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The Mirror of Calabi~Yau Orbifold

Shi—shyr Roan

It has recently been recognized that the relation between exactly solvable
conformal field theory and Calabi—Yau (CY) spaces necessarily involves hypersurfaces
in weighted' projective 4—space. A surprising symmetry which pairs different CY spaces
with Euler numbers differed by y ——— —y was found by examining a large such class
of manifolds [2], [8]. This duality shows that the topologically distinct CY pair yield
the isomorphic conformal theories. Such symmetry indicates that this class of CY spaces
is potentially of much higher phenomenological interest for the string theorists. As the
simplest example, consider the Fermat quintic in [P4t ,

5,5 ,..5,.5,.5_
z1+z2+z3+z4+z5—0 ,

which is invariant under the action of the subgroup G of SLS(Q'.) consisting of all the
order 5 diagonal matrices. The mirror partner of this Fermat quintic is the CY
‘resolution of its quotient variety by G . Its Euler number equals to 200, (= —y
(quintic)), by the "orbifold Euler number" formula [1], [4], [11], [12]. In this paper,
we shall study the above construction on a more general setting for the hypersurfaces in
weighted projective space. Consider a quasismooth hypersurface in W [P4n o)
' ; 175
defined by a degree d polynomial {(z) =0 with d = z n, , g.c.d. (njlj $i)=1 for

i=1



—_2_

all i.Let G be a diagonal subgroup of SLs(C) leaving the polynomial f(z) invariant.
Let X{T,G) be the CY resolution of X(f,G) = {[z] € W IP‘(in.) |f(z) = 0}/G . The
i

question which arises here is to what extent the mirror of X{T,G), (which means a
CY space with Euler number = —x(X{ T,G)) ), be obtained through the geometrical

construction. In general, the hypersurface f(z) =0 in W ﬂ’%n.) has the singularities
i

itself. Hence a more general formula than the "orbifold Euler number" is needed for the
purpose of computation while some specific example is given. As in [9], one can resolve
the singularities of X(f,G) while maintaining the condition ¢,=0 to obtain the CY
space X{T,G). By the same argument in [13], the general formulae for the Euler
number and the Betti numbers of X{T,G) are obtained, which generalize Vafa’s
formula for the hypersurface cases [13], [17]. The formulae are expressed in terms of
the weights n.’s and the grc;up G, and described in THEOREM 1 of this paper. These
terms involve the Euler numbers of the Milnor’s fibers associated to the polynomial f(z)
and its intersection with a certain part of the coordinates z.'s .

For the discussion of the mirror of X{1,G), we consider only the cases when d
‘is divisible by n, forall i,and d, = d/ni 2 3 . In this situation, each diagonal
subgroup G of SL5(C) containing

e21rﬂ/d1
- e21rs/:1'/d5 '

is naturally corresponding to another subgroup G’ of this kind such that

X(XﬁaG)) = —X(anG,)) )
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here f, g are the G, G’ resp., invariant quasihomogeneous polynomials of degree d
with the only isolated critical point at origin. The group G’ is called the dual of G .
This correspondence will be described in section 3. In order to show the above symmetry
x — —x , by the generalized Vafa’s formula we have obtained, it needs only to

consider the case when both f(z), g(z) are the Fermat polynomial for the weights n’s

d. d, d, d, d
1 99 d3 4y
21 t2y +2g3 tzy g

5
For the Fermat polynomial f(z), we have the explicit correspondence between the

Hodge groups of X{T,G) and X{T,G’):
alx{r,6) = 824x(T,6") ,
B2l(x(T,6) = mllx(r,6) ,

which implies ¥(XTT,G)) = —x(XTT,G’)) by the Hodge structures of CY spaces.
The derivation of the above isomorphisms will be given in section 4. These isomorphisms
are also interesting in its own, as it is known that the Fermat polynomial is
corresponding to the superpotential of the Landau—Ginzburg N=2 conformal theories
composed of the A—type singularities [5], [7]. Here we identify the cohomology
elements of the dual CY spaces corresponding to the same massless state of the
conformal theory.

From_the physics point of view, the CY spaces we focus here are the lowest order
approximations.to string vacua constructed from the N=2" minimal models [6]. The
symmetry, y — —x , is simply the effect on the minimal model vacuum of reversing

the sign of the left moving U(1) charge of all states. On the underlying geometry, the
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effect is far more pronounced. At this time of writing, it is not clear to what extent a
mirror exists for a general CY space. Recent developments have indicated that the
examples constructed in this paper may also be realised by polynomials in weighted p*
[10]. For CY hypersurfaces which are not of Fermat type, the formuiation of mirrors
given here cannot be applied. I; would be interesting to have a more general method to
obtain further examples to show the symmetry y +—— —y of CY manifolds. The
mirrors of CY spaces in the complete—intersection case and the higher dimensional
generalization have now been considered; work along these lines is in progress.

The author is most pleased to acknowledge the many fruitful discussions with Prof.
B.R. Greene for explaining his and his collaborators’ work on the duality y «—— —y .
Here we have given a mathematical proof of their result [8], in which the conclusions
were derived from the conformal field theory based on the physicist’s reasoning. I also
wish to thank Prof. F. Hirzebruch for the opportunity of visiting Max—Planck—Institut

fir Mathematik where this work was done.

1. Preliminary

Let n, 1 <i< 5, be the positive integers with g.c.d. (11i |jFi)=1 forall i.
5
=\ = — : S [po¥k
Let d —z n, q;=n/d, d, =d/g.cd.(dn,) foreach i.Let R® (R") be the
i=1
vector space consisting of all 5x1 columm ( 1x5 row resp.) vectors, and
{ei |1<i<5}, {¢|1<i<5} be the standard base of R® and R** respectively.

Denote



*
" T = the algebraic torus (€ )5 )

5 -
q=) ge,
i=1
3!
. di
D ={]|-€T|t., =1foralli},
q t 1
5 .
tl 5
SDq= the subgroup of D, consisting all the elements | with T [t =1.
i=1
ts
27y -1 q;%¢
e
exp 'R ——rT,exp(x)= . ’
d q 2xy -1 QgXe
e

. RO — _ i
trq.[R — R, trq(x)_zqixi for x_zxie ,

1 1
5 .
Q = the group generated by equ( 2 ey,
i=1
1
N, = gXpal(l) , 1= :
1

The subgrdups of T arein one—to—one correspondence with the (additive) subgroups of

R® containing N, by assigning G to Ng %expgl(G) , and



Gy LGy iff Ng (NG,

Ny ={ Y mg; e imen}, (1)
i
NDq = { Zmi(diqi)—lel |m, €T} .

1

In fact, NG is the group of 1—parameter subgroups of the algebraic group T/G,

*
Ng = Homa.lg.group(c ,T/G) .

Now we consider the group of characters of T/G,

M = Hom T/G,C) .

a.lg.group(

Then the subgroups of D q are in one—one correspondence with all the sublattices of

M, containing MDq , and

Gy LGy if Mg IMg

M, = the standard lattice in RO* consisting of all - (2)

elements zmiei , M, €z
i

Mp, ={Zm-d-e.|miEﬂ} .

111
1

For our purpose, we shall consider only the subgroups lying between Q and SDq .
Throughout the discussion of this paper, G shall always denote a group with



Let

QCGCSDq .

C [z,z"l] = the algebra consisting of all the Laurent polynomials f(z,z_l)

-1 -1
(=1(z},2; 1eeesBg B )) -
C[z] = the algebra of all the polynomials f(z) (= f(z,,...,2¢)),

k
5 -
~2g° for k= 2 ke, €M,

i

(M(;)+ = {Zkiei € Mglki 20},
i

P = the C—subspace of C[z] generated by 7 , kK€ (MG)+ with trq(k) =1.

k
z

zk1
1

Consider the natural action of G on T . It induces a G—action on the algebraic

functionsof T, € [z,z-l] . Then the following lemma is obvious.

LEMMA 1. For k € M, ,

k€Mg— 2 € €[22 19,
k€ (MG)_[_é-——izk € C[Z]G ,
i(z) € P — {(z) is a G—Hnvariant quasihomogeneous polynomial of

~degree d with weight n.’s.



2. Calabi—Yau orbifolds

Let d, n,, G be the same as in the previous section. The linear action of G on

€® induces a G-action on the weighted projective space W IP‘(in') . Let 1(z) bea
i

G—invariant quasihomogeneous polynomial of degree d with weights n,’s . Assume
f(z) has the only isolated critical point at the origin. The polynomial f defines a

quasismooth hypersurface in W IP‘(in.) :
i

{[] EWPL, ) | fz) =0} ,

which is stable under the action of G . The G—quotient of this hypersurface is denoted
by

X =X({,G) .
Denote
S =¢%\0,
M (= M(f)) = {z € S|f(z) = 0} ,

{z} = the G—orbit of z in S§/G for z€S.

*
Since the abelian group G contains Q , the € —action of S,



n
1
S | . 5
pez= for u€€ | z= €S ,
n z
5 5
Ko Zg

*
induces a well—defined € —action of S/G

¢ xS/G——5/G
(A{z}) —— M{z} = {p-2} with A=l .

The polynomial f(z) also induces the function fq of S/G satisfying
S——S/G

-
fl ' fG

C

with fo(A*{z}) = AM5({z}) for {z} € S/G . Then M/G is the set of all elements
{z} in §/G satisfying fG({z}) = 0. Denote GC = the abelian group of linear

transformations generated by G and

*
, hEC . (3)

GC* actson S and M.

DEFINITION. For asubset I of {1,...,5},
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Cy={b€GEC |h(z) =2 forall z with =0, i€}
=Gl -

*
For an element z of S, the isotropic subgroup (GC )z at z finite, and equals
*
to CI(z) with I(z) = {i|z; = 0} . The index I(z) depends only on the GC —orbit x
of z, hence we can also write I(x) = I(z) . Now the space X can be identified with

C*—quotien_t of M/G,
* *
X=(M/G)/C =M/GC .

LEMMA 2. X Is a V—manifold having at most abelian quotient singularity, and

with the trivial canonicat sheaf. Furthermore, for x € X,
3 . .
(X,x) «(C /CI(z)’O) for some imbedding CI(x) L SLa(C) .

PROOF: Let x bean element of X , z be an element of M whose GC —orbit
equals to *xﬂ There is a small CI(X)—invariant 4—discin S which intersects both M
and the € —orbit of z normally at the point z. Let A be the intersection of this
4—disc and' M . Then A is CI(x)—invaria.nt, and (M,z) ~ (A,z) x (C*,l) . It is easy to

see that (X,x) & (A,z)/CI(x) .By d = E n, , there is a never—vanishing holomorphic
i .

*
4—form on M which is invariant under the action of G{ . Its interior product with
. *
the vector field generated by € gives a never—vanishing section of the canonical sheaf

of X . Hence the result follows immediately. g.e.d.

By [12], the "minimal" toroidal resolution of X,
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0:5(—-+X

is a Calabi—Yau space. We are going to express the topological invariances of X in
terms of q;'s and G.

In general, for a subset I of {l1,...,5}, CI NG¢C.

LEMMA 3. When I satisfies the condition SN {z, =0}i € I}ECM (ie.

f(z]z; = 0 for i €I) is a non—zero function), one has

C;CG,

and
gEC NG iff {ijg(e)#e'} =1,
here ei’s are the standard base of d',5 .

PROOF: Let s be anelement in S\M with {i|s; =0} =1. For an element
* *
88, in GC with g€G, By the element of (3) for u € € . Then

B8, € G —— 88,(5) = s — £(s) = (g5 (5)) = (g ,(5)) = 4105 -

Hence pd =1, and gg 4 € G . Therefore CI C G . The other conclusion follows

B
the definition of CI . q.e.d.

LEMMA4 ) ¢ =|G]|.
| 1] =4
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* ¥
PROOF. Let € be the subgroup of GC consisting all the elements in (3).
Then

x *
GC /C ~G/Q

* -
whose order is equal to |G|/d . For 1<i<5, the isotropy group (GC ) ; at e is
e

C; for I={j[1 <j#i<5}. It is easy to see that the homomorphism

(Ge:"')ei ——ac/C

*
is surjective with the kernel (C ) . . Hence
e

(GE) 1 = 1(€) ;|- IG]/d=n|G|/d .
e e

By d =) n,, the result follows immediately. q.e.d.
i

Now we are going to derive the generalized Vafa’s formula of the Euler number of

X just as the case of hypersurface in W IP'(in.) [13] [17].
i

THEOREM 1. Let g, G, X be the same as before. Then

(i) XX)=—— 3 TT{0-D)le) =) = €'}
|G| g,heG !

here {el,...,es} is the standard base of €° acted linearly by G,and TT{*} =1 if
{(*}=9¢.
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(ii) For g € G, define

B=—— 3 TT{1-Plg) =h(e) = ¢},
Gl wea !

s = I{i18i <5 8(e) = €} -
Then
b3(X) = =3, 18,1 4, 2 3}
b2(X) = -1+3) {814, <3} .
PROOF. Denote

Y = {[2,...26] EWP? 4 = 1(z),25)} -

(nl,...,n5,l)|z
5
F = {(ZI"“’ZS) eC|1= f(zl,,,,,zs)} )

Consider the linear transformation group of 025 as a subgroup of projective

transformation group W [P? ) G actson W IP? and leaves Y

Dyl nl,...,ns,l) ’

invariant. So we may consider G- as an antomorphism group of Y . The G—equivariant

projection [zl,...,zs] — [zl,...,z5] induces

r:Y—-eWIP%n')/G%P .
1
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For 1C {1,..,5}, let

P, =SN{z =0 forall i €1}/GC .

X;=Mn{z =0 forall i €1}/GC .

I
Uy =P —X; . (4)
Yr=YN{z=0 forall i €I} .

' e YI —_— PI the restriction of = .

With the same argument in Theorem 1 of [13], by the description of C; and LEMMA
4, one can obtain the formula in (i) after replacing the data in [13] by the
corresponding ones we have just define in (4). Also the same procedure as Theorem 3 of

[13], we obtain (ii). q.e.d.
The singularities of X

here X; is defined in (4),or =XnN {zi =0, forall i €I} . An irreducible component
of a—l(Sing(X)) is called an exceptional divisor in X . For X; C Sing(X) , it is
necessary that |I| =2,3,and X; is an irreducible non—singular curve when

|I| = 2. The relation between the cohomologies (with {—coefficient) of X , the

exceptional divisors, and X are described as follows.

THEOREM 2. For r =23,

PN

HY(X) ~ H(X) o6 B %(D) ~ BY(X) oe B 2(0(D)) |
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-

here the index D runs all the exceptional divisorsin X .

PROOF: By the construction of the toroidal resolution for X , for an exceptional
divisor D,

o:D — g(D)

is a P1—bundle when o(D) = a curve, and D is a rational surface when ¢(D) isa
point. Hence Hi(D) ~ Hi(a(D)) for i = 0,1 . So we need only to show either one of the
above isomorphisms for each r. For r = 3, the conclusion follows from Theorem 2 of
[13]. For r =2, by the CY property of X , the second cohomology of X with
H—coef:ﬁcieﬁt is isomorphic to the group of all line bundles of X , Hl(k,a*) . Consider

the natural induced homomorphism,
¥ 1 * 1 ~ *
o :H(X,0)—H(X,0) ,

which is injective by the connectedness of the fibers of o : X — X . Applying the
*
operation o on the line bundles of X, by the normal property for X, one can show

. *
that every line bundle is uniquely expressed by o (L) ® J( z mp, D) for
. D
LEe Hl(X,a )s mp € I, D : exceptional divisor. Hence we obtain the above first

isomorphism for r = 2. q.e.d.

3. Dual Group



* .
We now identify the vector spaces R® with R® in section 1 via €' ~—— € -

Then

N1=MD c——-»NquMl&——-—a
d is divisible by n, forall i . (5)

Under this condition, by (1) and (2), every subgroup G of D q corresponds to a
subgroup G’ of D with

NG = MG/ 3
equivalently

G’ is called the dual group of G .
For the rest of this paper, we shall always assume the n.’s satisfy the condition
(5), and d/n, 23 forall i.

The following properties for dual groups are obvious:

Q’ =SDq ;
(G,), =G, _
Gy LGy iff (Gy)' 2(Gy)" -

Since
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_ Dq/G = NDq/NG = M,/Mq = the character group of G’ ,

we have

1GI+1G | =dj..dy .

We can also obtain NG’ from NG by the following procedure. Denote

.md o md 1 i _
i i i

Then NG’ is the dual lattice of NG with respect to <, >q , i.e.
5
NG/ = {XE[R |<x,NG >q£H} .

The above properties of G and G’ can also be obtained through this lattice’s
consideration. |

Consider the quasihomogeneous polynomial functions (z), h(z) of degree d
w.r.t. n’s, which are invariant under the action of G, G’ respectively. Assume f(z),
h(z) have the only isolated critical point at origin. Denote

-

- X = the CY resolution of X(= X(f,G)) ,

-

X’ = the CY resolution of X’ (= X(h,G")) .

THEOREM 3. We have the following duality between the Hodge numbers of X
and 5(’ :
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As a consequence, x(k) = ——x()‘(’) :

By THEOREM 1, the Hodge numbers of 5{, 5(’ depend only on the group G,
G’ . We may assume both polynomials f(z) and g(z) equal to the Fermat polynomial.
Then THEOREM 3 is a consequence of the following one.

THEOREM 4. When {(z) = g(z) = the Fermat polynomial for n.’s,
d, dg d, dg

f(z) =2, + 25" +123" +24 +25°, d;=d/n, 23,

there exist the {—isomorphisms between the Hodge groups of X and X’ :

The next section is mainly devoted to the proof of the above theorem.

4. Fermat hypérsurfa.ce

In this section, f(z) always denotes the Fermat polynomial for n.’s,

d d d d d
4 Gy dg dg  dyg _
f(z)—z1 +2o" + 25" + 24 +z5 , di—d/ni23 .
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Let [R5 , equ , trq , G, NG , MG be the same as in section 1,

7: X — X (= X(£,G)) the CY resolution of X ,
# = the Jacobian ring € [z,..25]/(30) of 1(z),
1

#1 = the Jacobian ring of f(z|z =0 forall i €I}, IC{1,...5}.

The action of G on €° induces a G—action on C[z] , henceon _# and A for all

I. For a non—negative integer m , let

( }I)G,m = the subspace of ( }I)G generated by all the monomial zk with
.k=2kie1, ki=0 for i€1,and E qj(kj+1) = m+1.

i i3
i
G,m

F = the subspace of }G generated by those monomial polynomial zk with

trq(k) =m .

By [3], [16], the Hodge structure of X and X;'s (defined in (4)) can be described by
G—spaces ¢, #;.We have
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B x) = SO

Bx) = 592,

B0x) 2 ()0 for [11=2, (6)
BO(Xg) 2 €8 (40 for |K|=3 .

We are going to associate the above spaces to the certain data in MG . For this

purpose, we introduce the following notations.

DEFINITION. Let L be a lattice in [R5 with NQ CLC NQ’ , I be a subset of
{1,...,5}, k. bethe i-th coordinate of k for k € L. Define
the I-th sublatticeof L = {k € L|kj =0 forall jEI}.
F(L) = {k €L|tr (k) = 1,0 <k < d;-2 forall i }.
E(L;I) = {k € I-th sublattice of L |trq(k) =10¢ k, < d,-1,i € I}, for
1] =2,3.
E(L;K)* =E(L;K)- U ELJ) for |K|=3.
JCK

17| =2

The following technique lemmas are essential for the latter discussion.

LEMMA 5. There exists an one—one correspondence between the following subsets
of L,

e:U{ELD] 1] =23} — FL)\ { J'} .

PROOF. By zqi = 1, there are at most two di with value 3. When there are
i

two di = 3, by remunerating the indices, we shall always assume d, = d2 =3 in this
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proof. For an element k, let ki be the i—th coordinate of k . Denote e = 2 ei It s
i

easy to see that, for k € F(L),
k>0 forall i «—— k=¢.
Define ¢ to be the identity map on F(L) n (U {E(L;I)| |I| = 2,3}) . We need only to
define ¢ on E(L;I)\F(L) for [I| =2,3.
(1) For |I| =3,say I={1,2,3}.
For k € E(L;I)\F(L) , by the definition of E(L;I) and F(L),

k=k1e1+k2e2+k3e3 for some k. =d.-1, kj>0 for 1<j<3 .

CLAIM: There is only one i with ki = di—l , furthermore for j#i, kj <d j—2 i
Otherwise, say k; =d,—1 and k, 2 dy—2 . We have

1= trq(k) =k, /d; + ko/dy + kg/ds 2 1-1/d; + 1-2/d, + kg/ds |

1/dy > 1/dg + 1/d, + 1/dy

5
1=1/3+2/321/d, +2/dy> ) 1/d. =1,

1=1
which is a contradiction. we define

@(k) = k + e —de' for k € E(LI)\F(L) with i as above.



—-9292 —

Then ¢(k) € F(L)\{e} , and

kEF(L)
W(E(L;D\F(L)) = {

ke, k,=k,=1, k;=0 for some unique i ,}

kj_>_2 for theother j's
(2) For |I| =2,say I={1,2}.
For k € E(L,I)\F(L),

1 2

k= kle + kze , k_i = di—l for some i .

CLAIM: If k; = d,—1 and the other kj 2 dj—2 , then d;, =d, =3, and
(ky ko) =(2,1) or (1,2) . Say, k; =d\-1, kq 2 dy~2 . Then

1= trq(k) = kl/d1 + k2/d2 2 1—1/d1 +1 —2/d2 ,
1/d; +2/dg 21,
hence d; =dy =3, (k;k,) = (2,1) .
Now we define

C 1 3 4 5 . S — —
e 4+ 2" + 2" + 2% if dl—d2—3, k1—2, k2 =1,

2 3 4 5 .
ok)=1e“ + 2" + 2¢" + 2¢" if d1=d2=3, k1=1,k2= 2,

Lk + e - die1 otherwise, here i with k., =d;-1
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Then ¢(k) € F(L)\{e}, and

3 4 ,,5 2 3 4

{e1+2e +2e°+2e", e“+2e" 42 +2e5} if d1 = d2 =3,

P(E(LI)\F(L)) = {x€F(L) |k#e, ky=k,=k,=1, k;=0 for some unique i,

kj_>_2 for the other j } ,otherwise.

Let k be an element of F(L)\({e} U {E(L;I)| |I| = 2,3}) . It is easy to see that
|{i|ki=0j| =1,and |{i|k =1}| 22 except d; =d, =3 and
k¢ {e1+2e3+2e4+2e5, e2+2e3+2e4+2e5} . Then k belongs to one and only one
(E(L;I)\F(L)) , for |I| = 2,3, which we have just described. Hence the map ¢ is

bijective. g.e.d.

LEMMA 6.
(i) There exists a base of H21(X) which is bijective to F(MG) .
(ii) The map

o _ i o /i ’_ 4
ke—— k' with k—Zkie,k _Zkie,ki+ki_di2,
1 1

defines an one—one correspondence between F(Ms) and

F(Mg)' = {k’ =Zk‘i'el € Mg |tr (k') = 2,0 <k{ < d—2 forall i}
1

And F(MG)’ is bijective to a base of H12(X) :

PROOQOF. Since each element of _# is uniquely represented by zk with
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k=Y ke, 0<k <d-2, by (6) and LEMMA 1, there is a base of B2}(X)
i

parametrized by the elements in F(M) . So we obtain (i). (ii) follows from
A I :
trq(k) + trq(k ) =3 when k, + ki =d-2 forall i.

For the convenience of the notations, we shall consider
F(M) = the base of B2/(X) .
LEMMA 7. For I with |I] =23 ,let I’ = {1,...,5}\I. Then
XpC Sing(X) iff E(NGD)#¢ ,
and there exists an one—one correspondence betwe_en the following sets.
(i) For |I| =2,

{D : the exceptional divisor in X with ¢(D) = Xi} — E(NgI),
*

a base of B'O(X)) —— E(Mg1’) .

(ii) For |K| =3,

{D : the exceptional divisor in X with ¢(D) = a} +—— E(NG;K)* ,
a base of HO(XK)/CO‘ —— B(MyK') , |

here a: an element. of XK ,

q.e.d.
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6 : the O0—cocycle assigning the value 1 for each element of Xk -

PROOF. By LEMMA 2, CI CG forall 1. Hence CI is isomorphic to the
quotient of the I-th sublattice of NG by its intersection with N1 via the map equ.
For |I| =2 or 3,

X C Sing(X) — C $ {1} — E(NG;I) ¢ .

For [I| =2, X; is an irreducible non—singular curve. By (6) and LEMMA 1, the

elements of a base of HIO(XI) are in one—one correspondence with
’ _ S U : ’ _ ’ _ .
k —Zki e, ki =0 for i€I, %Iqjkj --1,151;‘i de 1 for jEI ,
1 J

which is the same for k' € E(MG;I’)* .

For Xy C Sing(X), K| =3, Xy consists of finite elements. By the similar
argument as the base of |I| =2, the base of HO(XK)/&S is in one—one
correspondence with E(M ;K ’) . The conclusion for the exceptional divisors in the
lemma folldws from the construction of the toroidal resolution X , which can be found

in [12], [14]. g.e.d.
Again, we shall regard

E(MG;I’)}‘r = the base of HlO(XI) for {I| =2,
E(MqgK") || {6} = the base of HO(XK) for |{K| =3 .
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Proof of THEOREM 4. By THEOREM 2,

Hm(a(D))lD . exceptional d i visor with]

21,y A w2l
H*(X)~H (X)@e[ o(D) = X; forsome |I| =2

B (x) ~ B}(X) ® @ (B%(0(D))| D : exceptional divisor).
By LEMMA 6 and 7, we can regard

FMg) L1 1 | (B(NgI) x E(Mqil")) = the base of HX'(X) ,
|I|=2

11 E(NG;K)* 1L L1 ENGD*x{H L1 | | (B(NgI) x EMgL")) =
1K |=3 11]=2 11]=2 ‘
the base of Hll(X) .

The similar expression for H21(X’) and Hll(k’) by replacing G by G’ . Since
NG = MG /5 MG = NG’ , in order to obtain an one—one correspondence of the bases of

Hzl(X) and Hll(k’ ), it suffices to have a bijective map between

F(Ng/) and | | E(Ng/iK) || | | (BNg/D) x {8})
IK[=3 1]=2

-~

and the similar statement for Hll(X) and Hzl(i{’ ) by replacing G’ by G.By
LEMMA 5, there exists a such bijective map of the lattice L = NG 1 WNg - Hence we

obtain our result. q.e.d.
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