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Abstract

A calculus for classical pseudo-differential operators having coefficients in L2-Sobolev
spaces is presented. The standard elements of pseudo-differential calculi such as com
positions, adjoints, invariance under coordinate changes and continuity between Sobolev
spaces are implemented. One main feature leading to elliptic regularity and non-linear
microlocal analysis is that parametrices to elliptic operators can be constructed within
the ca1culus.

The constructions presented below set down the several structural aspects of a pseudo
differential calculus for operators with non-smooth coefficients. These constructions also
serve as a forerunner for a calculus for non-classical operators with more involved estimates
intended to publication in a further paper. .
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1 INTRODUCTION

1 Intröduction

3

The objective of this paper is to establish a pseudo-differential calculus for classical op
erators having symbols with coefficients in certain L2-Sobolev spaces.

Since their invention in the 60's by J. J. !(ohn, L. Nirenberg, and L. Hörmander, pseudo
differential operators have become an important tool in the study of solutions to linear
partial differential equations.· They were used in the proofs of existence and regularity
results, deriving energy estimates, constructions of parametriees, and many other wide
ranging applications .. Over the last two decades, non-linear partial differential equations
have received more and more attention. In order to make pseudo-differential techniques
also available in the investigation of non-linear partial differential equations, one is neces
sarily forced to develop certain elements of pseudo-differential theory for operators having
symbols with restricted regularity.

A great deal of applications in partial differential equations leads to classical pseudo
differential operators. Thus classical operators have always been a particular part of the
program. Although once the general pseudo-differential calculus is established oue has it
especially for cIassical operators, it turns out that as a rule proving results for non-cIassical
operators is much more involved than for cIassical ones. For the non-regular calculus this
distinction becomes significant. Therefore, in this paper we develop the pseude-differential
calculus for classical operators first. It permits us to wbrk out in detail the structural
elements of the calculus (which are the same as for the non-classical calculus) so making
the main ideas transparent.

However, in the theory of partial differential equations on several occasions one is forced
to leave t.he range of applicability of classical operator calculus and to take advantage of
pseude-differential technique in its full strength. Therefore it is desirable to generalize the
constructions given belpw to obtain a calculus for non-classical operators in which one is
mainly interested in. This is subject of a further paper (see (25J).

Several authors contributed to pseudo-differential operators with non-regular symbols un
der quite different aspects. In order to mention only some topics, the mapping properties
of pseudo-differential operators with Don-smooth symbols, the mapping properties of the
adjoint operators and commutator estimates were studied, e.g., in [4], [5], [15], (I6], [20]
and many other places. Also further elements of pseudo-differential calculus like compe
sitions and asymptotic expansions were treated, e.g., in [2), [3], [7], [12].

An important role was played by Bony's paradifferential calculus, see [3], [17]. Here it had
been for the first time that a pseudo-differential calculus for operators with non-smooth
symbols was realized. tvloreover, additionally to the complete calculus a panimetrix COD

struction for the elliptic operators was given in full generality. The remainder terms were
characterized by their mapping properties.

In {I], [2], M. Beals and M. Reed proposed a calculus" for pseudo-differential operators with
non-smooth symbols having coefficients iOn certain L2-Sobolev spaces. Their exposition is
distinguished by the very simple estimates used. In this paper we fall back on some of the
ideas exploited there and develop them further. In the result we obtain a calculus which
on the one hand is sufficiently general for applications in non-line·ar partial differential
equations and in which on the oth~r hand the simplicity of the approach of M. Beals
and M. Reed" is preserved. One main feature is that parametrices to elliptic operators
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(1.1 )

can be constructed within the calculus. Especially this point is important in non-linear
microlocal analysis and, in [1], [2], it had not been completely realized.

Before we describe the content of the paper in more detail we want to discuss s?me of
the ideas involved in the constructions. The coefficients of the operators must be at least
continuous. Discontinuities in the coefficients lead with necessity to symbolic levels ad
ditionally to the principal one which then, e.g., enter in ellipticity conditions to provide
only one argument. Continuity of coefficients, however, immediately causes the next ob
servation, namely that asymptotic expansions that typically appear in pseudo-differential
theory have to break off after finitely many steps. For instance, in case of smooth ~oeffi

cieuts the symbol c(x, 7]) of the composition b(x, D) a(x, D) allows the asymptotic expan
sion c( x, 11) l""o.J L:: 10l~o (1/Q!) a~ b( x, 7]) D~ a (x, Tl), and various differentiations with respect
to x arise.

The main parts of operators in the calculus of M. Beals and M. Reed were of the form

M

.L aj(x) Pj(x, D)
j=l

for same M < 00, aj E H"(lRn
) for s sufficiently large, and pj E sm(lRTl x lRTl). Then

it is obvious that a general parametrix construction is possible only after an appropriate
completion of expressions of the kind (1.1) is chosen. This immediately leads to tensor
products. Dur approach is based on the work with completed tensor products on the
symbolic level.

In [25], the constructions rely on the weak symbol topology, T, on symbol classes sm(RTl ;
E) introduced in [24], e.g., for E being a Fnkhet space. Recall that for the space
S;n(lRnj E) we have S;-(IRTl

; E) = S;.n(lRTl)0fE. Moreover, a mapping from S;n(lRnj E),
where E stands for certain coeffici~nt space, irrto same space of bounded operators be
tween Sobolev spaces realizing concrete pseudo-differential operators is continuous in gen
eral only when the latter space carries the strong operator topology. In this paper the
considerations are based on the symbol classes Sd(lR.Tl ; E). Here we have Sd(lRTlj E) =
Scl(lRn )011'E due to the fact that Scl(IRn

) is a nuclear space. For that reasan, arguments
simplify considerably. So we are now allowed to work with the natural Frechet topology on
the symbol c1asses, hence deducing boundedness of the operators under consideration in a
direct manner. The simplifications give us the possibility to introduce the several elements
of the calculus without disturbing about the more difficult topological considerations used
in [25] in estimating the remainders.

In the paper we make use of standard notation in the theory of pseudo-differential oper
ators, the reader is referred to c1assical textbooks dealing with this subject, e.g., [6], [11],
[21]. In order to be definite, let x E !Rn be the space variable, ~ ,7] E lR~ be frequency
variables. Introduce the Fourier transform

Fu(O = u(O =Je-ixeu(x) dx

such that the inverse Fourier transform becomes Fe~xu(e) = (21T)-n Jeixeu(e) deo For
brevity, in what follows, we forget about the factor (2rr)-n and work in Fourier space with
a renormalized Lebesgue measure, Le., de is the usual Lebesgue measure times (21T)-n,
and
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Then, with symbols p(e, X,17), we assodate operators p(D, x, D),

(p( D, x, D)u )'(~) = Jß(U - '7, ry)u( '7) d'7,

5

(1.2)

where ß(e, (, 1J) = Fx--+({p(e, X,1J)}. We shall see later on that this definition makes
perfectly good sense for our symbol classes under consideration. Intuitively, the operator
p(D, x, D) is applied to u from the right to the left acting first by differentiation, then by
multiplication, and finally by differentiation again. That holds precisely if 'p(e, x, 1J) has
product form, i.e., p(elX, 7]) = PI (e) a(x) Po(17), where Po(17), PI (1J) are certain symbols with
constaut coefficients, and a(x) is multiplication by some coefficient. For symbols p(x, 17),
q(e, x), at least formally, (1.2) becomes the standard operator convention in pseudo
differential th~ry, Le.,

p(x, D)u(x) = Je-ixep(x, ~)u(~) d~

and q(D, x)u(x) = Je-i(x-y)eq(e, y)u(y) dyde.

The plan of the paper is as follows: In Section 2 we discuss c1assical vector-valued sym
bols used in the sequel to estabpsh the calculus for classical operators. Then Section 3
is devoted to the introduction of the several.operator c1asses and the derivation of their
basic properties. Compositions, adjoints, commutators, and mapping pro·perties between
Sobolev spaces are treated. Special emphasize is put on the accurate description of the
mapping properties of the remainders. Also in this section M. Beals and M. Reed's
estimate is reproduced and the basic technique in estimating the remainders is estab
lished. Finally, in Section 4, same further topics are grouped together like the parametrix
construction and elliptic regularity, invariances under coordinate changes and operators
on manifolds, and the equivalence of ellipticity and the Fredholm property on compact
manifolds. In the notes at the end we comment on some additional material.
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2 Classical Symbols

In this section we discuss several aspects of classical pseudo-differential symbols. Dur
standpoint is to treat symbols having their coefficients in certain function spaces as vector
valued ones. The classes Sci(IRn

; E) are defined if E is a Frechet space.

First we are ·concerned with abstract vector-valued classical symbols. The main result,
Srzt(IRnj E) = Srzt(IRn)01l"E, is stated in Proposition 2.4. Then we deal with symbols de
pending on two covariables which are separately classical in both covariables. In a final
subsection, we specify the results previously obtained to symbols having their coefficients
in Sobolev spaces. In addition, auxiliary symbol classes arising during subsequent cal
culations, e.g., symbols depending on three covariables, symbols one coefficient of which
belangs to Cr(IRn

) and so on, are briefly introduced. . .

2.1 Abstract Vector-Valued Symbols

In treating classical symbols it is convenient to replace the elliptic symbol (~)r E sr(IR.n )

usally used, where (~) = (1 + leI2)1/2, by a classical symbol which shall again be denoted
by (~r, Le., (~? E S~,(Rn). vVe choase ~ M (~) to be a smoothed norm function: i.e., (~) is
positive on IR.n satisfying (~) = 1~1 for all eE IR.n1 let 2: C, and some canstaut C > O. The
symbol estimates are not effected by this substitute. When dealing with classical symbols
we also need G-excision functions 'ljJ, i.e., functions 'ljJ E COO(IR.n) satisfying '1f;(e) = 0 for
leI ~ Cl, 1j;(~) = 1 for leI 2: C2 , and some constants Cl, C2 , where C2 > Cl > O.

Let E be a Frechet space with fundamental semi-norm system {li 1I1}/EN. Recall that a
fundamental semi-norm system for sm(IR.n

; E) is given by

sm(Rn
; E) 3 a M sup (e)-m+lolllaea(~)lll

{E_n
(2.1 )

far all er E ~, 1 E N. sm (IR.n; E) equipped with the resulting locally convex topology is
a Frechet space. The space S-OO(IR.n; E) = nmEa sm (lR.n ; E) of E-valued symbols of order
-00 is the Schwartz space S(IR.nj E), and we have S-OO(Rnj E) = S-OO(IR.n)®'lfE.

If E is a Frechet space, then it is possible to form asymptotic sums in sm (IR.nj E).

2.1 Proposition. Let E be a Frechet space. Let {mj}jEN C IR. be a sequence satisfying
mj -t -00 as j -t 00. Suppose further that we are given symbols aj E smj (Rn; E),
j = 0,1,2, ... Then there is a symbol a E sm(IR.n; E), .'!1 = maxjEN mjJ such that for every
r E IR there exist8 M E N, M 2: 1, such that

At!-1

a - L aj E sr (IR.n j E).
j==O

a is uniquely determined moduJo S-OO(IRn
; E).

P roof: We make the ansatz

00

a(e) = L 1/t(Cj~) aj(e).
j==O

(2.2)

(2.3)
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with 'l/J being a O-excision function. Then it is routine procedure to check that the reals
Cj > 0 converging to 0 sufficiently fast can be chosen in such a way that, for every M E N,
the surn ~i=M 'lj;(cj~)aj converges absolutely in sm~(lRn;E), where mM == maXj?;M mj.

Then, for every M E N, M .2: 1, we have that the symbol

M-l M-l 00

a - L aj == - L (1 -lj;(cj~})aj + L 'lj;(Cj~) aj

j=O' j=O j=M

belongs to sr(IRn
; E) pr<?vided that r ~ mM, which shows that (2.2) is valid.

The uniqueness statement is obvious.

In the case that (2.2) holds we also write

Now we are in a position to introduce classical E-valued symbols.

o

2.2 Definition. Let E be a Frechel space, m E IR. Then the space Sd(IRn; E) of clas
sical symbols of order m consists of a// funetions a E sm(IRn

; E) admitting asymptotic
expansions into homogeneous components, i.e.} there are homogeneous funetions a(m-j) in
s(m-j)(IRn

\ 0; E), J == 0,1,2, ... , such that

00

a(~} ~ L 1j;(~) a(m-j)(~)
j=O

holds for an arbilrary O-excision function 1j;.

(2.4)

Notice that the homogeneous components of a symbol a E Sci (IRn; E) are uniquely
determined. The space s(m)(IRn

\ 0; E) is defined as the space of all functions a E
coo(IRn

\ {O}; E) which are homogeneous of order m, i.e., which satisfy a("\~) ~ ,,\ma(~)

for all ~ E IRn \ {O}, A > O.

Next a suitable Frechet topology for SJ(Rn
; E) is introduced. The spaces s(m)(IRn

\ 0; E)
are topologized by identifying them with COO(sn-l; E), sn-l being the unit sphere in IRn

•

[n particular, s(m)(lRn
\ 0) is a nuclear Frechet space. Now, ooee a O-e'xcision function 'lj;

is fixed, we have natural continuous injections we have natural continuous injections

leading, for 'all lvI E N, to continuous mappings

M M~1EB s(m-j) (!Rn; E) ffi _sm-M-1 (IRn; E) -+ EB s(m-j)(IRn; E) ffi sm-M (Rnj E)
j;O j=O

with the mapping in the first M components being the identity, The space SJ (IRn
; E) is

algebraically a projective limit,

M-l

Sd(IRn;E) = proj-lim EB s(m-j ) (IRnj E) ffi sm-M (IRn; E)
j=O

(2.6)
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(2.7)

with the limjt is extended over M ~ 00, and Sd(IR"; E) is equipped with the projective
limit topology. This definition is independent of the choice made on "p. .

From the representation (2.6) we draw some conclusions. For example, for all M E N, we
have that

M-l

Sd(IR"; E) = EB s(m-J) (IR"; E) EB S;;-M (IR"; E)
j=O

holds in a topological sense. In particular, Sd-M (IR"; E) is a complemented subspace
in Sd(IR"; E). Similarly, it is seen that S-OO(Rn

; E) carries the topology induced by
Sd(lR"j E). However, S-OO(IR"j E) is closed but not complemented in Sci(IR"; E).

Next we will recognize that Sd(IR") is a nuclear space.

2.3 Proposition. Sd(IR") is a nucLear FTechet space.

Proof: Setting E = Sd(R"), we have to show that for every continuous semi-norm p
on E there is a continuous semi-norm q on E, q 2: p, such that the canonical mapping
Eq ~ Ep is nuclear.. Thereby, .Ep denotes the ·Iocal Banach space -to a·given·semi-norm p,
i.e., the compietion of the space E/kerp normed in a canonical way.

We start with the repres~ntation

M-I

Sd(IR") = proj lim E9 s(m-j)(IR") $ sm-M (IRn
).

j=O

Let p be a continuous semi-norm on E. We may suppose that, for some 1\1, -P is a
continuous serni-norm living on EB~~I s(m-i)(IRn) EB sm-M (Rn). Since in the direct sum
the first 1\1 summands are nuclear, we may further suppose that p is a continuous semi
norm living on sm-M (IRn

). Assume that, for some r ~ 1, onIy estimates of derivatives up
to order r - 1 are involved in the semi-norm p. Then we can choose q to be a continuous
semi-norm on EBi:~ s(m-M-j)(R") EB sm-J\f-r(IR") living on the first T summao9.s such
that q pulied back to Sd(IR"} estimates p from above. Again using the nuclearity of
EBj:~ s(m-M-i) (IRn

) we conclude that the mapping Eq -+ Ep is nuclear. . 0

-Th~ following proposition is basic in proving continuity between Sobolev spaces of oper
ators arising in the classical calculus. ·It is interesting that its proof can be based on the
weak symbol topology that has been introduced in Part I. Another proof independent of
the weak symbol topology shall be given in the notes at the end of the paper.

2.4 Proposition. Let E be a Frechet space, m E IR. Then

(2.8)

Proo f: The assertion (2.8) is implied by the following calculation:

sm(IR"· E)cl ,

M-l

= proj-lim E9 s(m-i)(R"; E) ffi S;:-M (IR"; E)
j=O



2.2 lVlultiple Classical Symbols

M-l

proj-lim ( $ s(m-j)(}Rn)®(E) ffi (s;n-M (IRn)@(E)
)=0 '

= proj-lim (~ s(m-
j
) (Ire) EB S;-M (Rn)) @,E

= Sd(IRn)0".E.

9

Hereby in the first line we have used the continuity of the embedding S;n(IRn
; E) Y

sm' (Rn; E) for m ' > m, in the second and the forth line the nuc1earity of the spaces
s(m-j)(IRn

) and Sd(IRn
), respectively, and in the third line the fact that the injective

tensor product is well-behaved under forming projective limits. 0

2.2 Multiple Classical Symbols

The constructions in the classical calculus prompt to sy~bols p(~, x,,,,) which are sep
arately classical in both covariables (~, 7]) E R2n

. Here we introduce the corresponding
notions. The spaces sm,m' (!Rn X JR.njOE) have been considered in [24]. Recall that a fun-
damental semi-norm system is given by

sm,m'(lRn x IRn; E) 3 a Ho sup (~)-m'+tQI (7])~m+Iß[ Ilala~a(C7])111 (2.9)
o e,7IEan

for E being a Frechet space with fundamental semi-norm system {lllll}lEN.

As in Proposition 2.1 oue shows that it is possible to form double indexed asymptotic
sums in sm,m' (JR.n x JR.n; E).

2.5 Proposition. Let E be a Frechet space. Let {mj} JEN, {m~} kErl be sequences of reaIs
satisfying mj -+ -00 as j -+ OOJ m~ ~ -00 as k -+ 00. Suppose further that we are
given symbols ajk E smj.m~ (!Rn X !Rn; E) for j, k = 0,1,2, ...

Then there is a symbol a E sm,m' (Rn X !Rn; E), where m = maXjEN mj, m ' = maXkEN m~,

such that for all r, r' E IR. there exist M, M' E N, M 2: 1, M' 2: 1J such that

M-l.M'-l

a - L ajk E sr,r' (Rn X Rn; E).
j,k=O

a is uniquely determined modulo 5-00
,-00 (!Rn X !R

o

n; E).

In the case that (2.10) holds we write

00

a rv L ajk·

o j,k:=O

(2.10)

Notice that in (2.10) asymptotic summation can take place first in one index and then in
the other leading to the same result. That means, e.g., if we put

00

a' ....... '"" a 'k) LJ)'
k=O

(2.11 )
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where this a.$ymptotic sum exists in sm;"m' (Rn X IR"j E) with the result unique modulo
sm;,,-oo(IR" X IR"; E), then we can asymptotically sum up the aj's in sm,m' (IRn x IRnj E)
with the result unique modulo s-oo,m' (IRn x Rn; E), and we find

. (2.12)

The definition of the classes S;7,rn' (IRn x IRn
; E) is the following one:

2.6 Definition. Let E be a Frechet space, m, m' E N.

Then the space s:!,m l

(IR" xIRn
; E) consists 0/ all /unctions a E sm,m'(IRnxIRnj E) for which,

for j, k'= 0,1,2, ... , there are symbols a(m-i),(m'-k) E s(rn-i),(m'-k) ((IRn
\ 0) x (IRn \ 0); E)

homogeneous 0/ multi-order (m - j, m' - k) such that.

00

a(e, 1]) rv L 1fJ(e, 1]) a(m-i),(ml-k)(e, 1])
i,k=O

holds for an arbitrary O·excision funetion lj;.

(2.13)

(a(m),(m')' ... , a(m-M+l),(m'-M'+lb am-M,m-M') ,f---t

M-l,M'-l

L .7/J(e, 1])a(m-i),(m'-k) -+- am-M,m'-M"
i,k=O .

In (2.13), the homogeneous components a(m-j),(ml-k)(e,1]). are uniquely determined. The
space s(m),(m/)((lRn

\ 0) x (IRn
\ 0); E) is defined as the spac~ of all functions a E COO((IRn

\

{O}) x (R" \ {O}); E) satisfying a(>..e,p1]) = Am 'pma(e,1]) for all e, 1] E IRn
\ {O}, >.. > 0,

P > O.

In order to topologize S;7,m
l

(IRn x IRn
; E) we provide the spaces s(m),(m' )((lR.n \ 0) x (IRn

\"

0); E) with Frechet topologies by identifying them with COO (sn-l X sn-I; E). Moreover,
for m, m' E IR, M, M' E N, we have natural continuous injections

Af-l,M'-1EB s(m-i),(ml-k)((IRn \ 0) x (IRn \ 0); E) ffi ·sm-M,m'-M' (IR" x IR"; E)
i,k=O

y sm,m' (IR" x IRn
; E),

I

Then s;:.m (Rn X IRn;E) becomes equipped with the proj~ctive limit topology

sm,ml(IR" X R"' E)
cl 1

lJ-l,M'-l

proj lim' EB s(m-i),(m'-:-k)((IRn \ 0) x :(IRn
\ 0); E)

i,k=O

2.7 Proposition. Le~ E be a Frechet space, m, m' E N.

Then we haue

(2.14)

(2.15)
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Pro 0 f: The proof of (2.15) is a straightforward, but lengthy exercise in employing the
representations of SJ(lRn; S;j' (IR.n; E)), s;:,m' (Rn X IRn; E) as projective limits according
to (2.6) and (2.14),'respectively. 0

Especially, from Propositions 2.4 and 2.7 we get

sm,m'(IRn x IRn. E) = sm(IRn),Q., sm'(IRn),Q., Ecl , cl 'CItr cl 'CI'1r' (2.16)

Notice also for further reference that the linearization of the continuous bilinear ~apping

Sci(IRn) x Sd' (!Rn; E) ~ Sd+m
' (Rn;. E), (a, a') t-+ a a'

extends by continuity to a continuous surjective mapping

(2.17)

2.3 Coefficients in Sobolev Spaces

We particularize the results on abstract vector-valued symbol dasses to symbol dasses
used subsequently. \Ve will be mainly concerned with symbols having their coefficients in
L2-Sobolev spaces, H"(lRn

), where s > ~. This means, in' particular, that the coefficients
are at least bounded and continuous.

In the case that the coefficient space is .F(lRn), e.g., .F = H", Htoc, er, we shall denote
sm(lRn;.F(IRn)) = Fsm(IRn x Rn), Sd(lRn;F(IRn)) = FSJ(lRn x Rn), sm,m

/
(lR?'\ .F(IRn))

= .Fsm,m' (Rn X R2n
) etc., where the first set of coordinates refers to the space variable

x and the second set of coordinates to the frequency variables ~, 1]. As mentioned in the
introductioo, for symbols p E .FSd(lRn x Rn) we adopt to different operator conventions,
p(x, D) and p(D,x). In the first case the symbol is denoted by p(x,1J), in the second case
by p(~, x).

To describe later on the behaviour of operators under compositions, we introduce fur
ther symbol classes. For s, s' E R, the space H"'''' (IRn x IRn) consists of all tempered
distributions U E S'(lR2n

) satisfying .

(2.18)

H"'''' (!Rn X lRn) is the Hilbert space tensor product H"(Rn )0H H'" (Rn). Note that for
u EH"'''' (Rn X Rn) we have

V(X) = U(X'Y)IY=x E H'" (IRrl
),

if Is'l ~ s, s > ~. This is seen hy writing v(~) = Ju(~ -1],1]) d1]. I

Let m, m', m" E IR, s, s' E IR, s > i, s' > ~. Then the symbol dass H",,,I sm,m',m"
(IR2n

X IR3n
) consists of all functions p(~, x, (, Y, 1]) E COO(RSn

) satisfying

sup (~)-mll+lal (()-m'+IßI (1])-m+bl Ilaeag~u(~,., (,', 11)11 ' < 00.
(e,(,1/)E«3n B'"

This definition is in complete analogy to those in (2.1), (2.9).

(2.19)
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For symbols.in (2.19) we choose the following operator convention:

(p( D, x,.o, x, D)u)"(O = Jß(~, ~ - (, (, ( - 17,17 )u(17) d( d17· (2.20)

The first A under the integral sign refers to the partial Fourier transform of p(~, x ~ (, y, 1])
with respect to x, y.

The classes H!J,6' sm,m',ml/ (IR2n
X IR3n

) have been introduced for the re~on that 'for Po E
H"O smo,mb (IRn X IR2n

), Pl E H6
1sm~ ,m~ (IRn X IR2n ) we have

p(D, x, D, x, D) = pl(D, x, D)Po(D, x, D)

. with symbol p(~,x,(,Y,1]) = pd~,x,()Po((,Y,1]) E H"o'''lsmo,mb+ml,m~(1R.2n X IR3n
).

The definition of the symbol classes H6,,,1 s;:,m',m" (R.2n X IR3n
) is obvious by the foregoing

considerations. Only.note that

H",$' s;:,m',m
ll

(IR2n X 1R3n) = H"'''' (IR.2n )0
1r
s;:,m',m

ll (R.3n )..
, " 3with s,;;,m,m (ut n) being the dass of symbols with constant coefficients which are cl~sical

. separately in all covariables (~, (, 1]) E· IR.3n .

In the parametrix construction as well as in the discussion of invariance under coordinate
h 11 b 1 1 H C Sm m' m"(1Ol2n 03n) C H ' sm m' m"changes we s a encounter sym 0 c asses "r cl" .lI\.. X.lI\.. , r " cl' ,

(IR2n
X lR.3n ) etc. These classes consist of symbols depending on five coordinates, p(~, x, (,

y, 1]), As explained in [24], no additional complications arise if one of the coefficients belang
to the space Cr(IRn

) such that we da not further comment on these classes. Note only
that H6Cr stands for the space Cr(IRn )0(H"(IRn

) = Cr(lRn)®2H6(lRn), where subscript
2 indicates the tensor product associated with the Banach ideal of 2-factorable operators,
in agreement with the choice made for H6,6' (for a discussion of tensor products see [8]).
Here, as nsual, we adopt the convention that operators are applied from the left to the
right such that the first symbol in H6Cr refers to the space from which the coefficient
depending on y is, while the second symbol means the space from which the coefficient
depending on xis.
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In this section we introduce the severaJ operator classes. Thereby, we first only regard
operators globally defined on Rn. A distinction is made between the classes further on
caHed the standard operator classes and operator classes arising from these standard
classes through conjugation with powers of a fixed elliptic operator. Mapping properties
between Sobolev spaces are treated as weH as compositions, adjoints, and commutators.
We take care in the precise description of the mapping properties of the remainders.

In Subsections 3.1-3.3 we introduce the operator c1asses and list some of their basic
properties. Proofs are postponed to Subsection 3.4, where the basic techniq~e for showing
continuity between Sobolev spaces is developed. The remainders in Subsection 3.1 are not
of the most general form, but their mapping properties are modelled on those of the other
components appearing in an asymptotic expansion. We prefer instead, in Subsection
3.2, to motivate the introduction of the general remainder classes by a first example.
Afterwards, the remainder classes so obtained turn out to be an integral part of the
calculus. Subsection 3.5 is devoted to compositions, adjoints, and commutators. For
commutators, one of the operatorsinvolved has Coo-coefficients. A- thoroughdiscussion
of the general case will be given in [25].

A motivation fo~ the special appearance of the operators discussed below has been given
in the introduction.

3.1 The Standard Operator Classes

The following lemma is needed in order to assign to formal expressions appeanng In
Definition 3.2 operators acting between Sobolev spaces.

3.1.Lemma. Lets, mE IR, s >~. Then, forp(x, 1]) E H$S'd(Rn xIRn
), p(x,D) induces

a continuous operator

(3.1)

for all t E lR., ltl ::; s.

The standard operator classes, A~::~,d(IRn), incorporate three parameters s, m, d: s stands
for the smoothness of coefficients, 'm is the order of operators, and d denotes the length
of asymptotic expansions. \Ve require s > ~ +d, since coefficients should be continuous
and bounded. Imposing a restriction on the real variable t in the form t = -s to s - 2d,
as in the next defini tion, we mean that t varies in the closed interval [-s, s - 2d].

3.2 Definition. Let s, m E IR, dEN, s > ~ +d.

Th~n A~::~,d(IRn) denotes the class 0/ all operators P w~ich can be written in the form

d-l

P = LPi(X,D) +Pd,
j=O

(3.2)
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6-2d

Pd-E nL:(Ht+m(IRn), Ht+d(IR.n)).
t=-6

(3.3)

We add some remarks. The right-hand side in (3.2) provides finite asymptotic expansions

f t · A(m),d(lDn ). t t b 1 . t A(m- j),d-j (lRn ) r . 0 1 do opera ors In s, cl JA.. In 0 opera ors e onglng 0 6-j, cl lor J = , , ... ,. ,

by forgetting the first j - 1 summands. The remainder dass for A~mLd(lR.n), where
the latter shall be introduced in [25], is characterized by property (3.3). Therefore,
A(m-d), o(lR.n ) = A(m-d), o(lR.n ) .

• -d, cl .s-d

Denoting the operator in (3.2) by "L:j<d Pj +Pd, where Pj = Pj(x, D) for j = 0,1, ... ,d-l,
we see that

s-'lj

Pj E nL:CHt+m(IRn ), Ht+j(IRn ))

t:;;-s

(3.4)

according to Lemma 3.1. The assumptions on Pd in (3.3) are derived from that fact.

From Lemma 3.1 we obtain:

3.3 Proposition. Let 5, m E IR, d E N, 5 > ~ +d. Then

s-d

P E n'c(Ht+m(lRn
), Ht(JRn

))

t=-s

(3.5)

We furt her introduce operator classes 8;~1,d(lRn) consisting of the formal adjoints to

operators in A~::~,d(lRn). More precisely,.we define:

3.4 Definition. Let 5, m E IR, dEN, s > ~ + d.

Then B;rnJ:d(JRn) denotes the class of all operators Q which can be wntten in the form,

d-l

Q= Lqj(D,x)+Qd,
j=O

where qj(~, x) E H6:"'j S;:-j (JRn x Rn) foT' j = 0,1, ... , d - 1 and

6

Qd E n .c(Ht-d(lR.n), Ht-m(IRn)).
t=-,,+2d .

(3.6)

(3.7)

For 8;':1,d(IRn), similar remarks apply as for A~,:~,d(Rn). In particular, the analogue of
Lemln~3.1 is valid, i.e., for q(~, x) E H" Sd (Rn X an), q( D, x) induces a bounded operator

(3.8)
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"for all t E IR, Itl ::; s. For the mapping properties of the operator Q in (3.6) we find

S

Q E n .c(Ht(Rn), Ht-m(IRn)).
t=-8+d

3.2 One Example
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Before we proceed we discuss an example. It is about a second-order partial differential
operator in divergence form. A motivation for introducing pseudü-differential operators
is that one is interested in the natur~ of parametrices to partial differ~ntial operators of .
the described kind in case these operators are elliptic.

3.5 Example. Consider the linear partial differential operator

A
.

- -

where

for certain s E IR,

Then

n n n
L 8j ajk(x)8k + L ak(x)8k - L 8jaj(x) + a(x),

j, k=l k=l j=1
(3.9)

(3.10)

Next we rise the question what happens if one considers a given operator in A~,:~,d(IRn),
as an operator with asymptotic expansion shorten by 1. Obviously, we have

A(m),d(lRn) rt A(m),d-l(lRn)
s, cl 't;:. s, cl (3.11)

for any in'teger d 2: 1. The next example shows that (3.11) is due to a "lack" of smoothness
of coefficients in the remainder term.

3.6 Example. Consider again the linear partial differential operator from (3.9). Under
the above assumptions we also have

(3.12)

The minimal hypotheses on the coefficients under which (3.10), (3.12) are true under the
restriction that coefficients should belong to L2-Sobolev spaces are shown in the table:

ajk(X)

aj(x)

aj(x)

a(x)

H8(Rn ) .

Hs-l (Rn)

Hs-l (!Rn)

Hs-'2(lRn)

H$(Rn )

Hs- 1 (Rn)

HS(IRn )

HS- 1 (IRn)
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. (m) dd'
The operator dasses A", cl" (Rn) are defined as follows:

3.7 Definition. Let 5, m E R, dEN, s > ~ + d, ld - d'l ~ 2s - 2d.

Then A~~~,d,d' (Rn) denotes the dass of alt operators P which can be written in the form

d-l

P= 'Epj(x,D) + Pd,
j=O

where Pj(X,1]) E H.!-js~-j(JRn x IRn
) jor j = 0,1, .. . ,d -1 and

.!-d-ma.x(d,d')
Pd E n 'c(Ht+m(IRn), Ht+d(IRn)).

t=-.!+d-min (d,d')
'\

(3.13)

'Property (3.13) means that" the scale on which the operators act is shortened by Id - d'l,
from above if d' > d, from below if d' < d. For d' = d we get A~::~,d,d(lRn) = A~::~,d(lR.n).

The mapping properties in (3.5) are changed into

.!-max(d,d')
P E n 'c(Ht+m(IRn), Ht(lRn)).

t=-,,+d-min(d,d')
(3.14)

Note that Id' - dl ~ 28 - 2d is required because otherwise the dass A~::~,d,d'(IRn
) would

be empty.

With the enlarged operator dasses thus defined, the indusion

A(m),d(lRn ) C A(m),d-l,d(lR.n )
.!,cl - .!,cl , (3.15)

(m) d d'substitutes (3.11). Later on we shall see that the classes A.!,c/' (IRn
) also appear , e.g.,

in the composition of operators and consequently are an integral part of the calculus.

We have again operator classes B;::l,d,d l

(Rn) defined to consist of the formal adjoints to

operators "in A~::~,d,dl (IRn
). These claSses are given as in Definition 3.4 with property (3.7)

replaced by .
.!-d+min(d,d/)

Qd E n 'c(Ht- d (lRn ), Ht-m(lR")).
t=-.!+d+ max (d,d')

3.3 The Full Operator Classes

(3.16)

The operator classes A~::~·d.dl(IRn
) are preserved under compositions. However, in veri

fying that fact we encounter additional operator dasses. Furthermore, as we shall see,
the parametrix to an elliptic operator in A~mJ,d(X), e.g., for X being a closed compact

manifold, belongs to the operator dass A~~~(-m),d(X). Thus we are going to complete
the operator classes introduced so far with respect to these operations.



3.3 Tbe Full Operator Classes

We start with an analogue to Lemma 3.1 and (3.8):
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3.8 Lemma. Let. s, m, m' E IR, s > ~. Then, for p( ~, x, 1]) E H" s;;:,m'(IRn x IRn ),

p(D, x, D) induces a continuOU8 operator

(3.17)

for allt E IR, jtl ~ 8.

3.9 Definition. Let 8, m, rn', d' E IR, dEN, s > ~ +d, Id - d'l :::; 28 - 2d.
(m) (mi) d d'

Then A",cl' "(IRn
) denotes the class of all operators P 0/ the form

d-l

p= LPi(D,x,D)+Pd,

i=O

where Pj(~, X, 7]) E H,,-j s;;:-i,m' (!Rn X IR2n
) for j = 0,1, ... 1 d - 1 and

3-d-ma.x{d,d'}
Pd E n 'c(Ht+m(lRn), Ht-m'+d(IRn)).

t= - 3+d-min {d,d' }

(3.18)

(3.19)

Similar remarks apply as for the classes A~::~,d(IRn). For example, (3.18) gives a fi

nite asymptotic expansion. into operators belonging to A~:h~~,(m,),d-j,d'-j(lR.n) for j =
0,1, ... ,d. For the mapping properties we find

3-max{d,d' }

P E n 'c(Ht+m(IRn), Ht-m' (Rn))
t::::;-3+d-min{d,d/}

(m) (mi) d d'
for P E A

3
cl' "(lRn). The total order is m +m'.,

The classes for m' = 0 are the same as before:

3.10 Proposition. Let s, m, d' E IR, dEN, s > ~ + d, Id - d'l :::; 28 - 2d. Then

(3.21 )

Proo f: The indusion A ~::~' d, d' (!Rn) ~ A ~::~' (0), d, d' (IRn) is 0 bvious. To 0 btain the other
direction it suffices to deal with d' = d. But then the assertion follows from the proof of
Proposition 3.15 given below, in the special case m' = 0, r = O. 0

(m) (mi) d d' (m+m' ) d d' IA ' "(!Rn) arises from A ' , (Rn) through conjugation with (D)m :
3,cl . ",cl
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3.11 Proposition. L.et s, m, d' E IR, d E.N, 8 > ~ + d, Id - d'] ::; 28 - 2d. Then

(3.22)

(m) (mi) d d' I (m+m' ) (0) d d' ) ( ) IPro 0 f: The relation A.' "(Rn) = (D)m A '" (Rn D -m follows from
", cl 6, cl

the definition. Proposition 3.10 then yields the ~conc1usion. 0

(m) (mi) d d'In an analogous manner the classes 8", cl ' "(Rn) are defined. An operator Q belongs
(m) (m') d d' (to B ' " Rn) if it has the form
", cl

d-l

Q = L qj(D,x, D) + Qd,
j::O

,,-d+min{d,d'}

Qd E n .c(Ht+m - d (lRn), Ht
-

m' (Rn)).
t:: - ..+d+max{d,d'}

(3.23)

(3.24)

vVe have B;~l,d,d'(Rn) = B;~~(m),d,dl (Rn). The adjoint to an operator in A~::~,(m,),d,d'

(m') (m) d d'
(Rn) belongs to B..,cl ' "(Rn).

We conc1ude this subsection by topologizing the operator classes A~":~' (mi), d, dl (Rn) antici

pating explanations given in Subsection 4.1 on symbols. A~:~d),(m'),O,d'-d(IRn) is"a Banach

spac~ by interpolation. An operator P E A~::~' (mi), d, d' (Rn) has uniquely determined ho

mogeneous symbols Pj E H,,-j s(m+m'-j)(T*Rn \ 0) for j = 0 ... ,d - 1 (see Definition 4.2)

leading to a representation of A~";;~' (m'), d, d' (Rn) as a direct sum:,

d-l

A~j,(m/),d,dl(!Rn) = E9 HlJ-j s(m+m'-j) (T*lR.n \ 0) EB A~:~d),(m,),O,d'-d(Rn).

j=O

(3.25)

Notice a certain indetermination contained in the composition (3.25) consisting in another
possible choice of the O-excision function 'lj; in fixing the splitting in (4.3). It is, however,
plain that the topology of the locally convex direct surn is independent of that choice.
Then A~j,(m,),d,d'(Rn) becomes equipped wit~ the resulting Frechet topology.

3.4 The Basic Technique

The results leading to, the different conc1usions concerning the operator calculus will be
derived by applying Taylor's .formula to produce the asymptotic expansions and then
estimating the remainder terms showing that the remainders obey the right mapping
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properties. _Thereby, in the latter step we encounter expressions of the following kind:
For given functions G(~, 1]), g(~,1]) we consider

(Th)(~) = JG(~, 1])g(~ - 1], 1])h(1]) d1] (3.26)

for h E L2 (IRn
). We want to find conditions under which T realizes a bounded operator

on L2 (Rn
).

In [2], M. Beals and M. Reed made the following simple observation. For the sake of
completeness we indicate the proof:

3.12 Lemma. Let G(~, 7]), g(~, 7]) be measurable functions on Rn X Rn. Suppose that

or

Then (3.26) defines a bounded operator on L2(Rn
) satisfying

(3.27)

Pro 0 f: We only treat the case when the first of the assumptions is fulfilled. The other
proof is similar. For v E L2(lRn

), one estimates

IJThWv(O d~1 = IJG(~, 1])g(~ - 1],1] )h(1] )vW d1] d~1

< {J IG(~, 1]Wlv(~W d1] d~r2 {J Ig(~ - 1],1]Wlh( 1])1
2 d1] d~r2

.

< Ca IIvllL2 Cg Ilh1l L2,

which implies that (3.27) holds. o

To be able to apply Lemmas 3.12 we need the following statement in which certain Sobolev
exponents are regarded:

3.13 Lemma. Let 5, t, r E IR. Suppose that, fOT some 0 ::> 0, min{5, t, S + t - %- ö} 2: 0 ,
and

r :5 min{s, t, s + t - i - ö}

hold. Then

J
(~)2r

sup (e )2 ( )2t d7] < 00.eea n - 1] $ 7]
(3.28)
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Pro 0 f: The proof follows by splitting the integral in (3.28) into four integrals over the
regions {(~,77) E IR.2n

; 1~ - 771 ~ 1, 1771 ~ I}, {(C 77) E IR.2n
; .I~ -1]1 > 1, 1771 ::; I}, {(~, 1]) E

IR.2n
; I~ -1]1::; 1, 1771> I}, and {(~,1]) E IR.2n

; I~ -771> 1,1771> I}, respectively.· 0

Now we come to the announced proofs of Lemma 3.1 and Lemma 3.8 so establishing the
basic technique used later on: Of course, it would suffice only to establish Lemma 3.8,
but we use the proof of Lemma 3.1 to familiarize the reader with the technique used in
[2]. .

Pr 00 f 0 f Le m m a 3.1: We present two different proofs. The first one makes direct use
of the estimate of M. Beals and M. Reed and works only in the case when t ~ 0, whereas
the second one additionally uses considerations involving the projective tensor product.

(a) Assume that t ~ 0.. Under this assumption we are going to show that the L2-norm of
(~)t+mit(~) yields an upper bound for the L2-norm of (e)t(p(x, D)u}"(e). .

To do so wri te

(O'(p(x, D)u)'(O = J(~ _(~~:(ry)t (~ - ry)'ß(~ - ry, ry)(ry)-m (ry)t+mu(ry) dry. (3.29)

and apply Lemma 3.12 with

where the first of its assumptions is fulfilled.

(b) Exemplary we treat the case t < O.

vVriting p(x, 77) = a(x)po(1]) with a E H.!(lRn
), Po E Sd(lRn

), Lemma 3.12 applies to (3.29)
with

with now the second assumption fulfilled, showing that the bilinear mapping

is continuous. Equivalently, the linearization of the last mapping,

is continuous and extends by continuity, in view of Proposition 2.4, to a continuous
mapplng

H IJ Sd(IRn x !Rn) ~ .c(Ht+m (IR.n), Ht(IR.n
)).

Thereby, the symbol p(x, e) is mapped to the operator p(x, D), since this is true on
H"(IR.n

) ® SJ(lRn) and the mapping HIlS'cl(TRn x lRn) ~ S'(IRn), where p Ho p(x, D)u, is
continuous for each u E S(IR.n ). 0

Notice that the first proof also does not wark for symbols p(e, x, 77) even in the case that
t ~ O. But the second proof does, and we obtain:
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P.roof of Lemma 3.8: We apply again Lemma 3.12. Hut this time we only provide
~he functions G((, 1]),. g(e, 1]) showing continui ty of the trilinear mapping

3d '(IRn) x H"(IRn) x Sd(IRn) -+ 'c(Ht+m(IRn), Ht- m'(Rn)),

(pl,a,Po) I-t Pl(D)a(x)Po(D).

In case t 2:: 0

in case t < 0

where in any case h(1]) = (1] )t+mu(1]). o

Finally, we provide a natural companion to Lemma 3.12 which we use in the proof of
Proposition 3.20. For that we consider the formal expression

(Th)(~) = JG(~, (, ry)g(~ - (, ( - ry, ry)h(ry) d( dry,

for given functions G(e, (,ry), g(e, (, 7]).

(3.30)

3.14 Lemma. Let G(e, (, 1]), g(e, (, 7]) be measurable functions on Rn X IRn
X !Rn.

Suppose that

or

s~pJIG(~, (, ryW d( d~ = C'b < 00, s~pJIg(~ - (, ( - ry, ryW d( dry = C; < 00.

Then (3.30) defines a hounded operator on L2 (IRn
) satisfying

IIThll LJ ~ CaCg llhll L1. (3.3l)

A possible generalization of Lemma 3.13 is as follows. Let so, 81, {, r E IR satisfying
mini80,81, t, 80 + 81 - ~ - 0, So + t - ~ - 0,81 + t - ~ - 0,80 + 81 + t - n - 2o} ~ 0 and

n n
r ~ rnin{so, 81, t, 80 + 81 - '2 - 0,80 + t - '2 -:- 0,

n
81 + t - 2" - 0, So +SI +t - n - 2o}

(3.32)
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for some 0 >_ O. Then
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"J (~)2r
SUp (~ ()2 (( )2 ( )2t d( d1] < 00.eESn -"1 - 1] "0 1]

(3.33)

A proof follows by noting that for k = miniSo, t, so+t - ~ -o} the quantity miniSI", k, SI +
k - ~ - o} is equal to the right-hand side of (3.32). Therefore,

3.5 Change of Representation, Compositions, and Adjoints

After introducing the several operator classes in previous subsections we come now to
further elements of the classical operator calculus like compositions, adjoints, and com
mutators. First we clarify what happens "when one representation is changed for another.

The particulars in the subsequent proof are carried out in detail making use of the tech
niques developed in Subsection 3.4. Later in similar proofs we shall confine ourselves to
certain steps, e.g., we indicate the changes to the proof of. Proposition 3.15.

3.15 Proposition. Let s, m, m', r E R, dEN, s > ~ +d, Im' - rl'::; 28 - 2d.

Then we haue
A (m), (m/),d(lRn ) C" A (m+m'-r), (r), d, d+m'-r (!Rn).

s,el - ",cl

I t' l h A (m), (mi), d, d-m'+r (lRn ) _ A (m+m'-r), (r), d, d+m l -r(lRn )n par ~cu ar, we ave 6,d - 6,cl •

(3.34)

To prove Proposition 3.15 we need two lemmas. The proof of the first one is straightfor
ward.

3.16 Lemma. Let r E !R, r ~ 0.' Then there exist symbols Xo, Xl E SO'O(IRn x !Rn) such
that

(3.35)

holcis. In case (~? J (Tl)r are classical symbols (as- we always assume) Xo( ~, Tl), XI (~, ''1)
could be chosen to be/ong to S~iO(!Rn x IRn).

The main step in the proof of Proposition 3.15 consists in establishing the next lemma.

3.17 Lemma. Let s, m, m', r E IRJ d E N J 5 > ~ +d, -28 +m' +d ::; r ::; 25 +m' - 2d.

Let furthe~ p(~, x, 1]) E H-s:;;,m' (JRn x 1R2n
). Then we have

p(D,x,D) E {

A(m+m'-r), (r),d,m/-r(IRn ) if d ::; m' - r ::; 2s - dJ
", cl

A(m+m'-r), (r),d(!R") if 0 ~ m' - r ::; dJ
6, cl

A(m+m'-r), (r),d,d+m'-r(Rn ) if -28 + 2d ::; m' - r ::; O.
", cl

(3.36)
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P roof: First we show that, for Id - m' +rl :s; 28 - 2d, we have

(D D) E A(m+m l -r),(r),d,m'-r(lRn )p ,x, lJ,cl .'
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(3.37)

We set p(~,X,1]) = (~Yq(~,X,1]) with q(~,X,1]) E HlJs;,m'-r(fRn x lR2n
). Then

(p( D, x, D)un~) = J(~)'q(U - '1,17 )u(17) d17 (3.38)

- JL (~r (~ - 17)"(ßfq)"{17, ~ - 17. '1)u(17) d17
lol<d

+J d L (~' {j(l-t)d_l(D~ßfq)"(17+t(~-'1)'~-'1''1)dt}U(1J)dTJ'
lal=d 0 .

Thus

p( D, x, D) ~ L ~! (D)r (D~ ßfq(~. x, 17») le=~(x, D) +R,
lal<d

where far the symbols, for 10'1 < d, we have

(~r (DO aOq)(C x 1]) _ E HlJ-laISm+m'-r-lol,r(IRn x lR.2n )
r x e 1.", 1e-'l cf •0'.

Hence it remains to prove that the remainder R given by the third line in (3.38) is a
bounded operator from Ht+m+ml-r(JRn) to Ht-r+d(JRn) for each t E [-8 + d - min{d,
'm' - r},s - d - max{d,m' - r}]. "

I

Accarding to our general procedure we prove it when the symbol p(~, x, 1]) E HlJs;:,m
(lRn x lR2n

) has praduct form, i.e., q(~, x,'1]) = ql(~) a(x) qO(1]) with a E HS(lRn
), qo E

Sd(lRn), ql E Sd/-r(lRn). In that case the defining formula for the" remainder R becomes

(Ru)"(e) (3.39)

= Jd L (~' {j (1- t)d-l(ßfqd(17 + t(~ - 'I)) dt} (D~ar(e -7] )qo(7J)u(1]) d~.
lol=d 0 .

Now the expression Jo1(1- t )d-l (8rqr)(7]+ t( ~ -1])) dt can be rewritten as ko(~, 1]) (e)m'-r-d
+kl(~, Tl) (T/)ml-r-d, where ko, k1 E Lco(IRn x lRn). This is seen by writing

k (t ) = k(~,1])X({(~,T/); (e) 2:: (1])})
1 1.,,1] (1])ml-r-d

in case m' - r - d < 0, and

in case m' - r - d 2= 0, respectively, where we have set k(~,1]) = fo1(1 - t)d-l(8rql)(TJ +
t(~ - 1])) dt, and X(M)( e, 1]) is the characteristic function of a set M ~ R2n .
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In this situation Lem'ma 3.12 applies. For the first summand, the first assumption in
Lemma 3.12 is fulfilled in ·case t E [-rn' +r, S - d - m' + rl if we set

h(7]) = (1])t+m+m'-ru(1]), g(e,1]) = (e) ..-d(D~ar(e),

(e)t+m'-r -m

G(e, 7]) = ko(~, 7]) (~ _ 77) ..-d(ry)t+m'-r (77) qo(1]),

whereas the second assumption is fulfilled in case t E [-s +d - m' +r, -m' +r] if we set

( )-t-m'+r .
G(e, 17) = ko(e, 17) (e _17~'-dW-t-m' +r (1/) -m qo(17)·

This shows that this part of the remainder R defines a bounded operator acting from
Ht+m+m'-r(IRn) to Ht-r+d(JRn) for any t E [-.9 + d - m' + r,.9 - d - m' + r].

In a similar fashion we argue for the second summand. This time the first assumption in
Lemma 3.12 is fulfilled in case t E (-d, s - 2d] if we set

h(Tl) = (1])t+m+m'-rit(1]), g(~, 77) = (~)3-d(D~ar(~),

(~)t+d -m

G(~,1]).= kde, Tl) (~ _ TJ)3-d(TJ)t+d (1]) QO(1]),

whereas the second assumption is fulfilled in case t E (-8, -d] if we set

h(1]) = (1])t+m+m'-rU(TJ), ·g(C TJ) = (~)3-d(D~ar(~),

( )-t-d
G(e,17) = k1(e,17) (e _ 17~'-d(e)-t-d (T/)-m qo (1/).

Thus the second part of R defines a bounded operator acting from Ht+m+m/-r(lR.n) to
Ht-r+d(JRn) for any t E (-.9,.9 - 2d].

All in all we have obtained that .

.. - d-max{d,m/-r}
REn. .L:(Ht+m+m'-:r(Rn), Ht-r(JRn))

- 3+d-min{d,m'-r}

as required, in the special case that the symbol p(e, x, 1']) has product form.

Since Lemma 3.12 also provides us with corresponding estimates, we have actu·ally shown
that the multilinear mapping

S'cl' (!Rn) X H"(Rn) X S'cl(Rn) ~ A~:dm'-r-d), (r),o,m'-r-d(lRn), (3.40)

((~)r Ql, a, qo) .-+ R

is continuous, with R given by (3.39). Hence, according to the properties of the projective
tensor product, the linearization of (3.40) is continuous aB mapping ~
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and may be extended "by continuity to a continuous mapping

H6sm,m'(IRn x 1R2") -+ A(m+m'-r-d), (r),O,m'-r-d(lRn)
. cl 6-d .
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(3.41)

Thereby, it is seen that the symbol p(~, X,1]) E H6 s,;,m' (IR" X IR2
") is rnapped to the

operator R given by -the third line in (3.38), since the mapping H6 s,;:,m' (IR" X IR2n ) -+
S'(lRn), p t-+ Jd L::lal=d(~Y la! {Jo

l
(1 - t)d-l(D~aeqr(1] + t(~ - 1]), ~ - 1],1]) dt}il(1]) d1],

p = (~)rq, is continuous for each u E S(IR"). Thus (3.37) follows.

To conelude the proof, for a symbol p(~, x,1]) E H 6 s,;,m' (IRn x IR~n) we write

with q E H6 S:;-d,n:'(Rn X IR2n), and Xc, Xl E ~iO(IRn X IR") according to Lemma 3.16. Now

(~)dq( ~, x, 1]) E H6 s;:-d.m
l
+d (IRn x IR?""), and the operator with symbol (e - 1])dq(e, x, 1])

can be wri tten as an operator with symbol h(e,x, 1J) E Hs-d s;:-d,m' ean x IR2n) if we put
h(e,x,1']) = F<~x{(()dq(e,(,1'])}. Therefore, by (3.37) the operator p(D,x, D) h~ been

represented as the surn of an operator in A~":im'-r),(r),d,d+m'-r(lRn) and an operator in

A~::m'-r-d),(r),O,m'-r(IR") if Im' - rl ::; 28 - 2d. That is, in this case we have seen that

p(D, x, D) E A~::iml"-r),(r),d,d+m'-r(IRn). (3.42)

(3.36) follows from a discussion of the several cases resulting from (3.37), (3.42). 0

Notice that the choices of g(e, 1']) 1 G(e, 1']) made in the proof of Lemma 3.17 can be recorded,
e.g., for the first case in the form

g(e - 7],1']) = (e - 1])6-d(D;ar(~ - 1]),

(~}t+ml-r -m

G(e, 1]) = ko(e,1]) (e _1]}!J-d(1]}t+m/-r (7]) qO(7])

leaving it open whether t + m' - r :2: 0 holds or not and whether in the assumptions
of Lemma 3.12 integration of the square of the modulus of g(~ - 1],1]) takes place with
respect to ~ and 1], respectively.

Proof of Prop?sition 3.15: Let P E A~::~,{m'),d(lRn). According to Definition 3.9

write P = L:j<d Pj + Pd with Pi = Pi(D, x, D), Pi E H!J-i s;-j,m' (!Rn X lR?") for j =
0,1, ... ,d - 1. By the foregoing lemma (see especially (3.42)) we have

p. E A (m7"m'- j-r), (r), d-i, d+m l
- i-r (IR")

) &-J. cl

for j = 0, ... ,d - 1, so it remains deal with Pd.

W h th t A{m-d),{m'),O, -m'+r(IRn) - A(m+m'-r-d), (r),O, m'-r(ID") h ld .e S ow a 6-d - 6-d a 0 S, l.e.,

6-d-max{d,d-m'+r}n .c(Ht+m(IRn), Ht+d(JRn))
t=-!J+d-min{d,d-m'+r}

&-d-max{d,d+m'-r}

n
t=-6+d-min{d,d+m/-r}

.c(Ht+m+m'-r(IR"), Ht-r+d(!Rn)).
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To do so we have to verify 8 - d - max{d, d-m' +r} = 8 - d+m' - r - max{d, d+ m'- r},

-8 + d - min{d, d - ffi' + r} = -8 + d +m' -:' r - min{d, d +m' - r}. The first relation
is implied by max{d,d - m' + r} = 2d - m' + r - min{d,d - m' + r} = 2d - m' + r +
max{ -d, -d +m' - r} = -m' +r +max{d, d+m' - r}, the second relation follows in an
analogous manner. .

Therefore,

P E A(m-d), (ml),o(JRn) C A(m-d), (mi), 0, -ml+r(JRn) = A(m+m'-r-d), (r),o,m'-r(IRn )
d $-d - $-d ,-d ,

which proves the first part of the proposition.

The second part follows from

.A(m), (mi), d, d-m'+r (IRn) A(m), (m/),d(lRn) + A(m-d), (m/),O, -m'+r (Rn)
6,cl - $, cl 6-d

C A(m+m'-r), (r),d,d+m l -r(lRn )
$, cl

by what which has been already proved, and

A (m+m'~r), (r), d, d+m'-r (an) C A (m), (mi), d, d-m'+r (IR")
",cl - $,cl

by the same argument. o

[0 our next result it is asserted that B-classes constitute -merely another representation
for A-classes.

3.18 Proposition. Let s, m, m', d' E IR, dEN, 8 > ~ +d, Id +m' - rl ::; 28 - 2d.

Then we haue
" A(m), (mi), d(Rn ) C B(m+m/-r),(r), d,r-m' (IR").

6,cl - .!,cI

[n particular, we have A~mJ' (m'),d.'r-m' (IRn ) = B~~im'-r), (r),d,r-m' (IRn ).
, ,

(3.43)

(m) (mi) d . (m+m' r) (r) d r m'P roof: For P E A ' '(IRn
) we have to show that P E B -" ,- (IRn

). This$,cl 6,d

is obviously true if P E A~~id),(~,),O(lRn).

Hence we may assume P = p(D, X, D) for some p(~, x, 77) E H.!S;l,m' (IRn ~ R?n). But "then
we abtain

(Pun0 =Jq(U - 1],1])(1])m+m'-r it(1]) d1]

J (_l)lal .
=. L a!' (~_7])a(a;qr(~,~ -1],~)(1J)m+m/-"u(77)d1J +

lal<d .

Jd L (_Q~)d {j(1-t)d-l(D~a;qnU-1].~-t(~-1]))dt} (17)m+m' -ru(1])d17,

lal=d 0 .

where we have set "p(~, x, 1]) = q(e, x, 1])(17)m+m
l -r, q(~, x, 17) E H$Sdm/+,.,m' (Rn ~ lR2n).

Thus
"""' (-1 )1 0 1 -

P = LJ a! (D~a;q(~, x, Tl))ln=e(D, x) (D)m+ml-r +R,
lol<d
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where for the symbols, for 10'1 < d, we have .

( 1)101 .
- , (D~a~q)(~,X,1J)IT1=e (1])m+m l

-r E H-,-loIS;+ml-r,r-lol(lRn x 1R.2n ).
a.
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To treat the remainder we write q(~,X,1]) = qd~)a(x)qo(1]) with a E H-'(IR") , qo E
Sdm'+r(IR"), ql E S;/ (IR"). The defining formula for the remaincler term becomes

(Ru)'({) = Jd L (~~)d {j (1- t)d-l(a;qo)({ - t({ -11)) dt}
lol=d 0

x qd~)(D~ar(~ _1])(1])m+m'-ru(7]) d7].

The expression Jo1(1 - t)d-l(a~qo)(~ - t(~ - 71)) dt can be rewritten in the form ko(~, 1])
(~)-m'+r-d + kl(~' 7]) (7]}-m'+r-d with certain ko, k1 E LOO(IRn x IR"). Now Lemma 3.12
applies with

h(1J) = (1])t+m+m'-r-du(1]), g(~,~ -7]) = (~-7])-'-d(D~ar(~ -1]),

(~)t-d -mi

G(~,1J) = ko(~,T]) (~_ T])-'-d(T])t-d(~) ql(~)'

and
(~}t+m'-r -mi

G(~, 17) = kd~, 'lJ) (~ _ lJ}-,-d(1J}t+ml -r (~), ql(~),

respectively, yielding that

-,-d+mi"{d,r-rn I}REn .c(Ht+m+m/-r-d(lRn), Ht-r(lRn)),

--,+d+max{d,r-m/}

. t P E 8(m+m/-r), (r), d, r-m' (IRn)I.e., we ge -"cl •

By symmetry we further have 8(m+m'-r), (r),d(IR") ~ A(m),(m'),d,r-m' (:lRn ) and it is easily
-"cl -', cl ,

h k cl th t A(m-d), (m/),o,r-m'-d(IR") - B(m+m'-r), (r-d),O,r-ml-d(IRn) Th clc ec e a -,-d - -,-d • e secoo asser-
tion folIows. 0

The second part of Proposition 3.18 can equivalently be formulatecl aB

A(m), (m'), d, d'(IRn) = 8(m-dl), (m'+d'), d, d' (IRn)
-'. cl -', cl , (3-14)

which is seen by setting r = m' + d'. Recall that the classes 8;~1,(m,),d,dl(Rn) have been

designecl to incorporate the formal adjoints to operators in A~~?,(m),d,d' (IR"). Thus as a

further corollary to Proposition 3.18 we obtain that P E A~~~,(m,),d, d' (IRn
) implies p'" E

A(m'+d/) (m-d/) d d' (!Rn) W 11 . . 8 I d' . .-' cl' , • • e ca a representatlon In -c asses an a JOint representatlon.,

Relation (3.44) can be used to find statements for B-c1asses from the analogous ones for
A-c~asses. For example, an analogue to Lemma 3.17 is that for 8, m, m', r E IR, dEN,
8 > ~ + d, -28 + m' +2d ::; r ::; 28 + m' - d ~e have

p(D,x, D) E {

B(m+m'-r), (r), d, d+m' -r(Rn)
6, cl

B(m+m'-r), (r), d(IR")
6, cl

13(m+m'-r), (r),d, 2d+m/-r (IR")
-', cl

if d ::; d +m' - r ::; 28 - d,

if 0 ~ d +m' - r ::; d,

if - 28 + 2d < d + m' - r < 0. - -
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provided that p(~,X,T]) E H8S;l,m/(IRn
X Ii2n

).

Next the behaviour under compositions is established.

3.19 Proposition. Let 5, mo', m~, ml, m~ E IR, d E NJ 5 > ~ + dJ lm~ + md ::; 25 - 2d.

Then we haue

A (mo), (m~), d(Rn ) • A (md, (m~ ),d(IRn ) C A(mo+m~+mt), (m~), d, d+(m~+ml )(Rn).
8,cl 8,el - 8,el (3.45)

In (3.45), the compo5ition on the left-hand 5ide i5 understood in the opp05ite direc
lion i e we mean that P E A(mo),(mo),d(Rn ) Q E A(rnl),(m~),d(IRn) implies QP E

J •• , 8,el' 8,cl

A~::~+mo+rnt), (m~),d, d+(rno+mt) (Rn).

To prove Proposition 3.19 we first show the following lemma:

3.20 L"emma. Let 5, m, m', m" E IR, dEN, 5 > ~ + d, -28 +2d ::; ffi' ::; 25 - d.
m m' m" 2 3" Then

J
for p E H8,8 Sel' I (IR. n x IR n), we haue

p(D,x,D,x,D) E {

A (m+m/), (m"), d, m' (Rn) if d ::; m' ::; 25 - d,
8, cl

A (m+m'), (m"), d(lRn ) if 0 ::; m' ::; d,
.s, cl

A(m+m'), (m
ll

),d,d+m'(lRn ) if -28 +2d ::; m' ::; O.
8.cl

(3.46)

Pro 0 f: We first show (3.46) under the assumption that we have already proved it when
m' = O. By (2.16), (2.17), we may assume that p(~, x, (, y, 1]) is given in product form, Le.,

p(~,x,(,Y,1]) = PI(~,X,()Po((,Y,T]), where Po E HllS;l,m'(JR
n

X IR2n
), PI E H

8S:im l/(Rn x
IR?n); _

By Lemma 3.17 we have Po(D x D) E A(m+m'),(O),d,I(IRn ) with 1 = m' if d < m' <
, , 8 cl - -

28 '- d, l = d if 0 ::; m' ::; d" and 1 = d + 'm' if -28 + 2d ::; m' ::; O. Thus we write
Po(D, x, D) = ~1:~ Po;( D, x, D) + POd, where POj E H8-j S;l+m'-j,O(IR

n x, IR2n
), POd E

A (m+m'-d), (O),O,l-d(lRn ) W fi d (D D) -(D D) E A(m~ml-j),(m,,),d-j(IRn) -!' '-
8-d . e n PI ,x, po} , x, 8-), cl lor J -

O 1 d 1 h (D D) R - A(m+m'-d), (m
ll

),O,l-d(lRn ) b d' t 1 1 t' ., , ... , - ,w ereas PI , x, Od E .s-d Y !fee ca eu a Ion.

It remains to prove the validity of (3.46) in case m' = O. We first prove it when m' = d.
Thus let P E H11," s;!,d,m

lf

(fR2n
X IR3n

) , where we assume that p( ~, x, (, Y, 1J) = P2 (~) a1 (x)
PI (() ao(y) Po(1J), ao, a1 E H.s(IRn), Po E Sd(Rn

), PI E S~I(lRn), p'J E Sd" (IR
n

). vVe write

(p( D, x, D, x, D)uH~) = Jß(U - (, (, ( - '7, '7)ü('7) d( d'7 (3.47)

- JL ~! (( - '7t(8,p)'(~,~ - (,'7,( -'7,'7)ü('7)d(d'7
lol<d

+ Jd L ~! {J (1 - t)d-l(D~8,p)'(U - (, '7 + t(( - '7), ( - '7, '7) dt} ü('7)d( d'7
lol=d
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and obtain-

p(D, x, D, x, D) = L ~! (D~ß,p)(~, x, (, y, '7)lv=x,(=/D, x, D) + R,
lal<d

where the remainder R is given by

(Rur(~) = Jd L ~! {J (1 - t)d-l(ß,Pl)('7 + t(( - '7» dt}
lal=d

x al(~ - () (D~aor(( -1]) P2(~) Po(7J) u(7J) d( dry.

For the symbols, for 10'1 < d, we have

1 (Da 801 )(t r) HlI-loISm+d-lol,mll(TIlln TIll2n)I" y (p ~,x, ~ , y, 7J Iy=r (=17 E cl J[\,. X 1l\o ,
a.

whereas to estimate the remainder we apply Lemma 3.14 with t E [-S,8 - 2d] and
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h(rJ) = (rJ)t+m+du(ry),

g(~ - (, ( - 7J, 7]) = (~ - ()"al(~ - ()(( - 7J)S-d(D~aor(( - 1]),

G(~, (, '7) = k((, '7) (~ _ ()'(?~:~'-d('7}t+d (~)_m"P2W (1)) -mPo( '7},

with k((,1]) = J(l - t)d-l(8,pd(7] + t(( - 7J)) dt bounded, getting R E A~:~,(ml,),O(IRn).

This shows (3.46) for m' = d. Now let p E H3,3 s~,o,mll (IR.2n X IR.3n ). Then (3.46) for
m' = 0 follows by writingp(~,x,(,Y,77) = (1])dq(~,X,(,Y,77) = Xo((,ry) (()dq(~,X,(,Y,77)+

XI((, 1]) (( - rJ)dq(~, x, (, y, T}) with q E H3,3S;;-d,o,m
ll

(IR.2n X IR.3n ), Xc, Xl E S~t'°(1R2n). 0

Note that in the proof of Lemma 3.20 we have obtained as a byproduct

(D D D) E A(m+m'),(mll ),d.. d+m'(lRn )p , x, , x, 3, cl

for lm'l :S 28 - 2d.

Now we are prepared to give the proof of Proposition 3.19.

(3.48)

Proo f 0 f Pro pos i ti 0 n 3.19: From (3.48) it follows that, for p E H" S~o,mb (Rn X lR2n ),
q E H" s~t ,m~ (IRn

X lR2n ), we have

(D D) (D D) E A(mo+mb+m t ), (m~),d,d+mb+ml(!Rn)q ,X, P ,x, "'cl

for the symbol of the operator q(D, x, D) p(D, x, D) is q(~, x, () p((, y, 1]).

Now (3A9) implies that

(3.49)

This is seen by choosing P = Ei<d Pi + Pd E B;~~),{mb),d(Rn), Q = Ek<d Qk + Qd E

A (m 1 ), (m~),d(IRn) h P (D D) HlI-iSmo,mb-i(lRn !tlI2n) r . 0 1
3, cl , w ere j = Pi , X, , Pi E cl X 1l\o lor ) = , l""
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d-1, Qk =-qk(D,x,D), qk E H~-kS;l-k,m~(JRn X R2n
) for k = O,l, ... ,d-l. Then, for

j + k = l < d, we obtain

Q p_ A(mo+m~+ml-l), (m~), d-l, d+m~+ml-l(lR.n)
k J E ~-l, cl ,

whereas, for j + k 2: d, it is checked that

Finally, Proposition 3.18 yields

A (m<l), (m~),d(JRn) : A (md, (m~), d(Rn) = B(mo-d), (m~+d), d(JRn) . A (md, (m~),d(IRn)
""cl 6,c1 6,cl ~,cl

c A:::~~m~+ml)' (m~), d, d+m~+ml (JRn).

The proof is furnished. 0

Note the equality

(3.50)

which is valid by Proposition 3.15. Further note that the composition result for the
B-classes is

(3.51 )

Finally in this subsection we come to a discussion about commutators. Although it
is possible to describe commutators in the calculus in general the formulas arising for
remainders are complicated. Therefore, we confine ourselves to the special case when one
of the operators involved has smooth coefficients and postpone the general case to [25].
The special case is sufficient, e.g., in treating semi-linear partial differential equations.

The results on commutators could be achieved by considerations similar to those above,
but we prefer to take advantage of the elements of the calculus developed so far. In
doing so, we have to anticipate two points of our later discussion: The first one is that
to construct globally parametrices to elliptic operators within the calculus we adjoin the
pseudo-differential caleulUB of classical operators having their coefficients in er (IR.n) to
our calculus, i.e., we work in the operator classes

Lm+m'(IR.n) + A(m),(m'),d(Rn )
cl .!,cl • (3.52)

. Here Ld+ml
(IRn) is the space of classical pseudo-differential operators of order m + m'

defined 00 Rn with uniform symbol estimates in the space variables. Theo it is easy to
see that our non-smooth calculus obeys the ideal property in the calculus given by (3.52),
e.g., we have .

LmO(IRn) . A(m), (m'),d(IRn) C A(m+mo),(m/),d(IRn)
cl 6, cl - ~. cl •

The second point to anticipate is that operators have a symbolic structure. That point
will be discussed in detail in Subsection 4.1.



3.5 Change oE Representation, Compositions, and Adjoints

3.21 Proposition. Let s, m, m', mo E IR, d E IR, S· > ~, d ~ 1, Imol :s; 2s - 2d.

·Then 'OT A E A(m),(m'),d(IRll
) P E LmO (IRll ) we haue, Jl ",d , cl ,

[p AJ = PA - A P E A(m+mo-l),(m'),d-l,d+mo-l(IRll), ,,-I, cl •
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(3.53)

P roof: We have A P E A~':imo),(m,),d(IRll) and P A E A~,:~,(m'+mo),d(lRn). By Propo

sition 3 15 A(m),(m'+mo).d(Rn ) C A(m+mo),(m'),d,d+mO(lRn ) , Furthermore the principal
• , ", cl - 6, cl • ,

symbol of the operator P A - A P E A~r:imo), (m'),d,d+mo (Rn) vanishes. Hence, [P, A] E
A(m+mo-l),(m'),d-l,d+mo-l(IRll ) , 0

,,-1, cl •
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4 Further Elements

In this seetion, several elements of the classical operator. ealculus are furt her developed.
The seleetion ·made owns to the author's decision. In 'Subseetion 4.1, principal symbols
and subordinated homogeneous eomponents for eomplete symbols are introdueecl. The
results obtained there are used in the -parametrix construetion for elliptic operators whieh
is performed in Subsection 4.2. Elliptie regularity and the Fredholm property for operators
on closed eompaet manifolds are dealt with in Subseetion 4.4. Before, in Subsection 4.3,
we diseuss eoordinate invarianee and operators on manifolds.

4.1 Symbolic structure

Next we beeome acquainted with the symbolic structure of operators in A;r:~' (m'),d,d'

(IRn
). For those operators we have principal symbols as well as eomplete sy~bols, the

latter eireumstanee is due to the fact that we are working on IRn
.

4.1 Lemma. Let s, m, m', d' E IR, dEN, s > ~ +d, d 2:: I, Id - d'] ::; 2s - 2d.

Let p(~,X,TJ) E H"s;!,m'(JRn x IR?n). Then p(D,x,D) belongs td A;:;~~,(m'),d-l,d'-l (IRn)
. ,

if and only i!p(e,x,T/) E H"s;:-.l,m'(fRn X IR2n ). .

Proo f: First assume p( D, x, D) E A~:~~~' (m'), d-l,d'-l(lRn ). Writing p(D, x, D) = (D)m',
+ '( ) (m+m'-l) d-l d'-l( n) ·cl(qo(x, D) + Q'), where qo E H4 Sr;: m IRn x IRn

, Q' E A"-l,cl ' , R, we re uce
to the ease that m' = 0 and p E H4 Sd(IRn x IRn

).

By assumption, there exists some t E [-s + d - rnin{d,d/},s - max{d,d/} - 1] such
that p(x, D) E .c(Ht+m(IRn), Ht+1(IRn)). Now suppose po(x, e) ~ 0, where Po denotes
the' prineipal part of p. Choose some (xo, eo) E IRn x (IRn \ 0) such that Po(xo, ~o) #. o.
Further ch60se u E H t+m(lRn), U rI. H~~m+l (xo, eo), where the latter means u is not
in Ht+m+l (IRn

) mieroloeally at (xo, eo). Then, for· cf; E Cgo(IRn
), X E S~l(IRn) with r/>

supported in a smaH neighbourhood of xo, r/>(xo) :f:. 0, and X supported in a small conie
neighbourhood of ~o, Ix(~)1 2:: c for ~ E IRn in some smaller conie neighbourhood of eo,
I~l 2: C, we find a symbol q E Sdm(IRn x Rn) such that q(x, e) p(x,~) = r/>(x )X(~). By
Proposition .3.19 we have q(x, D) p(x, D) = ro(x, D) + R' , where ro(x, e) = q(x, e) p(x, e)
and R' E A;=~)~7-1(IRn). This implies cP(x )X(D)u = q(x, D) p(x, D)u - R'u E Ht+m+l (IRn

),

which contradicts u ~ H~~m+l (xo, eo). Henee, Po(x,~) =0, i.e., p E H4 S~-l (IRn x IRn
).

The reverse direction is stra:ightforward. 0

4.2 Definition. Let s, m, m' , d' E IR, dEN, 's >: ~ + ~, d 2:: 1, Id - d/l ::; 2s - 2d.

Let further P E A~~J,(m,),d,d' (Rn). Then (Po,Pb"" Pd-t}J where H4-j s(m+m'-j)(Rn x

(IRn
\ 0)) for j = 0,1, ... ,d - 1, is called the comp/ete symbol 0/ P i/

d-l

P - (D)m
l L (1/J( 7]) pAx, Tl)) (x, D) (D) -m' E A~:dd), (m'),D, d'-d (IRn ) (4.1)

j=O



4.1 Symbolic structure 33

holds, with ~ being an arbitrary O-excision funetion. Po E H"s(m+m')(IR7l x (IR.7l
\ 0)) is

calIed the principal symbol 0/ P.

Each operator P E A~~~,(ml),d,dl (Rn) has a complete symbol fouod· by arranging the
homogeneous components of the symbols appearing in Definition 3.2 of the operator
(D)-m' P (D)m l

E A~~iml),d,dl (!Rn). As a consequence of Lemma 4.1 we obtain uniqueness
of the components of the complete symbol.

For"Q E B;~l,(m,),"d, d' (!R7l
), define the complete symbol as d-tuple (qo, ql,' .. , qd-l), where

qj E H,,-j s(m+m'-i)(lRn x (lRn
\ 0)) for j = 0, ... ,d - 1, such that

d-l

Q - (D)-m L (VJ(~) qi(~' x))(D, x) (D)m E B;:J,(m'-d),O,d'-d(lRn) (4.2)
j=O

holds. qo EH"s(m+m') (R7l X (IR.7l X 0)) is calle~ the principal symbol of Q.

Principal symbols behave in the same manner as they do in the case of pseudo-differential
operators with Cr-coefficients. We list some of their properties in Proposition 4.3. Proofs
follow by examining the asymptotic expansions provided in the proofs given in Subsection
3.5.

4.3 Proposition. The principal symbol 0/ an operator"is independent of the represen
talion chosen for this operator in one of the classes A~::~,(m/),d.dl (lRn

), i.e., it does not
change altefing the representation in accordance with Proposition 3.15. Jt even does not
change passing to the adjoint representation according to Proposition 3.18.

Under compositions of operators principal symbols are multiplied. The principal symbol 01
the adjoint to an operator is the complex conjugate 0/ the principal symbol 01 thal operator.
The principal symbol 0/ a commutator is the Poisson bracket 01 the principal symbols 0/
the operators invo/ved times I/i.

Pro 0 f: We must be' careful in compositions, since the proof of Lemma 3.20 has been
rather implicit. But checking the single steps, the proof can also be accomplished in that
case. 0

The subordinated components of the complete symbol depend on the chosen represen
tation. They also depend on the elliptic operator, (D), the powers of which enter inta
the reduction to the standard operator classes. We shall provide, in (25], some formulas
demonstrating how subordinated components alter when the representation is changed.
The corresponding formulas for the classical situation are produced by collecting homo
geneous components in the right way.

In the sequel let the symbol m be an abbreviation for the data set (m, m', d, d'). Let
further the set (m - j, m', d - j, d' - j) be abbreviated by m - j.

As a conclusion to Lemma 4.1 we obtain the short exact principal symbol sequence:

4.4 Proposition. Let s, m, m', d' E IR., dEN, s > ~ + d, d ~ 1, Id - d'l :$ 2s - 2d.
Then we have a short exact sp/it sequence

o-t A:__1
1,cl(IR7l

) -+ A:'d(lRn
) ~ H S s(m+m/)(lRn

X (IRn
\ 0)) -t 0 (4.3)
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with the natural injeetion and a being the pnncipal symbol mapping.

~

Using subordiJ!.ated symbols, for j = 0,1, ... , d -1, we obtain short exact split sequences:

j

o--+ A;;/..:-/cl(IRn) --+ A;'cl(IR.n) --t EB"H"s(rn+m'-k)(IR.n x (Rn \ 0)) -+ O. (4.4)
k=O

Notice that for j = d -1 the sequence (4.4) is a reformulation of (3.25) thus'completing
the discussion around the topologization of A~::~,(ml),dld' (IR.n).

4.2 The ParametriX Construction

Now we come to the parametrix construction for elliptic operators within the calculus. To
start with record that a(x)" -t 0 holds as Ixl-t 00 for a E H"(IR.n), s > ~. For that reason

it is impossible to obtain uniform ellipticity estimates for operators in A~::~' (mi), d(IRn
).

Moreover, the identity Id = op(l) does not belong to the calculus.

To get round this problem, we adjoin the classical pseudo-differential operator calculus,
as mentioned in Subsection 3.5. Thus we work in the operator classes

(4.5)

Here L~+m' (Rn) is the space of classical pseudo-differential operat~rs of order m + m'
which are defined on !Rn with uniform symbol estimates in the space variables, i.e., the
coefficients are taken from Cb(IR.n). Recall that the non-smooth calculus has the ideal
property in the larger calculus given by (4.5), e.g., we have

Lmo (Rn) . A (rn), (mi), d, d'(lRn ) C A (rn+mo), (m'), d, d' (Rn)
cl ",cl - ",cl .

Notice that on Cco-manifolds, X, to be considered in the Subsection 4.3, which corre
sponds to coefficients from local Sobolev spaces, Htoc(X), we have

Lm+m'(x) C A(m),(ml),d,d'(X)
cl - ", cl . (4.6)

4.5 Definition. Let 8, m, m', d' E R, dEN, 8 > ~ + d, d 2: 1, "Id,- d'l ::; 28 - 2d.

Then an operator A E L:7+m ' (Rn) +"A;~~I (rn'), d,d' (Rn) is called elliptic if it has an elliptic

principal symbol ao(x,~) E Cb s(m+ml)(lRn X (Rn \ 0)) + H" s(m+m')(IRn x (Rn \ "0)), i.e.,
ao(x,~) satisfies the estimate' '. '

lao(x, ~)I ~ 61~lm+ml 

for alt (x,~) E Rn X (!Rn \ 0), and certain constant 0 > O.

4.6 "Definition. Let 8, m, m', d' E IR, dEN, 8 > ~ + d, d ~ 1, Id - d'l ~ 28 - 2d.

(4.7)
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L m+m' (n) A(m) (m') d d' Ie,t alf opemtor A E "Lel R + ",et' "(Rn) be given. Then P E Lcim
-

m (Rn) +
A~:c7'),(-m),d,dl (Rn) is ca/ted a parametrix to A if it satisfies

PA - Id E A(m-d),(-m),O,d'-d(IRn )
,,-d ,

AP - Id E A~=;'_d), (m'),O,d'-d(IRn ).

(4.8)

(4.9)

Uniqueness modulo A~=;'_d),(-m),O,d'-d(IRn ) is immediate from (4.8), (4.9) if a parametrix
exists.

Preliminary to Proposition 4.8 we establish a lemma providing the formal Neumann series
. "argument required in the parametrix construction:

4.7 Lemma. Lets,mEIR,dENJs>~+d,d~l.

Further assume that C E L-1(IRn ) + A(m-l),(-m),d-I(IRn ). Then
" cl ,,-I,cl"

Proo f: In view of Proposition 3.45, we obtain by induction

Ci E L-i(Rn ) +A(m-i),(-m),d-I,d-i(lRn )
cl ,,-I,cl

for j = 0, 1, ... ,d. Then the assertion follows from

A (rn-j), (-m), d-:-I, d-j (Rn) C A (m-:-j), (-rn), d-j (Rn)
,,-1, cl - 11- ), cl ,

and

(4.10)

(4.11)

o

Notice that in the proof of Lemma 4.7 we get another interpretation for d' additionally
appearing in Definition 3.9. Now it yields that the expansion given by (4.11) is asymptotic.

4.8 Proposition. Let s, m, m', d' E IR, dEN, s > ~ + d, d ~ 1.. Id - d'l ::; 2s - 2d.
+ I (rn) (rn ') d d'Then, for an operator A E L';! m (Rn) + A",c/ "(lRn), the following condihons are

equiva/ent:

(a) A is e/liptic in the sense of Definition 4.5.

(b) There exists a parametrix P E Lcim- ml (Rn) +A~~e7/)' (-m),d,d' (Rn) to A.

P roo f: It suffices to deal with A E Lm+rnl(IRn ) + A(m),(ml),d(IRn ) since
cl ", cl ,

A (m), (mi), d, dl(IRn) = A (m), (mi), d(Rll) + A (m-d), (m'),O, dl-d(" Rn)
", el ", cl ,,-d .
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Suppose that A is elliptic. Let ao(x,~) E Cb s(rn+rn' ) (IRn x (IRn\ 0)) + H" s(rn+rn
/
) (Rn X

(Rn \ 0)) be the principal symbol of A. It is clear that, under condition (4.7), Po(x,~) =
ao( x, ~)-l belangs to Cb S( -rn-rn/) (IRn x (Rn \ 0)) +' H" S( _rn_rn') (IRn X (!Rn \ 0)). Thus using
the short exact sequence (4.3) (and its analogue for classical pseudo-differenti al operators

with coefficients in CbORn)) we find an operator PI E Lcirn -
ml (IRn ) + A~~c7')' (-m),d(IRn )

having Po(x,~) as its principal symbol. Then by the composition rules for principal
symbols and the short exact sequence (4.3) again we conclude that

C = Id - P A E L -1(lRn) + A(m-l), (-m),d-l (!Rn)
I cl "-l,cl .

Therefore, by Lemma 4.7, P = (Id+C+C~+ ... +Cd- l ) PI is a left parametrix to A. In a
similar manner, a right parametrix to A can be constructed. The argument is completed
by noting that a left parametrix and a right parametrix if they exist are equal modulo
A;=;'_d), (-m),o(IRn ).

The reverse direction follows from the,composition rules for principal symbols. 0

We conc1ude this subsection by remarking that the parametrix construction in Proposition
4.8 can also be achieved either only loc.ally, or on a closed compact manifold as discussed
in Subsection 4.4, or right form the beginning in larger classes of operators taking their
coefficients in Ht"oc-spaces. Hut the element of adjoining .the smooth calculus to the 000

smooth one is familiar in the analysis of non-linear partial" differential equations; thus we
have decided to do the constructions iri the indicated way.

4.3 Coordinate Changes and Operators on Manifolds .

In this subsection we discuss.the invariance of operator classes A:":~,(rn/),d,dl (!Rn) under

coordinate changes and introduce the classes A~r:~,(ml),d,dl(X), X b~ing a Coo-manifold., ,

Our first goal is to explain the action of the pseudo-differential operator p(D, x, D) for
p E Ht"ocs;!,ml (X X a2n

), s > ~, and X being an open set in lR.n . The expression p(D, x, D)
will in general not be defined. This corresponds to compositions in the COO-theory in
which one of two operators has to be properly supported. Here we have to make a
similar assumption. We discuss only a rather special case, which, however, suffices for the
applications we have in mind.

Notice that, for 4J E Cr(IRn), we have 4>(x) p(~, x, 1]) E H" s;!,m
l

(!Rn X IR2n ).

4.9 Lemma. Let s, m, m' E IR~ s > ~. Let further p(~, x, 1]) E Ht"ocs;:·m' eRn x !Rn).

(a) Suppose that the Fourier transform -Fe~p{p( ~, x, 1])} is compactly support in p uni
formly in (x , 1]). Then p(D, x, D) induces a continuous operator

(4.12)

for all t E IR, Itl ~ s

(b) Suppose that the Fourier trans/orm F7J-~pl{P(~,x, 1])} is co.mpactly support in p' uni
formly in (~, x) . Then p( D, x, D) induces a continuous· operator

(4.13)
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for all t E lR, Itl ~ s.
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Proof: (a) ~uppose that supp(Fe~p{p(~,X,l1)})~ K x lRn x Rn for same compact set
K c !Rn. Then, for 4>, 4>' E CÜ(lRn) satisfying (supp4> - suppcjJ') n K = 0, .we have

4>(x) (4)'(Y)P(~,Y,l1))(D,x,D) = o.

Let u E Ht+m(Rn
) for t E IR, Itl ~ s. In order to define p(D, x, D)u, we define p(D, x, D)u

on K' for any compact set K' c lRn
. To this end, choose functions 4>, 4>' E CO'(lRn) such

that 4> = 1 on (<', 4>' = 1 in a neighbourhood of K - supp4> and set

p(P, x, D)u == 4>(x) (4)'(y) p(~, y, 7J))(D, x, D)u

on K'. It is seen that thisdefinition is independent of the functions 4>, 4>' with the
above properties, consistent on intersections of compact sets K' and agrees with the usual
definition in the case that p E HII s:!,m l

(Rn X a2n ).

(b) Now suppose that supp(Fl1-~p'{p(~,x,ry)}) ~ Rn X lRn X K for same compact set
I< c jRn. Then, for 4>, 4/ E CO'(lRn

) satisfying (supprf:> - supp4>') n K == 0, we have

(p( ~, x, 17) ep( x)) (D 1 X, D) 4/ (x). == o.

Let u E H~~(IR.n) for t E IR, ltj ~ s. vVe choose functions 4>, 4>' E C~(lRn) such that
4/·= 1 on suppu, 4> == 1 in a neighbourhood of K + supp4>' and ~et

p(D,x,.D)u == (p(Cx,ry)4>(x))(D,x,D)4>'(x)u.

It is seen that this definition is independent of the functions 4>, 4/ with the above properties
and agrees with the usual definition in the case that p E H3 s;!,m' (lRn x 1R2n

). 0

Now let p(~,x,1J) E HtocS';J,m'Cx. x IRn
) with X being an.open set in IRn

. As a corollary
to ·Lemma 4.9 we obtain that we can give a meaning to the expression p(D, x, D) as a
continuous operator

p(D,x,D): H~~(X) --+ Hlto~m'(x) (4.14)

for all t E IR, Itl :::; s, if one of the assumptions of Lemma 4.9 is satisfied.

Notice that for symbols p(~ l x, 1]) E Hlf s;:·m' (Rn X lR2n
) we can always assume .that one

or both assumptions of Lemma 4.9 are satisfied. To see this,· chaose a O-excision function
'lj.J and consider, e.g.,

(4.15)

This symbol fulfills assumption (a), while the symbol Fp-+e{t/;(p) Fe~p {p( ~,x, 1])}} leads
to an operator which belongs to J;(H-lf+m(IRn), Hfoc(Rn)) for any t E IR.

We need a technicallemma:

4.10 Lemma. Let s, m, m', d' E IR, dEN, s > ~ + d, Id - d'l ~ 2s - 2d. Let further
(m) (m ') d d' . '

P E Alf,cl' .• (IRn) and suppose that, fOT the kernel K 0 f P, we have that K (x, y) == 0
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,,-d- max{d,d'}

n

for x, y E IR~, Ix - y] ~ 8, and some 8 > O. Then P E A~:id), (m
/
),o,d'-d(lRn).

Pro 0 f: We may reduce to the case m' = 0 and P E A~~l' d, d' (Rn). Then it is sufficient

to prove that PE A~:;~l,d-~, d'-I (!Rn) if d 2: 1. ',

Write P = p (x D) + pi with Po E H~sm(lRn X IRn ) pi E A(m-I),d-I,dl-I(lRn) Let Ko , cl' !I-I,d . 0

be the kernel of Po(x,D) and K' be the kernel of P'. Then Ko(x,y) = Lo(x,x - y),
where Lo(x,p) = Fl1~P{Po(X,7])}. In particular, 'IjJ(p) Lo(x,p) E H"(IRn)~1rS(lRn) for an
arbitrary O-excision function 'IjJ. Choosing 'IjJ E COO(IR.n ) in such a way that 'IjJ(p) = 1 for
Ipl 2: 8 we arrive at a decomposition (1 - VJ(x - y))Ko(x, y) +VJ(x - y)Ko(x, y) + K'(x, y)
for the kernel K of P, where (1 - t/;(x - y))Ko(x, y) and VJ(x - y)Ko(x, y) + K'(x, y)
give rise to operators in A~:;~,d-Ildl-I(lRn), since (1- 'IjJ(x - y))Ko(x,y) is supported in

Ix - Yl ~ 8. Hence, we have PE A~:~:l,d-l,d'-I(IR.n). 0

The transition to the operator classes mentioned in the end of the previous subsection is
accomplished by the next lemma: .

4.11 Lemma. Let s, m, rn', d' E IR, d E NJ s > %, Id - d'I"::; 2s - 2d.

Let further, for some open subset ...\' c !Rn, P : C~(X) -4 'D'(X) be a linear continuous
operator such that for any 4J, 4>' E C~(X) the operator S(lRn

) 3 U M 4J' P(4)u) E S'(IR.n
)

belongs to A~::~,(m/),d,dl (IRn
). Then there are symbols Pj(~,x, 1]) E HI"o~j s::-j,m

l

(~~ X lR2n )

for j = 0,1, ... ,d - 1 satisfying one of the conditions of Lemma 4.9 and an operator

C(Ht+m(X) Ht-m'+d(X))comp 'Ioc
t=-,,+d- min {d,d'}

such thai
d-l

P = LPj(D,x,D).+ Pd.
j=O

-(4.16)

In the notation of the operators S (IRn) 3 u ~ <P' P(<pu) E S' (IRn) in Lemma 4.11 we have
omitted the extensions to IRn and the restrietions to X', respectively.

Pro 0 f 0 f L e m m a 4.11: Choose a partition {4>k}kEN of unity on X and choose functions
VJk E Cö(X) such that <Pk'IjJk = ePk for all k E N and {SUPPVJk}kEN is a locally finite cover
of X. Then, for UE CÜ(4~)' we have

00 00 00

Pu = L P(<pk U ) = L VJkP(<Pk U ) + L(l - VJk)P(<pk U ). (4.17)
k=O k=O k=O

(m d) (mi) 0 d' dBy Lemma 4.10, we have <Pi (1 - 'ljJk)PcPk E A,,_d' ,,- (Rn) for all k, 1 E N. Thus,

(1 - 'ljJk)P<pk E n::~~:;~'~~~,~,} .c(Ht+m(x), Ht:cm'+d(X)) for all k E N. Moreover, for

u E Cü(X), the sum L::~(1 - 'l/Jk)P(cPkU) is finite. Consequently,

00 ~-d-max{d,d'}

L(l -1PJ.)P<Pk E n .c(wc:m";,(X) , Hi:cm'+d(X)).
k=O t=-,,+d-min{d,d'}
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. (m) (mi) d d'
By assumption, the operators 'l/JkP4;k belong to A" d' "(IRn

) for all k E N. Write

'lj;kPePk = 'E~:~ Pik( D', x, D) +Pik, where Pik E H"' sj-i,m
l
(IR" X IR2

") for j = 0, 1, ... ,d-1,
k E N, and Pdk E A~:~d),(m/),Oldl-d(IR"). We can arrange that the Pik(~,X,1J)'s satisfy,
e.g., the first assumption of Lemma 4.9 and, for fixed j, their supports in x form a locally
finite cover of X uniformly in (~, 1]). Fo~ the kerneis of the Pdk 's, we may assume that
their supports, both in x and Y, form locally finite covers of X. Then, on X,

00

Pj(~, x, 1]) =L Pik(~, X, 1]) E Hl'ocs;:~i,ml (X X 1R2
")

k=O

satisfies the first assumption of Lemma 4.9. Thus, for j = 0,1, ... ,d - 1, these symbols
give rise to operators Pi(D, x, D) : H~p(X) -+ Hlo~ml (X) for every t E IR, Itl ~ s.
Eventually, the SUffi 'E~ Pdk exist, and

00 ",-d-max{d,d'}

L Pdk E n .c(H~:;;'(X), Hl:cm'+d(X)).
k=O t=-.!+d-min{d,d' }

The proof is finished. o

N.ext we are concerned wit h the invariance of A~::~' (m '), d, d' (IRn) under global changes of
coordinates of IRn

• Let I\. : IRn
-t IRn be a diffeomorphism of IR". In the sequel, we shall

always assume that there are constants Cl, C2 > °and Co > 0 for Q:' E ~ such that

(4.18)

and
(4.19)

hold for all x E IRn. Recall that, for functions u E S (IRn
) and distribut ions v E S' (IRn

) ,

the pull-back K"'U is defined by ","'u(x) = u(I\.(;t)) and the push-forward I\. ...v by

(It ...v, </» = (v, ","'</> Idet I\.'[), </> E S(IR").

By (4.18), (4.19), we have 1\. ... : S(IRn
) -+ S(IRn

) and K ... : S'(IRn
) -+ S'(IRn

). Furthermore,
K. ... = (I\. -1 )... holds on functions, since distributions are t ransformed as I-densities.

For P : S(IRn
) -+ S'(JRn

), we define the operator P", : S(IRn) -+ S'(lRn) by

(4.20)

4.12 Proposition. Let s, m, rn', d' E IR, dEN, s > ~ + d, Id - d'l ~ 28 - 2d.

Let Jurther '" : IRn -+ IRn be a diffeomorphism satisfying (4.18), (4.19). Then, for P E
A(m), (m'), d, d' (IRn ) we haue

"', cl '
P E A(tn),(ml),d,d'(IRn ).

'" s,el .
(4.21 )
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(m) d d'Proo f: It suffices to show that the conclusion holds for the operator classes A" cl' ,

(IRn ), since . ,
A(m),(m'),d,d'(IRn) = (D)m' A(m+ml),d,d'(IRn) (D)-m'

",cl ~,cl ,

and the behaviour of classical pseudcrdifferential operators wi th coefficients in eb (IRn
)

under coordinate changes is known.

The mapping K,* : S(lRn) -t S(IRn) extends by continuity to an isomorphism K* : Ht(IRn)
-t Ht(IRn) for every t E IR. Thus A E A~:id),O,d'-d(Rn) implies A" E' A~:id),O,d'-d(IRn).

Therefore, we may assume that P = p(x, D) holds for some symbol p(x, 1]) E H"Sd(Rn x
IRn

).' Then, for the symbol p" of the operator P" = p" (x, D), we claim that

(4.22)

This is immediate fo~ symbols in product form, i .e., p(x, 1]) = a( x )Po(1]) wi th a E H~ (Rn),
Po E Sd(lRn

), from the corresponding result in the COO-situation (see, e.g., [11, Theorem
18.1.17]). In that manner we obtain a continuous bilinear mapping

showing that p,,(x,1]) defined by (4.22) indeed belongs to H"Sd(fRn x IRn
) for p(x,1]) E

H" SJ(Rn X IRn) by invoking the usual tensor product argu,ment. That p" (x, 7]) is actually
the symbol of P" now follows from the fact that it i8 true on Sci(lRn

) 0 H"(Rn
) and that

the mapping S(lRn
) -t S'(lRn

), u -t p,,(x, D)u, is continuous for each u E S(lRn
). 0

In the proof of Proposition 4.12 we have shown that the principal symbols of P and PI";
are interrelated by

(4.23)

i.e., as usual, the principal symbol behaves like a function defined on T*(IRn) \ {O}.

In the situation considered in (4.22) we ge~ as in the case of coefficients' in Cb(IRn
) that

(4.24)

in H"sm(IRn x IRn
) holds, where Px(y) = K,(y) - Ii:(x) - Ii:'(x)(y - x). Recall that the

D~ (eip~ (y)tJ ) Iv=x 's are polynomials in 1] of degree less t han Of equal to IQ'1/2 wi t h coefficients
in Cb (lRn

). Oue obtains, from (4.24), formulas for the components of lower order of the
complete symbol of P" by replacing p in (4.24) by the complete symbol of P and ordering
terms with respect to homogeneity.

(m) (mi) d d'
'vVe go now over to the operator c1asses A",c/ "(X). From now on, let X ,denote a
Cco-manifold. .

4.13 Definition. Let s, m, m'" d' E IR, dEN, s >' ~ + d, Id - d'l ::; 28 - 2d.
(m) (m') d d'Then A",d' "(X) denotes the dass 0/ aU·operators P : Cö(X) --t D'(X) such that

for every chart (Y, K) and arbitrary </J, ifJ' E Cg:>(Y)

(4.25)
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Note that, by Proposition 4.12, it is enough to ask (4.25) only for a collection of charts
(Yk , K. k) sueh that t he Yk x Yk 's cover X x X. Further note that, for X = IRn, the oper
ator classes A~r:~,(m,),d,d'(X) introduced in Definition 4.13 are different from the classes

A~::~' (mI), d, d' (IR~) considered earlier in that respect that the behaviour of eoefficients is
not now restricted as lxi --+ 00.

Below we summarize some of the properties of the operator classes A~~l' (m'), d, d' (X) whieh
are immediate from our foregoing eonsiderations.

4.14 Proposition. Let s, m, m', T, mo, m~, mt, m~, d' E IR, dEN, s > ~+d, Id-d'l ~
2s - 2d, Im' - rl ~ 28 - 2d, Im~ +mll ~ 28 - 2d.

Then the fol/owing properties are valid:

(a) We haue

6-max{d,d'}

A~::~,(m'),d,d'(X) ~ n .c(H~:p(X), Hio~m' (X)),
t= - -,+d- min {d,d'}

and the .remainder classes are completely characterized biJ that property, i. e.,

(4.26)

A(m-d), (mi), 0, d'-d(X) =
6-d

.c(Ht+m(X) Ht-m'+d(X))comp 'loc .
t=--,+d- min {d,d'}

(4.27)

In (4.26), for properly supported operators, one can replace either H~:~(X) by H;:cm(X)

or Hlto~ml (-X) by H~;:: (X).

(b) We have
A(m), ~ml),d(X) C A(m+m'-r),(r),d,d+ml-,,(X).

"'cl - 6,cI .
(4.28) .

(c) The adjoint to an operator in A~::~.. (m,),d,d' (X) belongs to A~~~+dl),{m-dl),d,dl (X).

(d) For the composition of P E A:::~),{m~),d(X), Q E A:::;)' (m~),d(X), where one 01 these
operators is properly supported, we have

QP A(mo+mb+ml),(m~),d,d+(mb+ml)(X)
E 6,cI • (4.29)

In order to define the homogeneous principal sym~ol for operators in A~::~,(m,),d,d'(X) we

introduce the space H'~cs(m+m')(T-X \ 0) as the space of all functions p(x, e) on T-X \ 0
which are homogeneous of order m+m' in the fibres and which, in any chart on X, belong

( ') (m) (m') d d'to Hioc S m+m (Rn X (Rn \ 0)). It is plain that an operator P E A
6
,cz' "(X) has' a

uniquely defined principal symboll7p(x,~) E Hiocs(m)(T-X \ 0). As in (4.3), we obtain a
. short exact split sequence, i.e.,

(4,.30)
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where m = (m, m', d, d'). An operator A E A~mJ,(m,),d,dl (X) is called elliptic if its principal
symbol aA(X, e) never vanishes on T* X \ 0.' In that case, using a partition of unity, a
parametrix P E A(-mt'),(-m),d,d'(X) to P can be constructed, Le., an operator P satisfying

",C

PA - Id E A~:dd),(-m),O,d'-d(X), AP - Id E A~=;'-d),(ml),O,d'-d(X). (4.31)

Conversely, from the existence of a parametrix we conclude on the ellipticity of A. Again,
. (m) (m') d d' '

natural Frechet topologies on the operator classes A",d' "(X) are introduced also by
using a partition of unity.

4.4 Elliptic Regularity, Parametriees, and the Fredholm Prop
erty

In this subsection we quote results when X is a closed compact manifold. Then the
spaces Hloc(X), H~omp(X) become replaced by Ht(X). Note that, for t,' > t, the embed
ding Ht' (X) '-t Ht(X) is compact. The spaces Htocs(m)(T* X \ 0) are now denoted by
H·s(m)(T· X \ 0).

In case X is compact, ellipticity is equivalent to the Fredholm property: -

4.15 Proposition. Let 5, m,m', d' E R, d E NI 5 > %+d, d 2: 1.. Id - d'l :::; 25 - 2d.

(m) (m') d d' ( )Let X be a clo5ed compact Coo -manifold. Then, for an operator A E A", cz' " )(,
the Jollowing conditions are equivalent:

(a) A 'is elliptic.

(b) The operator A : Ht+m(x) -+ 'Ht-m'(X) is Fredholm for some (and then JOT alt)
t E [-s + d - min{d, d'}, s - max{d, d'}] .

In that case, there exists a parametrix P E A~:c7')' (-m),d,d' (X) to A. Moreover, elliptic
regularity holds, i.e., u E H-,,+m+d-min{d,d'}(X), Au E Ht-m' (X) for some t E [-5 + d 
minid, d'}, s - maxid, d'}] implies that u E Ht+m(x).

Pro 0 f: Suppose that A : Ht+m(x) -+ Ht-m' (X) is a. Fredholm operator for certain'
t E[-s + d - min{d, d'}, s - max{d,'d'}]. By order reduction and other manipulations we

may assume that m = m' = 0, d = d', t = 0, and A E A~~Jd(X).

vVe use a device from [18] to recover the principal symbol (JA(X,~) of 04: Given (xo, ~o) E
T-IRn

\ 0, there exists a family of unitary operators RA, A > 0, on L2 (IRn
) such.that, for

u E L2 (IRn
), RAu -+ °weakly in L2 (IRn

) as ..\ -t 00 and

(4.32)

for A E A~~~ld(IRn) and any compact operator K on L2(IRn
). A family of operators RA"

). > 0, obeying these properties is given by

(4.33)

For details, see {IS, Section 2.3.4].
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Using a partition of unity, we find, for fixed (xo, ~o) E T'"X \ 0, a family of isomorphisms
RA, A > 0, on L2(X) such that RA, R),l are uniformly bounded in norm for A > 0
independently of (xo, eo) E T'"X \ 0, further, for u E L2 (X), R>.u -+ 0 weakly in L2 (X) as
A -+ 00 and .

R),l(A +K)R>.u -+ (iA(XO,eO)u in L2(X) as A -+ 00

for A E A~~~;d(X) and any compact operator K on L2(X). Then, if A E Ai~~ld is a
. Fredholm operator on L?(X) .and P E .c(L2(X)) is a Fredholm parametrix to A, Le.,
PA - Id, A P - Id are compact operators, we get, for u E L2 (-X) and K = P A - Id,

where 1111 is the norm on L2(X) and C > 0 is same generic constant. Now, if A tends to
00, we find, for each u E L2(X), U i= 0,

(4.34)

with C > 0 being independent of (xo, eo) E T'"X \ 0, yielding the ellipticity of A.

Conversely, if A E A~::~·(ml).d,dl (X) is elliptic, then a parametrix exists. The existence of
a parametrix implies elliptic regularity and the Fredholm property. 0
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5 Notes and Remarks

We conclude with further notes on topics discussed in previous. sections~ Our exposition
in this paper is based on the classical stock of pseudo-differential calculus. For references
concerning the theory when the operators have smooth coefficients, the reader is referred
to standard textbooks, e.g., [6], [11], [21]. The theory of classical pseudo-differential
operators goes back to the classical paper [14]. A little later, in [10], the invariance of the
calculus under coordinate changes was proved and the general calculus was invented.

We add references which are elose to the subject treated in the body of the paper. Further
references may be fouod in papers cited in the bibliography.

Section 2. The maio attribute avoidiog the complications in the treatment of non
classical operators in [25] is the nuclearity of Sd(Rn

). This property was recognized
by F. Mantlik (Dortmund). He observed that, .under radial compactification of IRn and
appropriate renormalization, Sd (IRn

) is transformed into the space COO(Ir). Here IIr'
is the closed unit ball in IRn, and expansions of symbols in Sci(IRn

) into homogeneous
components correspond to .Taylor expansions near the boundary ~.

The topologization of the symbol spaces Sd(IR") is taken from [19] and represents in a
closed form the construction given there (cf. (2.6)). The proof announced for Proposition
2.4 that does not rely on the result S.;n(lR"; E) = S.;n(IR")0.-;E is as folIows: We have that
Sci(IR") 0 E is algebraically a subspace of .Sci(lR"; E). The induced topology is that of
the injective tensor product. Sci(lR"; E) becomes a subspace of L:((Sd(lR"))', E) via the
mapping a H- (<1> H- (<I>,a)). Here (Sd(R"))' is the strong dual to Sci(IR"). Note that
functionals <1> E (Sci(IR"))' can be applied to symbols a E Sci(R"j E) yielding elements
in E. It is seen that Sci(IR"; E) carries the topology induced from L:((Sci(IR"))', E) when
the latter is equipped with the topology of uniform convergence on all bounded subsets of
(Sci(IR"))'. We further have 'c((Sci(lRn

))', E) = Sd(lR.")~tE (see, e.g., [13]), since Sd(IR")
is a nuclear Frechet space..Therefore,

and Sd(IR"; E) 7= Sd(IRn)®1tE.

The symbol classes s;!,m
l

(R" x IR") were introduced by T. Hirschmann in connection with
a pseudo-differential ca,1culus on IR" for operators having symbols the coefficients of which
satisfy certain exit conditions at infinity. From (2.11), (2.12) and the same with the rales
of j, k interchanged it is seen that the definition given in [9J agrees .with that one used 
above.

Section 3. The structural aspects of the pseudo-differen~ialcalculus which have been
considered follow the general framework of a pseudo-clifferential theory. In particular, we
had to take care in two respects: only finite asymptotic expansions are allowed in the
calculus, and the components in these asymptotic expansions are generally of the form
p( D, x, D). The latter requirement causes that so-called spectral conditions otherwise to
impose on the symbols are avoided, as it has been aIready mentioned in the introduction.

The symbols considered in this paper are infinitely differentiable in the covariables. Some
times one is interested in symbols satisfying weaker differentiability conditions. Here we
did not go inta this question, and uo attempts were made to obtain optimal results. In
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[25], after the non-classical operator calculus will have been established, we will come
back to that topic and will make several comments on it.

It is natu~al to provide the classes A~~~' (m'),d, d' (IRn
) with suitable Frechet topologies. For

example, using these Frechet topologies oue confirms oneself that the inclusions stated in
Propositions 3.10, 3.15, 3.18 and 3.19 hold in a topological sense. The operator classes
A~m), (m'), d, d' (IRn ) to be introduced in [25] will turn out to be Banach spaces mainly due
to the fact that only finitely many derivatives with respect to the covariables are needed
in estimates. In any case we have

A (m), (mi), d, d' (IRn ) e.....t A (m), (m'),d, d' (IRn )
s, cl 4 ,

and the embedding is continuous.

Section 4. We compare the pseudü-differential calculus for operators with non-smoo~h

coefficients developed in this paper to other possible alternatives. In our calculus, the op
erators have coefficients in L2-Sobolev spaces H4(IRn

), while, roughly speaking, in Bony's
paradifferential calculus the coefficients are taken from Hölder-Zygmund spaces. One ad
vantage in OUf approach manifests in the simpler estimates used not built on Littlewood
Paley decompositions. Moreover, e.g., in view of applications to quasi-linear hyperbolic
equations it is desirable to demand coefficients in L2-Sobolev spaces, since solutions are
looked for in energy spaces. There are, however, applications in nonlinear partial differ
ential equations which oblique one to leave the range of applicability of L2-theory. In
such instances it would be better to have a calculus at one's disposal in which the coef
ficients are permitted in more general function spaces, e.g., in Besov- Of Bessel-potential
spaces. In a future paper, we shall lead iuto such pseudü-differential calcuE along the
lines stressed in this paper. In the global parametrix construction in Subsection 4.2 we
had to adjoin the operator classes Lci(IRn

) to our calculus to ohtain ~niform ellipticity
estimates, since functions in H4(Rn

) vanish at infinity. This setting-up and also some
trouble in formulating the commutator results would be prevented when working from
the beginning with coefficients, e.g., in Hölder-Zygmund spaces.

A further subject not touched upon in this paper concerns microlocal analysis, -hut it has
been already used in embryo in the proof of Lemma 4.1. Questions related to microlocal
analysis and similar questions are also intended to publication in a future paper. Here
we only note that the expected effect that proofs simplify considerably in dealing with
classical instead of- non-classical operators again occurs.
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