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Abstract. We present an example of mating of two cubic polynomials, which shows that
some technique used in quadratic matings fails in higher degree. More precisely, our
example has a Thurston’s obstruction, does not have a Levy cycle and the quotient of the
sphere by the ray-equivalence is homeomorphic to the sphere. We also analyze a certain
family of cubic rational maps,

INTRODUGCTION

Many mathematicians are interested in the dynamics of complex polynomials and
rational maps. In this paper we try to understand the dynamics of a rational map as a

mating of two polynomials. This point of view was proposed by Douady and Hubbard
[D] in 1982.

There are two kinds of matings.

For the first one, we construct a branched map of the sphere from two polynomials
f, g of the same degree, this map is called the formal mating of f and g . More
precisely, we add to € a circle at infinity, then f and ¢ can be extended continuously
to this circle at infinity in a natural way. We sew up two copies of €' at the circle of
infinity to get a topological sphere. We can then define a self branched covering of the
sphere which coincides with f on one hemi-sphere and with ¢ on the other hemi-sphere.
Thurston defined an isotopy equivalence relation between postcritically finite branched
coverings of the sphere (i.e. the orbits orbits of critical points are finite). If f and
g are postcritically finite, and their formal mating (which might be modified in some
case) is equivalent (in Thurston’s sense) to a rational map R , we say that these two
polynomials are matable.

For the second one, we sew directly the filled-in Julia sets of f and ¢ at their boundary
by identifying the point of external angle ¢t for f with the point of external angle —t
for g . If the induced map by f and g on this space is conjugate to a rational map R’,
then we say that f and g are analytically matable. This requires in fact three things:
the new space should be a topological sphere, the induced map should be a branched
covering, and it should be conjugate to R’ .

There are a lot of questions on this subject. For example, what are the conditions
for two polynomials to be matable? How can we interprete these conditions in the



parameter space of polynomials? Can we extend the Thurston’s equivalence and hence
the definition of matability to non-postcritically finite cases? Is the matability equivalent
to the analytical matability, and R = R’ 7 Are the correspondences (f,¢) — R,
(f,g) — R’ injective, continuous?

To analyze these, we need the theory developped by Thurston [Th], Douady, Hubbard
[DH2] and others.

In case of mating of quadratic polynomials, some answers to the above questions
have been obtained by the work of S. Levy [L], B. Wittner [W], M. Rees [R], and Tan
Lei [TL1),[TL2},[TL3]. But the situation in higher degree is no more so clear. In fact
besides Tan Lei’s work which generelized the degree two results to polynomials of the
form z — 2? 4+ ¢, we had known almost nothing about that until we discovered a
mating of two specific cubic polynomials at the Max-Planck-Institut in Bonn in April
1988. This example shows that the main tool in degree two case - Levy’s theorem - fails
in higher degree, moreover, by sewing together the boundary of the filled-in Julia sets
of f and ¢ , one may also get a topological sphere even though the two polynomials are
not matable.

In this paper we state our main results on this special mating and we analyze a
family of cubic rational maps related this mating. We state also our observations in
computer experiments. In Chapter I we review several definitions of matings which
were sometimes confused in quadratic case, and we summerize the known results and
our main results. The proofs of the main results are given in Chapter II. In Chapter III
we state some numerical observations and some related results.
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§I. REVIEW OF KNOWN RESULTS AND MAIN RESULTS

§1.1 DEFINITIONS

In this section, we give definitions of several kinds of matings.

1.1 DEFINITION (formal mating). Let f and g be two monic polynomials of degree d .
Let

€ =CU{c0-e"™* 5T =R/Z}.

Then f and ¢ extend continuously to € by setting
f(oo . eZm’a) =00 - e2d1ria, g(oo . eZm’s) = 0o - 62d1ria .

Let 3 ) . .
S}, =CsUCy/(co ™, f) m (0072 g) .

The formal mating of f and g is defined to be the branched covering f1 ¢ : S?’g — S}'g
such that

f.ng:fonC'fandf_ng,r:gonC'g.

In case there is no ambiguity, we write S? instead of 5'12,’9 .

1.2 DEFINITION (postcritical set). Suppose F': $2 — $? is a branched covering. In the
following, we always assume that branched coverings are orientation preserving and of
degree greater than one. Let

Qp = {critical points of F} and Pp = U F*(Qp).
n>0

A branched covering F' is called postcritically finite, if Pp is finite.

From now on let us suppose f and ¢ are postcritically finite polynomials of the same
degree and let F' = f1l g . Then F is also postcritically finite.

See [DH1] for the definitions of the filled-in Julia set Ky for a polynomial f and the

external rays in € For § € T | let us denote by R;(6) the closure in ¢ 5 of the external
ray of angle  (we recall that if f is postcritically finite, then Ky is connected and locally
connected, and R(8) is well defined).

In S},g , the external rays Ry(6) and R,(—6) are connected at the point (co-e?™, f).

1.3 DEFINITION (ray-equivalence). For z and y in C’f , we define £ ~y y if z and y are
in the same R¢(#) for some 6 . The relation ~; on Cg is similarly defined. In S},g, let

~p be the equivalence relation generated by ~; on C 5 and ~; on ¢ ¢ - This relation
is called the ray- equivalence for F' . Denote by [z] the ray-equivalence class of z € S? .
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1.4 DEFINITION (degenerate mating). Let [z;], [z2],..., [zm] be the equivalence classes

in §? such that #[z;]N Pr > 2. Let [y1], [y2],.-, [yn] be the equivalence classes in
U F (L=,
n>0 i

such that [y N (PrUQF) # ¢ .

Remark that each [y;] consists of only a finite number of external rays, since each
postcritical point is preperiodic. I none of the [y;] contain closed curves, then all of
[yi] are topological trees. In this case, collapsing each [y;] to one point and we get a
new space S'? which is homeomorphic to $? . We modify then F in a neighborhood of
each [y;] and make a new branched covering F' : $'2 — S§'2 . We call F' the degenerate
mating of f and ¢ .

1.5 REMARK. In the case that there is no such [z;] , set F' = F by convention. In the
case that some [y;] contains a closed curve, the degenerate mating does not exist.

1.6 DEFINITION (Thurston’s equivalence). We say two posteritically finite branched
coverings F' and G are equivalent, ' ~ G, if there exist two orientation preserving
homeomorphisms 81, 8z : S? — 5% such that

6:(Pr) = Pg (1 =1,2), 6, =8 on Pr, 6; and 8, are isotopic relative to Pg

(we write rel Pp) , and the following diagram commutes:
61
5 — §?

|l e

52 L S2.

1.7 DEFINITION (matability). We say that two polynomials f and g are matable if the
degenerate mating F' exists and is equivalent (in the sense of Thurston’s equivalence)
to a rational map.

1.8 DEFINITION (topological mating). Let us denote by ~;(8) the landing point of
R;(6) on 0Ky . We denote by X the space

KUK, [vs(6) = v,(=0)
which is equal to
S§%) ~p .

And we can define the induced mapping F* = [fl ¢] : X — X . If X is homeomorphic
to the sphere, we call F'* the topological mating of f and ¢ .

1.9 DEFINITION (analytical matability). If F™* is topologically conjugate to a rational
map, we say that f and g are analytically matable .
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§1.2 THURSTON’S AND LEVY’S RESULTS

In this section, we summerize Thurston’s and Levy’s results. For details and proofs,

see [Th], [DH2].

2.1 DEFINITION. Let F': §2 — §? be a postcritically finite branched covering. A simple
closed curve in S? — Pp is called peripheral if it bounds a disc containing at most one
point of Pr. A multicurve T is a collection of disjoint simple closed curves in §% — Pp,
such that none of them is peripheral and no two curves are homotopic to each other in
S$%? — Pr. A multicurve T is F-invariant, if

F~Y(I') = {connected components of F~'(y)|y € T'}

consists of peripheral curves and curves which are homotopic to curves in I'.

2.2 DEFINITION. For a multicurve I', the Thurston’s linear transformation Fr is a linear
map from BT = {>"er c47| ¢4 € R} to itself defined by

1
Fr(y)= Y, — [v']r for y €T,
~ CF=1(%) deg(F A 7)

where the sum is over all components 4" of F~1(y), and [y']r denotes the curve in T
homotopic to 4’ if it exists and [y']r = 0 otherwise. We denote by Ar the leading
eigenvalue of Fr.

2.3 THEOREM(THURSTON). Suppose F : §* — S§? is a postcritically finite branched
covering with a hyperbolic orbifold (see [IDH2), for definition). Then F is equivalent to
a rational map, if and only if there is no F-invariant multicurve I' with Ap > 1.

2.4 REMARK. If the orbifold is not hyperbolic, then F~!(Pr) C Qr U Pr and #Pr <
4. Therefore branched coverings with non-hyperbolic orbifolds are considered to be
exceptional.

An F-invariant curve I" with Ar > 1 is called Thurston’s obstructton.

2.5 DEFINITION. A multicurve vy, ...,7y, is called Levy cycle, if each F7!(y;41) contains
a component ) homotopic in §% — Pp to 4; and F : 4/ — ~i41 is of degree one
(:=0,..,n —1), where vo = 7x.

2.6 THEOREM(LEVY). ([L], [TL2]) Let F be a postcritically finite branched covering
of degree two. There exists a Thurston’s obstruction for F, if and only if there exists a
Levy cycle for F.

See Theorem I11.3.3

2.7 REMARK. A branched covering F is called topological polynomsal, if there is a point
oo € S? such that F~1(00) = oco). The Levy’s theorem also holds for postcritically
finite topological polynomials.



§1.3 DEGREE TWO CASE

Douady and Hubbard had a conjecture about the condition for two quadratic poly-
nomials to be matable [D]. By using the Thurston-Levy results (§1.2), Mary Rees and
Tan Lei have proved the conjecture almost completely. In this section, we summerize
some of their results.

Every quadratic polynomial is affinely conjugate to f. : z = 2% + ¢ for some value c .
Let us recall here some notations of Douady and Hubbard:

K. = Kjy, is the filled-in Julia set;

M; = { c€ C| K, is connected } is the Mandelbrot set;

D ={ce C]| f. is postcritically finite };

Wo = the component of int(M;) containing 0 .
3.1 THEOREM. ([R] and [TL2)). Forc,c' € D, f. and f. are matable if and only if for

each fixed point « of f. and f] , the equivalence class [a] in Sf,c, does not contain any
closed curve.

This theorem has a beautiful interpretation in the parameter space M, :

3.2 THEOREM. ([R] and [TL2]). Suppose c,¢’ € D . Then f. and f] are matable if and
only if ¢ and & are not in the same connected component of My — W, , where & denotes
the complex conjugate of ¢’ .

Moreover, Mary Rees proved:

3.3 THEOREM. ([R]). Suppose ¢ and ¢ are periodic for f. and f] . Then the fact that
fc and f! are matable implies that the topological mating F™* of f, and f[ exists and F*
is topologically conjugate to a rational map. This means in our language that f. and
f. are also anatically matable.

Mary Rees claims that the same result is also true for ¢,¢’ € D [R, part III].

We give here some more details of the proof of Theorem 3.1 and will show later which
part of the proof fails in higher degree case.

3.4 DEFINITION (good and degenerate Levy cycles). Suppose F : % — S? is a post-
critically finite branched covering, and ' = {y,,72, ..., 72} & Levy cycle for F'. Then

I' is good if the connected components of $% — | J; v; are
317321 "'?Bni C »
with B; discs, C not disc, and if n = 1 , then C = ¢ and F : 4/ — ~, reverses the
orientaiton (where 4’ is the component of F~1(y;) homotopic to 7; ;if n > 1, then one

component C' of F~1(C) is isotopic to C and F': C' — C is of degree one;
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T is degenerate if the connected components of S% — | J; vi are
Bl) B'Z’ sy B'rn C )

with B; discs, C not disc, and each F'~!(B;41) has a component B isotopic to B; (rel
Pr), and F : B! — Bi4 is of degree one (: =0,1,..,n — 1), where By = B, .

FIRST REDUCTION. (Levy’s theorem). Suppose F is of degree two. There is a Thurston’s
obstruction for F' if and only if there is a Levy cycle for F' .

SECOND REDUCTION. Suppose F' is of degree two. There is a Levy cycle for F if and
only if there is either a degenerate or a good Levy cycle for F .

THIRD REDUCTION. Suppose F' = f A fo , ¢,¢' € D . Then by using the expansive
metric for F' near 0K, and K| , we can prove that

a) each degenerate Levy cycle for F reduces to a cycle of ray-equivalence classes:
(Zo], (1], ---s [Zm], ([T0] = [zm]) such. that for each i, F([z;]) = [zig1], #[zi| N Pr > 2,
and none of the [z;] contain closed curves; :

b) each non-degenerate Levy cycle for F' reduces to a cycle of ray-equivalence classes:
[zo], [z1], s [Zm], ([Zo] = [2m]) such that for each i, F([z;i]) = [zi4+1] , and [z;] contains
closed curves;

c) each good Levy cycle for F reduces to a ray-equivalence class [z} such that [z]
contains at least one closed curve and at least two fixed points of F .

Note that each Levy cycle for the degenerate mating F" lifts to a non-degenerate Levy
cycle for F' . By these reductions, Theorem 3.1 is proved.

lﬂ"?

PRV Vi

Good andf dﬂ%@mﬂ Levy céj“’&‘



§1.4 MAIN RESULTS

We want to analyze the mating problem of two specific cubic polynomials f, f» . We
will see that some of the results are quite generalizable, and some theorems in degree
two case are no more true for cubics.

Let us denote by g, the cubic polynomial z — 2* +a .

Let fi = g, for ¢ = ¥/3e7™/12 | From the point of view of the parameter space, ¢ is
the point of the cubic Mandelbrot set

Mz = {a | 0 € the filled-in Julia set K, of g,}

of external angle 1/3 . From the point of view of dynamics, the dynamics of the critical
point O is
0—c— B0

Let f, be a monic, real cubic polynomial such that it has a periodic cycle:
T =Yy —z— T,

where z, y, z are real, z and y are simple critical points of f; and y < =z < z. These
conditions uniquely determine f; .

Let F = fil f, be the formal mating of fi and f; . The postcritical set Pr is
{¢, B,z,y, 2}, where c and 8 denote ¢, € €y, and z,y, 2 denote z,y,z € Cy,.

4.1 LEMMA. The degenerate mating F' of fi and f, is equal to F. In other words,
there is no ray-equivalence class in 5}1’ 4, containing more than two points of Pp .

4.2 THEOREM. The formal mating F' has a Thurston’s obstruction consisting of two
curves, with Thurston’s matrix

11

z2 2

1 0)°

whose eigenvalue is 1. Hence F = F' is not equivalent to a rational map, and f; and f,
are not matable.

4.3 THEOREM. The quotient S?/ ~p defined in 1.1.4 is homeomrphic to a sphere.
Hence the topological mating F™* exists.

4.4 THEOREM. F' does not have any Levy cycle.
These theorems will be proved in §II.

REMARK. As we have seen in §1.3, in case of degree two, two polynomials are matable
if and only if the quotient 2/ ~ is a sphere and the topological mating F* exists (M.
Rees’ theorem). However this is not the case in degree three by Theorems 4.2 and 4.3.
Moreover the Levy theorem (or the first reduction in §1.3) fails for this example.



§II. PROOFS OF MAIN RESULTS

In this chapter and the next chapter f; and f, denote the two specific cubic polyno-
mials defined in §1.4. To simplify the notations, we will use K; , J; , R;, +; instead of
Ky, , Js., Ry, , vy etc. To avoid ambiguity, will denote by w the critical point of f; .

§I1.1 HUBBARD TREES AND EXTERNAL ANGLES OF f; AND f;

The Hubbard tree H; of f; is shown in Figure 1.1. (See [DH1, Exposé IV] for the
definition of the Hubbard trees for polunomials.) Figure 1.2 is an extended Hubbard
tree H = fi'(H)).

In Figure 1.2, « is a fixed point in [w,¢]; o and ay are pre-images of a such that
ai € (w,f) and ay ¢ Hy; and ayg, @11, aiz are pre-images of @) such that ajo € [a, (],
ay; € [w, B, a1z € Hy. Then, by a simple computation, one can show that the external
angles of these points are:

Ang(u’) = {1/9)4/91 7/9}: Ang(c) = {1/3}1 Ang(ﬂ) = {O},

Ang(a) = {1/8,3/8}, Ang(a;y) = {1/24,19/24}, Ang(ag) = {11/24,17/24},
Ang(aio) = {19/72,25/72}, Ang(a11) = {1/72,67/72}, Ang(ai2) = {43/72,49/72}.
Figure 1.3 shows the H, together with external rays of these angles.

The Hubbard tree H, of f, and an extended Hubbard tree Hj are shown in Figure
1.4 and 5.

In Figure 1.5, §', " and ' are fixed points such that [z, 8'|NH, = {z}, [8",y]NH, =
{y} (or B', B" real and 8" <y, z < §') and &' € [y, z]; o} and ), are pre-images of o’
such that of € [z,2] and af € [8",y]; and &y, @}, @), are pre-images of &} such that
oy € [y, 2z}, oy € [2,8'], a1, € [B",Y]; T+, Y«, 2+ are the roots of basins of attraction
of z, y, z, respectively (i.e. repelling periodic orbit of period 3 on the boundary of the
basins). Then the external angles of these points are:

Ang(z.) = {3/13,10/13}, Ang(y.) = {4/13,9/13}, Ang(z.) = {1/13,12/13},

Ang(f') = {0}, Ang(B") = {1/2},
Ang(a') = {1/4,3/4}, Ang(a)) = {1/12,11/12}, Ang(a}) = {5/12,7/12},
Ang(ao) = {11/36,25/36}, Ang(ai;) = {1/36,35/36}, Ang(a},) = {13/36,23/36}.
Figure 1.6 shows the H) together with external rays of these angles.
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§11.2 THE THURSTON’S OBSTRUCTION FOR F' = fidl f,

In this section, we construct the Thurston’s obstruction stated in Theorem 1.4.2,
which i1s made of external rays and some part of the equator.

2.1 DEFINITION. The equator of S?hf? is

E={(oo- ¢ fls €T} = {(c0-c ™, g)ls € T } ,

where (oo - e“",f) = (00 - e72" ¢) is a point in Sf.hh.
For 8,,6, € T, we define arcs in S?-hh by

91 'il 92=R1(01)UR1(02) if’y](01)=71(92)=2,
f2_,
Z

s = Rp(—01) U Ry(—=02)  if 7,(—01) = 1,(—62) = 2,

61

E_, _[{cc-d™ Nlfi<s<b:} it <6,
27 (oo 2 POy < s < 81} if 8y > 6y,

where 6;, 8, are considered to be in [0, 1], in the last definition.
Let

& = 1/8 £ 1/4 f 3/4 = 3/8 ’2 1/8,

!

by

1/24—1/12 f" 11/12 5 19/24 f 1/24,
1

1
5, =3/8— 51292 710 Ea1joa D qqjo g 2 gy E oy N1y
ol oy o o

8, = 1/72—1/36 f2 35/36 L 67/72 h 1/72,

11 a1,

8, _25/72—13/36 f2 23/36—43/72 fi 49/72—25/36 f2 11/36—19/72 / 25/72.
12 10 @10

Then the following lemma can be easily checked. (See Figure 2.1-3.)

2.2 LEMMA. (i) The above §,,6,,8;,6,,85 are simple closed curves in S% . ~ Pp. §,
and 6, are disjoint.

(i) F=1(6,) = 6, U6, and deg(F:6, —6,) =1, deg(F:6, —8,)=2
F~Y6,)=6,Ub; and deg(F:6, — 8,)=1, deg(F:6; — 6,) =2.

13



(iii) 6, and 6; are homotopic to 8, in S} ; — Pr. 68, is peripheral in §} , — Pr.

PROOF OF THEOREM [.4.2: Let ' = {§,,6,}. Then by the above lemma, the matrix
for the Thurston’s linear transformation Fy. : R — BT (under basis §,,6,) is

i 1
7 2
(13)
This matrix has the leading eigenvalue Ar = 1 with eigenvector (i) Hence I' is a

Thurston’s obstruction, then by Thurston’s theorem, F' is not equivalent to a rational
map. k

14






§I1.3 RAY-EQIVALENCE FOR F

In this section we analyze the ray-eqivalence of the formal mating F' of f; and f; |
and we prove Lemma 1.4.1 and Theorem [.4.4.

3.1 DEFINITION AND REMARK (EXTENDED HUBBARD TREES). Let H; be the convexe

envelope in Jy of 8, 1,82 , where § = y1(0) , 51 = y1(1/3) = c and B = v1(2/3) .
Then

H =H Uw,/pB).

(recall that w denotes the critical point of f; .

Let H,; be the convexe envelope in J; of 8/, 81, 8, , where 8' = v,(0) , B} = 72(1/3)
and B; = v2(2/3) . Then

-F}Z = H2 U [y:ﬂ;] U {y:ﬁél U [ﬁfvz] :

By Douady and Hubbard, we have F(I—:T,-) C H; , and for any point u € H; N J; , the
number of external angles #Ang(u) is equal to the number of access of u relative to H;.

In S?H,fz , let
R(8) = R,1(6) U Ry(—96)

to be the ezternal ray of F of angle 8 .

3.2 DEFINITION. A point u in J,UJ2 C S}l’h is a stmple point if u has only one external
angle; and u is a multiple point otherwise, 1.e. u has at least two external angles.

3.3 LEMMA. If u is multiple and u # w , then F(u) is also multiple.

PROOF: Since u is not a critical point of F' , the mapping F' is a local homeomorphism,
and F sends external rays to external rays. So F(u) has the same number of external
angles as u has, i.e. #Ang(u) = #Ang(F(u)) . 1

3.4 LEMMA. Suppose u € Ji(¢ = 1,2), and u is multiple, then there is k > 0 such that
foralln > k , F*(u) € H; .

ProOF: Since F(H;) C H; , we need only to find a k such that F*(u) e H; .

Suppose at first w € J; . If there is k such that F*(u) = w , then we are done.
If not, suppose 8, are two different external angles of v . In the expression of 8,7
in base 3, there is ¢ minimal such that the i-th digits of 8,7 are different. This gives
that 36 and 3'y are in different intervals of T — {0,1/3,2/3} , so Fi(u) € H,. Since
F([w, f2]) = [¢,f] , the number k = ¢ + 1 verifies our condition.

Suppose u € J, . We can prove as above that any multiple point u has a forward
image in H; . Since F([y,8]) = F(ly,8]) = [2,8'] € [z,8] , and in [z, 8] there is a
sequence {b,} such that by = z , b, € [bpt1,bn-1], b — B, and F(by41) = b, . So
for any point u € Hy — {8} , there is k such that F*(u) € Hy . B
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3.5 LEMMA. Every multiple point in J; has a forward image in [w,¢c] .

PROOF: As in the proof of the above lemma, we can find a sequence {a,} € [c, §] such
that ap = ¢, an € [@n41,8n-1), @¢n — F, and F(any1) = an . We have automatically
a; =0 . So for any multiple point u € H; there is k > 0 such that F*(u) € [w,] . 1I

3.6 LEMMA. Every multiple point in J, has at most three external angles. Every
multiple point in J, has at most two external angles.

PROOF: For a multiple point v € J; , since all critical points of fy are in int(X;), the
orbit of u contains no critical points. There is k such that F¥(u) € Hy; and F* is a
homeomorphism in a neighborhood of u . So #Ang(u) = #Ang(F*(u)). Since H,

contains only one branched point y which is not in Jy , any point in H, has at most
two external angles.

For a multiple point u € J; , either there is a unique k such that F*(u) = w (and
F¥+2(y) = B ) or the orbit of u does not contain w and there is k such that F*(u) € Hj.
In both case #Ang(u) = #Ang(F*(u)) . But w is the only branched point in H, and
Ang(w) = {1/9,4/9,7/9} (§IL.1), we have #Ang(FF(u)) <3 . 8

3.7 LEMMA. Suppose u is a multiple point of J; , and 6,6 two angles of u. Let
v = ¥2(—0) and v' = y2(—8') be the landing points of R(8), R(0') in J, . Then at least
one of them is a simple point.

PROOF: Suppose both v and v’ are multiple. Then take k large enough such that for all
n>k, F*(u) € Hy and F*(v), F*(v') € H, . Moreover, by Lemma 3.5, we can suppose
Fk(u) €lw,c] . Now we claim FF(u) # w otherwise F¥*1(v) = FF1(4') = ~;(—1/3)
is a simple point. So one of 3¥9,3%¢' is in the interval ]1/3,4/9[ (§I1.1), suppose it is
3%¢' . So F*(v') has angles in ]1/3,2/3][, but no point in H, has angles in this interval
(811.1), contradiction. I

3.8 COROLLARY. FEach ray-equivalence class of F intersects the equator E at at most
6 points. No ray-equivalence class of F' contain closed curve.

PROOF: Let v € J; be a multiple point and Ang(v) = {—0,—6'} . Then for v =
71(8) , v = 1 (8') , we have #Ang(u) + #Ang(u') < 6 , and by the above lemma
[v] N E = Ang(u) U Ang(u') , and [v] does not contain any closed curve. [

3.9 COROLLARY = LEMMA 1.4.1. No ray-equivalence class of F contain more then one
postcritical point.

PROOF: Since each of 2] , [y], [z] contains only one point (because z,y, z, ¢ J2) , we
need only to check [w], [c], [B] . Since [f] = R1(0) U R2(0) , we have w,c ¢ [8] . Since
F(w]) = [¢] and F([¢]) = [6] , we have [w] # [¢], [w] # [8], [B] #[c] - W

3.10 PROPOSITION = THEOREM 1.4.4. F has no Levy cycles.

ProoOF: Infact the third reduction of §1.3 holds also for mating of polynomials of higher
degree, because we have always an expansive metric near Jy for any postcritically finite
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polynomial f . So every Levy cycle of F' reduces to a cycle of ray-equivalence classes
with some specified conditions. Hence F' can not have any degenerate Levy cycle by the
above corollary. If F' has a non-degenerate Levy cycle, then it will reduces to a cycle of
ray-equivalence classes containing closed curves, which is impossible by Corollary 3.8. I

Peeture ‘)e"* the Leomma 3. 7
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§I11.4 QUOTIENT IS A SPHERE

In this section we prove Theorem 1.4.3 by using Moore’s theorem.

4.1 MOORE’S THEOREM. [M] If G is a partition of S? into compact, connected, non-
separating sets such that the projection © : S* — S$?/G is closed, then the quotient
$%/G is homeomorphic to S? .

4.2 DEFINITION (closed equivalence relation). An equivalence relation ~ in a metric
space X 1s closed if the graph of ~ in X x X is a closed set. This is equivalent to say
that for any sequences z, — = , y, — y such that for each n we have z,, ~ y, , then
T~y .

4.3 LEMMA. If an eqgivalence relation ~ in S? is closed, then S?/ ~ is Hausdorff and
the projection 7 : S? — §?/ ~ is a closed map.

By Moore’s theorem, the above lemma, Corollary 3.8 and Corollary 3.9 , we reduce
the proof of Theorem 1.4.3 to the following proposition and its corollary.

4.4 PROPOSITION. Suppose f,g are two postcritically finite monic polynomials of the
same degree d . Let F = fl. ¢ be the formal mating of f and g, and let ~ = ~p be
the equivalence relation defined by connected graph of external rays of F' in Sf,, g

If there is K < oo such that and for every z € S}'g
#ENE < K,
then the equivalence relation is closed.

4.5 COROLLARY. If moreover no equivalence classes of ~ separate S} g then SJ% o~
is homeomorphic to 5% by Moore’s theorem.

REMARK. Since
sz“,y/ ~= KyUKg/vs(8) = ~,(-0),

the above corollary means that we can sew the boundaries of Iy , K, and get a
topological sphere.

PROOF OF THE PROPOSITION: The external ray of F
R(6) = Ri(8)U Ry(—6) C S,

is a connected arc, and by Douady and Hubbard, when 6 — 6, , R(8) — R(6y) with
respect to the Hausdorff distance on the space of closed subsets of S}, g

Suppose T,,yn € S;r’:'g such that Vn , z, ~y, and z, — 2o ,yn — yo . We need to
prove xg ~ yo .

For each n

there is a collection of angles 8, 1 , 6,3 , 8, k,, such that

9 sery

Tn € R(Bn1), yn € R(Bnk.) , ROni) NR(Bniz))# 6 (i=1,2,. kn—1).
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By the assumption, we have k, < K for each n . By taking a good subsequence, we
may assume that &, is a constant k for all n . By taking again subsequences, we may
assume that 8, ; — 6; (as n — oo) for some §; € T and for each ¢ =1,2,...,k .

By the continuity of external rays R(8) , we have

R(6,:)— R(8;), asn— oo (i=1,2,..,k).

It follows that zo € R(61) , yo € R(6x) , and R(6;) N R(0i41) # pfore=1,2,..,k—-1.
Hence

k
U R(6;)

is connected, and therefore z¢ ~ yo . |
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§II1. A FAMILY OF CUBIC RATIONAL MAPS

In this chapter, we analyze a one parameter family of rational maps related to our
example in §1.4. In §IIL1, we state our numerical experiment, and in the following
sections we state some of our results about this family.

§111.1 NUMERICAL EXPERIMENT

As an approach to see the phenomenon of non-matability in the space of cubic polyno-
mials, we have made a computer experiment on a family of cubic rational maps. For the
mating of quadratic ploynomials, Ben Wittner [W] made several numerical experiments
and gave the interpretation for some phenomena observed in the parameter space. The
obtained picture of the parameter space suggests non-matability, shared mating, etc.
Applying his methods to cubic rational maps, we found a new phenomenon which does
not occur in the quadratic case.

We take one-parameter family

(3t — 2)2% — (t* — 3t% + 5t — 2)(3z — 2)
(3t — 2)23 — 13(3z — 2)
(-1 +2)82-2)
(3t —2)23 —3(32 - 2) ’

Fi(z)=

with the parameter t € C'. If t # -2, %, 1, then F} is a cubic rational map. The critical
points of F; are 0,00,1 and 0 is a double critical point. Moreover, for any ¢ # —2, 2,1

PICE)
F} has a superattracting cycle of period 3 :

oo —1—=1t— oo

It can be shown that if a cubic rational map has a double critical point and a periodic
cycle of period three containing two simple critical points, then it is conjugate by a
Mobius transformation to an F; for some ¢.

Let us see the result of our numerical experiment. Since 0 is the only free critical
point, we trace the orbit of 0 to see the dynamics of Fy.

We color the parameter space according to how many iterations it needs for the orbit
of 0 to be attracted to certain neighborhoods of co,1 and ¢. We leave the parameter #
white if the orbit of 0 is not in these neighborhoods after certain number of iterations.

The Figure 1.1 is the region

-5 Ret<H, -d5<Imt<H.

in the parameter space.

In this figure we see a bounded set U of white points and an unbounded component
Coo of the complement of U. The set Co, corresponds to the set of ¢ for which 0 is in
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the immediate basin of co for Fy. There are two other large components Cy, C\ of the
complement of U which correspond to parameters for which 0 is in the immediate basin
of 1 or t for Fy, respectively.

To interpret the structure of U , we need to consider what is expected in the family
Fy .
There are four distinguished t-values for which 0 is fixed under F;. They are solutions
of
tt —3t* +5t—2=0.

Two of them are real and the other two are non-real and complex conjugate to each
other. Let us denote them by ty,%q,13,%4, with ¢;,%2 real, t; < ¢tz . For each ¢;, F,
is conjugate to a cubic polynomial P;. We may choose P; so that P;, P, are real and
Py, Py are complex conjugate. It can be shown that P; is equal to the f; defined in
§1.4 (up to affine conjugacy). And any cubic polynomial with a periodic cycle of period
three containing two simple critical points is affinely conjugate to one of Py, Py, Py, Py .

Let go:z— 234+ aforac C
My = {a € C| g2(0) 7>o00 s n— oo},

M'= {a € C | g, is postcritically finite } C M; .

The set Mj is called the cubic Mandelbrot set (see Figure 1.2). If g, € M’ is matable
with some P; , then the degenerate mating of them is equivalent to Fy, ;) for some
t = t(a,7). (In particular, for a = 0, goll P; ~ Fy; and t; = ¢(0,2) .) This t(a,?)
is uniquely determined if it exists, since the degenerate mating of g, and P; has a
hyperbolic orbifold. (See [DH].)

For:=1,2,3,4, let

A;j={ae M| g, and P; are matable }

Bi={te C | F; ~ the degenerate mating of P; and some g, }
— {ta,i) lac A}

In §III.5, we prove A3 = Ay = M' , A, C M' — L where L is the limb of M; of
internal angle —1/4 . (i.e. L is the component of M3 — {ao} not containing 0 , where a4
is the point in 8Wj of ineternal angle —1/4 ). We conjecture that A, = M' — L . For
Ay , we know only a few things. For instance, let us return to our example introduced
in§l4: F= fill f, with f, = P, and fi = g¢., where c is the point of M; with external
angle 1/3. By our result, f; and f, are not matable, hence ¢ ¢ A; . Moreover, we found
some other values of a € M’ such that a ¢ A, , i.e. g, and P, are not matable. We
conjecture that Ay = M' — L; UL, , where L; is the component of My — {7ar, (7/26)}
containing ¢ . Here vy, (7/26) = v,,,(9/26) is the root of period three component on
the main vein of internal angle 1/4 .

Let us consider the mapping (a,7) — t(a,z) . We will prove in §II1.6 that it is not
injective, i.e. one F; can be equivalent to the matings of several pairs of polynomials.
This phenomenon is called shared matings by B. Wittner [W].
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Our computer observation strongly suggests that this mapping is continuous and can
be extended to a considerably large and connected subset of M3 . This makes it hopeful
to define matings for non-postcritically finite polynomials in a reasonable way.

In our computer picture of the parameter space, we see relatively large components
D; of int(U) containing ¢; (i = 1,2,3,4) . Attached to these D; , we also see some other
smaller components and filaments.

First, D3 and D, have attached components as many as the main component Wy of
int(M3). And they have an attached component in common. However, D; is symmetric
with respect to the real axis and has three cusp points on the boundary. The unique
real one is t = 2/3 . The period two hyperbolic component D of M; attached to Wy
with internal angle —1/4 does not seem to have a corresponding component attached
to D, . We think that ¢ = 2/3 corresponds to the cutting point (or the root) of D of
M;.

The degenerate parameter t = —2 is much more misterious. The component D looks
very much like W, . However there is a period 2 component D, , which is attached to
D, at two points. This suggests that D) ; can be considered as a self shared mating.
The point ¢ = —2 is surrounded by D; 2 and D, and we do not see any white component
attached tot = -2 .
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§111.2 MATING OF g, AND P3 (OR Fy)

Let us prove the “Levy theorem” for the degenerate mating of g, and P; (or Py ).

THEOREM 2.1. The degenerate mating (or forrnal mating) of g,(z) = 2° +a and P (or
P, ) has a Thurston’s obstruction if and only if it has a Levy cycle.

PROOF: Let I" be a Thurston’s obstruction for . We may assume that I' is totally
invariant, i.e. for any v € I' there is a curve in F™1(T') which is homotopic to v .

There are a fixed point & of P; and regularized arcs l; = [, 2], I, = [0, 9], 1. = [e, 2]
in Cp, C Sga,Pa such that F : [, — I, I, — 1., I, — l; is a homeomorphism. Let
h=0LUl, Lh=0LUl, lg=10;Ul;. Then F:[; — li}, 1s also a homeomorphism
( =1,2,3), where we set Iy =1, . Note that [; Ul Ul; is the Hubbard tree of Pj .

Let us define the geometric intersection number of I; and a curve v in T by
Loy =inf{#('NY) [ I~ 1, v ~7},

where I' ~ I; means !’ is an arc and they are homotopic in S? — Py fixing their end
points, and 4’ ~ v means +' is a simple closed curve and they are homotopic in $% — Pp.
The geometric intersection is extended bilinearly to B{:{2f} x BT

Define a linear transformation Fy r BT — R' by

Fyr(vy= Y, [Ir foryel,

v CF=(7)
as in Definition 1.2.2.
The following inequality holds:
(2:2) i+ Fpr(v)<liyr-y foryel.

ProoF: Take !' and 4’ such that I' ~ I;, 4" ~ v and #(I'N+') = ;41 - v . Then there
is an arc I C F~!(I') such that F : I — I; is a homeomorphism and " ~ I' . For v' ,
there is a one to one correspondance between components of F~!(v) and components
of F~!(4') such that corresponding curves are homotopic. Since F : " — I' is one to
one, we have

L Fyp(y) S #I0F7 (7)) = (I 0y) = by -7 -

Let
I=h+bL+1eRbY T=N"y cR.
~€Er
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By (2.2), we have : o
l-Fpr(l)<1.T.

On the other hand, since I is totally invariant,
Fyr(f) 2T

(i.e. for every v € T', the coeflicient of 4 in the left hand side is greater than or equal to
that of the right hand side). Hence we conclude that the equality holds in (2.2). So we

have

(2.3) [-Fyr(y)=1-y foryel,
(2.4) [-Fyr(D)=I-T.

Let Ty ={y€l|l-y#0} and T, =TT, .
2.5 LEMMA. [y is F-invariant and A(y2) < 1.

PROOF: Ifl.4 =0, then f~F#,p(7) =0, by (2.3). This implies I'; is F-invariant. Every
curve v € I'z is homotopic to a curve in the upper hemi-sphere €, , since I; Ul; U3
is the Hubbard tree of P; . Hence I'; can be considered as a multicurve for P53 . Since
Py is a rational map, A(T2) <1 . |

It follows from this lemma that 'y # ¢ and A(T'1) > 1. By (2.3), for any vy € Ty,
at least one component of F~!(y) is in Ty . Moreover by (2.4) and Fyr(T') > T,
exactly one component of F~1(y) belongs to I'y . Then I'y decomposes into dlSJOlnt
cycles {vi;li =1,...,ki} (¢ = 1,...,m) such that
there is a component ‘y:-'j of F~1(; ;4+1) homotopic to ; ; and no other component is
homotopic to a curve in I'; , where we set v; x;41 = 7i1 -

It is easy to see that

1
k;
- Hdeg(F 7,,-—+‘r=,1+1)

Since A(T'y) 2 1, there is an 7 such that deg(F : v} ; — 7ij4+1) = 1 for all j . Then
{7l =1,...,ki} is a Levy cycle.

Conversely if there is a Levy cycle, then there is an invariant multicurve containing
it and this multicurve is obviously a Thurston’s obstruction. Therefore the theorem is
proved. 1
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§I11.3 DEGENERATE LEVY CYCLE AND LEVY’S THEOREM

Let F be a postcritically finite branched covering from $? to itself. All the isotopies
and homotopies in this section are those rel Pr . Let I' be a multicurve (not necessarily
F-invariant) in §* — Pr . By I' , we also denote the union Uvel‘ v . Let

ST —T' = DiUD,U...UDyUA U...UA;,

where D; denote the disc components of $? —I' and A; non-disc components.

3.1 LEMMA. SupposeI' verifies the following conditions:

(3.1) each v € T is homotopic to a curve in F~}(T) ;

(3.2) for each v € I' , at least one component of F~'(v) is homotopic to a curve in I ;
Then

a) for B a component of S —T' | every component of F~(B) is isotopically contained
in a component of 5% —

b) Let D = D; . Suppose D' is a disc component of F~! (D) and 0D’ is homotopic to
some § € T . Then there is j such that § = 0D; and D' is isotopic to D, Moreover
deg(F : D' — D) = deg(F : D' — D) .

¢) Let D = D; . If all components of F~'(D) are discs, then at least one of them is
isotopic to some D; .

PROOF:

a) From (3.1), every component of §? — F~!(T') is isotopically (rel Pr) contained in a
component of $2—T". Since for each component B’ of F~1(B) , we have BNF~1(T) = ¢
(otherwise BNT # ¢ ), so B' is a component of $? — F~(T) .

b) From a) , D' is isotopically contained in a component of $2—T'. By the assumption,
D' is homotopic to § € T, hence D’ is isotopic to a component A of $? — § | which is
a disc. So A is a union of components of 52 —I" and is also contained in a component
of 52 —T" . Hence in fact A is a component of S —T'. Since A is a disc, finally A = D;
for some j , and 6 = 8D;

c) Since 8D € T and F~1(9D) is the union of the boundary of components of F~1(D),
from (3.2), at least one disc D' of F~!(D) has the boundary curve 4/ homotopic to a
curve 6 € I' . From b), we get D; . 1

3.2 PROPOSITION. Suppose I' verifies the conditions (3.1),(3.2) and

(3.3) for each D; , the set F~!(D;) consists of only discs.

Then {D;} is decomposed into several periodic cycles {D; ;|i = 1,....m, 7 = 1,...,8;}.
More precisely, fori =1,....m, 7 =1,...,8; :

there is exactly one component D} ; of F~'(D; ;1) isotopic to D; ; and none of the
other components is isotopic to a component of S —T' (where D; 5,41 = Di1 );

for «y; j = OD; ; , there is exactly one component v| ; = 0D ; of F~(v; j41) homotopic
to v ; and none of the other components is homotopic to a curve in I' (where 7; 3,41 =
Yia )-

Moreover for

Ii={7,;=0Dij), j =18},
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either A(T";) < 1 or I; is a degenerate Levy cycle.

PROOF: Define

T:i - {j | D; is isotopic (rel Pr) to one component of F~'(D;) }, i=1,...,k.

By the above Lemma, 7(i) # ¢ . If i # ¢’ , then 7(}) N r(¢') = ¢ , since F~1(D;) N
F~1(D}) = ¢ . Hence 7(¢) contains exactly one element, i.e. 7 defines a bijection from
{1,...,k} to itself. So {1,...,k} decomposes into periodic cycles of 7 .

Let {%,...,2,} be a periodic cycle for 7 , with 7(z;41) = {z;},7 =1,...,8 =1, 7(4;) =
{ts} - Put D; ; = D;; . Then for

{Di,j,j = 1"":3} and F: = { Vi = a(Di,j) ) _7 = 1,...,3 } ,

exactly one component DE,J- of F~1(D; j4+1) is isotopic to D; ; and none of the other
components is isotopic to a component of $% — I (where D; ,41 = D1 );

exactly one component v; ; = 8D; ; of F~Y(#i j+1) is homotopic to «; ; and none of the
other components is homotopic to a curve in I' (where v; s41 = vi1 ) .

And
1

AT =

H , deg(F 2 ; = vij+1)

So A(T'})) £ 1 and MT;) =1 if and only if for each j , deg(F : v} ; — 7ij+1) = 1. But
deg(F : v} ; = 7vij+1) =deg(F : D} ; = Dj j41) , so if M(T'}) = 1 then I'} is a degenerate
Levy cycle. 1

DEFINITION 3.3 A Thurston’s obstruction I' for F' is called minimal, if every v € T is
homotopic to a curve of F~}(I') , and any invariant proper sub-multicurve of T has the
leading eigenvalue less than one.

Suppose I' is a minimal Thurston’s obstruction for F' . Let us make a decomposition
of T'into 'y UT, (I'; NIy = ¢) , with I'; a maximal invariant proper sub-multicurve of
I' . By the assumption of minimality, we have A(T';) < 1.

3.4 THEOREM. Let I'y and T'; be as above. Suppose moreover that Ty verifies the
condition (3.3). Then I'y is a degenerate Levy cycle.

PROOF: Since I is minimal, any 4 € 'y is homotopic to a curve in F~1(T) = F~1(T,)U
F~1(T;) . Since I'; is F-invariant, i.e. F~1(T) is homotopically contained in 'G; , so
v cannot be homotopic to a curve in F~!(T';). Therefore it is homotopic to a curve in
F~Y(T,) . Hence I'; verifies the condition (3.1).

Let v € I';. Suppose F~'(y) does not contain any curve homotopic to a curve in
[y . Then I'" = {4} UT; is an invariant sub-multicurve of I' . Since I'; is a maximal
invariant proper sub-multicurve of ', we have I' = I | hence A(T) = A(T") = A(T';) < 1.
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This contradicts the fact that I'" is a Thurston obstruction. Thus I'; verifies also the
condition (3.2).

So if moreover I'; verifies the condition (3.3) , we can apply the Proposition 3.2 to it.
Since for every cycle {D; ;|7 = 1,...,38} , the set

{8D; ;11 =1,..,s} Uy

is F-invariant, and we assumed that I'; is maximal, so there is only one cycle {D;} .
On the other hand, we should have

AT =AxT)>1.
Hence by the proposition, I'; is a degenerate Levy cycle. J

3.5 COROLLARY. Suppose F is of degree two and I' is a Thurston’s obstruction for F,
then there is a Levy cycle in T .

ProOOF: Replacing I" by a sub-multicurve, we may suppose that I" is minimal. Decom-
pose I' =Ty UT; as above.

1) If there is 4 € I'; such that the two critical values of F' are in different components
of §? — 4, then each disc component D of S? —T'; contains at most one critical value.
So F~'(D) consists of only discs. By Theorem 3.4, Ty is a degenerate levy cycle.

2) If for each v € Ty , the two critical values of F are in the same component of $? —~,
then F~!() consists of two curves and each of them is sended by F to 4 with degree
one. This implies every periodic cycle of I'; is a Levy cycle. Since I" is a Thurston’s
obstruction, we can find a periodic cycle, hence a Levy cycle.
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§I11.4 GooD LEVY CYCLE

Let F = g, P; , where a € M' C M3 . Then F is a branched covering of $? to
itself of degree three, z,y € € p, are two simple critical points withz -y —- z -
and w € €, is a double critical point withw — a .

4.1 THEOREM. If T is a non-degenerate Levy cycle for F' | then there is a good Levy
cycle I |, with #I' < 2.

PROOF: As a Levy cycle, I verifies automatically the conditions (3.1) , (3.2) of §IIL.3.
Let
S? _I'=DyU..UD UA U...UA;,

where {D;,7 = 1,...,k} denotes the set of disc components of S* —T" . We have k > 2.
Let X = {a,z,y,2} . Then:

1) For each ¢ , D; N {z,y,2} # ¢ . In fact if for some ¢ ; D; N {z,y,2} = ¢,
then F~'(D;) are discs and F~1(D;)N {z,y,2} = ¢ . So for v = 8D; and for every
n , each component of F~"(v) bounds a disc B in §% with BN {z,y,z} = ¢ . But
I' C Uy F7™(7), so in fact for each i , D;N{z,y,z} = ¢ , and F~1(D;) are discs. Hence
T" verifies also the condition (3.3) of §III1.3. So by the Proposition 3.2, we conclude that
I' is a degenerate Levy cycle, contradiction.

2) Suppose for some ¢ , #D; N X =1. Then by 1), D; N X = {a} is impossible. If
D;nNX = {y} or {2}, then F71(D;) = D' U D" with D" N {z,y,2} = {z} or {y},
D'n{z,y,z} = ¢ and deg(F : D" — D;) = deg(F : 8D" — 9D;) = 2 . Hence by 1)
neither D' nor D" can be in the Levy cycle I' . This contradicts the condition (3.2).

If D;NX = {z}, then F~}(D;) = D'UD"UD" |with z € D'NX and D"N{z,y,z} =
D" Nn{z,y,2} = ¢ . By Lemma 3.1, D’ has to be isotopic to some D; . By the above,
no D; verifies D; N X = {z} ; so D'’NX # {2} . But z,y ¢ D' | we have finally
D'NX = {a,z}. Suppose j = lie. D’ isisotopic to D; , with D1NX = D'NX = {a,z}.
For D; , we have F~1(D;) = A, A is an annulus with y € A, 84 = v U~4" ,
deg(F : v' = 7)) = 1 and deg(F : v’ — v,) = 2. Hence v" ¢ T and 4 has to
be homotopic to a curve § € I' . By checking the degree, we see that z and y are in
different components of S? — 4" . Let B be the annulus bounded by 8D, and 6 . Then
BNX =¢, F'Y(B)y=B'UB" deg(F: B — B)=1,deg(F:B" - B)y=2,
B’ is isotopically contained in B and B" 1s isotopically contained in the component of
5? — A containing z . Set successively By = B’ | B4 = the degree one component of
F~Y(B,) . Then B, is isotopically contained in B,, . So for some n , B, is isotopic
to B,, and {0B,} formes a good Levy cycle.

3) Now we can suppose that for each z ; #D;N X =2 . In fact if #D; N X > 3 then
since k > 2, Dy exists and #D; N X < 1. This reduces to the case 1) or 2).

Let $? —T'=D,UDyUA; U...UA ({20), with #D, N X = #D; N X =2 . Let
v1 = 0D, and v, = 8D; and suppose a € Dy . There are only three possibilities:

3.1) DyNX = {a,z} . Then F~1(D,) = D’ is a disc with deg(F : D' — D;) =deg(F :
0D' — ~1) = 3, which contradicts the fact that ; is in the Levy cycle I' .
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32) DyNX = {a,y} . Then D, N X = {z,2} , hence F~1(D;) = D' U D" with
deg(F : D' — Dy) =1, and deg(F : D" — D;) =2 . So dD" cannot be in the Levy
cycle, so D" is isotopic to neither Dy nor D, . Moreover = ¢ F~1(D,) , y,z € F~}(D,),
and y € D" since deg(F': D" — D;) =2. Hence z,y ¢ D' . So D' is isotopic to neither
D; nor D, . This contradicts the Lemma 3.1.c).

33) DynNX = {a,z} . Then D, N X = {z,y} , hence F~1(D;) = D' U D" with
deg(F : D' — D;) = 1 and deg(F : D" — D;) = 2. We have y ¢ F~!(D,) and
z,z € F71(D;) , moreover z € D" because of the degree of F' on D" . So 8D" ¢ I" and
hence D' must be homotopic to a curve in I' . By Lemma 3.1, D' is isotopic to D; or

2 . Since z ¢ D', D' has to be isotopic to Dy , and 8D’ is homotopic to v; = 8D, .
On the other hand, we have F~1(D;) = A, A is an annulus withy € A, 04 = ' U+",
deg(F : v — 7)) =1 and deg(F : v — v) = 2. Hence 4" ¢ T and 4’ has to be
homotopic to a curve I' . By Lemma 3.1, A is isotopically contained in a component
of $2 —T'. Since AN D; # ¢ , we get in fact that A is isotopically contained in D, .
Hence +' has to be homotopic to v, = 8Dz . Therefore we conclude that T' = {v;,v,}
forms a Levy cycle. If 3 = 7, then I' is a good Levy cycle. If 4; # 7, then let B
be the annulus bounded by v1,7v2 , F~!(B) = B' U B" with B’ isotopic to B , B" is
isotopically contained in D, and deg(F B' — B) =1 . This implies also that I’ is a
good Levy cycle. I

4.2 PROPOSITION. For F = g, AL P; , if there is a non-degenerate Levy cycle, then there
is a ray-equivalence class [a] which is a simple closed curve and which contains one fixed
point of g, and one fixed ponit of P; . As a consequence, each of these fixed points has
exactly two external angles.

PRrROOF: To prove this, we use the above proposition and the third reduction of §1.3
(which holds also for matings of higher degree polynomials). i
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§III.5 RESULTS ON THE MATING OF g, AND P; (i = 2,3,4)

Let g, and P; (+ = 1,2,3,4) be as in §III.1.
5.1 THEOREM. For any a € M' | g, and Py (or Py) are matable, i.e. A3 = Ay = M' .

PROOF: Let F' be the degenerate mating of g, and P; (a € M'). Suppose F' has a
Thurston’s obstruction. By Theorem II1.2.1, there exists a Levy cycle. This Levy cycle
lifts to a non-degenerate Levy cycle for F' = g, P; . It follows from Proposition 4.2
that there is a fixed point of P; which has exactly two external angles. However, by
computation one can show that P; has three fixed points a, 8, 8’ with external angles:

Ang(a) = {8/26, 20/26, 24/26}, Ang(8)= {0}, Ang(8')={1/2}.

So none of them have exactly two external angles. This gives a contradiction.
Hence g, and P; (or P;) are matable. |I;

Let z — y — z — z be the periodic cycle of P; containing two simple critical points
z,y . Suppose z < y < z (otherwise consider —Fy(— Z)). We may suppose that the
coefficient of Z3-term is —1. Denote P(Z) =iP;(~iZ) then P; is monic. Let L be the
limb of the cubic Mandelbrot set M3 of 1nterna.l angle —1/4 .

5.2 THEOREM. Fora e M'NL , g, and P, are not matable. In fact there is a good
Levy cycle for g, 1L P, , which consists of one curve made of two extemal rays of fixed
points of g, and B, .

PROOF.: For a € M'N L, go has a fixed point a with external angle 5/8 and 7/8 . It
is easy to see that P; has a fixed point with external angles 1/8 (= —7/8 modl) and
3/8 (= -5/8 modl) . Let

v = R(5/8) U R(7/8) = (R,,(5/8) U Rp (—5/8)) U (R,,(7/8)U Rp (—7/8))

which is a simple closed curve in 5'2 If @ is not postcritical, then I' = {7} is-a good

o Py’
Levy cycle. i « is postcritical, ta.ke a thin annulus A along v (a tubular neighborhood

of v) so.that AN Pr = {a} and: OA consists of: two simple closed curves v, v_ . Then
L= {7+,7-} is a good Levy cycle.

1/3 2
17344 % %
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§II1.6 SHARED MATINGS

In this section we discuss shared matings.

Recall that M; is the cubic Mandelbrot set and M’ denotes the set of a € Mj for
which g, is postcritically finite. Let A; C M’ , 7 =1,2,3,4 be as in §III.1.

Let us denote by Wy the main hyperbolic component of M3. In Mj | for each rational
angle ¢ there is a hyperbolic component V(t} attached to W, , with internal angle t .
Let b(t) be the center of V(t) . We call the limb of AMj with internal angle ¢ , denoted
by L(t) , the connected component of Mz — Wy containing b(¢) . There are two period
two angles 1/4,3/4 and four period three angles 1/6,1/3,2/3,5/6 .

We denote by z,y, z the periodic cycle of P; of period three containing critical points
z,y . To simplify the notation, we make a change of P, and P;: for w the complex
variable, replace Pj(w) by —P;(—w) so that y < z < z ; replace P, by P, defined
in §II1.5. The Hubbard trees of P;, Py are stars. To distinguish them, let P; be the
polynomial so that the Hubbard tree H3 has {z,z,y} as the cyclic order around the
unique branched point of the tree, and hence Hy has {z,y, z} as the cyclic order around
the branched point.

In Sﬁ,,P,- , recall that R(6) = R, (6) U Rp,(—6) is the external ray of F' = g, . P; of
angle § . Let us denote by B(z), B(y), B(z) the immediate attractive basin of z,y, z in
Sﬁa, p; Tespectively. :

1) Let us look at the mating F' = gy(3/3)dL Py . To simplify, put b = 5(1/3) . We will
see that we can find a € A3 such that F' can be also considered as the mating g, 1L P; .

In€, C S:»,Pz , there is a unique fixed point a for F' with more than one external
angles. In fact Ang(a) = {6/13,5/13,2/13} . By our assumption for P; , the 0-external
ray arrives at §" in € p, (the fixed point such that [#”,y] does not intersect & ). Then
inCp C S.ga.Px

R(6/13) lands on the point of dB(z) with internal angle 1/3 ;

R(5/13) lands on the point of 0B(z) with internal angle 1/3 and

R(2/13) lands on the point of 0B(y) with internal angle 2/3 .

Let 7(2) be the closure of the internal ray of B(z) of angle 1/3 ;
7(z) be the closure of the internal ray of B(z) of angle 1/3 ;
7(y) be the closure of the internal ray of B(y) of angle 2/3 .

Then

Y = {a} UR(6/13) U T(2) UR(5/13)U r(z) U R(2/13) U T(y)

is an abstract Hubbard tree ([DH1]) homeomorphic to Hs , and Y is invariant by F .
We can then take a small neighborhood U of Y such that UNPp = {z,y, 2} (recall that
Pp is the postcritical set of F ) and v = 90U is a simple closed curve. It is easy to check
that F'~1(«) is also a simple closed curve homotopic (rel Pr ) to y and F : F~l(y) — v
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is of degree three and preserves the orientation. So we can consider v as a new equator
of the sphere, which separates the sphere into two hemi-spheres, on one of which F is
equivalent to P; , and on the other one F is equivalent to a cubic polynomial with only
one critical value (i.e. is affinely conjugate to a polynomial of our family Mj; ) (see [W]).
So there is a value a € M’ such that F is equivalent to g, 1L P3, moreover, a is periodic
of period 3 for ¢, .

In fact instead of b(1/3) , for any b € M' N L(1/3) , there is a fixed point a(d) of g,
which has the same set of external angles as a(b(1/3)) . So for any & € M' N L(1/3)
such that a(b) is not postcritical, the same argument as above works, i.e. we can find a
point a = a(b) € M’ such that g, Il P, is equivalent to g, 1L P; . Hence we get a lot of
shared matings. Moreover, by §II1.5, A3 = M’ , it means that g, and P; are matable,
so gy and P; are also matable.

2) Now let us consider g, AL P . In Mj , take the point b = b(5/6) , and let F' =
ng.L P2 .

InC, C Sgb,p: , there is a unique fixed point « for F' with more than one external
angles, and Ang(a) = {25/26,23/26,17/26} . By our choice of P, , we have: in € p, C

Py

g}’i(25/26) lands on the point of 0B(z) with internal angle 0 ;

R(23/26) lands on the point of 0B(y) with internal angle 0 and

R(17/26) lands on the point of 8B(z) with internal angle 0 .

Let 7(z) be the closure of the internal ray of B(xz) of angle 0 ;
7(y) be the closure of the internal ray of B(y) of angle 0 ;
7(z) be the closure of the internal ray of B(z) of angle 0 .

Then as in 1)

Y = {a} UR(25/26) U r(z) U R(23/26) U t(y) U R(17/26) U 7(=)

is an abstract Hubbard tree homeomorphic to H; , and Y is invariant by F' . Hence we
can take a small neighborhood U of Y such that U N Pr = {z,y,z} and y = 0U is a
simple closed curve. Just as in 1), F~!() is also a simple closed curve, is homotopic
(rel Pp ) to vy and F: F~!(y) — 7 is of degree three and preserves the orientation. So
we can consider again -y as a new equator of the sphere, on one of the new hemi-sphere
F is equivalent to P; , and on the other one F'is equivalent to g, for some a € M' = A,
such that a is periodic of period 3 for g, . Therefore F is equivalent to g, 1L P;s .

By the same argument we see that instead of 5(5/6) , for any b € M' N L(5/6) so
that a(b) is not postcritical, we can find a point a = a(b) € A3 such that F = g, 1. P,
is equivalent to g, Py . Hence F is a shared mating and ¢, and P, are matable.

3) Now let us consider matings with Py . In Mj; , take the point b = b(5/6) , and let
F= ng.L P4 .

Asin 2),in €4, C SZ, p, we have a fixed point o with
Ang(a) = {25/26,23/26,17/26} . For Py , let us choose the landing point of 0-external
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ray to the fixed point g such that u ¢ Hy and [u,y] does not intersect = . Then in
CP4 C Szb,P‘l ’

R(25/26) lands on the point of 0B(y) with internal angle 1/3 ;

R(23/26) lands on the point of 0B(z) with internal angle 2/3 and

R(17/26) lands on the point of JB(z) with internal angle 2/3 .

Let 7(y) be the closure of the internal ray of B(y) of angle 1/3 ;
7(z) be the closure of the internal ray of B(z) of angle 2/3 ;
7(2) be the closure of the internal ray of B(x) of angle 2/3 .

Then

Y = {a} UR(25/26) U r(y) U R(23/26) U 7(z) U R(17/26) U 7(x)

is again an abstract Hubbard tree homeomorphic to Hj , and Y is invariant by F'. Hence
as well as in 2) we can take a small neighborhood U of Y such that U N Pr = {z,y, 2}
, ¥ = OU are F~1(y) simple closed curves homotopic (rel Pr ) to each other, and
F : F7'(y) — v is of degree three and preserves the orientation. So we can consider v
as a new equator of the sphere, on one of the hemi-sphere F' is equivalent to P; , on
the other one F is equivalent to some g, with a € M' = A; such that a is periodic of
period 3 for g, . So F' is equivalent to g . P; .

We can also generate this result to any b € M’ N L(5/6) such that «a(b) is not post-
critical, and find a point @ = a(b) € Az such that g, L. P, is equivalent to g, il Py . This
gives also that g, and P, are matable.

4) Now let us consider again gs Il P; but with b = b(1/4). This time it has nothing to
do with P; . The situation is slightly different from the above cases. Let F' = gy 1L P; .

As in 1), the O-external ray for P; lands at the fixed point 8" such that [3”,y] does
not intersect z . In C'p, C Sgb,Pl , there is a unique fixed point &' with more than one
external angles, and Ang(a') = {1/4,3/4} . For g, , the dynamic of the critical point
wisw — b — w . Let us denote by B(w), B(b) the immediate attractive basin of w,b in
S;hpl respectively. Then in €, C S;“p1

R(1/4) lands on the point of 0B(b) with internal angle 1/2 ;

R(3/4) lands on the point of 0B(w) with internal angle 1/2 .

Let 7(b) be the closure of the internal ray of B(b) of angle 1/2 |
7(w) be the closure of the internal ray of B(w) of angle 1/2 .

Then

Y ={a'} UR(1/4) U (b)U R(3/4) U T(w)

is an abstract Hubbard tree homeomorphic to Hy; , where b = b(—1/4) is the complex
conjugate of b . Y is invariant by F' . Take a small neighborhood U of ¥ such that
UNPp ={w,b}, and v = U is a simple closed curve, then F~!(y) is also a simple
closed curves, and is homotopic (rel Pp ) toy , and F : F~!(y) — ~ preserves the
orientation. So we can consider v as a new equator of the sphere on one of the new
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hemi-sphere F' is equivalent to g3 , and on the other one F' is equivalent to a polynomial
P' | which is one of P; . We claim it is also P; (so F' is in fact a self-shared mating),
however in this case we are not able to draw the abstract Hubbard tree of P’ in S?
explicitly. So we have to determine it in an other way.

At first let us prove, as in §I1.3 and 4, that the topological mating F* (§1.1.8) of
gy and P, exists, i.e. Sga,ﬂ/ ~f is homeomorphic to a sphere, where ~p denotes the
ray-equivalence relation of F' . In fact in the Hubbard tree H,, there is only one point
which accepts more than one external rays (i.e. is multiple), it is the fixed point a , and
Ang(a)) = {1/8,3/8} . Since the external rays R(1/8), R(3/8) land in C'p, C §2, p on
different simple points, we have [a] = R(1/8) U R(3/8) , which is an arc. Let E be the
equator of Sﬁblp1 , then #[a]N E = 2 . Since every multiple point in the Julia set of
g» is a preimage of a , and no critical point of F' is multiple, we claim that for every
u € S:b,Pl , #[u]NE £ 2. By Proposition [1.4.4 and Corollary 11.4.5, we conclude that
S? .p./ ~F is homeomorphic to a sphere.

Suppose P’ were P; or Py . Then there would be a periodic point u of F' of period less
than or equal to three such that the ray-equivalence class [u] is fixed by F' and connects
the three attractive basins B(z), B(y), B(z) , so that in Sgblpl/ ~F the three basins are
attached at one point. At first [u] # [a] , since the landing point of R(1/8) in C p,
is a periodic point of period two, it cannot be on the boundaries of B(z), B(y), B(z) .
Hence [u] N Hy, = ¢ . But every non-extremal point of [u] in the Julia set of g, should
be in Hy, (Lemma I1.3.4), so in fact [u] does not exist. Hence P’ is not P; nor Py .

Finally, we will see that P' cannot be P, . By the above calculation, [a'] connects
the basins B(w), B(b) . Soin S}, p / ~F the two basins B(w), B(b) are attached at
two points [a] and [a@'] . In M' there are only two values of b such that the critical
point w is periodic of period two for g , they are b(1/4) and b(—1/4) . For b = b(3/4),
the topological mating of gy and P, does not exist (§II1.5) . And for the topological
mating of gy and P, , where b = b(1/4) , the two basins B(w), B(b) are attached only
at one point. In fact R(1/4) (resp. R(3/4) ) lands on the periodic point of period two
on OB(w) (resp. 0B(b)) in € ,, and lands on a simple point in the Julia set of P, . So
P! can not be P, .

We conclude finally that P' = P; .
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§I11.7 SOME GENERAL RESULTS

Let F be a branched covering of S? to itself of degree three, with z,y two simple
critical points and x — y — z — z , with 0 a double critical point and 0 = a — o' — o
. Let X = {a,z,y,z} . Let T’ be a minimal Thurston’s obstruction for F' (Definition
I11.3.3). Let

I, = {y € T| one component of S? — v does not intersect {x,y,2} }
I'y = {v € T'| for some n every curve in F~"() is either peripheral

or homotopic to a curve in '3}

and 'y =T =T . Let

S5 _TI'y=D,U..UDyUA; U...UA4,,
where {D;,i =1,...,k} denotes the set of disc components of $? — Ty

7.1 THEOREM. Let I' be a minimal Thurston’s obstruction and I' = I'; UT'; be the
decomposition as above. Then I'y is F-invariant, I'; verifies the conditions (3.1),(3.2)
in §I11.3, and exactly one of the following holds:

a) 'y = ¢ . In this case I'y contains a degenerate Levy cycle.

b) I'y reduces to a good Levy cycle I' with #I'" < 2 ;
or

c) k=2 witha,y € Dy, o',z € D, £ € A, and a" is not in the component of
5% — A, containing a .

PROOF:

Let v € T and let D be the component of $? — v without intersecting {z,y, z} .
Then the set F~!(D) consists of discs and none of them intersect {z,y,z} . Hence I}
is F-invariant. It is easy to see that I'; is F-invariant, and A(T'y) = A(T) . Ty = ¢
, then there is a minimal Thurston’s obstruction I's contained in T’} . And I'; verifies
the condition (3.3) in §II.3. Applying the Theorem II1.3.4 to I'y , we get a degenerate
Levy cyclein 'y C T .

1) Suppose now I'y # ¢ . By the minimality of G , we get A(T'2) < 1 and A(T) =
AYy>21.

2) From the definition, for each : , D;N{z,y, 2} # ¢ . Moreover, since every curve 7 in
Iy is homotopic to a curve in F~1(T", UT2) , and I'; is invariant, so v is in fact homotopic
to a curve in F~1(T';) , i.e. T’y verifies the condition (3.1) . From the definition, for
each v in I'y , at least one curve in F~1(+) is homotopic to a curve in 'y , so 'y verifies
also the condition (3.2).

3) For each i , #D;NX # 3 . Suppose #D; N X = 3. Since k > 2, there is Dy
such that #D; N X = 1. Then F~'(D;) are discs and a component of it either does
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not intersect {z,y, z} or is isotopically contained in Dy but is not isotopic to D, . This
contradicts the Lemma 3.1.

4) Suppose for each 1 , either D; contains at most one critical value, or D;NX = {y, 2}

Then F~!(D;) are discs and hence T'; verifies also the condition (3.3). From the
Proposition 3.2, either A(T';) < 1 or I'; contains a degenerate Levy cycle, made by the
boundary of some disc components of $2 —T; . But A\(I';) < 1 is impossible by 1). And
since for any Levy cycle T’} in 'y there are at least two disc components S? — '} , one
of them D should verify D N X = {y},{z} or {y,2} . Then only one component D' of
F~1Y(D) verifies D' N X # ¢ . We get that D’ is a disc and deg(F : D' — D) > 1.
Hence 0D is not in the Levy cycle. Contradiction.

5) From 3) , 4), we can suppose that D; N X = {a,y} or D1 N X = {a,z}.
6) Suppose k =2 and #D,NX = #D;NX =2 . Let 41 = 0Dy and v, = 8D, . then
6.1) D; N X = {a,z2} gives us a good Levy cycle as in the Proposition 4.1.

6.2) Dy N X = {a,y} . We will prove that in this case A(T'1) < 1 and hence get a
contradiction.

Since D; N X = {z,z} , F~1(D;) = D' U D" with deg(F : D' — D;) = 1 and
deg(F : D" — D,)=2. We have z ¢ F~1(D,) , and y € D" because of the degree. So
z,y ¢ D' hence D’ isisotopic neither to Dy nor to D, . By the Lemma 3.1, D" has to be
isotopic to D) and deg(F : D" — v;) =2 . We have also F~1(Dy) = A,z € A,z ¢ A
, A is an annulus with 04 ="' U~" [ deg(F :4' - v1)=1,and deg(F : 7" — v ) =2
. Moreover z and z are in different components of $? —+' . So by the Lemma 3.1,
A is isotopically contained in D, and 4’ ¢ I'; . Hence 4" is homotopic to v, . Set
I' = {m,7} , then (") < 1 and I UT, is F-invariant. Let I'Y = '} = "' | then
every curve in I'{ separates {a,y} and {z, 2} . Repeating the same argument, we would
get finally A(I';) < 1. Contradiction.

Nk=2,#D,NX =2,c€D;, #D;NX =1, and #A1 N {z,y,2z} =1 . Since
F~1(D,) consists of discs and has only one component D' intersecting {z,y,z} , if D'
intersects 4, , then D' is isotopic neither to D; nor to D, , this contradicts the Lemma
3.1. So D' should be isotopic to D; . The only possibilities are

7.1) D1iNX = {a,z} and D, NX = {z} . We will get a good Levy cycle with at most
two curves in this case. F~1(D;) = A is isotopic to 4; . Let $? — A = B, U B, with
a € By . Then deg(F : B; — S$? — D) = 1. Using the same method as in the thesis of
Tan Lei [TL2] , we will find a good Levy cycle in B, .

72) D1NX = {a,y} and D,NX = {z} . For this case, see the Proposition 7.2 below.

k=3, #D1'NX =2, c€ Dy, #D,NX = #D3NX = 1. Then in fact
#D;N{z,y,2} =1, 1 =1,2,3. In any case for " = {9D;,0D;,0D3} , we have
AMI") < 1 and I UT; is F-invariant. Let I'Y =Ty — ' | then T'Y is in case 6), 7) or
8) .

7.2 PROPOSITION. Suppose I' is a minimal Thurston obstruction for F . For the de-
composition I' = 'y UT'; as at the beginning of this section, suppose
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ST, =DyUD,UA U..UA;,

with only two disc components Dy,Dy; , D1 NX = {a,y} ,D:NX = {2} andz € A4, .
Then a' = F(a) € D, . And a" = F(d') is not in the component of S — A; containing
a.

PROOF:

Since Dy NX = {a,y}, D2NX = {2}, the set F~!(D,) = D' UD" is a union of two
discs, with deg(F : D' — D;) =1, and deg(F : D" — D) = 2. Because of the degree,
D"N{z,y,z} = {y} and D' N {z,y,2} = ¢ , hence 0D’ ¢ T'; . By Lemma 3.1 ¢), D" is
isotopic to Dy since y € Dy N D" . Therefore o' = F(a) € D, .

Let us look at Dy now. The set F~1(D;) = A is an annulus with 84 = ' U 4" such
that deg(F : 4 — 0D;) = 1 and deg(F : 4" — 90D,) = 2 . By the Lemma 3.1, A
is isotopically contained in A, . Let B;, B; be the discs of S? — A bounded by +',~"
respectively. We claim that z € B; . At first y € B, because of the degree. If z ¢ By,
then 4" ¢ I'1 hence 4" € T'; by the condition (3.2). Since y,2 ¢ A , the disc AU B,
contains a disc component of §2 —'; which does not contain y,z . This contradicts the
assumption. So z € B, .

We say that a curve v € 52 separates two sets U and V if U is contained in one
component of S —y and V is contained in the other component of §% — v .

Let us define
S1 = {y € I'1|y separates {a,y} and {z, 2} },
Sy = {7 € T'1|y separates {a,y,z} and {z,z} } .

Since there are only two disc components of $% — Iy, all curves in I'; are nested, hence
every v € I'y separates {a,y} and {2} . Soinfact 'y = S5 U S; .

Take v € I'; . Let us denote by A the component of 5% — v containing z , and by A’
, A" the two components of F~1(A) | with deg(F : A’ —» A) = 1 and deg(F : A" —
A) = 2. Then A’,A" are discs. Moreover, let us denote v* = JA' and y** = JA" .
We have also deg(F : v* = y) =1 and deg(F : v** = y)=2.

Foreachy €Ty ,wehave D, CA C S?—D, ,hence D' CA' C B; and D" C A" C
B; . Notethat z € A =82 —B,UB;2, a,y € D" and z € By . It follows that for
vy€T ,if 4*isin T’y thenit isin Sy , and if v** is in I'; then it is in S; . Moreover if
v € S2 , then 4* is not in I'y, since z ¢ A’ .

Let
v= Y e

vy€l'sy

be a positive eigenvector (i.e. every c, is positive) of the Thurston’s linear transforma-
tion Fr, with the eigenvalue A = A(T;) . Such a positive eigenvector exists, since by
the assumption I' is a minimal Thurston’s obstruction. Let us denote

v1=zc77, v2=2c.ﬁ,

YES, ~ES2
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for v’ = Z cy set = Z c, .

Y€l ~€el

Recall that [n]r, denotes the curve in I'; homotopic to n , and by convention [n]r, = 0
if no such curve exists. Using the above notation, we have

R Y em= 3 elrln + 3 5ol

YES YES YES
1 »®
Fr( ) em= 3 5™,
YES2 YES2

and

Z %Cw[’Y"]IH + E %CW['Y“]IH =A Z Cyy = Avi,

~ES) YES; YES

Z exfytr, = A Z Cyy = Avg .

~YES, ~ES2

Hence we have

1 1 1
1) il el = 3 gert D ger 22 D ey =Alnl

YES; ~ES:2 ~YES)
(2) oa] = > ey =AY oy =Alwa .
YES: YES2

The equalites in (1) and (2) hold if and only if
(*) for each v € S; , both 4* and 4** are homotopic to curves in I'; ; for each y € S,

v** is homotopic to a curve in I’y .

Summing twice of (1) to (2), we obtain

2for] 4 Joz| 2 A2Jva] + Jvz]) -

Hence A €1 . But we have A > 1 by the assumption that I" is a Thurston’s obstruc-
tion. It follows that A = 1, and the equalities in (1),(2) hold. Hence (*) holds. In
particular, for y = 8D; € S; and v** = 4" the boundary curve of A separating {a} and
{z} , we have that 4" is homotopic to a curve in S; . Applying (*) to 4" , we obtain
that (y'")* is homotopic to a curve in I'; . Let A be the disc bounded by 4" containing
z . Then A’ defined as above contains D; , so a’ € A’ therefore a" = F(d') € A .
Moreover z € A . This implies that 4" does not separate z and a” . J
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§III.5 RESULTS ON THE MATING OF g, AND F; (¢ = 2,3,4)

Let g, and P; (1 = 1,2,3,4) be as in §IIL1.
5.1 THEOREM. For any a € M' | g, and P; (or Py) are matable, ie. A3 = Ay = M'.

PROOF: Let F be the degenerate mating of g, and P (a € M'). Suppose F has a
Thurston’s obstruction. By Theorem II1.2.1, there exists a Levy cycle. This Levy cycle
lifts to a non-degenerate Levy cycle for F' = g, P3 . It follows from Proposition 4.2
that there is a fixed point of P; which has exactly two external angles. However, by
computation one can show that P; has three fixed points «, 3, ' with external angles:

Ang(a) = {8/26, 20/26, 24/26}, Ang(B)= {0}, Ang(8')={1/2'}.

So none of them have exactly two external angles. This gives a contradiction.
Hence g, and P; (or Py) are matable. I

Let £ — y — 2z — z be the periodic cycle of P, containing two simple critical points
z,y . Suppose * < y < z (otherwise consider —P(—2)). We may suppose that the
coefficient of Z3-term is —1. Denote }52(2) = 1P2(—1Z) then P, is monic. Let L be the
limb of the cubic Mandelbrot set Mj; of internal angle —1/4 .

5.2 THEOREM. Fora € M'NL , g, and P, are not matable. In fact there is a good
Levy cycle for g, L P2 , which consists of one curve made of two external rays of fixed
points of g, and P, .

PROOF.: For a € M' N L, g, has a fixed point o with external angle 5/8 and 7/8 . It

is easy to see that P, has a fixed point with external angles 1/8 (= —7/8 modl) and
3/8 (= —5/8 modl) . Let

v = R(5/8) UR(7/8) = (R,,(5/8) U Rp,(~5/8)) U (R, (7/8) U Rp,(=7/8))

which is a simple closed curve in $? p, - If ais not posteritical, then T' = {7} is a good

Ga,i72
Levy cycle. If a is postcritical, take a thin annulus A along v (a tubuler neighborhood
of v) so that AN Pp = {«} and 0A consists of two simple closed curves 4, 7~ . Then
I'= {y+,7-} is a good Levy cycle. |




polynomial f . So every Levy cycle of F' reduces to a cycle of ray-equivalence classes
with some specified conditions. Hence F' can not have any degenerate Levy cycle by the
above corollary. If F' has a non-degenerate Levy cycle, then it will reduces to a cycle of
ray-equivalence classes containing closed curves, which is impossible by Corollary 3.8.

Pleture -]ew the Lemma 3.7
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(iii) 65 and é; are homotopic to &, in §}  — Pp. §, is peripheral in S} ;, — Pr.

PROOF OF THEOREM 1.4.2: Let I' = {§,,6,}. Then by the above lemma, the matrix
for the Thurston’s linear transformation Fy. : BT — B! (under basis 6,6, ) is

1 1
2 2
(i 3)

This matrix has the leading eigenvalue Ar = 1 with eigenvector (;

Thurston’s obstruction, then by Thurston’s theorem, F' is not equivalent to a rational

. Hence I" is a

map. [
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I is degenerate if the connected components of S? — | J, v; are
B, B,,.., B, C,

with B; discs, C not disc, and each F~!(B;41) has a component B} isotopic to B; (rel
Pp),and F : B; — Biy is of degree one (i = 0,1,..,n — 1), where By = B,, .

FIRST REDUCTION. (Levy’s theorem). Suppose F' is of degree two. There is a Thurston’s
obstruction for F' if and only if there is a Levy cycle for F .

SECOND REDUCTION. Suppose F' is of degree two. There is a Levy cycle for F' if and
only if there is either a degenerate or a good Levy cycle for F .

THIRD REDUCTION. Suppose F = f. I fo , ¢,c’ € D . Then by using the expansive

metric for F' near 0K and 0K , we can prove that

a) each degenerate Levy cycle for F' reduces to a cycle of ray-equivalence classes:
[zo], [z1], -y [Zm), ([z0] = [zm]) such that for each i, F([z;]) = [ziy1], F#][zi]O Pr 2 2,
and none of the [z;] contain closed curves;

b) each non-degenerate Levy cycle for F reduces to a cycle of ray-equivalence classes:
[zo], [z1], ..., [Tm], ([xo] = [zm]) such that for each i, F([z;]) = [zi+1], and [z;] contains
closed curves;

¢) each good Levy cycle for F reduces to a ray-equivalence class [z] such that [z]
contains at least one closed curve and at least two fixed points of F' .

Note that each Levy cycle for the degenerate mating F' lifts to a non-degenerate Levy
cycle for F' . By these reductions, Theorem 3.1 is proved.
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