1(z; q)
1

1− z
− (1− q) z

(1− z)2

we have

Li1(z; q)2 = 2 Li1,1(z; q)− (1− q)
∞∑
n=1

(n− 1)zn

[n]
,

where the latter series cannot be expressed by means of (17). On the other hand,
the identity (18) has a different q-generalization in [22], free of ‘parasites’.

A related problem is a q-generalization of Euler’s decomposition formula [3]

(19) ζ(s)ζ(t) =
s−1∑
i=0

(
t− 1 + i

i

)
ζ(t+ i, s− i) +

t−1∑
i=0

(
s− 1 + i

i

)
ζ(s+ i, t− i),

since the known proofs make use (explicitly or not) of the shuffle relations. It
seems that a way to overcome this difficulty is to extend the algebra of q-MZVs
differentially, i.e., to consider a differential algebra of q-MZVs and all their δ-
derivatives of arbitrary order, where δ = q d

dq . Although it is hard to ‘justify’ this
claim, let us demonstrate how problems may be fixed on the example of a q-analogue
of (19) when t = s = 2,

(20) ζ(2)2 = 2ζ(2, 2) + 4ζ(3, 1),

by means of (6). (Even this particular case in [2] involves something, which does
not belong to q-MZVs.)

We use the strategy of [2] but start with the identity
(21)

1
(1− x)(1− y)

=
1
2
(
f(x, y) + f(y, x)

)
, where f(x, y) =

1 + x

(1− x)(1− xy)
,

which is the particular case of Lemma 2 in [22]. Differentiate both sides of (21)
with respect to x and y,
∂f(x, y)
∂x ∂y

=
2

(1− x)2(1− xy)2
+

4
(1− x)(1− xy)3

− 4
(1− x)(1− xy)2

− 1 + xy

(1− xy)3
;

multiply the result by xy; substitute x = qn and y = qm; use
∞∑

n,m=1

xy(1 + xy)
(1− xy)3

∣∣∣∣
x=qn, y=qm

=
∞∑
l=1

(l − 1)
ql(1 + ql)
(1− ql)3

= δ

∞∑
l=1

ql

(1− ql)2
−
∞∑
l=1

ql(1 + ql)
(1− ql)3

= δzq(2)− 2zq(3) + zq(2).

All this finally results in

zq(2)2 + δzq(2) = 2zq(2, 2) + 4zq(3, 1)− 4zq(2, 1) + 2zq(3)− zq(2),

which is the desired q-analogue of (20).
One can also use Ramanujan’s system of differential equations satisfied by the

Eisenstein series [18] to get rid of the term δzq(2). Namely, using

δzq(2) = zq(2)− 5zq(3) + 5zq(4)− 2zq(2)2

we obtain

zq(2)2 = −2zq(2, 2)− 4zq(3, 1) + 4zq(2, 1) + 5zq(4)− 7zq(3) + 2zq(2),
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which is also a q-analogue of (20). But for a general q-analogue of (19) we do
expect terms involving δzq(s) and δzq(t), hence working in the δ-differential algebra
generated by the multiple q-zeta values (6) (or (7)). We wonder if there exists a
nice form of double shuffle relations in this differential algebra.
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