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Abstract. We establish an equivalence of a multidimensional Eu-
clidean division and of the Nash algorithm for desingularization of
affine binomial varieties. A structure theorem for these varieties
identifying their irreducible components as mutually isomorphic
and their (local) singularities as products of manifolds with irre-
ducible germs of their subvarieties, say Y (obtained by restrict-
ing all of their nonvanishing affine coordinates to value one), is a
byproduct. Proved for the differences of monomials as binomials, it
also implies that local singularities ‘do not change’ upon restriction
of nonvanishing affine coordinates to vary in a manifold (covering
the case of nonunit coefficients of defining binomial equations).

When dim Y = 2 the length of desingularization by composites
of normalizations with Nash blowings up is bounded by the area,
say D , of a parallelogram generated by the least integral points
on the extremal rays of the cone spanned by the exponents of
any monomial parametrization of the torus of Y . The numbers
of covering charts at each step of Nash algorithm is bounded by
D/2 + 1 , while the complexity of the algorithm along a single
branch is polynomial in the binary size of the input and in D .
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1. Introduction

1.1. Nash conjecture. For an n-dimensional algebraic variety X
the Gauss map GX is defined off singular points SingX of X
and sends points P ∈ RegX := X \ SingX to the tangent spaces
TPX (to X at P ) as points of the respective Grassmanian bundle
restricted over X . (Using embeddings of affine charts of X in CN

consider the Grassmanian variety of n-dimensional subspaces of CN .
The latter naturally embeds into projective space P(∧nCN) by means
of the classical Plücker coordinates, i. e. homogeneous coordinates in
∧nCN .) Nash blow up N(X) of X is the closure of the graph of GX

with the natural projection NX : N(X) → X . John Nash conjectured
that his algorithm of successive Nash blowings up starting with an
algebraic variety X results in a desingularization of X , namely

Nash conjecture. The sequence of Nash blow ups starting with
any algebraic variety stabilizes, i. e. Nash blowings up become isomor-
phisms, resulting in a desingularization.

Remark 1.1. Of course, if X consists of several irreducible com-
ponents X = ∪iXi then N(X) = ∪iN(Xi) and N(Xi) are the
irreducible components of N(X) . Also, when locally (in Zariski or
even in the classical topology), say in U , variety X is a product of
a nonsingular variety Z with a (possibly) singular one, say Y , then
N(X) over U is isomorphic to the product Z × N(Y ) of Z with
N(Y ) . Nash blow up either separates any pair of equidimensional irre-
ducible smooth local analytic components, or reduces contact between
the latter pair. (With Ij , j = 1, 2 , being the ideals of local analytic
components in the local analytic ring O of the ambient manifold con-
tact is the largest integer l such that I1 +Ml = I2 +Ml , where M
is the maximal ideal of O .) Thus the sequence of Nash blowings up of
a variety with smooth local analytic irreducible components terminates
separating ‘Nash liftings’ of these components.

Normalization NX : N (X) → X of a variety X is defined (locally
over affine charts) via their respective rings C[N (X)] and C[X]
of ‘regular functions’ with the former ring being the integral closure
in the field of fractions of the latter. With variety X being locally a
product of a nonsingular Z with Y it follows that (locally) N (X) is
isomorphic to the product Z×N (Y ) . Of course a single normalization
separates all local analytic irreducible components. We refer to the
composites of normalizations with Nash blow ups as normalized Nash
blow ups. The following is a modified version of Nash conjecture
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Conjecture 1.2. The sequence of normalized Nash blowings up start-
ing with any algebraic variety stabilizes, i. e. normalized Nash blowings
up become isomorphisms, resulting in a desingularization.

So far though Nash and normalized Nash desingularizations remain
elusive in dimensions larger than one and two, respectively. Moreover,

Remark 1.3. In dimension larger than one an apriori estimate for the
length of normalized Nash desingularization is not known (as well as
in any reasonable sense for other desingularizations).

(i) If Nash blow up NX : N(X) → X is an isomorphism then X
is nonsingular, see [6] and [7].

(ii) Nash conjecture is well known to be true when dimX = 1 and
there is a simple apriori estimate for the length of Nash desingulariza-
tion (e. g. by means of Newton-Puiseux expansion).

(iii) M. Spivakovsky proved that the sequence of normalized Nash
blowings up terminates when dimX = 2 , see [9] and [5].

In Sections 2 and 7 we state and prove our main Theorem 2.5 on
the structure of affine binomial varieties. Proved for the differences
of monomials as binomials, it implies that the irreducible components
of local analytic germs of singularities of any subvariety of a binomial
variety X obtained by restricting nonvanishing on X affine coor-
dinates to vary in a manifold are ‘the same’ as the respective local
analytic components of singularities of X . This class of subvarieties,
say AB , includes varieties with not all coefficients of their defining
binomial equations = 1 , as well as varieties with the ‘coefficients’ of
their defining binomial equations being any nonvanishing on the re-
spective variety X elements of the subring of regular functions on X
generated by all of the nonvanishing on X affine coordinates.

Theorem 2.5 also provides reduction of Nash (respectively normal-
ized Nash) desingularizations of AB varieties to the respective desin-
gularizations of irreducible binomial varieties passing through the ori-
gins of the (appropriate) ambient affine coordinate charts, while the
latter are the closures in CN of the tori that are the isomorphic im-
ages φ(Tm) of the standard tori Tm := (C∗)m under monomial
bijections φ : Tm → φ(Tm) ↪→ TN with the convex hull in Rm of
the exponents involved 63 0 , see Remark 4.3. Following the process
of changes in the latter exponents under successive Nash blowings up
of these varieties essentially provides a ‘combinatorial’ version of Nash
algorithm and so we refer to them as essential.

Varieties with torus as an open dense subset are binomial, but not
necessarily normal, e. g. Whitney Umbrella {x2 − z · y2 = 0} ⊂ C3 .
Moreover, Nash blowings up of normal varieties with open dense tori
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may fail to be normal, e. g. Nash blow up of surface S := φ(T2) ⊂ C3 ,
where φ : (x1, x2) 7→ (x1 · x2 , x1 · x2

2 , x
3
1 · x2

2) , fails to be normal in
spite that S is a normal surface. Indeed, normality of the latter is a
consequence (due to a criterion in Section 2.1 of [4] ) of the property of
the exponents of monomial map φ to generate over Z+∪{0} all points
of its integral lattice within the (positive) cone that the respective
exponents span in R2 , see Example 5.3 for the details of the failure of
normality for N(S) . Consequently, for the sake of convenience (though
in abuse of terminology), we refer to the varieties with an open dense
torus as toric varieties (as in [1]), while in [4] they are refered to as
toric only when normal.

It turns out that Nash blow up of essential variety is a finite union
of affine charts which are essential, see Claim 4.6 . The latter allows us
to establish in Section 4 a ‘combinatorial bookkeeping’ of the progress
in Nash (respectively normalized Nash) sequence of blowings up for
essential varieties leading to an equivalent algorithm that in a multi-
dimensional setting resembles classical Euclidean division algorithm.
When the essential subvariety is of dimension 2 we introduce an in-
teger, say D , which is simple to calculate in terms of exponents of a
monomial parametrization of the torus of essential subvariety, state (in
Section 3) and prove (in Section 5) that D−1 provides an elementary
apriori bound on the length of the normalized Nash desingularization.
In Section 6 we establish the (local) invariance of integer D with
respect to local analytic isomorphisms preserving passing through the
origin and invariant under the action of the torus of Y hypersur-
faces. Unfortunately termination of our multidimensional and normal-
ized multidimensional Euclidean divisions in general, in spite of their
combinatorial nature and simple formulations, remain so far as elusive
as their geometric counterparts.

2. Reduction from binomial to essential toric varieties

We consider algebraic varieties (so called binomial) that admit (Zariski)

open coverings by ‘affine binomial’ varieties, i. e. closures V̂ in CN

of sets V ∗(f̂) := {w ∈ (C∗)N : f̂j(w) = 0 , 1 ≤ j ≤M } , where

(f̂) are the ideals in the ring C[w] of polynomials in N variables
w := (w1, . . . , wN) generated by binomials

f̂j := w
α̂j1

1 · · ·wα̂jN

N − w
β̂j1

1 · · ·wβ̂jN

N .(2.1)

We call matrix Ê with entries α̂ji − β̂ji an exponents matrix of V̂

( rank Ê = N − dimC V
∗(f̂) and V ∗(f̂) ⊂ Reg V̂ are easy to verify).
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Set V̂ ∗ := V̂ ∩ (C∗)N = V ∗(f̂) and is a subgroup of torus (C∗)N

with a coordinatewise multiplication and unit IN = (1, . . . , 1) . Let
0 denote the origin of CN , exp((h1, . . . , hN)) := (eh1 , . . . , ehN ) and
R+ ⊂ R , Q+ ⊂ Q and Z+ ⊂ Z\{0} denote, respectively, the subsets
of non negative real, rational and natural numbers. We placed proofs
of all claims of this section in Section 7 .

Claim 2.1. Torus of an affine m-dimensional toric variety X ⊂ CN

admits parametrization yj = x
~∆j , {~∆j}1≤j≤L ⊂ Zm

+ , iff 0 ∈ X .

We split all w variables into two groups w = (y , z) of y-variables,

whenever {wj = 0} ∩ V̂ 6= ∅ , and z-variables otherwise.

Lemma 2.2. Variable wj , is not a z-variable (equivalently is a y-

variable) for V̂ iff there is ~ξ ∈ Ker Ê ∩ RN
+ with (~ξ)j > 0 .

Corollary 2.3. There is ~ξ+ ∈ Ker Ê ∩ RN
+ with (~ξ+)j > 0 iff wj

is a y-variable. Therefore (0, IN−L) = limt→−∞ exp(t · ~ξ+) ∈ V̂ .

For the sake of completeness we include the following

Claim 2.4. Polynomial P ∈ C[w] vanishes on V̂ if and only if

(y1 · . . . · yL)l · P ∈ (f̂) for some l ∈ Z+ .

Let (j) ∈ CN denote a vector with the only nonzero j-th coordinate

equal one. For a binomial variety V̂ ⊂ CN let subspace CL be the
span of all (j) such that wj is a y-variable and π : CN → CN−L be
the linear projection to the complementary coordinate subspace with
Kerπ = CL . For w ∈ CN denote |w| ∈ RN a point with coordinates
being the absolute values |wj| of coordinates of w .

Theorem 2.5. Pick the irreducible component V ⊂ V̂ with IN ∈ V .
A. Group Γ := G/(G∩V ) is finite, where G := {w ∈ V̂ : |w| = IN} ,

sets {g · V }[g]∈Γ are the distinct irreducible components of V̂ listed by
the equivalence classes [g] of g ∈ G and V ∗ is a torus dense in V .

B. Set Ŷ := V̂ ∩ (CL × IN−L) coincides with binomial variety

V ∗(f̂) ∩ (CL × IN−L) (due to A. its irreducible component Y , IN ∈ Y ,

is toric). Also, π(V̂ ) = π(V̂ ∗) is binomial and closed in CN−L .
C. There is a torus Z ⊂ V ∗ = V ∩ (C∗)N closed in CN such that

morphisms π|Z : Z → π(V ) and that of coordinatewise multiplication
µ : Z × (V ∩ (CL × IN−L)) → V are surjective, finite and both are

local analytic isomorphisms.

Remark 2.6. Of course Ỹ := V ∩ (CL × IN−L) is binomial (due to

parts A. and B.), variety Y is an irreducible component of Ỹ as well
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as of Ŷ and hence the restriction µZ×Y : Z×Y → V of µ to Z×Y
is finite. Also, Z × Y ∗ ↪→ Z × Ỹ ∗ = (µ)−1(V ∗) ⊂ Reg (Z × Ỹ ∗) and
therefore µ(Z×Y ∗) is open and closed in V ∗ . It follows that µZ×Y

is also surjective, but µZ×Y need not be a local analytic isomorphism
as an example of variety V := {y2

1 = z1 · y2
2 , z1 · z2 = 1} and

Z := {z1 = y1 = y2
2 , z1 · z2 = 1} shows. Nevertheless Structure

Theorem 2.5 implies that local analytic components of a toric variety
V (as well as of a binomial variety V̂ ) are isomorphic (by algebraic
isomorphisms) to analytic germs of Z × Y at appropriate points.

We refer to Y ↪→ V̂ as essential subvariety and, if Y = V̂ to V̂
as essential (e. g. due to Corollary 2.3 Y is). Theorem 2.5 implies

Claim 2.7. Assume Ṽ is a subvariety of a binomial variety V̂ ob-
tained by restricting nonvanishing on V̂ coordinates wj to vary in a
manifold. Then Cartesian products of irreducible components of local
analytic germs of singularities of Ṽ with smooth analytic germs of
appropriate dimensions are isomorphic to the appropriate irreducible
components of local analytic germs of singularities of V̂ . Conse-
quently, Remark 1.1 as well as the conclusion of Corollary 2.8 apply
to all AB varieties. Any affine variety with nonunit coefficients of
defining binomial equations is in AB class.

For Nash/normalized Nash blowings up Theorem 2.5 implies

Corollary 2.8. It follows that the ‘towers’ of Nash (as well as nor-
malized Nash) blowings up starting with varieties gV for g ∈ Γ
are mutually isomorphic and therefore it suffices to study the effect of
this process on a single irreducible component V to make them all
smooth. Moreover, Remark 1.1 implies that the stabilization of the se-
quence of Nash blowings up (respectively normalized Nash blowings up)
of an affine binomial variety is equivalent to the stabilization of the
respective sequence for its essential toric subvariety.

3. Apriori bound on desingularization length:

essential dim= 2

Let V̂ be an affine binomial variety, denote Ê an associated with

V̂ matrix and set {~δi}1≤i≤m ⊂ ZL be such that vectors ~δi × 0 ∈ ZN

generate over Z the integral lattice in Ker Ê ∩ (QL × 0) ⊂ QN . Our
main complexity estimate is

Theorem 3.1. Complexity bound on desingularization in dim = 2 .
Assume that m = 2 and let D be the (absolute) value of the coordinate
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of ~δ1 ∧ ~δ2 at (l) ∧ (k) , 1 ≤ l , k ≤ L for which the positive cone

in R2 spanned over R+ by vectors ((~δ1)l , (~δ2)l) and ((~δ1)k , (~δ2)k)

contains vectors ((~δ1)j , (~δ2)j) for all j , 1 ≤ j ≤ L . Then after at

most D − 1 normalized Nash blowings up starting with variety V̂ the
process stabilizes (in a nonsingular toric variety).

Remark 3.2. Note that for any integral basis { ~δi}1≤i≤m , as consid-

ered above, the coordinates of ~δ1 ∧ · · · ∧ ~δm in the standard basis are
unique up to a sign and can simply be found by choosing any Q-basis

{~vi}1≤i≤m with the same Q-span as that of the {~δi}1≤i≤m , then
multiplying the respective coordinates of ~v1 ∧ · · · ∧ ~vm by their least
common denominator and subsequently dividing obtained integers by
their g.c.d. . For m = 2 we may, moreover, determine the bound D
of Theorem 3.1 up to a sign by detecting which (l) ∧ (k) coordinate of
the resulting sequence of integers to take. To that end the criterion of
detecting pair (l, k) of Theorem 3.1 does not depend on the choice of a
basis and can be applied as well with a basis {~vi}1≤i≤m . In particular,
it follows by making use of Lemma 6.3 and Corollary 6.5 that integer
D introduced in Theorem 3.1 is a local invariant of V̂ at 0 .

4. Reduction of Nash algorithm to a combinatorial one

4.1. Gauss map and Nash blow up of an essential subvariety.
Monomial map φ : (C∗)m → Y ∗ := Y ∩ (C∗)N ↪→ CL , where

φj(x) :=
∏

1≤i≤m

x
δji

i , 1 ≤ j ≤ L; φs ≡ 1, L < s ≤ N ,(4.1)

induces an isomorphism, or an epimorphism with a finite kernel, iff

{~δi × 0}1≤i≤m ⊂ ZN , where ~δi := (δ1i, . . . , δLi) , generate the integral

lattice of Ker Ê∩(QL×0) ⊂ QN over Z , respectively over Q , cf. proof
of Proposition 7.1 . (Moreover, since in view of Corollary 2.3 the closure
Y ↪→ CL of Y ∗ = Y ∩ (C∗)L contains 0 ∈ CL Claim 2.1 implies that
one may choose exponents δji of (4.1) positive .)

Remark 4.1. Since φ|(R+ \{0})m : (R+\{0})m → Y ∩(R+\{0})N is an

isomorphism its tangent map (Rm)dual 3 h 7→ (h(~∆1), ..., h(~∆L))×0 ∈
Ker Ê ∩ (RL × {0}) (at Im ∈ Rm ), where ~∆j := (δj1, . . . , δjm) ,

1 ≤ j ≤ L , is bijective. Therefore due to the choice of vector ~ξ+

from Corollary 2.3 there is a functional h+ ∈ (Rm)dual such that

each h+(~∆j) = (ξ+)j > 0 . Hence the convex hull of ~∆j’s in Rm

does not contain the origin. We refer to C := {~∆j}j ⊂ Zm with the
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latter property as essential. It enables recording of the process of Nash
(and/or normalized Nash) blow ups as a ‘combinatorial’ algorithm.

To ‘control’ the closure of torus Y ∗ we prove in Section 7

Lemma 4.2. One can reach all points P ∈ Y \ (C∗)N by means of

limt→−∞ exp(~a+ t · ~ξ)× IN−L ∈ Y ∗, with ~ξ × 0 , ~a× 0 ∈ Ker Ê ∩ CN

and ~ξ ∈ RL
+ . Moreover, coordinates ξj of ~ξ are positive or vanish

depending on the respective coordinate of P being equal to zero or not.

Remark 4.3. Limits and criteria of being an essential variety. When-
ever there are exponents δji < 0 map φ would not extend to all of Cm

and even if all δji > 0 , as in Claim 2.1 , map φ : Cm → Y ↪→ CL may
not be surjective. Nevertheless one may reach all points P ∈ Y \(C∗)N

by means of φ(exp(b+t·h)) ∈ Y ∗ as t→ −∞ with b ∈ (Cm)dual and

h ∈ (Rm)dual . Indeed, due to the choice of {~δi}1≤i≤m and by making
use of Lemma 4.2 there are unique b ∈ (Cm)dual and h ∈ (Rm)dual

such that each aj = b(~∆j) , ξj = h(~∆j) , 1 ≤ j ≤ L . Note that

given b and h the limit as above exists iff h(~∆j) ≥ 0 for all j . In
particular, by identifying CL with CL × IN−L ↪→ CN and by making
use of Corollary 2.3 , it follows that the origin of CL is in Y . Equiva-
lently, there is a point h+ ∈ (Rm)dual such that for 1 ≤ j ≤ L values

h+(~∆j) = (~ξ+)j > 0 and is also equivalent to C := {~∆j}1≤j≤L ⊂ Zm

being essential. This property is proved in Claim 4.6 to be hereditary
for an appropriate choice of affine charts covering Nash blow up of Y .

Remark 4.4. Gauss map in local coordinates. Consider the composite
of the Gauss map GY of Y on Y ∗ with a monomial parametriza-

tion (4.1) of Y ∗ and identify GY (φ(x)) ∈ Gm(CL) ↪→ CP(L

m)−1 ,
where the latter is the embedding of the Grassmanian Gm(CL) of
the m-dimensional subspaces of CL by means of Plücker coordi-
nates, with the image Tφ(x)Y of TxCm ' Cm by the tangent
map to φ at x ∈ (C∗)m . The homogeneous (Plücker) coordinates
w̃ = [ ... : w̃J : ... ] of GY (φ(x)) = Im ∂φ

∂x
(x) are the subdetermi-

nants detJ(Jφ)(x) of the m × m size submatrices of the jacobian
matrix Jφ(x) of map y = φ(x) and are listed by the choices of
J = {j1, . . . , jm} ⊂ {1, . . . , L} of m distinct rows of the L×m ma-

trix Jφ , i. e. w̃J = detJ(Jφ(x)) = detJ(δ)·x
P

j∈J
~∆j/(x1·...·xm) , where

detJ(δ) are the respective subdeterminants of the exponents matrix δ
in (4.1) . Denote S := S(C) := {J : detJ(δ) 6= 0} and L∗ := #S − 1

(notation S(C) is justified since dimQ Span Q{~∆j}j∈J = m iff

detJ(δ) 6= 0 ). Let CPL∗

:=
⋂

{J :detJ (δ)=0}{w̃J = 0} ↪→ CP(L

m)−1 .
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Then GY ◦ φ(x) ∈ CPL∗

for all x ∈ (C∗)m . Moreover, then
GY ◦ φ : (C∗)m → ∩J∈S{w̃J 6= 0} =: T .

Of course each WJ := {w̃J 6= 0} ' CL∗

and via this isomorphism T
identifies with (C∗)L∗ ⊂ CL∗

. In abuse of notation let then W∗
J denote

T ↪→ WJ . Similarly, denote UJ := CL × WJ , U∗
J := (C∗)L × W∗

J

and also N(Y )J := N(Y ) ∩ UJ , N(Y )∗J := N(Y ) ∩ U∗
J . Of course

N(Y )∗J0
= ∩J∈SN(Y )J for any J0 ∈ S .

Remark 4.5. Essential affine charts of N(Y ) . Then U ∗
J ↪→ UJ is

isomorphic to (C∗)L+L∗

↪→ CL+L∗

and affine toric variety N(Y )J

is the closure of the image N(Y )∗J of torus (C∗)m ⊂ Cm under
an algebraic group monomorphism x 7→ ψ(x) := (φ(x) , GY ◦ φ(x)) .
Remark 4.3 implies that for any J0 ∈ S one may reach all points
P̃ ∈ N(Y )J0 \ N(Y )∗J0

by means of limt→−∞ ψ(exp(b̃ + t · h̃)) with

b̃ ∈ (Cm)dual and h̃ ∈ (Rm)dual . The existence of the latter limit

implies both that h̃(~∆j) ≥ 0 for all j and that h̃(~∆J − ~∆J0) ≥ 0 for

every J ∈ S \ {J0} , where ~∆J :=
∑

j∈J
~∆j for J ∈ S . Moreover,

affine chart N(Y )J0 contains the origin of UJ0 ' CL+L∗

, i. e. is

essential, iff there is h̃ ∈ (Rm)dual such that all inequalities of the latter
sentence are strict and is equivalent (Lemma 2.2) to all coordinates on
UJ0 being ‘y-variables’ for N(Y )J0 . Equivalently (Remark 4.3 ) the

convex hull in Rm of set CJ0 := {~∆j}1≤j≤L∪{~∆J − ~∆J0}J0 6=J∈S ⊂ Zm

does not contain the origin.

Claim 4.6. Assuming that toric variety Y ↪→ CL ' CL × IN−L

contains 0 ∈ CL it follows that N(Y ) = ∪J∈S′N(Y )J , where S ′ is
the subset of all J ∈ S such that affine charts N(Y )J are essential.

Proof. With reference to Remark 4.3 our assumption is equivalent to
Conv (C) 63 0 . Let cone C̃ := {h ∈ (Rm)dual : h|C ≥ 0} and, likewise,

for every J ∈ S let C̃J := {h ∈ C̃ : h|CJ
≥ 0} . Then point h+ from

Remark 4.3 is in the interior of cone C̃ (in particular dimR C̃ = m ). We
refer to h = (h1, . . . , hm) ∈ (Rm)dual with dimQ Span Q{h1, . . . , hm} =

m as an irrational point of (Rm)dual . For any irrational h ∈ C̃ there
is (and unique) J ∈ S such that h is in the interior of C̃J . Therefore

dimR C̃J = m iff Conv (C̃J) 63 0 . (Due to Remark 4.3 set S ′ coincides
with the set of all J that appear in the previous sentence.) It follows

that C̃ = ∪J∈S′ C̃J .
Consider any J0 ∈ S . Torus N(Y )∗J0

coincides with the image
ψ((C∗)m) ⊂ ∩J∈S′N(Y )J . Let P ∈ N(Y )J0 \ N(Y )∗J0

. Then, as in

Remark 4.3 , there are b ∈ (Cm)dual and h ∈ (Rm)dual such that P =
limt→−∞ ψ(exp(b+ t · h)) and ψ(exp(b+ t · h)) ∈ N(Y )∗J0

. Moreover,
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values h(~∆j) , 1 ≤ j ≤ L , and all h(~∆J − ~∆J0) , J ∈ S \ {J0} ,
are positive or vanish depending on the respective coordinate of P
being equal to zero or not, see Lemma 4.2. Thus h ∈ C̃ = ∪J∈S′ C̃J

and, therefore, there exists J1 ∈ S ′ such that h ∈ C̃J1 . As a

consequence h(~∆J0) = h(~∆J1) . It follows that the ratio w̃J0/w̃J1

of the homogeneous coordinates of GY ◦ φ(exp(b + t · h)) ∈ CPL∗

does not depend on t , in fact is equal to eb(~∆J0
)−b(~∆J1

) . Therefore
P ∈ N(Y )J1 \N(Y )∗J1

, which completes the proof. �

In the next two sections we summarize our ‘translation’ of Nash and
of normalized Nash blowings up into respective combinatorial versions
in terms of the smallest (in every reasonable sense) subsets of generators
for additive semigroups Z+(C) generated by finite sets C ⊂ Zm with
Conv (C) 63 0 and for Q+(C)Z := Span Z(C) ∩ Span Q+(C) \ {0} .

For an additive semigroup without zero, say G+ , we introduce a
notion of the set Ext(G+) of all Z+-extremal points of G+ , i. e. of
all g ∈ G+ such that g 6= g1 + g2 for any g1 , g2 ∈ G+ .

Denote ∇(J) the convex hull Conv (J ∪ {0}) of J ∪ {0} ⊂ Rm ,
where 0 is the origin of Rm , and by int(∇(J)) the interior of ∇(J) .

Remark 4.7. Assume that set C ⊂ Zm is finite and essential.
(i) Obviously set Ext(Z+(C)) is finite and generates Z+(C) , while

for Q+(C)Z a similar claim is a consequence of Gordon’s lemma
(Prop.1 in 1.2 [4] ) since Span Q+(C) coincides with the dual cone

(C̃)dual of its own dual cone C̃ and Q+(C)Z is the set of its integral
points (meaning points in Span Z(C) ).

(ii) Note that C ′ = Ext(Q+(C)Z) implies, by making use of (i), that
Z+(C ′) = Q+(C)Z ⊂ Span Q+(C) = Span Q+(C ′) . Hence Q+(C ′)Z =
Q+(C)Z and therefore C ′ = Ext(Q+(C ′)Z) .

(iii) Assume C = Ext(Q+(C)Z) and J ∈ S ′ (with notations from
Claim 4.6). Then int(∇(J)) ∩ Q+(C)Z = ∅ . Indeed, if otherwise and
~a ∈ int(∇(J)) ∩ Q+(C)Z let us choose an irrational h ∈ C̃ , as in

Claim 4.6, such that h(~∆J) = minJ ′∈S h(~∆J ′) and let j0 ∈ J be

such that h(~∆j0) = maxj∈J h(~∆j) . Then, to begin with, ~a 6∈ C ,

since otherwise collection J0 := (J ∪ {~a}) \ {~∆j0} is in S , but

h(~∆J0) < h(~∆J) . Then ~a ∈ Z+(C) , due to assumption on C , and

therefore there is a vector ~b ∈ C such that J1 := (J ∪{~b}) \ {~∆j0} is

in S , but h(~∆J1) < h(~∆J) (since if ~a ∈ ~b+ Z+(C) then inequalities

h(~∆j0) > h(~a) > h(~b) hold), contrary to the choice of h .

4.2. Multidimensional Euclidean division as a bookkeeping. In
this section we complete translation of the process of Nash blowings
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up into a combinatorial tree-like branching algorithm on finite essential
subsets of Zm . To that end we choose {(δ1i, . . . , δLi)}1≤i≤m ⊂ ZL

as in ( 4.1). The input of this algorithm is collection Ext(Z+(C)) ,

where C = {~∆j = (δj1, . . . , δjm)}1≤j≤L is the essential collection (see
Remark 4.3 ) of exponents of a monomial parametrization of torus Y ∗

of an essential variety Y , we may assume that C = Ext(Z+(C)) .
In notations of Claim 4.6 the record of changes (derived in sec-

tion 4.1) in the collections of exponents parametrizing the tori of the
essential charts of Nash blowings up starting with variety Y is the
Multidimensional Euclidean algorithm on essential collections:

with S = S(C) being the set of all m-tuples of linearly independent

vectors in a finite essential (input) collection C = {~∆j}j ⊂ Zm we

augment set C to a collection CJ by adjoining set {~∆J ′ − ~∆J}J 6=J ′∈S

provided that J ∈ S ′ := {J ∈ S : CJ is essential }. Finite essential
set NJ(C) := Ext(Z+(CJ)) generates semigroup Z+(CJ) and is the
output of an algorithm branching according to the choices of J ∈ S ′ .

A branch of this algorithm terminates at a node with an associated to
the node collection C = {~aj}j ⊂ Zm whenever #(C) = m .

Remark 4.8. Note that differences ~∆J ′ − ~∆J with #(J ′ \ J) = 1
generate over Z+ ∪ {0} all other differences in collections CJ , i. e.
it suffices to include in CJ only them. Indeed, matrix (aji)j∈J ′ , i∈J

transforming basis J of Qm into basis J ′ is not degenerate implying
existence of a bijection J ′ 3 j 7→ i = i(j) ∈ J with all aj i(j) 6= 0 and
~∆J ′ − ~∆J =

∑
j∈J ′(~∆j − ~∆i(j)) =

∑
j∈J ′(~∆J∪j\i(j) − ~∆J) , as required.

Nash desingularization of essential affine toric subvariety Y of an
affine binomial variety V̂ leads to a Nash desingularization of V̂
by making use of Theorem 2.5 A. and C. and of Remark 1.1 . Variety
Y ′ resulting from a sequence of Nash blowings up of Y is a union
of its essential affine charts Y ′ ∩ U ′ ↪→ U ′ ' CL′

due to Claim 4.6 .
Every affine chart Y ′ ∩ U ′ corresponds to a node of a branch of our
combinatorial bookkeeping algorithm. With {~aj}1≤j≤L′ ⊂ Zm being
the essential collection associated with the latter node it follows that
the essential affine toric variety Y ′∩U ′ corresponding to the node ad-
mits a monomial parametrization of its torus by (C∗)m in coordinates
y′j , 1 ≤ j ≤ L′ , on U ′ as follows: y′j = (Φ)j(x) := x~aj , 1 ≤ j ≤ L′ .
We finally show the equivalence of stabilization of the sequence of Nash
blowings up of Y to the termination of our combinatorial algorithm
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Claim 4.9. A branch B of the multidimensional analogue of Euclidean
division algorithm terminates iff the essential affine chart Y ′ ∩ U ′

corresponding to the terminal node of B is nonsingular.

Proof. Say C ′ = {~aj}1≤j≤k is the collection corresponding to a node
of branch B and Y ′ ∩ U ′ ↪→ U ′ ' CL′

is the corresponding essential
affine chart. Then exponents of monomial parametrization y ′j = x~aj ,

1 ≤ j ≤ L′ , of torus (Y ′ ∩U ′)∗ = (Y ′ ∩U ′)∩ (C∗)L′

include collection
C ′ and, moreover, are in Z+(C ′) , i. e. can be expressed as nonnegative
integral linear combinations ~aj =

∑
1≤l≤k njl · ~al , k + 1 ≤ j ≤ L′ .

Therefore, if branch terminates, i. e. collection C ′ associated with
its terminal node is of size m , then Y ′ ∩ U ′ is nonsingular being the
graph of map y′j = (y′1)

nj1 · ... · (y′m)njm , m + 1 ≤ j ≤ L′ .
Conversely if Y ′ ∩ U ′ is nonsingular at the origin of U ′ , it follows

that it is a graph of a complex analytic map-germ G at the origin
over a coordinate subspace Cm ⊂ CL′

. Since the closure Y ′ ∩ U ′ of
torus (Y ′∩U ′)∗ contains the origin 0 of U ′ ' CL′

Claim 2.1 implies
that there is a monomial parametrization y′j = x~ωj , 1 ≤ j ≤ L′ , of
(Y ′ ∩ U ′)∗ with {~ωj}1≤j≤L′ ⊂ Zm

+ . Then (uniqueness of Taylor series
expansion of the composite of G with the components of parametriza-
tion y′jl

= x~ωjl , 1 ≤ l ≤ m , associated with the aforementioned
coordinate subspace Cm implies that) map-germ G is monomial. We
may conclude now that vectors ~aj , 1 ≤ j ≤ L′ , are generated over
Z+ ∪{0} by their subset (of size m ) corresponding to the coordinate
subspace Cm of the previous sentence. �

Remark 4.10. The proof of Claim 4.9 shows that essential toric variety
is nonsingular iff it is nonsingular at the origin.

4.3. Effect of normalization. Normalization N (Y ) of essential
affine variety Y adjoins as regular functions on N (Y ) all mono-
mials M in coordinates yj , 1 ≤ j ≤ L , on CL whenever Md

for some d ∈ Z+ coincides on Y with another monomial M′ in
yj’s with non negative integral exponents (see Section 2.1 in [4]). Since

torus Y ∗ is parametrized by monomials yj = x
~∆j , 1 ≤ j ≤ L ,

normalization translates into a combinatorial algorithm:
augment an essential input set C = {~∆j}j ⊂ Zm to a semigroup
Q+(C)Z generated by its finite essential subset N (C) := Ext(Q+(C)Z)
(Remark 4.7 (i)) - the output of combinatorial normalization.

Of course a sequence of composites of normalized Nash blowings up
followed by normalization coincides with normalization followed by the
sequence of Nash blowings up composed with normalizations. For the
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convenience of exposition (and reflecting the latter) essential collection

N (C) , with C = {~∆j}1≤j≤L from (4.1), is the input for

normalized multidimensional Euclidean division algorithm:
whose each step starts with essential set C as an input and results in
essential collections N (NJ(C)) for J ∈ S(C)′ as the output.

The latter records a sequence of normalized Nash blow ups (followed
by normalization) of an essential toric variety Y . By definition a
branch of this tree-like algorithm terminates at a node with an essential
collection C provided that the size of C is m .

The proof of Claim 4.9 applies to show that a branch B̃ of normal-
ized multidimensional Euclidean division terminates iff the essential
chart corresponding to the terminal node of B̃ is nonsingular. Since
normalization separates all local analytic irreducible components (and
due to Theorem 2.5 A. , C. and Remark 1.1 ) the lengths of the nor-
malized Nash desingularization of the essential subvariety Y of an
affine binomial variety V̂ and that of V̂ coincide.

5. Termination of normalized Euclidean division: dim= 2

Conjecture 5.1. Tree T associated with the multidimensional Eu-
clidean algorithm is finite for any initial data.

By König’s lemma the latter is equivalent to the property that the
algorithm terminates along every branch of tree T . In dimension > 2
‘normalized’ version of 5.1 is the following

Conjecture 5.2. Tree T associated with the normalized multidimen-
sional Euclidean algorithm is finite for any initial data.

We start with an example from Introduction of a normal toric surface
in C3 whose Nash blow up is not normal

Example 5.3. With φ : (x1, x2) 7→ (x1 · x2 , x1 · x2
2 , x

3
1 · x2

2) let

S := φ(T2) ⊂ C3 . Exponents C := {(1, 1) , (1, 2) , (3, 2)} ⊂ Z2

generate over Z+ ∪ {0} integral points Z2 ∩ Span Q+(C) of cone
Span Q+(C) ⊂ Q2 spanned by C , because det((3, 2) , (1, 1)) =
1 = det((1, 1) , (1, 2)) implies that cones Span Q+({(3, 2) , (1, 1)})
and Span Q+({(1, 1) , (1, 2)}) are, respectively, generated by pairs of
vectors (3, 2) , (1, 1) and (1, 1) , (1, 2) and because the union of
these two cones is exactly the cone generated by C . Then due to a
criterion of Section 2.1 in [4] it follows that surface S is normal. Next,
with reference to Section 4.2 there are exactly two elements in the set
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S(C)′ , namely: J1 = {(1, 1) ; (1, 2)} and J2 = {(1, 1) ; (3, 2)} ,
- and the Nash blow up N(S) of S is covered by two respective
affine charts N(S)Jj

, j = 1, 2 , as explained in Claim 4.6 . (In the
remainder we make use of notations of Remark 4.5 .) It turns out
N(S)J1 ⊂ C5 is not normal, i. e. collection of exponents CJ1 of
monomial parametrization

ψ : (x1, x2) 7→ (x1 · x2 , x1 · x2
2 , x

3
1 · x2

2 , x
2
1 · x2 , x

2
1)

of torus N(S)∗J1
does not generate Z2∩Span Q+(CJ1) over Z+∪{0} ,

because obviously point (1, 0) ∈ Z2 ∩ Span Q+(CJ1) \ Z+(CJ1) , but
(1, 0) 6∈ Z+(C∪{(2, 1) , (2, 0)}) , implying N(S) is not normal. (Note,
that ψ3(x) = ψ1(x) · ψ4(x) , i. e. exponent (3, 2) is generated over
Z+ ∪ {0} by ‘others’, illustrating passage from CJ to Ext(Z+(CJ))
in the combinatorial algorithm recording Nash blowing up.)

Consider a node τ of a tree T associated with normalized mul-
tidimensional Euclidean division for initial essential collection N (C)
with C from (4.1). Let Cτ ⊂ Z2 denote the associated with node τ
essential collection. In abuse of notation we will not indicate the de-
pendence of Sτ := S(Cτ ) and S ′

τ := S(Cτ )
′ on τ (for S(C) and S ′

see Remark 4.4 and Claim 4.6). Note that int(∇(J)) ∩ Span Z(Cτ ) =
int(∇(J)) ∩ Q+(Cτ )Z for J ∈ Sτ and that J ∈ S ′

τ implies that
int(∇(J)) ∩ Q+(Cτ )Z = ∅ , see Remark 4.7 (ii) , (iii) . Of course
Span Z(Cτ ) = Span Z(C) for any node τ . We may assume that
Zm = Span Z(C) , otherwise we ‘rescale’ replacing the latter span by
Zm . Finally, we refer to the initial node τ0 of T as its root and to
the collection of ‘immediate descendants’ of τ in T as child nodes of
τ - terms commonly used in the ‘theory of trees’.

5.1. An apriori bound in (essential) dimension m = 2 on
the length of desingularization by normalized Nash blow ups.
Below we assume that m = 2 , nodes τ0 and τ are not terminal and
with node τ associate an integer V(τ) := twice the area of Conv (Cτ ) .

We refer to vectors {~∆ji
}i=1,2 ⊂ C := {~∆j}1≤j≤L ⊂ Z2 minimal on

the intersection of C with two extremal rays of the cone generated
by C over R+ as the extremal vectors of C . Of course extremal
vectors of the input N (C) for the normalized 2-dimensional Eu-
clidean division are the same vectors. Integer D of Theorem 3.1 equals
| det(~∆j1 ,

~∆j2)| . In abuse of notation we will not distinguish in this
section between the subsets J ∈ Sτ of indices of vectors in collections
Cτ and the sets of the respective vectors themselves. Let b1, , b2 ∈ Cτ

be the extremal vectors of Cτ . Denote D(τ) := | det(b1 , b2)| and
pick a 2-tuple J := {uj}j=1,2 ∈ S ′ . In other words J corresponds to
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a child node τ of τ and determines the branching of T at node τ .
Of course Cτ = Ext(Q+(Cτ )Z) .

Every J ∈ S ′ is a frame, i. e. is a collection of linearly independent
vectors, and moreover is a minimal frame of Cτ . By minimal we
mean that for an irrational functional h positive on the convex hull
of collection Cτ ⊂ Z2 the value of h(~∆J) , where ~∆J := u1 + u2 ,

is smaller than the value of h(~∆J ′) for any other choice of J ′ ∈ S .
This property of frames J ∈ S ′ does not depend on the choice of
irrational h being positive on the convex hulls of collections Cτ ⊂ Z2 ,
corresponding to τ and provides a bijective correspondence between
the minimal frames of Cτ and the child nodes τ of τ , cf. Claim 4.6 .
We identify in explicit geometric terms sets involved in the proof below
of an apriori bound Theorem 3.1 in the following

Claim 5.4. Generators Ext(Q+(C)Z) of any C ⊂ Z2 with C 63 0
and Span Z(C) = Z2 are the integral points of bounded edges Γ of
K := Conv (Q+(C)Z) . For any node τ of tree T

D(τ) − V(τ) = #(Cτ ) − 1(5.1)

Proof. Inclusion of the integral points of bounded edges Γ of K in
Ext(Q+(C)Z) is obvious. To show the opposite inclusion we pick any
pair J of adjacent integral points {u1 , u2} on any bounded edge Γ of
K . Then the only integral points of triangle ∇(u1 , u2) are its vertices.
Therefore the only integral points in the parallelogramm P (J) spanned
by vectors u1 , u2 are its extremal points, which implies (by tiling of
R2 by translations of P (J) ) that Span Z(J) = Z2 . Consequently
Z2∩Span Q+(J)\{0} = Z+(J) and Span Q+(J)∩C = J . (Equivalently
1 = | det(u1 , u2)| = 2 · area(∇(u1 , u2)) for any adjacent integral
points u1 , u2 on any bounded edge of Conv (Q+(C)Z) and (5.1)
follows for any node τ .) With J as above inclusion now is implied
by Span Q+(C) = ∪JSpan Q+(J) . �

Remark 5.5. Any J = {u1 , u2} ∈ S(C)′ must lie on a bounded
edge Γ of Conv (Q+(C)Z) . Moreover, frame J is a minimal frame
iff u1 , u2 ∈ Γ are adjacent integral points and at least one of them
is a vertex of edge Γ , since J ∈ S(C)′ iff dim C̃J = 2 (see proof
of Claim 4.6). Of course | det(u1 , u2)| = 1 for any pair {u1 , u2}
of adjacent integral points on a bounded edge of Conv (Q+(C)Z) is a
byproduct of the proof of Claim 5.4 above.

Of course V(τ) = 0 for a terminal node τ and if node τ is not
terminal but V(τ) = 0 , then there are exactly two child nodes of node
τ and both are terminal. We now restate and then prove Theorem 3.1
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Theorem 5.6. Assume τ is not terminal. With every step of nor-
malized 2-dimensional Euclidean algorithm integer V(τ) decreases,
i. e. V(τ) > V(τ ) .

Corollary 5.7. Normalized 2-dimensional Euclidean algorithm ter-
minates after at most V(τ0) + 1 ≤ D(τ0) − 1 steps.

Proof. Fix an irrational h and by reindexing arrange that h(b1) <
h(b2) . Let b′1 , b′2 ∈ Cτ be the extremal vectors of Cτ and

b̃′1 , b̃
′
2 ∈ NJ(Cτ ) be the minimal vectors in the intersection of NJ(Cτ )

with two extremal rays of the cone generated by NJ(Cτ) over R+ .
Of course the latter cone does not change under ‘normalization’, i. e.
coincides with the cone generated by Cτ over R+ , see Section 4.3 .
In particular, it follows that (after an appropriate choice of indices)

extremal vectors b̃′1 , b̃′2 preceding normalization are proportional to
the extremal vectors b′1 , b′2 with coefficients from Z+ .

Remark 5.8. Node τ is terminal iff | det(b1 , b2)| = 1 iff #(Cτ ) = 2
iff {b1 , b2} is a minimal frame in Cτ . To establish the only
nonobvious implication (i. e. that the last property implies the first) it
suffices to apply Claim 5.4 . The latter reference and node τ not being
terminal also imply that if J 6⊂ int∇(b1 , b2) then #({b1 , b2}∩J) = 1
and b2 6∈ J (otherwise h(b1) < min h|J < h(b2) contrary to the choice

of the irrational functional h ∈ C̃J ).

Plan : Our proof of decrease of V(τ) splits into several cases identified
below. First we consider the case that J ⊂ int∇(b1 , b2) and otherwise
b1 ∈ J , b2 6∈ J (due to Remark 5.8) and, also, b1 ∈ {b′1 , b′2} follows
by making use of Span Q+(J) ∩ Cτ = J established in Claim 5.4 , cf
Figures 1 , 2 and 3 . Say b′1 = b1 and u1 = b1 . The remaining
cases are split according to either u2 6∈ int∇(b1 , b2) (and then τ is
terminal contrary to our assumption) or otherwise and then according
to #(Cτ ) = 3 (when #(Cτ ) = 2 node is terminal) or #(Cτ ) ≥ 4 .
We show that in the latter case #(Z2 ∩ Γ) > 2 for the bounded
edge Γ ⊃ J of Conv (Q+(Cτ )Z) implies that node τ must be
terminal, i. e. is contrary to our assumption. In the previous case of
u2 ∈ int∇(b1 , b2) and #(Cτ ) = 3 the arguments of our proof differ
depending on D(τ) being even or odd : if D(τ) = 2k − 1 is odd
then it turns out that Cτ = {b1 , u2 , b2 − (k − 1) · u2 , b2 − b1}
and V(τ) − V(τ) = 1 , on the other hand if D(τ) = 2k is even then
Cτ = {b1 , u2 , (b2−b1)/2} and V(τ)−V(τ ) = V(τ)/2+1 . In each of
the cases (with nodes τ and τ not being terminal) we establish that
(after ‘normalization’) integer V(τ) decreases. We now start with
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1. Points u1 , u2 in the interior of ∇(b1 , b2) .

0

h
b1

b’2

b’1

a b 2

a(1)

u1
u2

=(2)

~

~

Figure 1. Cτ = { b1 , a(1) , u1 , u2 , b2 } .

Then after one step of 2-dimensional Euclidean division (and prior to

normalization) each extremal vector b̃′l = a(l) − ujl
for appropriate

points a(l) ∈ Cτ∩ (int(∇(b1 , b2)) ∪ {b1 , b2}) , l = 1 , 2 , jl ∈
{1 , 2} , and after one step of normalized 2-dimensional Euclidean
algorithm extremal vectors b′1 , b

′
2 are proportional to their respective

counterparts b̃′1 , b̃
′
2 with positive coefficients majorated by 1 , so

that D(τ) ≤ | det(b̃′1 , b̃
′
2)| . Denote by H and AH the convex hull

of {a(1) , a(2) , uj1 , uj2} and its area. Of course the areas of triangles
∇(b1 , b2) and ∇(b′1 , b

′
2) are D(τ)/2 and, repectively, D(τ)/2 .

Then claimed inequality follows from

V(τ ) < D(τ) ≤ | det(b̃′1 , b̃
′
2)| = 2 · AH ≤ V(τ) .

2. Extremal vector b1 ∈ {u1 , u2} if it is not case 1.

Since τ is not terminal b2 6∈ J = {u1 , u2} and b1 ∈ {b′1 , b′2} (see

‘Plan’). Set both b′1 = b1 , u1 = b1 , i. e. b′1 = b̃′1 = b1 = u1 for the
remainder of the proof. Case 2. splits into several starting with

2a. u2 6∈ int∇(b1 , b2) .

Then, with reference to Claim 5.4 , u2 is in the open edge (b1 , b2)
(i. .e. excluding endpoints b1 , b2 ) of triangle ∇(b1 , b2) and therefore,
moreover, the whole Cτ is a subset of closed edge [b1 , b2] . Then
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b̃
′

2 = a − u2 6= 0 for the adjacent to u2 point a ∈ Cτ ∩ [u2 , b2]

implying b′2 = b̃
′

2 = u2 − u1 . Hence, with reference to Claim 5.4 ,
| det(b′1 , b

′
2)| = | det(u1 , u2)| = 1 and τ is terminal (Remark 5.8 ).

In the remaining cases u2 ∈ int∇(b1 , b2) and the assumptions of
the next one imply that τ is terminal.

2b. Assume u2 ∈ int∇(b1 , b2) , #(Cτ ) ≥ 4 and #(Z2∩Γ) > 2
for the bounded edge Γ ⊃ J of Conv (Q+(Cτ )Z) .

Then, with reference to Claim 5.4 , b̃
′

2 = a− u2 6= 0 for the adjacent
to u2 point a ∈ Cτ ∩ Γ \ {u1} implying (as in the previous case)

that b′2 = b̃
′

2 = u2 − u1 , that | det(b′1 , b
′
2)| = | det(u1 , u2)| = 1 and,

finally, that τ is a terminal node, contrary to initial assumption.

2c. Assume u2 ∈ int∇(b1 , b2) , #(Cτ ) ≥ 4 and #(Z2∩Γ) = 2
for the bounded edge Γ ⊃ J of Conv (Q+(Cτ )Z) .

a

0

b

b’ = b  = u

u

~
b’ = a − u

2

2

2 1

1        1       1

Figure 2. The area of Conv (Cτ \ {u2}) ≥ 1 .

Then Z2 ∩ Γ = J , #(Cτ \ J) ≥ 2 and, with reference to Claim 5.4 ,

b̃′2 = a − u1 with a ∈ Cτ \ {u1} adjacent to u2 . Therefore integer

V(τ)−2 · area(u1 +∇(u2−u1 , a−u1)) > 0 implying | det(b̃′1 , b̃
′
2)| =

2+2 · area(u1 +∇(u2−u1 , a−u1)) ≤ 2+(V(τ)−1) . Combining with
(5.1) and Remark 5.8 proves inequality V(τ ) < V(τ) , as required:

2 + V(τ) ≤ D(τ) ≤ | det(b̃′1 , b̃
′
2)| ≤ 1 + V(τ) .
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2d. Assume u2 ∈ int∇(b1 , b2) and #(Cτ ) = 3 .

*

*

*

*

*

*

*

*

*

*e

b

b b’ ’

0 0

b’ = b = u
1          1       1

2

2 2

u
u

2
2

.
. .

.
.

.

b
2

b
2

~

= 
2b

~
’’ 1−

2

= b − b
2        1 = b − b

2        1

case:  e = k u

e

.
2

a = 2

*

b

Pictures with k = 5 .

In both cases  k > 1 .

.
.

.

*

*

*

b’ = b = u
1          1       1

case:  e = 
2

.

*

*

*

*

(k − 1/2)  u

− (k − 1) .u
2

Figure 3. D(τ) = 2k or 2k − 1 ⇒ #Cτ = 3 or 4 respectively.

Let e be the point of intersection of edge (b1 , b2) with ray R+ ·u2 ,
say λ·u2 = e , λ > 0 . Due to Claim 5.4 ∇(b1 , b2)∩Z2\{0 , b1 , b2} ⊂
Z+ ·u2 and | det(b2 , u2)| = 1 = | det(u2 , b1)| implying b̃′2 = b2 − b1
and that the areas of triangles ∇(b2 , e) and ∇(b1 , e) coincide.
Hence e = (b1 + b2)/2 and, also, λ = | det(e , b1)| = D(τ)/2 . The
arguments in the remainder depend on D(τ) being even or odd.

2d.* Assume D(τ) is even and let k := D(τ)/2 .

Then (b2 − b1)/2 is the only integral point in the open ‘interval’

(0 , b̃′2) implying that b′2 = b̃′2/2 and, since | det((b2 − b1)/2 , u2)| =
|(det(b2 , u2)+det(u2 , b1))/2| = 1 , that Cτ = {b1 , u2 , (b2− b1)/2}
(Claim 5.4). Finally, with reference to (5.1), it follows that

V(τ ) + 2 = D(τ) = | det(b1 , (b2 − b1)/2)| = D(τ)/2 = (V(τ) + 2)/2

implying that V(τ) − V(τ) = V(τ)/2 + 1 , as required.

2d.** Assume D(τ) is odd and let k := (D(τ) + 1)/2 .

Then there are no integral points on edge (b1 , b2) (as well as on

‘interval’ (0 , b̃′2) ) implying that b′2 = b̃′2 = b2 − b1 . Denote point
a := b2 − (k− 1) · u2 = (u2 + b′2)/2 . Then, since | det(b′2 , u2)| = 2 , it
follows that | det(b′2 , a)| = | det(a , u2)| = 1 . Now, with reference to
Claim 5.4 it follows that Cτ = {b1 , u2 , b2 − (k − 1) · u2 , b2 − b1}
and finally, due to (5.1), that

V(τ ) + 3 = D(τ) = | det(b′1 , b
′
2)| = D(τ) = V(τ) + 2
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implying that V(τ) − V(τ) = 1 , which completes the proof. �

Bound on the numbers of the child nodes for the nodes of T :

Remark 5.9. Denote n(τ) ∈ Z+ the number of child nodes of node
τ . With reference to Remark 5.5 (and by making use of Claim 5.4 ) if
V(τ) = 0 then either node τ is terminal or its child nodes are terminal
and n(τ) = 2 . Otherwise n(τ) ≤ #(Cτ ) − 1 = D(τ) − V(τ) < D(τ)
and also n(τ) ≤ V(τ) + 1 (since any triangle with vertices in Z2 has
area ≥ 1/2 ), implying that n(τ) ≤ min{(D(τ) + 1)/2 ; D(τ) − 1} .

5.2. Complexity issues. We have constructed an algorithm by means
of Lemma 2.2 (via linear programming) and subsequently in section 4.1,

whose input is the exponents matrix Ê (from (2.1)) and the output

is an essential collection C = {~∆j}1≤j≤L of the exponent vectors
of a monomial parametrization of (4.1). Complexity of the designed
algorithm is polynomial in the binary size of the input relying on the
following two subroutines, namely:

(i) The first one by means of linear programming [8] separates vari-
ables wj on CN into two groups of z-variables and y-variables.

(ii) The second ([3]) yields a Z-basis {(~δ1i , . . . , ~δLi) × 0}1≤i≤m

of the integral lattice in Ker Ê ∩ (QL × {0}) ⊂ QN and vectors from

collection C by formulae ~∆j = (δj1 , . . . , δjm) for each j .

Combination of the latter two subroutines results in an algorithm
whose input being an exponents matrix of an affine binomial variety
V̂ ⊂ CN provides exponents ~∆j ∈ Zm , 1 ≤ j ≤ L , of a mono-

mial parametrization (C∗)m → Y ∩ (C∗)N ↪→ V̂ ∩ ((C∗)L × IN−L) of

torus of the essential toric subvariety Y ↪→ V̂ , defined by formulae

yj = x
~∆j , 1 ≤ j ≤ L . As explained in Corollary 2.8 normalized Nash

desingularization of variety Y implies normalized Nash desingulariza-
tion of the same length of variety V̂ . When m = 2 the sequence
of normalizations followed by Nash blowings up stabilizes, as is proved
in this section, and provides normalized Nash desingularization of Y .
This process recorded by means of a combinatorial algorithm on the
exponents of monomial parametrizations of the successive composites
of the normalized Nash blowings up starting with essential variety Y
is the normalized 2-dimensional Euclidean algorithm (described in sec-
tion 4.3 and in great detail here) whose complexity is estimated below

Remark 5.10. After each step of the normalized 2-dimensional Eu-
clidean algorithm the maximal binary size of points of the input (set
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C ⊂ Z2 of the algorithm in Section 4.3 ) increases at most by an
additive constant. Since the length of any branch of the algorithm is
bounded by D−1 (due to Theorem 3.1 ) it follows that complexity of
a single step of the algorithm (as well as the complexity along a single
branch) is polynomial in D and in the binary size of the initial input.

6. Invariance of termination bounds

This section is entirely devoted to the issue of the invariance of the
integer D introduced in Sections 3 and 5 in terms of which the termina-
tion and complexity bounds are expressed (though has no evident bear-
ing on the problem of termination of neither normalized multidimen-
sional Euclidean division nor of its geometric counterpart for m > 2 ).
Considered in both sections in the case of dimension m = 2 and asso-
ciated with a monomial parametrization (C∗)m 3 x 7→ y = φ(x) ∈ Y ∗

(with components yj = φj(x) := x
~∆j ) of the torus Y ∗ of an essential

toric subvariety Y of a binomial variety V̂ ⊂ CN number D is
expressed in terms of the exponents C = {~∆j}1≤j≤L ⊂ Zm of map φ
as the area of a parallelogram generated by the extremal vectors, i. e.
the least points of Span Z(C) on the (two) extremal rays of the cone
spanned over R+ by the exponents in C , see Section 5 .

Due to Theorem 2.5 , Corollary 2.3 and Claim 2.1 we may, as well,
assume all exponents to be strictly positive, i. e. that C ⊂ Zm

+ .
Also, we may assume without loss of generality that Span Z(C) = Zm .
Recall that Y is ‘essential’ means that Y 3 0 and is equivalent
to Conv (Z+(C)) 63 0 , Sections 2 and 4 . By extremal vectors for
any m we (similarly) mean the subset E(C) ⊂ Ext(Q+(C)Z) , where
Q+(C)Z = Span Z(C)∩ Span Q+(C) \ {0} , of all minimal in size points
of Ext(Q+(C)Z) on the extremal rays of cone Span Q+(C) and ‘nor-
mality’ property of Y is equivalent in terms of exponents C to
Z+(C) = Q+(C)Z and (by construction) is valid for ‘normalized’ algo-
rithms (Nash and/or 2-dimensional Euclidean) of Section 5 for which
termination is proved. We may also (without loss of generality) assume
that C = Ext(Q+(C)Z) since the ‘left out’ exponents (and correspond-
ing affine coordinates) are in Z+(Ext(Q+(C)Z)) (and, respectively,
coincide on Y with monomials in the coordinates corresponding to
elements in Ext(Q+(C)Z) ). Number D admits a natural extension
for an arbitrary m in terms of set C as the smallest D = D(C) ∈ Z+

such that D · ~∆j ∈ Z+(E(C)) for all ~∆j ∈ C .
Next we restate the definition of denominator D(C) as a local invari-

ant of Y (as well as of any of the isomorphic irreducible components
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of V̂ , say of V ) at any point o ∈ Y . Invariance we consider is with
respect to the germs at o of local analytic isomorphisms preserving
coordinate hyperplanes that contain o . We restrict variety X := Y
(or respectively X := V ) to affine charts Uo obtained by exclusion
of all coordinate hyperplanes off o , which we refer to as the origin
(recall, Section 2 and Remark 7.5 , that ‘y-variables’ of varieties Y , V

and even of V̂ coincide). To be precise charts Uo are constructed
by introducing a ‘double’ z̃j of every affine coordinate zj := wj with

wj(o) 6= 0 , say j = 1, ..., L̃ , and

Uo := {(z, z̃) ∈ C2L̃ : zj · z̃j = 1 , 1 ≤ j ≤ L̃} × CLo ↪→ CLo+2L̃ ,

with ‘y-variables’ of variety X being the remaining Lo variables in-
duced by the original ‘y-coordinates’ with yj(o) = 0 . Then, according
to Theorem 2.5 and Remark 2.6 , the germ Xo of variety X at o
is isomorphic to a product of a germ Zo of a nonsingular subva-
riety Z with a germ of a union of, possibly several, mutually iso-
morphic subvarieties (including the germ Yo at o of the ‘essential’
toric subvariety of X ). Moreover, Zo = ∩j{yj = 0} ∩ Xo and

is identified with π(Zo) = π(Xo) ↪→ C2L̃ for projections π with
Kerπ = CLo := Span C{y−variables} , i. .e. via π∗

|X ◦ (π−1
|Zo

)∗ there is

an embedding OZ,o ↪→ OX,o .
By attaching subscript o indicating the dependence on the new ori-

gin o ∈ X we will assume below that all notations (and assumptions)
of the second paragraph of this section (including of the sets of expo-
nents Co associated with essential subvariety Yo of Xo and of the
extremal vectors E(Co) ⊂ Co , as well as of the numbers mo := dimYo

and Do := D(Co) are associated with toric variety X ↪→ Uo . By
reindexing yj’s we may assume that E(Co) = {yj}1≤j≤L′

o
. In abuse of

notation we will (occasionally) write j ∈ E(Co) instead of yj ∈ E(Co) .
For the sake of invariance we must consider notions allowing to define

denominator D(Co) in the respective local ring OX,o (i.e. in OY,o

and/or OV,o ) while in OX,o its ‘defining equations’ are no longer
binomial, i. e. binomials do not generate the ideal of relations between
local parameters (even though including among the latter all affine
coordinates yj with yj(o) = 0 because we examine the invariance
with respect to the germs of local isomorphisms preserving all germs
of sets {yj = 0} ). To overcome this problem we consider local
ring Ro := OX,o[S

−1] of quotients with numerators in OX,o and
denominators in the multiplicative collection S of nonzero germs in
OZ,o . (Of course resulting rings Ro are isomorphic for different choices

of projections π of CLo+2L̃ with Ker π = Span C{y−variables} .)
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Denote Mo the maximal ideal of ring Ro and by yj the classes
in Ro of all affine coordinates yj with yj(o) = 0 . Then, of course,
collection Par(Ro) := {yj}1≤j≤Lo

⊂ Mo induces a basis of Mo/M2
o

over field K := Ro/Mo = OZ,o[S
−1] .

Remark 6.1. Sets E(Par(Ro)) ⊂ Par(Ro) can be defined in terms
of collection Par(Ro) ⊂ Ro as follows: j ∈ E(Par(Ro)) iff
(i) yp

i = yq
j , (p, q) ∈ Z2

+ , i 6= j , implies p < q ;
(ii) yj is not in the integral closure in Ro of the subring of Ro

generated by yi’s such that yp
i 6= yq

j for any (p, q) ∈ Z2
+ .

Note that
(iii) ring Ro is the integral closure of its subring R ↪→ Ro generated
by yj’s with j ∈ E(Par(Ro)) (consequence of Section 2.1 of [4] ).
We may therefore introduce in terms of collection Par(Ro) the small-
est positive integer D = D(Par(Ro)) such that for all j , yD

j ∈ R .
Obviously, the value of denominator D of Par(Ro) coincides with

Do = D(Co) , where Co is the collection of exponents {~∆j}j of any
monomial map φ (including with nonpositive exponents) parametriz-
ing torus Y ∗

o , i. e. D(Co) is a local invariant due to the definition of
D = D(Co) being stated entirely in terms of collection Par(Ro) .

Remark 6.2. With reference to Section 4.3 normalization N (Y ) of
Y is a toric variety in CL′

whose torus N (Y )∗ := N (Y ) ∩ (C∗)L′

is parametrized by a map ψ : (C∗)m 3 x 7→ y = ψ(x) ∈ N (Y )∗ with

components yj = ψj(x) := x
~∆j , and the collection of exponents, say

C ′ := {~∆j}1≤j≤L′ ⊂ Span Z(C) ∩ Span Q+(C) ⊂ Zm
+ , augmenting set

C = {~∆j}1≤j≤L so that Z+(C ′) = Span Z(C) ∩ Span Q+(C) \ {0} . It
follows that Z+(C ′) = Span Z(C ′) ∩ Span Q+(C ′) \ {0} . In short, all
assumptions of the lemma following (except on the size of E(C) when
m > 2 ) are satisfied for Y replaced by its normalization N (Y ) . Of
course elements of E(C ′) and of E(C) span the same extremal rays
with the extremal vectors of E(C ′) being (equal or) shorter than their
respective counterparts in E(C) .

For a matrix M of size m×m with entries in Z let den (M) ∈ Z+

denote the least d ∈ Z+ with the entries of d ·M−1 being integers.
Obviously, entries of matrix d ·M−1 generate a unit ideal in Z and
if also m = 2 and the entries of M have no common divisor then
den (M) = | det(M)| . Below we denote a matrix whose columns are
elements of collection C ⊂ Cm by the same letter C .

Lemma 6.3. If Span Z(C) = Zm , Zm ∩ Span Q+(C) \ {0} = Z+(C)
and #(E(C)) = m it follows that D(C) = den (E(C)) .
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Remark 6.4. Of course, if #(E(C)) = m and D(C) = 1 affine
variety Y being of dimension m must be nonsingular. Also, if m = 2 ,
then obviously #(E(C)) = m and D(C) = | det(E(C))| .

Proof. Inclusion den (E(C)) ∈ D(C) ·Z is a simple consequence of the
definitions. It therefore suffices to show that for any prime number p
and s ∈ Z+ it follows from den (E(C)) ∈ ps·Z that D(C) ∈ ps·Z . Let

M := den (E(C)) · E(C)−1 . Then there is a column ~λ of matrix M
with a nonvanishing mod p entry and modifying the latter column

to ~λ′ := ~λ+ ps · t · Im with a sufficiently large positive t ∈ Z+ so as

to make all entries of ~λ′ positive it follows that ~λ′ 6= 0 ( mod p) .

Therefore vector E(C) · ~λ′ ∈ (ps · Zm) ∩ Span Q+(C) \ {0} . It follows
that D(C) ∈ ps · Z , as required. �

Corollary 6.5. Denominator D(C) of essential subvariety of a bino-

mial variety V̂ is the bound D appearing in our abstract for m = 2
(and is a local integral invariant of V̂ ).

7. Structure of binomial varieties, proof of reduction

We consider affine binomial varieties V̂ := V ∗(f̂) in CN determined

by a set f̂ := {f̂j}1≤j≤M of binomials from (2.1). Let r := rank Ê .
Denote T tr the transpose of matrix T and by E = {Eji} a matrix

of size r × N with rows being a basis over Z of (Ê)tr(QM) ∩ ZN .
Then ideal generated in Z by r× r minors of matrix E is the unit
ideal, which is equivalent to the following property

(Z) {ξ ∈ RN : Eξ ∈ Zr} = KerE ∩ RN + ZN ⊂ RN .
Let αji := max{Eji , 0} , βji := −min{Eji , 0} and denote X

the closure of V ∗(f) := {w ∈ (C∗)N : fj(w) = 0 , 1 ≤ j ≤ r} in CN ,
where binomials

fj := w
αj1

1 · · ·wαjN

N − w
βj1

1 · · ·wβjN

N .(7.1)

Then V ∗(f) ⊂ V ∗(f̂) and both are subgroups of (C∗)N . Also,

KerE = Ker Ê and V ∗(f)∩RN
+ = V ∗(f̂)∩RN

+ . A simple calculation

shows that V ∗(f) ⊂ RegX , V ∗(f̂) ⊂ Reg V̂ and that dimC V
∗(f) =

dimC KerE = dimC Ker Ê = dimC V
∗(f̂) . Hence V ∗(f) is an open

(and closed) subset of V ∗(f̂) . But V ∗(f̂) need not be connected.

Let G := {w ∈ V ∗(f̂) : |w| = 1} and G0 := {w = exp(2π
√
−1 · h) :

h ∈ RN , Eh = 0} . Then the latter two are subgroups of V ∗(f̂) .
Theorem 2.5 A. follows from
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Proposition 7.1. Set V ∗(f) is a torus, group Γ := G/G0 is finite,

the distinct connected components of V ∗(f̂) are {g ·V ∗(f)}[g]∈Γ listed
by the classes of equivalence [g] ∈ Γ of g ∈ G and G0 = G ∩ V ∗(f).

Proof. Equality V ∗(f̂) = ∪g∈G(g · V ∗(f)) is straightforward (since

g := w · |w|−1 ∈ G and |w| ∈ V ∗(f) whenever w ∈ V ∗(f̂) ).
Connectedness of V ∗(f) follows from the existence of a monomial

isomorphism ψ : TN−r → V ∗(f) constructed by means of a basis

{ ~λj}1≤j≤N−r of KerE ∩ ZN over Z as follows: denote λij the

i-th coordinate of ~λj , 1 ≤ i ≤ N , then property (Z) implies that

monomial map ψ((u1, . . . , uN−r)) := (
∏

j u
λ1j

j , . . . ,
∏

j u
λ(N−r)j

j )

is as required. Hence sets g · V ∗(f) are closed, open and connected.
Property ( Z ) implies G ∩ V ∗(f) = G0 and, therefore, for any

g ∈ G sets V ∗(f) and g · V ∗(f) coincide iff set V ∗(f) ∩ g · V ∗(f)
is not empty, i. e. sets (V ∗(f))[g] := g · V ∗(f) listed by the classes of
equivalence [g] ∈ Γ := G/G0 of g ∈ G are distinct.

Group Γ is finite since map ξ → exp(2π
√
−1·ξ) provides a bijection

of an additive group Γ∗ := {ξ ∈ RN : Ê(ξ) ∈ ZM}/(ZN +KerE) onto

Γ , while Γ∗ is finite (since for any choice of a basis { ~hj}1≤j≤r of

Ê(RN) ∩ ZM over Z there is a choice of {~ξj}j ⊂ QN with each
~hj = Ê(~ξj) and KerE = Ker Ê ). �

Corollary 7.2. It follows that X is an irreducible component of
V̂ with IN ∈ X , i. e. X = V . The closures [g]V of connected

components g · V ∗ of V ∗(f̂) for classes of equivalence [g] ∈ Γ of

g ∈ G are the irreducible components of variety V̂ .

We will make use of the following key

Claim 7.3. Assume {~ξ(k)}k∈Z+ is a sequence of vectors in a subspace

S of RN and I0 ⊂ {1, . . . , N} are such that limk→∞(~ξ(k))i = ai ∈ R

for all i ∈ I0 and for i ∈ {1, . . . , N} \ I0 this limit equals −∞ .

Then there are vectors ~a and ~h in S , such that (~a)i = ai , (~h)i = 0

for all i ∈ I0 and (~h)i > 0 for all i ∈ {1, . . . , N} \ I0 .

Proof. Below, starting with ~ξ0(k) := ~ξ(k) , k ∈ Z+ we inductively for

j = 0 , 1 , 2 , . . . define vectors ~hj+1 in S\{0} , sequences of numbers

{tj+1(k)}k in R+ , followed by sequences of vectors {~ξj+1(k)}k and
{~ηj+1(k)}k in S \ 0 and finally sets Ij+1 , Ij ( Ij+1 ⊂ {1, . . . , N} .
Due to the latter property our inductive process would have to termi-
nate after s < N steps. Let {~ηj(k)}k∈Z+ denote an appropriate
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subsequence of {~ξj(k)}k∈Z+ so that limit

~hj+1 := lim
k→∞

(~ηj(k)/||~ηj(k)||) ∈ S \ {0} ,

exists. It follows that (~hj+1)i ≤ 0 for all i and = 0 if i ∈ Ij . Next
let

tj+1(k) := min
{i:(~hj+1)i<0}

((~ηj(k))i/(~hj+1)i) ∈ R+ ,

then define sequence

{~ξj+1(k) := ~ηj(k) − tj+1(k) · ~hj+1}k ⊂ S .

Finally define Ij+1 to be the set of all i such that the limk→∞(~ξj+1(k))i

is finite. (We may assume that {~ξj+1(k)}k∈Z+ ⊂ S \ {0} and that the
latter limits exist for all i as −∞ or finite in R− after choosing ap-
propriate successive subsequences.) It follows that for every j values

(~hj+1)i < 0 for i ∈ Ij+1 \ Ij and that the process terminates with

Is−1 ( Is = {1, . . . , N} . In particular, limit ~a := limk→∞
~ξs(k) ∈ S

exists and satisfies the conclusion of our lemma, as required. Finally,

due to the properties of our construction ~h := −∑
1≤j≤s

~hj ∈ S is as
required as well. �

Corollary 7.4. Claim 7.3 implies (a) equality Ŷ = V ∗(f̂) ∩ (CL × IN−L)
of Theorem 2.5 B., (b) Lemma 4.2 and (c) Lemma 2.2 :

Proof. Indeed, starting with the proof of (a) let sequence {w(k)}k ⊂
V ∗(f̂) be such that limk→∞w(k) = w̃ ∈ V̂ ∩ (CL × IN−L) . Then
there are sequences {ξ(k)}k∈Z+ ⊂ RN , |(ξ(k))i| ≤ 1/2 for all k ∈
Z+ , 1 ≤ i ≤ N , with {Ê(ξ(k))}k∈Z+ ⊂ ZM and {h(k)}k∈Z+ ⊂
Ker Ê ∩ RN

+ , such that exp(h(k) + 2π
√
−1 · ξ(k)) := w(k) for all

k ∈ Z+ . It follows (choosing a subsequence if needed) that there exist
limits ξ = limk→∞ ξ(k) ∈ RN , ai = limk→∞(h(k))i ∈ R , whenever
(w̃)i 6= 0 , and limk→∞(h(k))i = −∞ for other i’s , and such that
for the last N − L coordinates ξi = 0 and ai = 0 (i. e. when

(w̃)i = 1). Of course Ê(ξ) ∈ ZM . Applying Claim 7.3 it follows that

there exist ~a and ~h in Ker Ê∩RN such that (~a)i = ai and (~h)i = 0 ,

whenever (w̃)i 6= 0 , and with (~h)i > 0 for other i’s . It follows that

w̃(t) := exp(~a + 2π
√
−1 · ~ξ + t~h) ∈ V ∗(f̂) ∩ (CL × IN−L) , for t ∈ R ,

and w̃ = limt→−∞ w̃(t) , as required in (a).
Starting with the proof of item (b) assume, as in Lemma 4.2, that

w̃ ∈ Y \ (C∗)N , {w(k)}k ⊂ Y ∗ and w̃ = limk→∞w(k) . Due to part

(a) Ŷ is an affine binomial variety and therefore so is Y (by Proposi-

tion 7.1). Hence the arguments of part (a) apply with V̂ replaced by
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Y and V ∗(f̂) being replaced by Y ∩ (C∗)N implying the conclusion of
Lemma 4.2 .

Finally, item (c). Using that w ∈ V̂ implies |w| ∈ V̂ ∩RN , it follows

that {wj = 0} ∩ V̂ = ∅ iff {wj = 0} ∩ V̂ ∩ RN = ∅ . Since existence

of a point (ξ1, . . . , ξN) ∈ Ker Ê ∩ QN with nonnegative coordinates

and ξj > 0 implies that w̃ := limt→−∞ exp(t · ξ) ∈ V̂ ∩ {wj = 0} it

remains to prove vice versa that if {wj = 0} ∩ V̂ ∩ RN 6= ∅ then exists

ξ ∈ Ker Ê∩QN with nonnegative coordinates and the j-th coordinate
ξj > 0 . The latter claim is a part of the conclusion of Claim 7.3 . �

Remark 7.5. Since Ker Ê = KerE the splitting of variables w into y
and z variables for a binomial variety V̂ ⊂ CN and for its irreducible
component V containing IN coincide.

Let matrix (Ω̂ γ̂) := Ê with the columns of Ω̂ and of γ̂
corresponding to y and, respectively, to z -variables. Claim following
implies that π(V ) is a closed binomial variety and since π(V ∗) is
connected completes the proof of Theorem 2.5 B. (using part A.)

Claim 7.6. π(V ∗(f̂)) = π(V̂ ) , is closed in CN−L and is binomial.

Proof. Let matrix T of size M ′ ×M , M ′ := M − rank (Ω̂) , have as

rows a basis over Z of Ker (Ω̂)tr∩ZM . With H := T ·γ̂ it follows that

KerH = π(Ker Ê) and that π(V ∗(f̂)) = {z ∈ (C∗)N−L : zH = IM ′}
(to show inclusion π(V ∗(f̂)) ⊃ {z ∈ (C∗)N−L : zH = IM ′} make

use of property (Z) for matrix T ). In other words π(V ∗(f̂)) is the
vanishing set of binomials and H is a matrix associated with variety

Ŵ = π(V ∗(f̂)) . Finally, applying Corollary 7.4 (c) (and by making use

of its vector ~ξ+ ) it follows that all variables are the ‘z-variables’ for

Ŵ and therefore π(V ∗(f̂)) is a closed binomial variety and coincides

with π(V̂ ) , as required. �

Corollary 7.7. It follows that π(V ) = π(V ∗(f)) = π(V ∗) ↪→ (C∗)N−L

and, being connected, is a torus (by Proposition 7.1) closed in CN−L .

Next we prove Theorem 2.5 C. We choose as Z ⊂ V an
irreducible component passing through IN ∈ CN of variety Ẑ :=

V ∩ {(y, z) ∈ CN : y
~δi = 1 , 1 ≤ i ≤ m}, where ~δi ’s are from

( 4.1). Inclusion Ẑ ⊂ (C∗)N makes Ẑ binomial and follows from∏
1≤i≤m(y

~δi)h+
i = y

~ξ+
(with h+ and ~ξ+ from Remark 4.1), while Z

is a torus due to Z = Z∗ and A. of Theorem 2.5 .



28 DIMA GRIGORIEV AND PIERRE D. MILMAN

Proof. Let Ê and E be matrices associated with binomial and, re-
spectively, toric varieties Ẑ and Z (implying property (Z) for E )

and denote ∆ a matrix of size m×L whose rows are ~δi , 1 ≤ i ≤ m .
First we establish properties of π|Z : Z → π(V ) starting with

surjectivity. Since π(V ) = π(V ∗) (Corollary 7.7), and due to the
property (Z) of E it suffices for any w = exp(ξ) with ξ ∈ KerE to

find h ∈ Ker E = Ker Ê = KerE ∩Ker ∆ such that π(h) = π(ξ) . Let
matrix (Ω γ) := E with the columns of Ω and of γ corresponding to

y- and, respectively, to z-variables. Since {~δi×0}1≤i≤m ⊂ ZL×ZN−L

is a basis of Ker Ω̂×{0} = Ker Ê∩(CL×{0}) = KerE∩(CL×{0}) =
KerΩ×{0} (as subspaces of CN ) it follows that CL = Ker Ω⊕Ker ∆ .
Therefore KerE = (Ker Ω × {0}) ⊕ (KerE ∩ Ker ∆) and projection
π : KerE ∩ Ker ∆ → π(KerE) is an isomorphism, which completes
the proof of surjectivity of π|Z .

Since projection π|Z : Z → π(Z) is a homomorphism of tori the two
remaining to prove properties of π|Z would follow from the finiteness of
#(π|Z)−1(IN−L) . Indeed, in combination with Sard theorem it follows
that π|Z has no critical points and, combined with #(π|Z)−1(·) being
constant on π(Z) , the latter implies the properness of π|Z as well.

So, it remains to show #(π|Z)−1(IN−L) <∞ . Pick (y, z) ∈ Z ⊂ Ẑ
with z = IN−L . Then yΩ = IM and y∆ = Im . Since the entries of
matrices Ω and ∆ are integers and Ker Ω∩Ker ∆ = {0} it follows
that there exists q ∈ Z+ such that yq

j = 1 for every j , 1 ≤ j ≤ L ,

and therefore that #(π|Z)−1(IN−L) <∞ , as required.
To complete the proof of Theorem 2.5 C. it remains to establish

three properties of µ : Z × Ỹ → V listed in C. Surjectivity of µ
is immediate from the surjectivity of π|Z : Z → π(V ) since Z is

a group and Ỹ := V ∩ (CL × IN−L) . That µ is a local analytic

isomorphism at the points a× b ∈ Z × Ỹ follows from the respective
property of π|Z : Z → π(V ) (equivalent to an absense of critical
points). Indeed, the local inverse of map µ (near (a, b) ) coincides
with Vµ(a,b) 3 v 7→ ((πZ,a)

−1(π(v)) × [(πZ,a)
−1(π(v))]−1 · v) , where

[g]−1 := g−1 is the inverse in group Z ↪→ (C∗)N . Finally, since map
µ has no critical points and #µ−1(v) = #µ−1(π−1

|Z (π(v))) is finite and

constant on V the properness of map µ follows (similarly to that of
π|Z ), which completes the proof of Theorem 2.5 C. . �

We now prove (in the respective order) Claims 2.7 , 2.1 and 2.4 .

Proof. Claim 2.7 . Binomial variety π(V̂ ) = π(V̂ ∗) ⊂ (C∗)N−L ,
hence is nonsingular, i. e. its irreducible components are its disjoint
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connected components. To prove the first statement of Claim 2.7 it suf-
fices (due to part A. of Theorem 2.5 ) to consider a submanifold M̃
of component π(V ) and a respective subvariety Ṽ of V (obtained
by restricting z- variables (using Remark 7.5) to the submanifold of
the previous sentence). Similarly, let Z̃ ↪→ Z be obtained by re-

stricting z-variables to M̃ . Then Z̃ is nonsingular (due to part
C. of Theorem 2.5 ) and, moreover, morphisms π : Z̃ → M̃ and

that of coordinatewise multiplication µ : Z̃ × Ỹ → Ṽ are surjective,
finite and both are local analytic isomorphisms (again due to part C.
of Theorem 2.5 ), which implies the first claim of Claim 2.7 .

To show that a variety, say X̃ , with nonunit coefficients of its
defining binomial equations is a special case of the preceding construc-
tion we replace these coefficients (one per each binomial equation) by
a variable, say cj , introducing simultaneously another variable c̃j

and add a binomial equation cj · c̃j = 1 . We thus constructed a
binomial variety, say X , with ‘z-variables’ for X being all of the
just introduced new variables and also the z-variables of the initial
variety X̃ . Obviously it suffices to show that the intersection M̃ of
the projection π(X) of binomial variety X to the affine subspace of
its z-variables with the specialization of variables cj according to the
values of the corresponding (nonvanishing) coefficients is nonsingular,
thus reducing to the previous case, as required. Due to a simple ex-
plicit calculation of Claim 7.6 it follows not only that π(X) = π(X∗)

is binomial and closed (part B. of Theorem 2.5 ), but also that M̃
is a binomial variety (but with possibly nonunit coefficients involving
binomial equations expressing ‘specialization’ of variables cj to the
original values of the corresponding coefficients in the defining bino-
mial equations of X̃ ). Obviously π(X) = π(X∗) implies M̃ = M̃∗

and using M̃∗ ⊂ Reg M̃ (due to a direct straightforward calculation

classified preceding Claim 2.7 as “is easy to verify”) variety M̃ is
nonsingular, as required. �

Proof. Claim 2.1 . The ‘only if’ implication is obvious. Assume
that 0 ∈ X . It follows that there are no z-coordinates and Corol-
lary 2.3 implies existence of ~ξ+ ∈ KerE ∩ (R+ \ {0})N , where E
is an exponents matrix of X . Obviously existence of an ‘improved’
~ξ+ ∈ KerE ∩ (ZN

+ ) follows. Say m := dimX = N − rankE . To
construct a monomial parametrization of the torus of X with posi-
tive integral exponents { ~∆j}1≤j≤N ∈ Zm it suffices to find a Z-basis

{~δi}1≤i≤m of KerE ∩ ZN with positive coordinates, see e. g. the
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proof of Proposition 7.1. Construction of the latter provides lemma
below. �

Lemma 7.8. For any matrix E of size M ×N with entries in Q
and m := N − rankE the following properties are equivalent:

(i) (Im Etr) ∩ QN
+ = {0} ;

(ii) there is a Q-basis {~δi}1≤i≤m ⊂ ZN
+ of KerE ∩ QN ;

(iii) there is a Z-basis {~δi}1≤i≤m of KerE ∩ ZN with all posi-

tive coordinates (equivalently, there exists a Q-basis {~δi}i ⊂ ZN
+ of

KerE ∩QN such that I = Z , where I = I(~δ1 ∧ · · · ∧~δm) is the ideal

generated in Z by all coordinates of ~δ1 ∧ · · · ∧ ~δm in the standard
basis {(j1) ∧ · · · ∧ (jm)}1≤j1<···<jm≤N ).

Proof. Our proof is based on a simple linear algebra and a theorem
due to Gordan [2] , which states that property (i) is equivalent to the
existence of a vector ~v ∈ KerE ∩ ZN

+ . To prove (ii) it remains to
choose any basis {~vi}i ⊂ ZN of KerE ∩ QN with ~v1 := ~v and then

letting ~δ1 := ~v and ~δi := t ·~v+~vi , i > 1 , (ii) follows for a sufficiently
large t ∈ Z+ .

The remaining implication “(iii) follows from (ii)” is harder. Starting

with a Q-basis {~δi}1≤i≤m ⊂ ZN
+ of KerE ∩ QN let s ∈ Z+ be the

generator of ideal I , i. e. (s · Z) = I . If s = 1 we are done.

Otherwise, we modify basis {~δi}1≤i≤m reducing the size of s , which
would suffice. Pick a prime factor p of s . Denote field Z/(p ·Z) by

Fp . Now our collection of vectors {~δi}1≤i≤m considered modulo ideal

(p·Z) in (Fp)
N is linearly dependent, i. e.

∑
1≤i≤m λi·~δi = 0 in (Fp)

N

for a collection of coefficients {λi}1≤i≤m ⊂ (Fp)
m\{0} . Choose λ̃i ∈ Z

so that λi = λ̃i (mod p) and 0 ≤ λ̃i < p , 1 ≤ i ≤ m . Then λ̃i0 6= 0

for some i0 , 1 ≤ i0 ≤ m , and ~δ0 := (1/p) · ∑1≤i≤m λ̃i · ~δi ∈ ZN
+ .

It follows that all coordinates of the modified Q-basis of KerE ∩QN

obtained by replacing vector ~δi0 of {~δi}1≤i≤m by vector ~δ0 are positive

integers and that I(~δ1∧· · ·∧~δi0−1∧~δ0∧~δi0+1∧· · ·∧~δm) = λ̃i0 ·(s/p) ·Z .

Due to the choice of {λ̃i}1≤i≤m in Zm the size of λ̃i0 ·(s/p) is smaller
than the size of s , which suffices. �

Remark 7.9. Complexity of construction of a basis satisfying property
(iii) of the algorithm ‘(ii) implies (iii)’ is polynomial in the maxima of

the absolute values of the coordinates of ~δ1 ∧ · · · ∧~δm in the standard
basis for the initial Q-basis {~δi}1≤i≤m , i. e. is exponential in the

binary size of the input (unlike construction of a basis {~δj}1≤j≤m of
(ii) which is a typical problem of linear programming and carries a
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polynomial cost in the binary size of the input). Of course we do not
need the output with property (iii) for the algorithms of this article.

Proof. Claim 2.4 . The ‘if’ implication is obvious. We first prove
the ‘only if’ implication in the case that there are no y-coordinates,
i. e. we must show that in this case (f̂) is a radical ideal when

V̂ = V̂ ∩ (C∗)N = V ∗(f̂) . Of course V ∗(f̂) ⊂ Reg V̂ (as we have
remarked in the first paragraph of Section 2 ). Therefore, assuming

that polynomial P ∈ C[w] vanishes on V̂ it follows that polynomial

P belongs to the ideals IM generated by ideal (f̂) in the local
rings OM of the localizations of the polynomial ring C[w] at its
maximal ideals M . The result follows by the standard ‘partition of
unity’ argument of commutative algebra. (Indeed, for every M there
is a polynomial QM ∈ C[w] with QM /∈ M such that QM · P ∈
(f̂) . Since the ideal generated by all QM in C[w] is not in any
maximal ideal M of C[w] it follows that it coincides with C[w] and
therefore there is a finite linear combination

∑
k hk ·QMk

= 1 , for an
appropriate choice of polynomials hk ∈ C[w] , commonly refered to as a

partition of unity. Expressing inclusions QMk
· P ∈ (f̂) as equalities

QMk
· P =

∑
j GMk,j · f̂j it follows that P =

∑
k hk · QMk

· P =∑
j(

∑
k hk ·GMk,j) · f̂j .)

Finally, we reduce to the previously considered special case. Let
v := (v1, . . . , vL) and gi := yi · vi − 1 denote auxiliary variables

and polynomials. Of course V̂ ∩ {(y, z) ∈ CN : y1 · ... · yL 6= 0} =

V ∗(f̂) (by definition of the y-variables). Therefore assumption that

P ∈ C[w] vanishes on V̂ (and equivalently on V ∗(f̂) ) implies that

polynomial P ∈ C[w] ⊂ C[w, v] vanishes on V ∗(f̂ , g) ⊂ CN+L .
Obviously all (w, v) variables for the collection F of binomials

{f̂j}j ∪{gi}i are, as we refer to them, the ‘z-variables’. Therefore the
case we considered first implies that polynomial P (w) is in the ideal
generated by polynomials from F in the ring C[w, v] . Substitution
of vj = 1/yj , 1 ≤ j ≤ L , in the equality expressing the inclusion of
the previous sentence, followed by ‘clearing’ the denominators, i. e. (in
our setting) by multiplying by a sufficiently high power of y1 · ... · yL ,
completes the proof. �
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