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B.Z. Moroz

On the coefficients of Artin-Weil L-functions.

Resume
o
Let L(s,p) = z an(p)n ® be an L-function associated to a represen-
n=1

tation p of the Weil group of a number field. We give an asymptotic

formula for the sum Z an(p) » @88 X —> ® _ yith an error term of the
n<x

same shape as in the Primidealsatz. The wain difficulty is due to the

is comparably large, while the known zero free region for

fact that ,an(p)
L(s,p) is as narrow as the one for Hec@g's L-functions "mit Gr¥Ben—
charakteren". It has been overcomed by reducing the problem to an

asymptotic estimate for the sum zlan(p* 2 of the coefficients of the scalar
product of L(s,p) and L(s,p*)?< where p* denotes the representation

contragradient to p . The consequences of Artin's Conjecture and the Extended

Riemann Hypothesis are discussed.



Let k be a number field of degree d = [k : Q] over Q and let
p : W) ——» GL(V)

be a finite dimensional complex representation of the Weil group
W(k) in a vector space V . One defines the L-function associated to

p by
Leeoo =[ Taeett - ool (51757, (1
B V}I .

where the product is extended over all the prime ideals g of k ,

lp|:= Nk/Qp ’ 0p is the Frobenius class at p and
VF-{xI p)x =x , TEL , XEV }

is the subspace of 1 p = invariant vectors, -Ip is the inertia subgroup
of W(k) at p, X = tr p . The Euler product (1) converges absolutely

for Re s>1 and can be developed in ‘a Dirichlet series
-8
L(s,x) = § a (0 |n| , Res>1 ,
n

where ft varies over integral ideals of k . The main object of this

paper is an asymptotic estimate, as x —>»  for the sum

Alx,x) = ) a ) -
ini<x

It is convenient to consider at the same time the sums



T

NCH I S I I

Inl<x 1=t

-— - . .
where ¥ =t()(1,...,)(r) » X; = tTp; , p; 1is a representation of W(ki)
for an extension kigk of finite degree, and L(s,xi) is developed

in a Dirichlet series

L(s,x;) = a (x;) |n]™°
n

over k, 1Sisr .

-
Theorem 1. There are an effectively computable constant c¢(x)>0 and

a polynomial P(;(‘,t) such that

|AG,Y) - xB(,log x)| <exp(-c(X) Tog x ).

We write
- ) -

A(x,x) = xP(X, log x) + R(x,X) (2)
and show that if the representation p = 91@ ...OGr , where Bi denotes
the representation of W(k) induced by P; » satisfies Artin's conjecture,
then one can find ¥y > 0 such that

RGGY) =0 ) . (AH.3)

Moreover, under the Grand Riemann Hypothesis (that is, assuming that any

relevant L-function "mit GrbBencharakteren" has no zeroes in the



half-plane Re s >%)
- §+e
R(x,x) = 0. (x* ) (RH. 4)

for any € > 0 . Finally (§ 4) we discuss the prime number theorem for

non—-Abelian characters and make a few bibliographical remarks.

To fix our notation let us recall that the Weil group W(k) is defined as
a projective limit over all the finite Galois extensions ED2k of the groups

W(Elk). Any W(EIk) fits in an exact sequence
1—> ¢, —> W(Elk) —> G(Elk) —> 1 ,

where CE is the idéle-class group of E and G(E|k) is the Galois group
of E over k . Since CE=R+ ><C°E » where R_ denotes the multiplicative

group of positive real numbers and C°E is compact, we have
W(EIk)s R _x W (ElK)
with compact W°(Elk) . Moreover,
W(EIK) = W(K) /W(E)©
where W(E)® denotes the closure of the commutant of W(E) . Any continuous
finite dimensional representation p of W(k) contains W(E)® in its

kernel for some EDk , therefore it can be regarded as a representation

of W(Elk). If, moreover, R € Ker p , so that actually p is a representation



of a compact group W°(Elk) , we say that it is normalised. Let Rep (k)
denote the set of continuous finite dimensional normalised complex re~
presentations of W(k) and let X(k) be the set of characters of such
representations. We denote by Gr(k) the subset of one-dimensional re-
presentations in Rep(k) ; it follows that Gr(k) coincides with the set
of normalised GrdBencharaktere , that is, continuous homomorphisms of Ck

in the unit circle trivial on R+ .

Lemma 1. Let X €X(k) . One can find finite extensions Bi:"_Jk, 1§is 4,

and GroBencharacters ‘l’i € Gr(Ei) such that

1) e;
L(s,X) = TTL(s,‘i’i) . (5)
-i=1
1 ,ism
where e.-{ s, 0<p,Sp .
i . 1

Proof. It is classical, [20], p. 33-34.

Let S1 and 82 denote the sets of real and complex places of k ,
respectively; let ¥ € Gr(k) and 1let xp be the p-component of ¥ ,

p € S1US . We write

2

it x a)’
Xg() = 1xiitp (-m) . x€ky

where kp is the completion of k at p , aF €z , rpGR , and, moreover,

% € {0,1} for p € S, - Let



it +ag , pE S1
s(x)'{ L
P . 1%l
21tp+—°§-, pes,

and let £ and D denote the conductor of X and the discriminant of
k , respectively. We define

(0 = IDI* N o £,

and

a0 = TT Ueyt0l + 0 TT Us wiZ+n .
peEs, RES, P

Let

L (s,x) =TT Gp(s + sp(x)) ,

B ES’U 82
7512 pes/2) » B ES,
where G,(s) = { 1-g .For x € X satisfying (5)
# en're L pes

2

let
M e: M
L (s,X) = TTLw(s,\l'i) i, a(x) =TT al¥,)
img i=1

u .
@ 00=TT  au(¥)®i

i=1

and let A(s,x) = L(s,x) L _(s,X) . Then



A(s,X) = W(x)u,(x)é-s AQ=-s,X) , WGOI =1 . (6)

To deduce (6) (cf. [20]) one uses the functional equations for the
Abelian L-functions (see, e.g., [21], p. 133) and the identity (5).

Let

v(x) = card {ilWi =1, i$141} - card {i|‘l’i =1 , i.>ﬂ1} .
The function
s ¥——> L(s,¥)

has at s = 1 a pole of order v(X) whenever v(x) >0 . One can show that

v(x)e 0 for x € X(k) .

Artin's conjecture (AH). The function

F: s+ L(s,x) - —1’—(—Y<w(1)3)x (A7)
g-

it holomorphic in & for some polynomial w(x,s) of degree v(x)-1

(assumed to be equal to zero when v(x)= 0) .

Let k, be a finite extension of k , P € Rep(ki) , 18isr , X; = tr p;

. Y
and ¥ =(X1”"’Xr) . Consider a Dirichlet series

- r
L(s;) = § mI"®TT a (X;) » Re s> 1 (8)
n i=1

over k . Let ei = Ind (W(ki), W(k), pi) and p = 6‘ ® ...® Gr,



X = tr p. Write
L(s,X) = L(s,x) * £(s,X), Re s>1 . 9)

Proposition 1. The function s -+ l(s;;) has a holomorphic continuation

to the half-plane Re s>~% and, moreover,

2(s,X) = 0_(1) when Re s>4+¢ (10)

for any € >0 .

We deduce this Proposition from the following lemma on convolutions.

Consider r Dirichlet series
Li(s) =] a,minl™ , Res>1, 1sisr .
n
Suppose that

. -1
L(s) =]TQ ¢ |8]™%) , Res>1,
i n P

where
. n
1
QP(t) jl.l1 (1 - o G) t)eC(e] .

Let, moreover, |aji(p)| =1 for p€S and let S be a finite set

of primes; let

B(p) = {aj1,(y) ujr‘m | 15,80, ..., 1Sjr$nr} .

Define two Dirichlet series



-1
Lo(s) =TT Q,,upl") ,
P

where Q)= T (1 -at) , and
a €Bg)

r

L(s) = J Inl”® (‘IT 3, () ) .
n i=1
Lemma 2. The function
s —> L(s) * Lo(s)" ! = 2(s)
can be holomorphically continued to the half-plane Re s>“% and, moreover,
2(s) = 05(1) when Re s>-% + € (1)

for any € > 0 .

Proof. Let p € S . One can show by a formal computation (cf.[14], lemma 5)

that
20 " TTa, @™ gLQn&; » Ry()m1 (mod ) (12)
o= “i=1

in the ring € {[t]] of formal power series, where R? is a polynomial
. r

of degree smaller than || n; . Since the set S is finite, it follows from
i=1
(12) that the product

sy = TT Rp(lpl—’)-1 T (Q,(m")of 117" T ai(a‘>)

pés pES m=0 i=1



converges absolutely when Re s>-;- . This proves the lemma.

2. We prove Theorem f in this paragraph. The following lemmas give the

analytic information needed to deduce the estimate for A(x,i‘).

Lemma 3. Let Y€Gr(k) and €>0 . There exists C(€)>0 such that

2(1+e-u) drecu
| Lo(u+it, 0] < cle)@ + Itl )2 aa(x) alx) 2 (13)

for |t] >1,t€R and any u in the interval -eSus! +¢ .

Proofi, It follows from Theorem 5 in [17].
From now on we assume that Y = tr p, p € Rep(k) and ¥ satisfies (5) .

Let

M
n(x) = Z [Bi:Q] . (14)

i=1

Lemma 4. The function F(u + it) defined by (7) is holomorphic and has

no zeroes in the region

w2t - o), tewr, (15)
where
a log (a,(x) alx) (It] + 2)) wvhen t2lt,l
o(t) = { f
a log (ao(x) al(x) (itel + 2)) when tsSt,]



for some a , t, depending only on the fields E, , 18isu (the

constant a may depend on the conductors of those ?i for which Yiz =1).

Proof. 1In view of (5) , this assertion follows from known zero-free
region for Abelian L-functions L(s,?i) , 1SisSy (see, e.g., [5],

p. 512, lemma 2, or [12], p. 15, lemma 2).

Lempa 5. In the region (15) the function (7) can be estimated as

follows:

Flu + it) = 0@, 2 + 1tD a®) (16)

for any & > 0 , where the O-constants depend only on the fields Ei

(and §6), and t, is chosen to be small enough (depending on §).

Proof. By lemma 4, the function g(s) = log F(s) is holomorphic in (15).

Moreover, Re g(s) = log |F(s)| , so that, by (13) and (5),

_211(_, +e-u) u(; +€-u)
Re g(s) S log [C(e) @+ 1eh) (2e GO0 ] an

+ log (1 +|$SXLEl(—y|) ,
(s-1)°

where 8 =u + it ,—eSust1 +¢c , t€R,€>0 . Choose & >0 .

By (17), one can choose t,>0 in such a way that
Re 5(2) S log| €,(8) 2 + It 2. 00a00® | (18)

for 8 = u + it satisfying (15). We cite now the following lemma from



- 11 -

the theory of functions (see, e.g., [16] , p. 383, Satz 4.2) :
let R>0 and assume that g(s) is holomorphic in the circle

{s |Is~s.1|] SR}, let Re g(s)SM .in this circle, then

lg(e) - g(su)ls 20 - Re g(s.)) = (19)
1 . -1
whenever |s - 8,/ Sr<R . We choose s, = 1 +-2_10_(_t-5- + it , R =p(t) ~,
r= ZE%ET . Combining (18) and (19) one deduces the statement of the

lemma.

We need two general results from the theory of Dirichlet series. Let

f(s) be a function meromorphic in the region

b
log B{jtl+ 2) °

B={u+it |u21 - t€R } (20)

and satisfying the following conditions:

a) in the half-plane Re s> 1 it is given by an absolutely convergent
Dirichlet series
s s
f(s) = z a n 3
n=1
b) there exists an integer V20 and a polynomial w(s) such that
w(s) =0 when v =0, w(s) is of degree v -1 when Vv 2 1, the

function

F(s) = £(s) - -iﬁii%-
(s-1)



is holomorphic in B ;

c) F(u + it) = 0(B(Jt]| + Z)Y) in B for some .y such that 0<y<I1.
Let A(x) = ¥ a for x>0 ,x¢Z.

n<x
Lemma 6. There is a polynomial P , of degree v - 1 when V21 and equal

to zero when v= 0 , such that

log x 2
A(x) = x'P(log x) + O(x exp(-C 08 )) + 0( .. la_l) (21)
! Yiog » + log B xSn¢B’x "0

where C1> 0 and

B =1+ exp ( -c, log x ) .

Ylog x + log B

Lemma 7. If anEO for every n , then

A(x) = x*P(log x) + O( X exp (-c’ log x )) , (22)

Ylog x + logh

in notation of lemma 6 .

These assertions are of quite classical origin; we are following the lines of

(8] , § 242, satz 62.

Proof of (21) and (22).

x .
Let Ai(x) ) a log — . Since
n<x

(* The author is grateful to Professor H. Delange for an alternative proof
of lemma 7.




3 ctie 8 0 » When y<1
—Z-H : I ‘ s ds = {
S =i log y , when y>1

for any c >t , y>0 and in view of a) , one obtains

c+io g

A (x) = i%f I. '§5 £(s) ds . (23)
c—iw

Conditions a)-c) allows to move the contour of integration in (23) to the

line
u=1- :
log B ({tl+ 2) -~
This gives
A,(x) - x-P1(log x) + O(x exp (-c2 - 1og x )) (24)

vlog x + log B

for some c2>'0 , where P1 is a polynomial of degree Vv - 1 (equal to

zero when v = 0). Let B>1 and write

A1 (x*B) = n<xx3- a log %B- = A(x)°log B+ Al(x) + xSh<xB ®n log KTB . (25)
Combining (24) and (25) one obtains the assertion of lemma 6.
Let now anZO for every n . Then, by (25),

AG) s MEB M@ (26)

log B



Analogously,

-1 X x 1
A (xg ) = a_ log = a_ log = + log E
1 nz< xB-l n En n2< xB" n n -5 n< xB-l

and, since

log 8 } a2 ;
xB~1 S n<x n xR~ 1sn<x n

we see that

AGO 2 A1(x) - Aq (xB—i)

Tog B (27)

The inequalities (26) and (27) when combined with (24) imply (22). It
Y
follows from lemma 5 and Proposition 1 that the function L(s,x) de-

fined by (8) satisfies conditions a)-c) of lemma 6 with B = a.(X)a(Xx) ,

therefore
-
A(x,X) = x'P(_f-,log x) + O(x exp("'c1 log x ))
/Tog x + log(a.(x)a(x))
"’0( z |8n(i‘)') ’
xSn<fx
v r -5 . I3
where a (X)=2 TI' a (x.) ,¢,>0, and P(X,t) 1is a polynomial of
B tlen i1 M3 1

r
degree Vv(x) -t ,x=trp,p =@ 6 i Let us consider now a sequence of
i=1

of characters X' = (x1,§1, cer o Xpo ir) , where ii is the character of

a
n
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the representation contragradient to X; » 80 that

— r 2
a )= 1 17 x.)|“z0 .
n ni=n 1=1 lon : |

Therefore, by lemma 7 ,

AGXD) = x PG, log x) + O(x exp(-c, log x )) (28)

/Tog %+ log(a.(x)a(x))

with some c2> 0 . On the other hand,

- T
I lag60ls & TT lag&p |

Xgn<px xg|n|<gx i=1

Therefore, by Schwartz's inequality,

1

L i ®ls( 1 a@)i( 1 )7 .

xSn<fx xSn<fx XS Il <Bx
By (28),
I a GH= A XD - AGYD = 00x exp(- ey Log X
xSn<Bx Ylog x+ log(a(x)a(x))

+ O((B - 1)x*(log x)v') .

—
where V' denotes the degree of the polynomial P(x',t) . Since,
by a theorem of Landau's ,
2

1= —n
Y 1~ wx+0(x a1 ),
Inl<x Y

)
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where w denotes the residue of the zeta-function of k , we have

I 1=0(B-Nx).
xS Inl<Bx

Combining these estimates one obtains.

A(x,;) = P(_)-(\,log x) + O(x exp(-c log x )) . (29)
vIog x + log(a,(Y)a(x))
where c¢> 0 depends only on the fields Ei and possibly on the conductors

of those ?i in (5) for which Wi = 1 ; as before, ¥ denotes the character

of p=é Bi.
i=1

Estimate (29) implies the inequality of Theorem 1.

3. Artin's conjecture or Riemann's Hypothesis (RH) allow both to improve

the errow term in (29) and to simplicify the reasoning. Let us assume

first that

L(s,¥,)340 for Re s>, 1sisr

2 s (RH.30)

for each of GrdBencharaktere ‘l’i occuring in (5). A classical argument

[10] (or [19], p. 282-283) shows that (30) implies the Lindelsi's hypothesis:

Lu + ie,¥)| *1 = 0 (CauGa) |eD®) when uwzg +e¢ (RH.31)’

for any of the functions

8 —> L(s,'l’i) , 181isyp
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in (5). In particular, for any € >0 and o, >-12- there exists

C(e,0,) such that
ILCu + it,X)] < C(e,00) (aoGal) |t])® (RH 31)

when u20, , t€ER , |tl21 . On the other hand, since the series (8)

converges absolutely for Re s> 1 , we have
S, 3
a () = 0. (7))

so that (see, e.g., [16], p. 376, equation (3.3))

t+e+iT s 1+€
Alx,X 57 J -’i—L(s,-)?) ds + oé(E—TL"—L“—> , £>0 . (32)
14+€~-iT

) MY
By Proposition 1 and assumption (30), the function L(s,YX)
has no singularities in the half-plane Re s>-;- , save for a pole of
order W(y) at s =1 (when v(x)>0). Moreover, by (31) and (10),

one can find C’ (€,0,) such that

| L+ ie, 0] < ¢ (e,00) (@a(at) feDE (RH 33)

1
-2' »

theorem on residues to the contour of integration consisting of the

whenever u 2 g, > lej2t , t€ER , €>0 . Applying Cauchy's

lines
{ut ixt | $+ ¢ sustve}, (1+es it| - P x%} ,

2
PP 5

{-;-+e+ it | x"stsx
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one deduces from (32) and (33) equation (2) and an . estimate
R(x,Xx) = OE(x (0o Oa()x)™) , >0, (RH 34)

with the O-constant depending on the fields E; in (5) (and €>0).

We have just proved the following assertion.

Theorem 2. If each of the L-functions L(s,?i), 1Sisp , occuring
in (5) satisfies (RH 30), then equation (2) holds with the estimate

(RH 34) for the error term.

If p satisfies Artin's conjecture, one can use the functional
equation to prove an analogue of (13) and then, moving the contour

of integration in (32) to the critical strip, to deduce (AH.3). Since
the Artin's conjecture has been proved to hold for many representations,
e.g., for GréBencharacters,for monomial representations, for tensor
products of monomial representations, and for certain two dimensional
representations with My <p, it seems desirable to go into details.

We start with the following lemma of which lemma 3 is a special case.

Lemma 8. If L(s,X) satisfies (AH.7), then

T~u
. 1+ n(X) 14w AH.35
L(u + it,x) = On(ltl( nu) 2 (a. (x)alx)) 2. ) (n.35)
whenever t€R , [t|>1 , 0‘<n<-;— . -nsSust+n.

1 Loo( 141-it ,X)
Proof. = =
roof. Let 0 <n s 5 and £(t) = log | Lo(-n#it, Y | , teEmr ,
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where ¥ 1is a GrdBencharakter in a field E of degree m = [E:Q].

By definitionm,

£(t) = 1 log

1 Gy (14 - it+ Sg_l
pE S (B) U S, ()

'G (-n+it+s

so that
rag F((1+n+ag-i(t+ty))
l£()| SFEE (E)| og| =% F(}\—n+ay+ ICc+ ¢ )') | | logm+
]
+ log(2 ) Y |10g] F(14n+ 3logl- i(t+ tg)) I .

) gl = —
RES,(E) Pen+ Zlagl- ile+eg))

Taking into account that o.n € {0,1} for pE€ S1(E) and applying the
formula T(s+1) = s I'(s) to reduce successively the real part of the

argument of the TI'-functions in the second sum to 1 +mn +{ l(zlpl}

in the numerator and to -n +{_|;L|} in the denominator, where {a}
denotes the fractional part of a€R (so that 0 $ {a} < 1), one obtains

by means of Stirling’s formula for [-function

“‘%ﬂ Y log |t+t |+ ¥ [(1 + 2n) log|t + tFI +

peES, peES,

k- i(t+tp)
1$2k<-k—’ﬁ'— logly = (n+1) + 1(t+ €y ) |] + 0(1)
2

with an O~constant depending on m = [E:Q]. As an elementary consequence of

this estimate, it follows that

|f(:)|s (-;— + 1) (log a(x) + mlog (1 + {t])) + o(1). (36)
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It follows from (36) that

n(%”‘)) 3N

100(1 +N - it,J—O =
tellan i K .o (@Ot + 1eD)

u
where , by definition, n = 2 [Ei:Q] . By (6) and (37),
i=1

L(~n+ it,y) = on(ao(x) (a(x) (1 + |:|))“(%*")) , (38)

since L(1 +n- it,Y) = On(1) for any n> 0. We cite the following

result from the theory of functions (cf.[ 3], p. 92):

Let F(s) be a function regular in the strip aSRessS B and
F(u + it)s exp(exp (ylti)) for asSusB , t€R with 1y < 'B'EE .
If F(a+ it) SU(1 +1e])? , F(B + it)SV for t€ER and U>1 ,

v>1, a>0, then, for aSusf , t€ER, we have

Bu  u-a a(f~u)
F(u + it) = 0 (u Bra gy B e BO ) (39)

Properly adjusting the constants one deduces (AH.35) from (38), (39)

and (AH.7).

Write

A(x,x) = x-P(x,log x) + R(x,X). : (40)

Theorem 3. If L(s,X) satis fies (AH.7), then
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2
RGx,x) = 0_(@(0a.00x' w32 * ) C (am.e)

r
-
if, moreover, x=-1_r trei is the character associated to X as
i=1
in (9), then

- : -2
R(x,X) = Oe(u(x)a.(x)x1 neg T E

), (AH.42)
for any € > 0 and with n = n()).

Proof. The estimate (AH.41) follows from (AH.35) and (32) by the theorem
of Cauchy's on residues applied to the contour of integration consisting

of the lines

Ly = {1t +e+ ti | -TSesT}, {ic]-T SesT}, {u £iT{0S1S1+¢ }.

To deduce (AH.42) one uses (AH.35), (9) and (10) and applies the theorem

on residues to the contour consisting of 21 and the lines
A {—;-+€+it‘-TStST}, {u 24T l-%+s Susi+e }

Remark. Throughout this paragraph the constants implied by the O-symbols

may depend on the fields Ei’ 15isy .

- . .
Corollary. I1f x = (x1,...,xr) s xiG Gr(ki), then (42) holds unconditionally.
Proof. By a theorem of Mackey's , [11], p = 9‘9 %r being a product

of monomial representations is equivalent to a direct sum of monomial re-~

presentations, therefore p satisfies (5) with Hy =u. In particular,
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(AH.7) holds for ¥ = tr P (cf. [14] and [15], Appendix).

4. Write ¥ (pm) = tr"(o(op)lv ) . As an easy consequence of (5) »
g

one deduces the following assertion.

Proposition 2. Let X satisfy (5). Then

] v@) +oah
m%<x

M
Doxtp) =] e,

Ipl<x i=t *

where q; varies over the prime divisors of Ei , 181isy .

Proof. Taking the logarithm of both sides in (5) one obtains for

Re s> 1 :
Py XED e $@0) g
. . m p . ei m qi
m2! P i=1 le,qi

In particular, equating the coefficients in (44) one obtains

11
I x@ = Ye, ¥ ¥.(@)
lpi=p i=t *lgl=p * 7

for any prime P in Q ; estimate (43) is an obvious consequence of

(45). Write

X
- 0, ¥.#1
}(x ¥;@) =g(¥) [ du i

2 logu * r(x,?i), g(\l’i.) = {

1, Vi- 1

M
Since Z Fig(Yi) = v(x) , it follows from (43) that
i=1

(43)

(44)

(45)
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.8
| 'E X® =900 [ g5t rn
pi<x

where

u ' v
r(xe,x)| s ¥ |x, (¥ + O(x}) .
i=1

From the known estimates for r(x,?i) , YiE'Gr(Ei) (cf£. [5], p.513,

lemma 4, or [12], p. 16, lemma 7) one deduces , in view of (47), that

r(x,x) = O(x exp (-y log x )) with y>0
vlog x+ log a(y)

Moreover, recent results [4],[13] allow to improve on the estimate (48).
The reader can consult [18] (and references therein) for interesting

applicdtions of the non-Abelian prime number theorem.

By the methods developed in [6),[7] (cf. also [14] ) one can continue
L(s,§3 defined by (8) to the half-plane Re s>0 (but, in general,
not beyond the line Re s = 0). We should like to refer to [1] ,[ 2],
[22]>for some results related to the ones discussed here and to [9]

for comprehensive information concerning Artin's conjecture.
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