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DOUBLE SHORT EXACT SEQUENCES
PRODUCE ALL ELEMENTS OF QUILLEN’S K,

A. NENASHEV

ABSTRACT. We prove that for any exact category 2 every element of Quillen’s K;2
corresponds to a double short exact sequence, 1.e., any loop in the G-construction of
2 1s homotopic to a 3-edge loop. This is a strengthening of a result of Sherman and is
the simplest possible description of the elements of K in terms of the G-construction.
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1. PRELIMINARIES

For a definition of Quillen’s /{-groups of an exact category U we take

K =10 (G2), m>0

and begin with a breaf review of the G-construction [GG].
An n-simplex in the simplicial set G.2 is a pair of triangular diagrams in 2 of
. the form

Pn/n—l Pn/n-l
I I

Pg,l —_ ... — Pn/l P2,1 - ... = Pn“

(1.1)

I I | I

Pijg = Pyyg — ... — Pn o Pyyg = Pyyg — ... — Poo
[ I [ |

Po— P — P - ... P Pb— P — P — ... P

Key words and phrases. Exact category, Quillen’s R, G-construction, double short exact
sequence.
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with. equal quotient index subtriangles, where all squares commute and all the
sequences of the form P; = Py — Py;, P' = P{ = Pyyj, and Pj;; = Py — Pk/J
are short exact sequences (s.e.s. for short) In particular, a vertex in G.% is a pair
of objects (P, P'), and an edge connecting (FPo, FP}) to (P1,P]) is a pair of s.e.s.
(Po = Py = Py g, Py — P| — Py ) with equal cokernels. We will also write (s, s’)
for an edge, where s and s’ denote s.e.s. with equal cokernels.

Let 0 denote a distinguished zero object in 2, then we let (0,0) be the base point
of G.AU. Given A € 2, the standard edge e(A) from (0,0) to (A, A) is given by
e(A)=(0 > A A0 A A).

A double short e:cact sequencc in A (a d.s.e.s. for short) is a pair of s.e.s. A —

B — C and A — B — C on the same objects. Given such a d.s.e.s. we will
write

h g1
l=(43B=C) (1.2)
f2 g2

and let e(l) denote the edge from (4, A4) to (B,B) in G2 given by [. Let pu(l)
denote the loop

(4,4) el) (B.B)

(0,0)

and let m(l) be its class in 1A = 7 (G.2).
Given A € 2 and o € Aut A, we put

l(a) = (0= A = A).

Thus one can regard an automorphism in 2 as a particular case of a d.s.e.s., and
the assignment m(l(a)) to « is one of various equivalent ways to attach an element
of K to an automorphism. The loop u({(«)) is actually a 2-edge loop of the form

for the edge e(0) is degenerate. One checks that every 2-edge loop of this form
is homotopic to p(l(e)) for some a, thus the elements of ;2 representable by
automorphisms are precisely those representable by 2-edge loops in G.2.

It is known that not every element of |2 can be represented in general by
an automorphism. Moreover, 12 is not generated by such elements for some 2
(Proposition 5.1 in [Ge]). However, we prove that every element of K12 can be
represented by a loop of the type u(!).

o
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2. THE MAIN RESULT

Theorem 2.1. For any element z € K2 there exists a double short exact sequence
[ such that z = m({).

We will deduce this assertion from a result of Sherman. Consider data of the
form

j=A3X3Cc,BAYSD, 60:4eYHCS3X@BaD) (2.1)
where A =+ X — C and B - Y — D are short exact sequences in A and € is

an isomorphism. Given such data we will sometimes denote A@®Y & C by P and
X @& B@® D by Q for short. Sherman associates to j a loop v(j) in G of the form

(PXBY) (6,1) —(Q,X dY)
(a1, a2) (b, b2)
(4,4) Q (B, B)

e(4) ¢(B)
(0,0)

where (9, 1) denotes the edge (P 4 Q—=0,XPY 54 XY — 0) and the s.es.
yielding the vertical edges are given by

(2) o)
a=(AY ApYecC ¥ CoavY)

a2=(.4(i2X@Y’@£’ CaY)

(2) 1o pap 2D

h=BYXeBaeD X XaD)

0
by = (B @X@Y‘ﬁ#‘xep).

Let n(j) denote the corresponding element in 1. The following assertion was
proved by Sherman in [Shl] for abelian categories and then in [Sh2] for arbitrary
exact categories.

Theorem 2.2. For any = € ;2 there exists j of the form (2.1) such that z = n(j).

Proof of Theoremn 2.1. We associate to j a pair of short exact sequences
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ss=(AeB L Aevec -2 CcaeD)
ss=(AeB-L X@®BaD-LHCeD)

where

1 0 a 0
001 0 0
f=10 8}, g=[0 1], p=( ), q=(7 )
(00) (00) 060 0 01

Replacing A@Y @& C in s; by X @ B@® D via 6 we obtain a double short exact
sequence

fof 0!

()) =A@ B3 X®BadD =3 CaD)
g q

It now suffices to prove

Proposition 2.8. m(l(7)) = n(j).

Proof. We must check that the loops u({(7)) and v(j) are homotopic. It suffices to
show that they are freely homotopic since the group = (G.2) = K2 is abelian.

Lemma 2.4. The loop u(l(7)) is freely homotopic to the loop

(P,Q) (6,1) (@, Q)
$2 2 (s2,82)
)

P
(51,\/ (2.2)
(

A B,AGB

Proof. This follows from the picture




where the shaded 2-simplex ¢, is given by obvious data and ¢, is given by

0 0
I I
CeD —— CaD Ce¢D —— CaD
T e T
4eB -1, p 1, ¢ 4B 245 @ 21, @
[ |

Lemma 2.5. The loop v(j) is freely homotopic to the loop

(PX®Y) (6,1) (QX@Y)

@

(‘5115)

(s2,8) (2.3)

(A® B,A® B)

wheresz(A@Bﬂ.Y@YﬂC@D).

Proof. The four shaded 2-simplices in the picture

(P,X@Y) (6,1) (Q.X®Y)

(0,0)
are given by obvious data of the form (1.1), and we are done. n
Lemma 2.6. The loops (2.2) and (2.3) are freely homotopic.

Proof. We will show that both loops are freely homotopic to a third loop, namely
to the common outer loop on the pictures

5



(P&D, R) (81p, 1) (Q®D, R)

2,

(P,X®Y)~ (9,1} (Q, X&Y)

(A® B,A® B)

(AGB®D,A®Y) (A®@ B D, ABY)

where R denotesX @Y @ D for short, the inner loops are given by (2.2) and (2.3)
respectively, and we put

m=(A0BoD ¥ aevece DN caD)

rm=(A6BoD 22 XeBaDaD Y CcaoD)

G@ly
-r=(AEBY( <, )X@Y@D”"”—@Q”C@D).

We obtain the first picture by applying the push-out procedure of [GG], sect.7, to
the loop (2.2) and the edge

laenb
e=(4®B CS) ienen D asn 2% 4gy &Y D).
All of the six 2-simplices A,,... ,F; are given by obvious data of the form (1.1)

since all the push-outs here amount to adding direct summands. One checks easily

that the composite push-out of the edge e along (sy,s,) and (,1) coincides with

the push-out along (s2,$2), i.e., the corresponding edges of the 2-simplices D; and

Fi really coincide.

The second picture is the push-out of the loop (2.3) along the edge e in which the

object (X BY) [ (A®Y) = X ¢ (Y]]Y) is replaced by X & Y & D by means
ADB 12

of the isomorphﬁsm YIIY = Y & D. One should be careful about this change of
B
objects since there are two natural isomorphisms Y[V & Y @ D that differ by
B
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the natural involution of Y[[Y. We write down the resulting 2-simplices Az, ... F,
B

explicitly in order to make sure that this really works.

A,
CeD
IUC&BD'O)
0
(¢)
D Y, CceDaeD
‘[(0,0,1) TP@ID
(t¢2) f@1
A®B ———— A®BeD =2 4pYaCoaD
CeD
T(lceo.o)
0
()
D =Y CeDeD
Tmﬁ) Tv@(?j])
1 (%)
AeB 2% 4oy 2 X xgaVveD
B,.
D

T(0,0,l)

(\%°)
ceD ——2 4% CeDeD

1 Jr

; (l,\m'@c)
AGB —— AgYeaecC 0 AeYaeCoD
D
T(0,0,l)
(%)

C®D ——— CagDa D

T (22

..........................................................................................................................



C,.

0
D 1 D
T(QODJ} T(mopJ)

lagyec
AgYaC —E—J—L AaYeCcaD 222, xaBaDaD

D —1> D
T(o,a.-n) T(O,&,—l)
ix@(;)

Xay —3% YayYeD —2 5 XY @D

..........................................................................................................................

0 R D

T T(OEOIO!I)

5 (l.\'qaa@u)
AeYeC —— XaBgagD —°> 4 X9oBaDgD

D
L
0 —_— D
T T(O,J,—-l)
XgpY — Xav o) XeYa®D

..........................................................................................................................



&,.
CoD
T(Icen,o)
(0)
0
D 2y CeDeD
T(O.O,l) Tq@lo
(142) @1
A®B —2 % 49BeD =2 XoBeDaeD
CaoD
T(lcen.o)
4]
()
D Y5 CeDeD
T(O,J) Iv@(g _l])
a@]y
AG®B 11 @B A@Y (O)AX'@Y@D
Fs.
D
T(0,0,l)
(%°)
CaD -~ 2 4 CeoDoD
Tq TQGBID
(I.\-epaqw)
ApB —— XoBoD —2 X, YoBeDaD
D
‘[(0,0,1)
(")

CeD ——> CeDeD
I‘r@& T‘TGB (2 _11 )
a®f oy NP ( ,li ) R
ApB — XY — XYo@ D.
One checks that these 2-simplices form the required configuration, in which the
inner loop is (2.3) and the outer edges are given by (ry,r), (r2,7), and (6 & 1p,1).
Lemma 2.6, Proposition 2.3, and Theorem 2.1 are proved. [ |
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