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The Mirror of Calabi-Yau Orbifold

Shi-shyr Roan

It has recently been recognized that the relation between exactly solvable

conformal field theory and Calabi-Yau (CY) spaces necessarily involves hypersurfaces

in weighted projective 4-space. A surprising symmetry whieh pairs different CY spaces

with Euler numbers differed by X~ -X was faund by examining a large such dass

af manifolds [2], [8]. This duality shows that the topologieally distinct CY pair yield

the isomorphie confonnal theories. Such symmetry indicates that this dass of CY spaces

is potentially of much higher phenomenologieal interest for the string theorists. As the

simplest ex:ample, consider the Fermat quintic in 0:,4,

which is invariant under the action of the subgroup G of SLS([) consisting of all the

order S diagonal matriees. The mirrar partner of this Fermat quintic is the CY

.resolution of its quotient variety by G . Hs Eu1er number equals to 200, (= -X

(quintic)), by the "orbifold Euler number" formula [1], [4], [11], [12]. In this paper,

we shall study the above construction on a more general setting for the hypersurfaces in

weighted projective space. Consider a quasismooth hypersurface in W IPtnl'""",n
S

)

S

defined by a degree d polynomial f(z) = 0 with d = l nj J g.c.d. (nj Ij =F i) = 1 for

i=l
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all i . Let G be a diagonal subgroup of SL5(() leaving the polynomial f(z) invariant.

Let x'(f,G) be the CY resolution of X(f,G) = Hz] EW f1n.) If(z) = O}/G. The
1

question which arises here is to what extent the mirror of x'(f,G) , (which means a

CY space with Euler number = -X(x'(f,G))), be obtained through the geometrical

construction. In general, the hypersurface f(z) = 0 in w!Ptn.) has the singularities
1

itself. Hence a more general formula than the "orbifold Euler number" is needed for the

purpose of computation while some specific example is given. As in [9], one can resolve

the singularities of X(f,G) while maintaining the condition cl=0 to obtain the CY

space x'(f,G). By the same argument in [13], the general formulae for the Euler

number and the Betti numbers of x'(f,G) are obtained, which generalize Vafa's

formula for the hypersurface cases [13], [17]. The formulae are expressed in terms of

the weights ni's and the group G, and described in THEOREM 1 of this paper. These

terms involve the Euler numbers of the Milnor's fibers associated to the polynomial f(z)

and its intersection with a certain part of the coordinates Zi'8.

For the discussion of the mirrar of x'(f,G) , we consider only the cases when d

is divisible by ni for all i ,and dj = d/ni ~ 3 . In this situation, each diagonal

subgroup G of SLS(() containing

is naturally corresponding to another suhgroup G' of this kind such that

x(x'(f,G)) = -X(x'(f,G')) ,
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here f, g are the G, G I resp., invariant quasihomogeneous polynomials of degree d

with the only isolated critical point at origin. The group G' is called the dual of G .

This correspondence will be described in section 3. In order to show the above symmetry

X~ -X , by the generalized Vafa's formula we have obtained, it needs only to

consider the case when both f(z), g(z) are the Fermat polynomial for the weights ni's

For the Fermat polynomial f(z) , we have the explicit eorrespondenee between the

Hodge groups of xf1,G) and xf1,G ') :

H11(xf1,G))~ H21(Xf1,G ')) ,

whieh implies X( xf1,G)) = - X(xf1,G') ) by the Hodge struetures of CY spaces.

The derivation of the above isomorphisms will be given in section 4. These isomorphisms

are also interesting in its own, as it is known that the Fermat polynomial is

corresponding to the superpotential of the Landau-Ginzburg N~2 eonformal theories

composed of the A-type singularities [5], [7]. Here we identify the cohomology

elements of the dual CY spaces eorresponding to the same massless state of the

eonformal theory.

From the physies point of view, the CY spaces we focus here are the lowest order

approximations.to string vaeua constructed from the N=2" minimal models [6]. The

symmetry, X +-----+ -X , ia simply the effect on the minimal model vacuum of reversing

the sign of the left moving U(1) charge of all states. On the underlying geometry, the
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effect is far more pronounced. At this time of writing, it is not clear to what extent a

mirror exists for a general CY space. Recent developments have indicated that the

examples constructed in this paper may also be realised by polynomials in weighted 1P4

[10] . For CY hypersurfaces which are not of Fermat type, the formulation of mirrors

given here cannot be applied. It would be interesting. to have a more general method to

obtain further examples to show the symmetry X +---+ -X of CY manifolds. The

mirrors of CY spaces in the complete-intersection case and the higher dimensional

generalization have now been considered; work along these lines is in progress.

The author is most pleased to acknowledge the many fruitful discussions with Prof.

B.R. Greene for explaining bis and his collaborators' work on the duality X +---+ -x .

Here we have given a mathematical proof of their result [8]) in which the conclusions

were derived from the conformal field theory based on the physicist's reasoning. I also

wish to thank Prof. F. Hirzebruch for the opportunity of visiting Max-Planck-Institut

für Mathematik where this work was done.

1. Preliminary

Let ni , 1 ~ i ~ 5 , be the positive integers with g.c.d. (ni Ij f i) = 1 for all i .

5

Let d = 1:" ni' qj = n/d, di = d/g.c.d.(d,ni ) for each i. Let 1R5 (\R5*) be the

i=l

vector space consisting of all 5><1 columm (1)<5 row resp.) vectors, and

{ei 1 1 ~ i ~ 5} ) {ei 11 ~ i ~ 5} be the standard base of 1R5 aod 1R5* respectively.

Denote
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. T = the algebraic torus (C*)5 ,

5

q = 1: qiei
J

i=l

D = { [t ~ ]E T I t ~i = 1 far all i } ,
q t 1

5

[tt5~· ]SDq = the subgroup of Dq consisting all the elements
5

with ITt. = 1.
i =1 1

trq : [R5 ----+ [R, trq(x) = 1: qixi for x = l xiei
l

i 1

5

Q= the group generated by eXPq( lei) ,

i=l

The subgroups of T are in one-to-one correspondence with the (additive) subgroups of

1R5 containing NI byassigning G to NG ~ exp~l(G) ,and
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GI CG2 iff NG .eNG'
I 2

NI={lmiqiIeilmiEll} ,
i

ND = { l mi(diqi)-1ei Imi E 1l}
q

In fact, NG is the group of 1-parameter subgroups of the algebraic group T/G,

*NG =Homalg.group(( ,T/G)

Now we consider the group of characters of T/G ,

*MG = Homalg.group(T/G,( ) .

(1)

Then the subgroups of nq are in one-one correspondence with all the sublattices of

MI containing Mn ,and
q

G1 .c. G2 iff MG J. MG '
1 2

MI = the standard lattice in [R5* consisting of all

elements l miei , mi E 71
i

(2)

For our purpose, we shall consider only the subgroups lYing between Q and SO .
q

Throughout" the discussion of this paper, G shall always denote a group with
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Let

( [z,z-1] = the algebra consisting of all the Laurent polynomials f(z,z-1)

(= f(zl' z11,... ,zS,zSl)) .

4: [z] = the algebra of all the polynomials f(z) (= f(z1' ... ,zS))'

k k1 kS
z = z1 ...zS for k = 1: kiei E MI)

1

(MG)+ = { 1: kiei E MG Iki ~ O} I

i

PG = the G:--subspace of G:[z] generated by zk, k E (MG)+ with trq{k) = 1 .

Consider the natural action of G on T. It induces aG-action on the algebraic

functions of T , 4: [z,z-1] . Then the following lemma is obvious.

LEMMA 1. For k E MI )

k [-1] Gk E MG I I z E 4: Z,Z ,

k Gk E (MG)+ +----i z E 4: [z] ,

f(z) EP G r---+ f(z) is a G-invariant quasihomogeneous polynomial of

. degree d with weight ni's.
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2. Calabi-Yau orbifolds

Let d, n., G be the same as in the previous section. The linear action of G on
1

(5 induces a G-action on the weighted projective spare W IPtn.) . Let f(z) be a
1

G-invariant quasihomogeneous polynamial of degree d with weights ni's. Assume

f(z) has the only isolated critical point at the origin. The polynomial f defines a

quasismooth hypersurface in W IPtn.) :
1

5{ [z] E W IP (n.) I f( z) = O}
1

which is stable under the action of G . The G-quotient af this hypersurface is denoted

by

x = X(f,G) .

Denote

5S = (: \0 ,

M (= M(f)) = {z ESIf(z) = O} ,

{z} = the G-orbit af z in S/G far z ES.

*Since the abelian group G contains Q J the 4: -action af S l
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*induces a well-defined ( -action of S/G

*0:: x S/G ---+ S/G

(A,{Z } ) I I A*{z} ~ {jj. z} wi th A = jJd .

The polynomial f(z) also induces the function fG of S/G satisfying

with fG(A*{Z}) = AfG({z}) for {z} E S/G . Then M/G is the set of all elements

*{z} in S/G satisfying fG({z}) = 0 . Denote GO:: = the abelian group of linear

transformations generated by G and

*GO:: acts on Sand M.

DEFINITION. Far a subset I of {1, ... ,5} ,

(3)
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*CI = {h E G( Ih(z) = z for all z with zi = 0, i EI} .

cI = ICI I .

*For an element z of S , the isotropie subgroup (G( )z at z finite, and equals

*to C1(z) ~th I(z) = {i Izi = O} . The index I(z) depends only on the G( -orbit x

of z , henee we can also write I(x) = I(z) . Now the space X can be identified with

*( -quotient of M/G I

* *X = (MfG)/{ =M/G(

LEMMA 2. X Is a V-manifold having at most abelian quotient singularity, and

with the trivial canonical sheaf. Furthermore, for x E X I

(X,x) ~ (C3
/CI(z)'O) for some imbedding CI(x) CSL3(C) .

*PROOF: Let x be an element of X I z be an element of M whose Ga: -orbit

equals to x. There is a small C1(xr-invariant 4--dise in S which intersects both M

*and the { -orbit of z normally at the point z. Let !i be the interseetion of this

*4-disc and M. Then ä is C1(x)-invariant, and (M,z) ~ (d,z) x (( ,1) . It is easy to

see that (X,x) ~ (~,z)/CI(x) . By d = ~ ni ' there is a never-vanishing holomorphic

1

*4-form on M which is invariant under the action of GG: . Hs interior product with

. *the vector field generated by ( gives a never-vanishing seetion of the canonical sheaf

of X. Hence the result follows immediately.

Ey [12], the "minimal ll toroidal resolution of X ,

q.e.d.
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u:X----+X

..
is a Calabi-Yau space. We are going to express the topological invariances of X in

terms of qi's and G.

In general, for a subset I of {1'... J5}, CI n G g; CI .

LEMMA 3. When I satisfies the condition S n {zi = 0 li E I} i M (i.e.

f(z 1 z. = 0 .for i E I) is a nan-zero function) J one has
1

and

g E CI n G iff {i Ig(ei) =F ei} = I )

here ei,s are the standard base of (5 .

PROOF: Let 5 be an element in S\M with {i Is· = O} = I . For an element
. 1

* *ggp. in GG: with g EG) gp.: the element of (3) far jJ E { . Then

dgg E CI f----t gg (s) = s +---+ f(s) = f(gg (s)) = f(g (5)) = J.j f(s) .p. jJ J.j jJ

Hence JLd = 1, gJL and ggJL E G . Therefore CI.c. G . The other conclusion follows

the definition of CI. q.e.d.

LEMMA 4. 1: cI = IGI·
111 =4
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* *PROOF. Let ( be the subgroup of G( consisting all the elements in (3).

Then

* *GC If. ~ G/Q

*whose order is equal to IG I/d . For 1 ~ i ~ 5 , the isotropy group (GC )ei at e1 is

CI for I = {j 1 1 ~ j f i ~ 5} . It is easy to see that the homomorphism

* * *(Gf. ) . -----+ G( I(
el

*is surjective with the kernel ( ) .. Hence
el

* *I(G ( ) . I = I(( ) ·1 · IG lId = n. · IG IId
~ ~ 1

By d = Lni I the result folIows immediately.

i

Now we are going to derive the generalized Vafa's formula of the Euler number of

X just as the case of hypersurface in w!Ptn.) [13] [17].
1

THEOREM 1. Let qi' G, X be the same as before. Then

(i)

here {e1,... ,e5} is the standard base of (5 acted linearly by G, and TT{*} -:- 1 if
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(ii) For g E G , define

Then

PROOF. Denote

S d
y = {[zl"",z6] EW IP( 1) Iza = f(zl""'zs)}n1' ... ,n5,

Consider the linear transformation group of {5 as a subgroup of projective

transformation group W 1P
5
( 1)' G acts on W 1P

5
( 1) , and leaves Yn1' ... ,n5, n1' ... ,n5,

invariant. So we may consider G· as an automorphism group of Y . The G-equivariant

projection [z1'" .,za] ......---tl [z1"" ,z5] induces
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For I C{1,... ,5} , let

*PI = S n {zi = 0 for all i E I} /GG:

*XI=Mn{zi=o forall iEI}/GG:

. UI = Pr - XI .

YI = Y n {zi = 0 for all i EI}

~I : YI -----+ PI the restriction of ~ .

(4)

With the same argument in Theorem 1 of [13], by the description of CI and LEMMA

4, one cau obtain the formula in (i) after replacing the data in [13] by the

corresponding ones we have just define in (4). Also the same procedure as Theorem 3 of

[13] , we obtain (ii).

The singularities of X

Sing(X) = U {XI IcI > 1} ,

q.e.d.

here XI is· defined in (4), or = X n {zi = 0 , for all i EI} . An irreducible component

of a-l(Sing(X)) is called an exceptional divisor in X. For XI CSing(X) , it is

necessary that II I = 2,3 1 and XI is an irreducible non-singulaf CUfve when
...

II I = 2 . The relation between the cohomologies (with (--eoefficient) of X , the

exceptional divisofs, and X are described as follows.

THEOREM 2. For r = 2,3 ,

Hr(X) ~ Hr(X) $ $ Hr- 2(D) ~ Hf(X) $ $ Hr- 2(a(D)) ,
D D



q.e.d.
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here the index D runs all the exceptional divisors in X.

PROOF: By the construction of the toroidal resolution for X, for an exceptional

divisor D ,

u : D ---+ u(D)

is a [p1-bundle when u(D) =a curve, and D ia a rational surface when u(D) is a

point. Hence Hi(D) ~ Hi(u(D)) for i = 0,1 . So we need only to show either one of the

above isomorphisms for eaeh r. For r = 3 I the eonclusion follows from Theorem 2 of
A A

"[13] . For r = 2 , by the CY property of X , the second cohomology of X with

ll-eoefficie~t is isomorphie to the group of allline bundles of X,H1(X, (J *) . Consider

the natural induced homomorphism,

* 1 * 1 A *
U : H (X,O ) ---+ H (X,O ) ,

A

which ia injective by the connectedness of the fibers of u : X --+ X . Applying the

*operation u on the line bundles of X , by the normal property for X, one cau show

that every line bundle"is uniquely expressed by u*(L) ~ O( 1: IDD D) for

D

IL EH1(X, 0 *), mD E 7J. , D : exceptional divisor. Hence we obtain the above first

isomorphism for r = 2 .

3. Dual Group
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We now identify the vector spaces 1R5 with 1R5* in section 1 via ei +---+ e..
1

Then

NI = MD I I ND = MI I
q q

d is divisible by ni for al1 i

Under this condition, by (1) and (2), every subgroup G of Dq corresponds to a

subgroup GI of D with

equivalently

(5)

GI is called the dual group of G.

Far the rest of this paper, we shall always assume the nj 's satisfy the condition

(5), and d/ni ~ 3 for all i .

The following properties for dual groups are obvious:

Q I = snq ,

(G I) I = G ,

GI .c. G2 iff (GI) I l (G2) I

Since
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D /G = ND /NG = MI/MG' = the character group of G' ,
q q .

we have

We can also 0 btain NG I from NG by the following procedure. Denote

< , >q : [R5 )( [R5 --+ IR) < \ x.ei , \ y.ei > = \ q.x.y..
LI LI LIII
i i i

Then NG I is the duallattice of NG wi th respect to <) >q , i.e.

The above properties of G and GI can also be obtained through this lattice's

consideration.

Consider the quasihomogeneous polynomial functions f(z), h(z) of degree d

w.r.t. n.'s, which are invariant under tbe action of G, G' respectively. Assume f(z))
I

h(z) have the only isolated critical point at origin. Denote

. X = the CY resolution of X(= X(f,G)) )
...

X I = tbe cy resolution of X I (= X(h,G '))

THEOREM 3. We have the following duality between theHodge numbers of X
...

and X' :
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.. ..
As a consequence, X(X) = -X(X')

Ey THEOREM 1, the -Badge numbers of X, X I depend only on the group G,

G' . We may assume both polynomials f(z) and g(z) equal to the Fermat polynomial.

Then THEOREM 3 ia a consequence of the following one.

THEOREM 4. When f(z) = g(z) = the Fermat polynomial for ni's,

.. ..
there exist the G:-isomorphisms between the Hodge groups of X and X I :

H11(:;q ~ H21(X ') ,
H21(X) ~ H11(X ')

The next section is mainly devoted to the proof of the above theorem.

4. Fermat hypersurface

In this section, f(z) always denotes the Fermat polynomial for n· '8 ,
1
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Let lR5 , expq , trq , G , NG ' MG be the same as in section 1,

...

u : X ---+ X (= X(f,G)) the CY resolution of X )

J = the Jacobian ring ([zl""'zS] /(~) of f(z) )
1

JI = the Jacobian ring of f(z Izi = 0 for all i E I} , I C. {1,... ,5} .

The action of G on (5 induces a G-action on 4: [z] , hence on J and "I for all

I . For a non-negative integer m, let

("I)G,m = the subspace of (JI)G generated by all the monomial zk with

. k = \ k.ei , k. = 0 for i EI, and \ q .(k.+1) = m+1 .l 1 1 L J J
i j~1

By l qi = 1 ,

1

"G,m = the subspace of tfG generated by those monomial polynomial zk with

trq(k) = m .

By [3], [16], the Hodge structure of X and XI's (defined in (4)) can be described by

G-spaces tf, J I · We have
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H21(X) ~ ~G,l I

H12(X) ~ ~G,2 ,

H10(X
I
) ~ (~)G,O for II I = 2 ,

HO(XK) ~ (tB (~)G,O for IK I = 3

We are going to associate the above spaces to the certain data in MG . For this

purpose, we introduce the following notations.

(6)

DEFINITION. Let L be a lattice in [R5 with NQ C. L .c. NQI I I be a subset of

{1, ... ,5}, k. be the i-th coordinate of k for k E L . Define
1

the I-th sublattice of L = {k E LI kj = °for all j ~ I} .

F(L) = {k ELI trq(k) = 1, 0 $ ki $ di-2 for all i }. .

E(LjI) = {k E I-th sublattice of L Itrq(k) = 1, 0 $ ki $ di-1, i E I} , for

111 = 2,3 .

* -
E(L;K) = E(L;K) - U E(L;J) for IK I = 3 .

JCK

IJI=2

The following technique lemmas are essential for the latter ctiscussion.

LEMMA 5. There exists an one-one correspondence between the following subsets

of L,

cp : U{E(LjI) I II I = 2,3} ------i F(L) \ { Lei}

PROOF. Ey 1: qi = 1 , there are at most two di with value 3. When there are

i

two di = 3 , by remunerating the indices, we shall always assume d1 = d2 = 3 in this
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proof. For an element k, let ki be the i-th coordinate of k . Denote e = 1: ei . It is

i

easy to see that, for k EF(L) I

k. > 0 for all i +---+ k = e .
1

Define cp to be the identity map on F(L) n (U {E(L;I) I II I = 2,3}) . We need only to

define cp on E(L;I)\F(L) for II I = 2,3 .

(l)For 1I1 =3 , say 1={1,2,3}.

For k E E(L;I) \F(L) , by the definition of E(L;I) and F(L),

CLAIM: There is only one i with k. = d.-1 , furthermore far j =F i, k. < d .-2 .
1 1 J J

Otherwise, say k1 = d1-1 and k2 ~ d2-2 . We have

5

1 = 1/3 + 2/3 ~ 1/d1 + 2/d2 > 1: 1/di = 1
i=l

which is a contradiction. we define

CP(k) = k + e - d.ei for k E E(L;I)\F(L) with i as above.
1
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Then <P(k) E F(L)\{e} , and

{

kEF(L) k=/=e, k4=kS= 1, ki =0 for some unique i , }
CP(E(L;I)\F(L)) =

k.>2 for theother J"sJ-

(2) For II I = 2 , say I = {1,2} .

For k E E(L,I)\F(L) ,

1 2k = k1e + k2e , k. = d.-1 for some i .
~ 1

CLAIM: If k. = d.-l and the other k. > d.-2 ,then dl = d2 = 3 , and
1 1 J - J

(kl'k2) = (2,1) or (1,2). Say, k1 = dl-1, k2 ~ d2-2 . Then

Now we define

e1 "+ 2e3 + 2e4 + 2e S if d l = d2 = 3, k1 = 2, k2 = 1 ,

cp(k) = e2 + 2e3 + 2e4 + 2e S if dl = d2 = 3, k1 = 1, k2 = 2

k + e - d. ei ot herwise, here i with k. = d.-1
1 1 1
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Then cp(k) E F(L)\{e} , and

[

{el+2e3+2e4+2e5, e2+2e 3 +2e4+2e5} if d l = d2 = 3,

CP(E(L;I)\F(L)) = {kEF(L) Ikfe, k
3
=k

4
=k

S
= 1, k i =0 far some unique i,

. kj~2 far the other j} I atherwise.

Let k be an element oI F(L)\({e} U{E(L;I) I II I = 2,3}) . It is easy to see that

I{i1 ki = o} I = 1 , and I{i Iki = I} I ~ 2 except dl = d2 = 3 and

k ~ {el+2~3+2e4+2eS, e2+2e3+2e4+2e5} . Then k belongs to one and anly one

~(E(LjI)\F(L)) , for II I = 2,3 , which we have just described. Hence the map cp is

bijective.

LEMMA 6.

(i) There exists a base oI H2l(X) which is bijective to F(MG) .

(ii) The map

k~ k' with k = \ k1·ei I k' = \ k~ei, k.+k~ = d.-2 ,L L 1 1 1 1
1 1

defines an one-one carrespondence between F{Ma) and

F{MG)' = {k' = 1: k ie
i

E MG Itrq{k') = 2, 0 ~ k i ~ di-2 far all i } .

i

And F(MG)' is bijective to a base af Hl2{X) .

PROOF. Since each element af cf is uniquely represented by zk with

q.e.d.



-24-

k = l kiei , °~ ki ~ di-2 , by (6) and LEMMA 1, there is a base of H21 (x)
1

parametrized by the elements in F(MG). So we obtain (i). (ii) follows from

tr (k) + tr (k') = 3 wben k. + k ~ = d.-2 for all i . q.e.d.q q 1 1 1

For the convenience of the notations, we shall consider

LEMMA 7. For I with II I = 2,3 ,let I' = {1, ... ,S} \1 . Then

and there exists an one-one correspondence between tbe following sets.

(i) For II I = 2 ,

{D : the exceptional divisor in X with u(D) = XI}~ E(NG;I) I

10 *abaseof H (XI)~E(MG;I') .

(ii) For IK I = 3 ,

*{D : tbe exceptional divisor in X with u(D) = a}~ E(Na;K) J

a base of HO(XK)/(O~ E(MG;K') ,

here a: an element. of XK '
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o: the ~oeycle assigning the value 1 for each element of XK .

PROOF. By LEMMA 2, CI C. G for all I. Henee CI is isomorphie to the

quotient of the I-th sublattice oI Na by its intersection with NI via the map eXPq'

For II I = 2 or 3,

XI ~ Sing(X)~ CI 4= {1} f----+ E(NG;I) 4= f/J •

For II I = 2 l XI is an irreducible non-fiingular eurve. By (6) and LEMMA 1, the

elements of a base of H10(XI) are in one-one eorrespondenee with

k I = 1: k i e
i
, ki =°far i EI, 1: qjk j = 1, 1 5k j '5 dj-l for j ~ I ,

i j~1

*which is the same for k I EE(Ma;I ') .

For XK ~ Sing(X), IK I = 3 ,XK consists of finite elements. By the similar

argument aB the base af II I = 2 , the base of HO(XK)/Co is in one-one

correspondence with E(Ma;K') . The conclusion for the exceptional divisors in the
...

lemma follows from the construction of the toroidal resolution X l which can be found

in [12], [14].

Again, we shall regard

* 10E(MGjl') = the base of H (XI) for II I =2 ,

E(MaiK ') 11 {o} = the base of HO(XK) for IK I = 3

q.e.d.
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Proof of THEOREM 4. Ey THEOREM 2,

21 .. 21 [ H10(u(D)) ID : exceptional divisor w i th ]
H (X) ~ H (X) e e u(D) = XI for same II I = 2 '

Ey LEMMA 6 and 7, we can regard

F(MG) U U (E(NG;I)( E(MG;I')) = the base of H21(X) ,

I I 1=2

*U E(NG;K) U U (E(Na;I) x {öl) U U (E(NG;I) X E(MGiI ')) =

IK I=3 I I I=2 I I 1=2

The similar expression for H21(X') and H11(X') by replacing G by G' . Since

NG = MG" MG = NG' l in order to obtain an one-one correspondence of the bases of

H21 (X) and H11(X') l it suffices to have a bijective map between

*.F(NG,) and U E(NG,;K) U U (E(NG,;I) x {öl) )

IK I=3 I I 1=2

and the similar statement for H11(X) and H21(:~,) by replacing G' by G. Ey

LEMMA 5, there exists a sueh bi jective map of the lattice L = NG' )NG . Henee we

obtain our result. q.e.d.
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