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Abstract. We present an example of mating of two eubie polynomials l whieh shows that
some teehnique used. in quadratie matings fails in higher degree. More precisely, our
example has a Thurston's obstruction, does not have a Levy eyde and the quotient of the
sphere by the ray-equivalence is homeomorphic to the sphere. \Ve also analyze a certain
family of cubic rational maps.

INTRODUCTION

Many nlathematicians are interested in the dynamics of complex polynomials and
rational maps. In this paper we try to understand the dynamics of a rational map as a
mating of two polynomials. This point of view was proposed by Douady and Hubbard
[D] in 1982.

There are two kinds of matings.

For the first one, we construct a branched map of the sphere from two polynomials
f , 9 of the same degree, this map is called the formal mating of f and g. More
precisely, we add to C a circle at infinity, then fand 9 can be extended continuously
to this circle at infinity in a natural way. We sew up two copies of C at the circle of
infinity to get a topological sphere. We can then define a self branched covering of the
sphere which coincides with f on one hemi-sphere and with 9 on the other hemi-sphere.
Thurston defined an isotopy equivalence relation between postcritically finite branchecl
coverings of the sphere (Le. the orbits orbits of critical points are finite). H f and
9 are postcritically finite, and their formal mating (which might be modified in some
case) is equivalent (in Thurston's sense) to a rational map R , we say that these two
polynomials are matable.

For the second one, we sew directly the filled-in Julia sets of fand 9 at their boundary
by identifying the point of extemal angle t for f with the point of exten1al angle -t
for 9 . H the induced map by f and 9 on this space is conjugate to a rational map R',
then we say that f and 9 are analytically matable. This requires in fact three things:
the new space should be a topological sphere, the induced map should be a branchecl
covering, and it should be conjugate to R' .

There are a lot of questions on this subject. For example, what are the conditions
for two polynomials to be matable? How can we interprete these conditions in the



parameter space of polynomials? Can we extend the Thurston's equivalence and hence
the definition of matability to non-postcritically finite cases? Is the matability equivalent
to the analytical matability, and R = R' ? Are the correspondences Cf, g) ---+ R ,
Cf, g) --+ R' injective, continuous?

To analyze these, we need the theory developped by Thurston [Th], Douady, Hubbard
[DH2] and others.

In case of mating of quadratic polynomials, same answers to the above questions
have been obtained by the work of S. Levy [Ll, B. Wittner [WJ, M. Rees [Rl, and Tau
Lei [TLl),[TL2],[TL3]. But the situation in higher degree is no more so dear. In fact
besides Tau Lei's work which generelized the degree two results to polynomials of the
form z --+ zd + C , we had known almost nothing about that until we discovered a
mating of two specmc cubic polynomials at the Max-Planck-Institut in Bann in April
1988. This example shows that the main tool in degree two case - Levy's theorem - fails
in higher degree, moreover, by sewing together the boundary of the filled-in Julia sets
of f and 9 , one may also get a topological sphere even though the two polynomials are
not matable.

In this paper we state our main results on this special mating and we analyze a
family of cubic rational maps related this mating. We state also our observations in
computer experiments. In Chapter I we review several definitions of matings wmch
were sometimes confused in quadratic case, and we summerize the known results and
our main results. The proofs of the main results are given in Chapter 11. In Chapter III
we state same numerical observations and some related results.

The authors would like to express their thanks
to J .H. Hubbard for his great attention to the research and many helpful discussionsj
to B. Bielefeld and Y. Fisher for having spent a lot of time to help us for the computer

experiments, in particular, the first version of the computer programm was written by
V: Fisher;
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The authors thank also the Max-Planck-Institut für Mathematik for having supported
the research and for having offered a friendly working atmosphere.
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§I. REVIEW OF KNOWN RESULTS AND MAIN RESULTS

§I.l DEFINITIONS

In this seetion, we give definitions of several kinds of matings.

1.1 DEFINITION (formal mating). Let f and 9 be two monie polynomials of degree d .
Let

c = C u {CXJ . e21ri
" I sET = R/Z}.

Then f and 9 extend continuously to (; by setting

Let
8;,0 = CI U Col(00 . e21ri

.. , f) ~ (CXJ . e-21ri
", g) .

The formal mating of f and 9 is defined to be the branched covering f JL 9 : SJ,g ~ 8},o
such that

f JL 9 = f on CI and f JL 9 = 9 on C9 •

In case there is no ambiguity, we write 52 instead of 8J,g .

1.2 DEFINITION (postcritical. set). Suppose F : 52 ~ 8 2 is a branehed covering. In the
following, we always assume that branched coverings are orientation preserving and of
degree greater than oue. Let

nF = {critical points of F} and Pp = U pn(n F ).

n>O

A branched covering F is called postcritically finite, if PF is finite.

From now on let us suppose f and gare postcritically finite polynomials of the same
degree and let F = f JL 9 . Then F is also postcritically finite.

See [DH1] for the definitions of the fiIled-in Julia set 1(f for a polynomial f and the
external rays in C For B E T ,let us denote by RI (B) the closure in CI of the external
ray of angle B (we recall that if fis postcritically finite, then 1(1 is connected and locally
connected, and RI(B) is weIl defined).

In 51
2 ,the external rays RI(B) and Rg ( -B) are connected at the point (CXJ' e21ri8 , f).

,9

1.3 DEFINITION (ray-equivalence). For x and y in CI, we define x ""'I y if x and y are
in the same RI (B) for same B . The relation ""'9 on C9 is similarly defined. In 5},9' let

"'" p be the equivalence relation generated by ""'Ion Cfand rv9 on C9 . This relation
is called the ray- equivalence for F . Denote by [x] the ray-equivalence class of x E 8 2 .
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1.4 DEFINITION (degenerate mating). Let [Xl], [X2], ... , [X m ] be the equivalence classes
in 52 such that #[Xi] n PF 2: 2 . Let [Yl], [Y2], ... , [Yn] be the equivalence classes in

U p-n(U[xd),
n;:::O i

such that [Yi] n (PF U !lF) i=- <P .

Remark that each [Yi] consists of only a finite number of external rays, since each
postcritical point is preperiodic. H none of the [Yi] contain closed curves, then a11 of
[Yi] are topological trees. In this case, collapsing each [Yi] to one point and we get a
new space 5 12 which is homeomorphic to 8 2

. We modify then F in a neighborhood of
each [Yi] and make a new branched covering F I

: 5'2 ~ 5'2 . We call F' the degenerate
mating of 1 and 9 .

1.5 REMARK. In the case that there is no such [Xi] , set F' = F by convention. In the
case that some [Yi] contains a closed curve, the degenerate mating does not exist.

1.6 DEFINITION (Thurston's equivalence). We say two postcritically finite branched
coverings P and G are equivalent, F '" G, if there exist two orientation preserving
homeomorphisms BI, (}2 : 52 -+ 52 such that

Bi(PF) = Po (i = 1,2), BI = Bz on PF, BI and 82 are isotopic relative to PF

(we write rel PF ) , and the following diagram commutes:

91
B2I

10

92
I 52.

1.7 DEFINITION (matability). We say that two polynomials 1 and 9 are matable if the
degenerate mating F' exists and is equivalent (in the sense of Thurston's equivalence)
to a rational map.

1.8 DEFINITION (topological mating). Let us denote by 11(8) the landing point of
R/(B) on 81(/ . We denote by X the space

which is equal to
8 2

/ '"F .

And we can define the induced mapping F· = [I JL g] : X ~ X . If X is homeomorpmc
to the sphere, we call F· the topological mating of f and 9 .

1.9 D EFIN ITI0 N (analytical matabili ty). H F* is topologically conj ugate to a rational
map, we say that 1 and 9 are analytically matable .
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§I.2 THURSTON'S AND LEVY'S RESULTS

In this section, we summerize Thurston's and Levy's results. For details and proofs,
see [Th], [DH2].

2.1 DEFINITION. Let F : 8 2
--t 8 2 be a postcritically finite branched covering. A simple

closed curve in 52 - PF is called peripheral if it bounds a disc containing at most one
point of PF. A multicurve r is a collection of disjoint simple closed curves in 52 - P F ,

such that none of them is peripheral and no two curves are homotopic to each other in
8 2

- PF. A multicurve f is F-invariant, if

p-1(f) = {connected components of p-l (,) I, E f}

consists of peripheral curves and curves which are homotopic to curves in f.

2.2 DEFINITION. For a multicurve f 1 the Thur3ton'~ linear tran3formation Fr is a linear
map from ElF = {2:-yEr c-Y/I C-y ER} to itself defined by

for , E f,

where the SUffi is over all components " of p-1 (,), and h"]r denotes the curve in f
homotopic to " if it exists and [,']r = 0 otherwise. We denote by Ar the leading
eigenvalue of Pr.

2.3 THEOREM(THURSTON). Suppose F : B2 --t 8 2 is a postcritica11y finite brancbed
covering witb a hyperbolic orbifold (see [DH2], for definition). Then F is equivalent to

a rational map, if and only if tbere is no F-invariant multicurve r with Ar 2:: 1.

2.4 REMARK. If the orbifold is not hyperbolic, then P-1(Pp) C D. F U PF and #PF ::;

4. Therefore branched coverings with non-hyperbolic orbifolds are considered to be
exceptional.

An F-invariant curve f with Ar 2:: 1 is called Thur3ton'3 ob~truction.

2.5 D EFINITI0 N. A multicurve ,I , ... , , n is called Levy cycle, if each F-l ( ,i+1) contains
a component ,~ homotopic in Ef2 - PF to ,i and F : ,i --t ,i+1 is of degree one
(i = 0, ... , n - 1), where ,0 = ,n'
2.6 THEOREM (LEVV). ([L], [TL2]) Let P be a postcritica11y finite branched covering
of degree two. There exists a Tburston 's obstruction for F, if and only if tbere exists a
Levy cyc1e for F.

See Theorem 111.3.3

2.7 REMARK. A branched covering F is called topological polynomial, if there is a point
00 E 52 such that F-1 ( (0) = CX)). The Levy's theorem also holds for postcritically
finite topological polynomials.
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§I.3 DEGREE TWO CASE

Douady and Hubbard had a conjecture about the condition for two quadratic poly­
nomials to be matable [0]. By using the Thurston-Levy results (§I.2), Mary Rees and
Tan Lei have proved the conjecture almost completely. In this section, we sUlnmerize
some of their results.

Every quadratic polynomial is affinely conjugate to fe : Z -+ z2 + c for some value c .
Let us recall here some notations of Douady and Hubbard:

K e = K fe is the filled-in Julia set;

M 2 = { c E CI I{e is connected } is the Mandelbrot set;

V = { c E elfe is postcritically finite };

Wo = the component of int(M2) containing 0 .

3.1 THEOREM. ([R] and [TL2]). For c,c' E V , fe and f~ are matable if and only iffor
eacb fixed point 0' of fe and f~ , the equivalence dass [0'] in 5; cl does not contain any
dosed curve. '

This theorem has a beautiful interpretation in the parameter space M2 :

3.2 THEOREM. ([R] and [TL2]). Suppose c, c' E V. Then fe and f~ are matable if and
only iE c and c' are not in the same connected component of M 2 - Wo , where c' denotes
the complex conjugate of c' .

Moreover, Mary Rees proved:

3.3 THEOREM. ([R]). Suppose c and c' are periodic for fe and f~ . Then the fact that
fe and f~ are matable implies that the topological mating P* of fe and f~ exists and F*
is topologically conjugate to a rational map. This means in our language that fe and
f~ are also anatically matable.

Mary Rees claims that the same result is also true for c, c' E V [R, part 111].

We give here some more details of the proof of Theoreln 3.1 and will show later which
part of the proof fails in higher degree case.

3.4 DEFINITION (good and degenerate Levy cycles). Suppose F : 52 -+ 52 is a post­
critically finite branched covering, and r = {/},'2, ... , In} a Levy cycle for P . Then

r is good if the connected components of 8 2 - Ui li are

with Bi discs, C not disc, and if n = 1 1 then C = 4> and P : " -+ ,1 reverses the
orientaiton (where I' is the component of P-1(/l) homotopic to 11 ; if n > 1 , then one
component C' of p-1(C) is isotopic to C and P : C' -+ C is of degree one;
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r is degenerate if the connected components of S2 - Ui ,i are

with Bi dises, C not disc, and each F-I (Bi+1 ) has a component Bi .isotopic to Bi (rel
Pp) , and F: Bi ~ Bi+I is of degree one (i = 0,1, .. ,n -1), where Ba = Bn .

FIRST REDUCTION. (Levy's theorem). Suppose Fis of degree two. Tbere is a Thurston's
obstruetion for F if and. only if there is a Levy cyc1e for Jo1;' •

SECOND REDUCTION. Suppose F is of degree two. There is a Levy eyc1e for F if and
only if tbere is eitber adegenerate or a good Levy cyc1e for F .

THIRD REDUCTION. Suppose F = fcJl.. Je' , e, c' E V. Tben by using tbe expansive
metne for F near aKc and qK~ , we can prove tbat

a) eacb degenerate Levy cyc1e for F reduces to a cyc1e of ray-equivalence c1a.sses:
(xa], (Xl], ... , [x m ], ([xal = (xmD such. that for each i, F([Xi]) = (Xi+I], #[Xi] n Pp ~ 2,
and none of tbe [Xi] contain closed curves;

b) each non-degenerate Levy cyc1e for F reduces to a cyc1e of ray-equivalence c1asses:
[Xa), [xtJ, ... , (X m ], ([xa] = [xmD such that for eacb i, F([XiD = (Xi+l] , and [Xi] contains
c10sed curves;

c) eacb good Levy cyc1e for F reduces to a ray-equivalence class [xJ such that [xl
contains, at least one c10sed curve and at least two iixed points of F .

Note that each Levy cycle for the clegeneratemating F' lifts,to a non-clegenerate'Levy
cycle' for F .' By these reductions, Theorem 3.1 is-proved.
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§I.4 MAIN RESULTS

We want to analyze the mating problem of two specific cubic polynomials 11, /2 . vVe
will see that some of the results are quite generalizable, and some theorems in degree
two case are uo more true for cubics.

Let us denote by 9a the cubic polynornial z ~ z3 + a .

Let 11 = 9c for c = \l3e71ri/12 . From the point of view of the parameter space, c is
the point of the cubic Mandelbrot set

M 3 = {a I 0 E the filled-in Julia set 1(go of 9a}

of external angle 1/3 . From the point of view of dynamics, the dynarnics of the eritical
point 0 is

o~ c~ ß~ ß.

Let 12 be a monie, real cubic polynomial such that it has a periodic eyde:

x ~ y ~ z ~ x,

where x, y, z are real, x and y are simple critical points of 12 and y < x < z. These
conditions uniquely detennine 12 .

Let F = 11lL 12 be the formal mating of /1 and /2 . The postcritical set PF is
{c,ß,x,y,z}, where c and ß denote c,ß E Cft and x,y,z denote x,Y,z E eh'
4.1 LEMMA. The degenerate mating F ' of /1 and 12 is equal to F. In other words,
there is no ray-equivalence dass in 5Jl,12 containing more than two points of PF .

4.2 THEOREM. The formal mating F has a Thurston's obstruction consisting of two
curves, ·wi th Thurston 's matrix

whose eigenvalue is 1. Hence F = F' is not equivalent to a rational map, and 11 and 12
are not matable.

4.3 THEOREM. The quotient S2/ "" F defined in 1.1.4 is homeomrphic to a sphere.
Hence the topological mating F* exists.

4.4 THEOREM. F does not bave any Levy cyc1e.

These theorems will be proved in §II.

REMARK. As we have seen in §I.3, in case of degree two, two polynomials are matable
if and only if the quotient 5 2 / "" is a sphere and the topological mating F* exists (M.
Rees' theorem). However this is not the case in degree three by Theorems 4.2 and 4.3.
Moreover the Levy theorem (or the first reduction in §I.3) fails for this example.

9



§II. P!t00FS OF MAIN RESULTS

In this chapter and the next chapter 11 and 12 denote the two specific cubic polyno­
rnials defined in §I.4. To simplify the notations, we will use !{i , Ji , R j , Ti instead of
KJi , J/i , Rj; , Ili etc. To avoid ambiguity, will denote by w the critical point of /1 .

§II.l HUBBARD TREES AND EXTERNAL ANGLES OF /1 AND 12

The Hubbard tree H 1 of /1 is shown in Figure 1.1. (See [DHl, Expose IV] for the
definition of the Hubbard trees for polunomials.) Figure 1.2 is an extended Hubbard
tree H~ = 11-1(H1).

In Figure 1.2, 0' is a fixed point in [w, cl; 0'1 and 0'2 are pre-images of 0' such that
0'1 E [w, ß] and 0'2 (j. H1 ; and 0'10, 0'11, 0'12 are pre-images of 0'1 such that 0'10 E [0', cl,
0'11 E [w, ßl, 0'12 f/:. H1 · Then, by a simple computation, one can show that the extemal
angles of these points are:

Ang(w) = {1/9,4/9, 7/9}, Ang(c) = {1/3}, Ang(ß) = {O},

Ang(a) = {1/8, 3/8}, Ang(O'I) = {1/24, 19/24}, Ang(a2) = {11/24, 17/24},

Ang(0'10) = {19/72, 25/72}, Ang(0'11) = {1/72, 67/72}, Ang(0'12) = {43/72, 49/72}.

Figure 1.3 shows the H~ together with external rays of these angles.

The Hubbard tree H2 of 12 and an extended Hubbard tree H4 are shown in Figure
1.4 and 5.

In Figure 1.5, ß', ß" and 0" are fixed points such that [z, ß'] nH2 = {z}, [ß", yJ nH2 =
{y} (01' ß', ß" real and ß" < y, z < ß') and 0" E [y, x]; a~ and O'~ are pre-images of 0 '

such that a~ E [x, z] and O'~ E [ß", y]; and ai0, O'~1, a~ 2 are pre-images of a~ such that
O'~o E [y, xJ, a~1 E [z, ß'l, Q'~2 E [ß", y]; X., y.. , z'" are the roots of basins of attraction
of x, y, z, respectively (i.e. repelling periodic orbit of period 3 on the boundary of the
basins). Then the extemal angles of these points are:

Ang(x.) = {3/13, 10/13}, Ang(y.) = {4/13,9/13}, Ang(z.) = {1/13, 12/13},

Ang(ß') = {O}, Ang(ß") = {1/2},

Ang(O'/) = {1/4,3/4}, Ang(O'~) = {1/12, 11/12}, Ang(O'~) = {5/12, 7/12},

Ang(0';0) = {11/36, 25/36}, Ang(0';1) = {1/36, 35/36}, Ang(0';2) = {13/36,23/36}.

Figure 1.6 shows the H~ together with extemal rays of these angles.
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§II.2 TUE THURSTON'S OBSTRUCTION FOR F = JIJL /2

In this seetion, we eonstruet the Thurston's obstruetion stated in Theore1ll 1.4.2,
which is made of external rays and same part of the equator.

2.1 DEFINITION. The equator of Sf2 f is
1, 2

E = {(oo· e2 11"i",J)ls E T} = {(oo· e-2 11"i",g)ls E T} ,

where (00 . e2 11"is J) = (00 . e-211"ü g) is a point in 52 ., , /1.12
For BI, B2 E T , we define ares in 51

2 1 by
1, 2

BI~B2 = RI (B t ) U RI (B2)
Z

BI~B2 = R2(-BI) U R2(-(2)
z

if BI ::; 82

if BI > 82 ,

where 81 , B2 are considered to be in [0,1[, in the last definition.

Let

81 1/8~1/4~3/4~3/8~1/8,
Ci' Ci

82 - 1/24~1/12-4-11/12~19/24~1/24,
Ci t Ci}

83 = 3/8~5/12~7/12~11/24~17/24~3/4~1/4~1/8~3/8,
Ci~ Ci2 Ci' Ci

84 = 1/72~1/36-4--35/36~67/72~1/72,
Ci 11 Ci 11

85 = 25/72~13/36 J; 23/36~43/72A49/72~25/36 J; 11/36~19/72A25/72.
0'12 012 0'10 Ci 10

Then the following lemma can be easily checked. (See Figure 2.1-3.)

2.2 LEMMA. (i) The above 8} , 82 ,83 ,84 ,85 are simple closed curves in 571,12 - PF · 81
and 82 are disjoint.

(ii) P-1
( 81 ) = 82 U 83 and deg(F: 82 ~ 81) = 1, deg(F: 83 --+ 81 ) = 2;

F- 1 (8z ) = 84 U 85 and deg(F: 84 --+ 82 ) = 1, deg(P: 85 --+ 82 ) = 2.

13



,

(iii) °3 and 05 are bomotopic to °1 in 5Jl.12 - Pp. °4 is peripheral in 5Jl.12 - PF.

PROOF OF THEOREM 1.4.2: Let r = {01 ' 02}. Then by the above lemma, the matrix
for the Thurston's linear transformation Fr :Rr -+ BF (under basis °1 ,°2 ) is

This matrix has the leading eigenvalue .Ar = 1 with eigenvector (~). Hence r is a

Thurston's obstruction, then by Thurston's theorem, F is not equivalent to a rational
map. I;

;E
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§II.3 RAY-EQIVALENCE FOR F

In trus section we analyze the ray-eqivalence of the fonnal mating F of /1 and /2 ,
and we prove Lemma 1.4.1 and Theorem 1.4.4.

3.1 DEFINITION AND REMARK (EXTENDED HUBBARD TREES). Let fI1 be the convexe
envelope in J1 of ß, ßl, ß2 , where ß = ,1 (0) , ßl = /1 (1/3) = c and ß2 = ,1 (2/3) .

Then

(recall that w denotes the critical point of /1 .
Let H2 be the convexe envelope in J2 of ß', ß~, ß~ , where ß' = /2(0) , ß~ = ,2(1/3)

and ß~ = 12 (2/3) . Then

By Douady and Hubbard, we have F(Hi) C Hi , and for any point u E Ni n Ji , the
number of external angles #Ang(u) is equal to the number of access of u relative to Ni.

In Sf2 f ,let
1, 2

to be the external ray of F of angle B .

3.2 DEFINITION. A point u in J1 UJ2 C Sf2 f is a simple point if u has only one extemal
1, 2

angle; and u is a multiple point otherwise, i.e. u has at least two external angles.

3.3 LEMMA. JE u is multiple and u =1= w , then F(u) is also multiple.

PROOF: Since u is not a critical point of F , the mapping F is a loeal homeomorphisrn,
and F sends external rays to external rays. So F(u) has the same number of external
angles as u has, i.e. #Ang(u) = #Ang(F(u)) . I

3.4 LEMMA. Suppose u E Ji( i = 1,2), and u is multiple, tben tbere is k 2: 0 such that
for all n 2: k , Fn( u) E H i .

PROOF: Since F(Hi) C Hi , we need only to find a k such that pk(u) E Hi .
Suppose at first u E J1 • H there is k such that F k (u) = w , then we are done.

H not, suppose B,7] are two different external angles of u. In the expression of B,7]
in ba.se 3, there is i minimal such that the i-th digits of B,7] are different. This gives
that 3i B and 3 i 1] are in different intervals of T - {O, 1/3, 2/3} , so pi(u) E H1 • Since
F([w, ß2]) = [c, ß] , the number k = i + 1 verifies our condition.

Suppose u E J2 • We can prove as above that any multiple point u has a forward
image in H2 . Since F([y, ß~]) = F([y, ß~]) = [z, ß'] E [x, ß'] , and in [x, ß'] there is a
sequence {bn } such that bo = x , bn E [b n+1 , bn - 1 ], bn --+ ß' , and F(bn+1 ) = bn • So
for any point u E H2 - {ß} , there is k such that pk(u) E H2 . I

16



3.5 LEMMA. Every multiple point in J1 has a forward image in [w, c] .

PROOF: As in the proof of the above lemma, we can find a sequence {an} E [c,ß] such
that ao = c , an E [an+1,an-1], an --+ ß , and P(an+1) = an . We have automatically
a1 = 0 . So for any multiple point u E H 1 there is k ;::: 0 such that pk(u) E [w, c] . I

3.6 LEMMA. Every multiple point in J1 has at most three external angles. Every
multiple point in J2 has at most two externaJ angles.

PROOF: For a multiple point u E J2 , since all critical points of 12 are in int(I(2), the
orbit of u contains no critical points. There is k such that pk (u) E fI2 and pk is a
homeomorphism in a neighborhood of u. So #Ang(u) = #Ang(pk(u)). Since H2
contains only one branched point y which is not in J2 , any point in fI2 has at most
two external angles.

For a multiple point u E J] , either there is a unique k such that pk(u) = w (and
pk+2(u) = ß ) or the orbit of u does not contain wand there is k such that pk(u) E fII .

In both case #Ang(u) = #Ang(pk(u)) . But w is the only branched point in fII and
Ang(w) = {1/9, 4/9,7/9} (§II.1), we have #Ang(pk(u)) :::; 3 . I

3.7 LEMMA. Suppose u is a multiple point of J] , and f), B' two angles of u. Let
v = ,2(-B) and v' = '"'ne -B') be the landing points of R(f)), R(B') in J2 . Then at least
one of them is a simple point.

PROOF: Suppose both v and v' are multiple. Then take k large enough such that for all
n ;::: k , pneu) E H1 and pn(v), pn(v') E H2 • Moreover, by Lemma 3.5, we can suppose
pk(u) E]w, c] . Now we claim pk (u) -:f w otherwise pk+l (v) = pk+l (v') = ,2(-1/3)
is a simple point. So one of 3k B,3 k B' is in the interval ]1/3,4/9[ (§II.1), suppose it is
3k f)' . So Fk(v') has angles in ]1/3,2/3[, but no point in H 2 has angles in this interval
(§II.1), contradiction. I

3.8 COROLLARY. Each ray-equivalence dass of F intersects the equator E at at most
6 points. No ray-equivaJence c1ass of P contain c10sed curve.

PROOF: Let v E J2 be a multiple point and Ang(v) = {-f), -B'} . Then for u =
')'l(f)) , u' = ')'](19') , we have #Ang(u) + #Ang(u') :::; 6 , and by the above lemma
[v] nE = Ang(u) U Ang(u') , and [v] does not contain any closed curve. I

3.9 COROLLARY = LEMMA 1.4.1. No ray-eqwvalence c1ass ofP contain more then one
postcritical point.

PROOF: Since each of [x] , [y] , [z] contains only one point (because x, y, z, ~ J2 ) , we
need only to check [w] , [cl , [ß] . Since [ß] = R](D) U R2(D) , we have w, c ~ [ß] . Since
F([w]) = [cl and P([c]) = [ß] , we have [w] # [cl , [w] # [ß] , [ß] # [cl . I

3.10 PROPOSITION = THEOREM 1.4.4. F has no Levy cycles.

PROOF: In fact the third reduction of §I.3 holds also for mating of polynomials of higher
degree, because we have always an expansive metric near Jf for any postcritically finite
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polynomial f . So every Levy cycle of F reduees to a cycle of ray·equivalenee classes
with som,e speemed eonditioos. Hence F can not have any degenerate Levy eycle by the
above corollary. If F has a non·degenerate Levy eycle, then it will reduces to a eycle of
ray-equivalence classes containing closed curves, whieh is impossible by Corollary 3.8. I"
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§II.4 QUOTIENT IS A SPHERE

In this section we prove Theorem 1.4.3 by using Moore's theorem.

4.1 MOORE'S THEOREM. [M] HG is a partition of 8 2 into compact, connected, non­
separating sets such that tbe projection 7r : 8 2

--t 52 IG is c1osed, then the quotient
821G is bomeomorphic to 8 2

•

4.2 DEFINITION (closed equivalence relation). An equivalence relation'" in a metric
space X is clo~ed if the graph of rv in X x X is a closed set. Trus is equivalent to say
that for any sequences Xn --t X , Yn --t Y such that for each n we have X n '" Yn , then
x",y.

4.3 LEMMA. H an eqivalence relation'" in 8 2 is c1osed, then S21 '" is Hausdorff and
the projection 7r : S2 --t S21 '" is a c10sed map.

By Moore's theorem, the above lemma, Corollary 3.8 and Corollary 3.9 , we reduce
the proof of Theorem 1.4.3 to the following proposition and its corollary.

4.4 PROPOSITION. Suppose f, 9 are two posteritieally finite monie polynomials of the
same degree d . Let F = f JL 9 be the fonnallnating of f and g, and let'" = '"F be
the equivalenee relation defined by eonneeted graph oE external rays of F in 87,9 .

H there is K < 00 such that and for every x E Sf2 ,g

#[x] n E ~ !( ,

then the equivalenee relation is c1osed.

4.5 COROLLARY. H moreover no equivalenee c1asses oE", separate Sf2 ,then Sj2 1 rv
,9 ,g

is bomeomorphie to S2 by Moore's theorem.

REMARK. Since
S7,gl rv = !(f U !(gl'f(B) ~ ,g(-f)) ,

the above corollary means that we can sew the boundaries of !(f , !(9 and get a
topological sphere.

PROOF OF THE PROPOSITION: The external ray of F

is a eonnected arc, and by Douady and Hubbard, when B --t Bo , R(B) -7 R(Bo) with
respect to the Hausdorff distance on the space of closed subsets of Sf2 .

,9

Suppose x n, Yn E S;,9 such that V n , X n rv Yn and Xn -7 Xo ,Yn --t Yo . We need to
prove Xo rv Yo .

For each n , there is a collection of angles Bn,l , ()n,2 , ... , Bn,kn such that

X n E R(Bn,l) , Yn E R(Bn,k,J , R(Bn,i) n R(Bn,i+l) i- cf; (i = 1, 2, ... , kn - 1) .
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By the assumption, we have kn ::; K for each n . By taking a good subsequence, we
mayassurne that kn is a constant k for all n . By taking again subsequences, we may
assume that Bn,i -4 Bi (as n -4 (0) for sorne Bi E T and for each i = 1,2, ... , k .

By the continuity of external rays R(B) , we have

R(Bn,i)-4R(Bi), asn-4 00 (i=1,2, ... ,k).

It follows that Xo E R(B1 ) , Yo E R(Bk) , and R(Bi ) n R(Bi+1 ) i=- cP for i = 1,2, ... , k -1 .
Hence

is connected, and therefore Xo ,....., Yo . I
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§III. A FAMILY OF CUBIC RATIONAL MAPS

In trus chapter, we analyze a one parameter family of rational maps related to our
example in §I.4. In §III.1, we state our numerical experiment, and in the following
sections we state some of our results about this family.

§III.l NUMERICAL EXPERIMENT

As an approach to see the phenomenon of non-matability in the space of cubic polyno­
mials, we have made a computer experiment on a family of cubic rational maps. For the
mating of quadratic ploynomials, Ben Wittner [W] made several numerical experiments
and gave the interpretation for some phenomena observed in the parameter space. The
obtained picture of the parameter space suggests non-matability, shared mating, etc.
Applying his methods to cubic rational maps, we found a new phenomenon which does
not occur in the quadratic case.

We take one-parameter family

(
z) = (3t - 2)z3 - (t 4

- 3t2 + 5t - 2)(3z - 2)
Ft (3t - 2)Z3 - t3 (3z - 2)

= 1 _ -"-(t_-_l....:..?......;(-:-t+-----:2)~(3_z_-_2....:...-)
(3t - 2)z3 - t3(3z - 2) ,

with the parameter tEe. If t =j:. -2, i, 1, then F t is a cubic rational map. The critical
points of Ft are 0,00,1 and 0 is a double critical point. Moreover, for auy t t= -2, j, 1,
Ft has a superattracting cycle of period 3 :

00 ~ 1 ~ t ---+ 00.

It can be shown that if a cubic rational map has a double critical point and a periodic
cycle of period three containing two simple critical points, then it is conjugate by a
Möbius transformation to an F t for some t.

Let us see the result of our numerical experiment. Since 0 is the only free critical
point, we trace the orbit of 0 to see the dynamics of Ft .

We color the parameter space according to how many iterations it needs for the orbit
of 0 to be attracted to certain neighborhoods of 00,1 and t. We leave the parameter t
white if the orbit of 0 is not in these neighborhoods after certain number of iterations.

The Figure 1.1 is the region

- 5 ::; Re t :::; 5, - 5 ::; Im t ::; 5 .

in the parameter space.

In this figure we see a bounded set U of white points and an unbounded component
Coo of the complement of U. The set Coo corresponds to the set of t for which 0 is in
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the immediate basin of 00 for Ft . There are two o~her large components Cl, C. of the
complement of U which correspond to parameters for which Dis in the iInmediate basin
of 1 01' t for Ft, respectively.

To interpret the structure of U , we need to consider what is expected in the family
F t .

There are four distinguished t-values for which °is fixed under Ft • They are solutions
of

t4
- 3t2 + 5t - 2 = 0.

Two of them are real and the other two are non-real and complex conjugate to each
other. Let us denote them by t l , t2, t 3 , t 4 , with tl, t2 real, t l < t 2 . For each ti, F ti

is conjugate to a cubic polynomial Pi. We may choose Pi so that PI, P2 are real and
P3 , P4 are complex conjugate. It can be shown that PI is equal to the 12 defined in
§I.4 (up to affine conjugacy). And any cubic polynomial with a periodic cycle of period
three containing two simple critical points is affinely conjugate to one of PI, P2 , P3 , P4 •

Let ga : Z ~ Z3 + a for a E C

M 3 ={aEClg:(O)+oo as n~oo},

M' = {a E C I ga is postcritically finite} C M 3

The set M 3 is called the cubic Mandelbrot set (see Figure 1.2). If ga E M' is matable
with some Pi , then the degenerate mating of them is equivalent to Ft(a,i) for sorne
t = t(a, i). (In particular, for a = °,gaJL Pi rv F ti and ti = teD, i) .) This t(a, i)
is uniquely determined if it exists, since the degenerate mating of ga and Pi has a
hyperbolic orbifold. (See (DH].)

For i = 1,2,3,4 , let

Ai = { a E M' I ga and Pi axe matable } ,

Bi = { tEe I F t rv the degenerate mating of Pi and sorne ga }

= {t(a,i) I aE Ai}.

In §III.5, we prove A3 = A4 = M' , A2 C M' - L where L is the limb of M3 of
internal angle -1/4 . (i.e. L is the component of M 3 - {aa} not containing D , where aa
is the point in aWa of ineternal angle -1/4 ). We conjecture that A 2 = M' - L . For
Al , we know only a few things. For instance, let us return to our example introduced
in §I.4: F = 11 JL 12 with 12 = PI and 11 = gc, where c is the point of M 3 with external
angle 1/3. By our result, 11 and 12 are not matable, hence c ~ Al . Moreover, we found
some other values of a E M' such that a f/:. Al ,i.e. ga and PI are not matable. vVe
conjecture that Al = M' - LI U LI ,where LI is the component of M3 - {'Ms (7/26)}
containing c . Here 'Mg (7/26) = 'Ma (9/26) is the root of period three cOluponent on
the main vein of interna! angle 1/4 .

Let us consider the mapping (a, i) ~ t(a, i) . We will prove in §III.6 that it is not
injective, i.e. one F t cau be equivalent to the matings of several pairs of polynomials.
This phenomenon is called Jhared matingJ by B. Wittner [W].
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Dur computer observation strongly suggests that this mapping is continuous and can
be extended to a considerably large and cOIlllected subset of M 3 . This makes it hopeful
to define matings for non-postcritically finite polynomials in a reasonable way.

In our computer picture of the parameter space, we see relatively large eomponents
Di of int(U) containing ti (i = 1,2,3,4) . Attached to these Di 1 we also see some other
smaller eomponents and filaments.

First, D 3 and D4 have attaehed components as many as the main eomponent Wo of
int(M3 ). And they have an attaehed eomponent in eommon. However, D 2 is symmetrie
with respect to the real axis and has three eusp points on the boundary. The unique
real one is t = 2/3 . The period two hyperbolie eomponent D of M 3 attached to 1110

with interna! angle -1/4 does not seern to have a eorresponding eomponent attached
to D 2 • We think that t = 2/3 eorresponds to the eutting point (or the root) of D of
M 3 .

The degenerate parameter t = -2 is much more misterious. The eomponent D 1 looks
very mueh like Wo . However there is aperiod 2 eomponent D1,2 which is attached to
D 1 at two points. This suggests that D 1,2 ean be considered as a self shared mating.
The point t = -2 is sUITounded by D1,2 and DI, and we do not see any white component
attached to t = -2 .
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§III.2 MATING OF ga AND P3 (OR P4 )

Let us prove the "Levy theorem" for the degenerate mating of 9a and P3 (or P4 ).

Tu EO REM 2.1. Tbe degenerate mating (or fonnal mating) of ga (z) = Z3 +a and P3 (or
P4 ) has a Thurston 's obstruction jf and only if jt has a Levy cyc1e.

PROOF: Let r be a Thurston's obstruetion for F. We mayassurne that r is totally
invariant, i.e. for any f E r there is a curve in F-1(r) which is homotopie to , .

There are a fixed point Q' of P3 and regularized ares Ix = [a, x], Iy = (a, yl, /z = [a, z]
in C P3 C Sg2 p such that F : Ix --. Iy , Iy --. Iz, /z --. Ix is a homeomorphism. Let

Cl, 3

11 = Ix U Iy , 12 = Iy U Iz, 13 = Iz U Ix . Then F : Ii --. Ii+1 is also a horneomorphism
(i = 1,2,3), where we set 14 = lt . Note that I] U 12 U 13 is the Hubbard tree of P3 .

Let us define the geometrie interseetion nwnber of ?i and a eurve ., in r by

Ii " = inf{#(I' n ,') 11' f"V Ii , " f"V ., } ,

where I' f"V Ii means I' is an are and they are homotopie in 52 - PF fixing their end
points, and " f"V ., means " is a simple closed eurve and they are homotopie in 52 - Pp.
The geometrie intersection is extended bilinearly to JB.. {11 ,1 2 , b} x ET .

Define a linear transformation F#,r :ElT --. EF by

F#,r(,) = L [,']r for f E r,
" CF-l(,)

as in Definition 1.2.2.
The following inequality holds:

(2.2)

PROOF: Take I' and " such that I' f"V Ii , " f"V , and #(1' n ,') = Ii+1 • , • Then there
is an are 1" C F-1 (1') such that F : 1" --. Ii is a homeolnorphism and [" f"V I' . For,' l

there is a oue to one correspondanee between components of F-1(,) and components
of F-1

(,') such that eorresponding curves are homotopic. Sinee F : I" --. I' is one to
oue, we have

I

Let
i = I] + 12 +13 E R{ h ,12,b} , f' = L" E 1fT .

,Er
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By (2.2), we have

On the other hand, since r is totally invariant,

(i.e. for every , Er, the coefficient of, in the left hand side is greater than or equal to
that of the right hand side). Hence we conclude that the equality holds in (2.2). So we
have

(2.3)

(2.4)

j. F#,r(,) = [', for, Er,
[. P#,r(I') = [. t .

Let r 1 = {, E r I f· , t=- O} and r 2 = r - r 1

2.5 LEMMA. r 2 is F-invariant and A("Y2) < 1 .

PROOF: H J. r = 0 , then [.F#,r(r) = 0 , by (2.3). This implies r 2 is F-invariant. Every
curve r E r 2 is homotopic to a CUTve in the upper hemi-sphere C 94 , since 11 U 12 U 13
is the Hubbard tree of P3 . Hence r 2 can be considered as a multicurve for P3 . Since
Pa is a rational map, '\(r2 ) < 1 . I

It follows from this lemma that r 1 #- 4> and '\(r1 ) ~ 1 . Ey (2.3), for any , E r 1 ,

at least one component of F-1
(,) is in r1 . Moreover by (2.4) and F#,r(t) ~ r ,

exactly one component of F- 1(,) belongs to r 1 . Then r 1 decomposes into disjoint
cycles {ri,ilj = 1, ... , ki} (i = 1, ... , m) such that
there is a component ,Li of p-l (ri,i+l) homotopic to riti and no other component is
homotopic to a curve in r 1 , where we set ;i,ki+1 = ri,l .
It is easy to see that

1

[

kj ] k·
A(r1) = ffi?X II 1 I

I i=l deg(F : ':,i -+ ri,j+l)

Since '\(r1) ~ 1, there is an i such that deg(P : ':,j -+ ,i,i+l) = 1 for all j . Then
{ri,i l:i = 1, ... , kd is a Levy cycle.

Conversely if there is a Levy eyde, then there is an invariant multicUTve containing
it and this multicurve is obviously a Thurston's obstruction. Therefore the theorem is
proved. I
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§III.3 DEGENERATE LEVY OYCLE AND LEVY'S THEOREM

Let F be a postcritically finite branched covering from 52 to itself. All the isotopies
and homotopies in this section are those rel PF . Let r be a multicurve (not necessarily
F-invariant) in 52 - PF . By f , we also denote the union U-yEr 1 . Let

52 - f = D 1 U D 2 U ... U D k U Al U ... U Al ,

where D i denote the disc components of 52 - fand Ai non-disc components.

3.1 LEMMA. Suppose f verHies the following conditions:
(3.1) each , E f is homotopic to a curve in F-1(f) ;
(3.2) for each , E f , at least one component ofF-1

(,) is homotopic to a curve in f ;
Tben
a) for B a component of 52 - f , every component of F-1(B) is isotopica1ly contained
in a component of 52 - f .
b) Let D = D i . Suppose D' is a disc component of F-1(D) and aD' is hOlnotopic to
some fJ Er. Then there is j such that fJ = aDj and D' is isotopic to D j . Moreover,
deg(F: D' -+ D) = deg(F : aD' -+ aD) .
c) Let D = D i . H a1l components of F-1(D) are discs, then at least one of them is
isotopic to some Dj .

PROOF:

a) From (3.1), every component of 52 - F-1(f) is isotopically (rel PF ) contained in a
component of 8 2 -f. Since for each component B' of F- I (E) , we have B'nF-1(r) = 4>
(otherwise B n r =1= c/> ), so B' is a component of 52 - F-1(f) .

b) From a) , D' is isotopically contained in a component of 8 2 - r. By the assumption,
an' is homotopic to fJ Er, hence D' is isotopic to a component ~ of 52 - fJ , which is
a disco So ~ is a union of components of 52 - f and is also contained in a cOlnponent
of 52 - r . Hence in fact ~ is a component of 52 - f . Since ~ is a disc, finally ~ = D j

for some j , and fJ = aD j .

c) Since aD E r and F-1(aD) is the union of the bOlU1dary of components of F-1(D),
from (3.2), at least one disc D' of F-1(D) has the boundary curve I' homotopic to a
curve fJ E f . From b), we get D j . I

3.2 PROPOSITION. Suppose r veri/ies the conditions (3.1),(3.2) and
(3.3) for each D i , the set F-I (Dd consists of only dises.
Then {Dd is decomposed into several periodic cyc1es {Di,j[i = 1, ... , m, j = 1, ... , sd.
More precisely, for i = 1, ... , m, j = 1, ... , Si :
there is exactly one component D~,j of F-1(Di,j+l) isotopic to Di,j and none of the
other components is isotopic to a component of 52 - r (where D i,8i+1 = Di,l );
for li,j = 8Di,j , there is exactly one component ':,j = 8Di,j oE F- I ('i,j+l) homotopic
to ,i,j and none of the other components is homotopic to a curve in r (where ,i,8i+1 =
Ti,l ).
Moreover for

r~ = {,i,j = 8(Di,j)) j = 1, ... ,Si } ,
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eitber 'x(fi) < 1 or fi is adegenerate Levy cyc1e.

PROOF: Define

r : i -+ { j I Dj is isotopic (rel PF) to one component of p-1(Dd } , i = 1, ... , k .

By the above Lemma, r( i) -=I 1> . If i -=I i' , then T( i) n r( i/) = 1> , since F-1(Dd n
F-1(Di) = 1> . Hence r(i) contains exactly one element, i.e. r defines a bijection from
{1, ... , k} to itself. So {1, ... , k} decomposes into periodie cycles of r .

Let {i1 , ... , i .. } be a periodic cyde for r , with T( i j+1) = {ij },j = 1, ... ,8 - 1, r(i1) =
{i,,} . Put Di,j = Dij . Then for

{Di,j,j = l, ... ,s} and fi = {ri,j = 8(Di,j), j = 1, ... ,3} ,

exactly one component DLj of p-1(Di,j+1) is isotopic to Di,i and none of the other

components is isotopic to a component of 8 2
- f (where Di,,,+l = Di,l );

exactly one component rLi = 8Di,j of F-1(,i,j+1) is homotopic to ,i,j and none of the
other components is homotopic to a curve in f (where r i,..+l = ri,l ) .
And

1

[

.. 1 ] 3

'x(fD = II (F' ).
j=l deg : 'i,i -+ ,i,j+1

So 'x(fi) ~ 1 and 'x(fi) = 1 if and only if for each j , deg(F : '~,j -+ r i,j+1) = 1 . But
deg(P: ':,j -+ r i,j+1) =deg(P : D~,j -+ Di,i+1) , so if 'x(rD = 1 then r~ is adegenerate
Levy cycle. I

DEFINITION 3.3 A Thurston's obstruction f for P is called minimal, if every , E f is
homotopic to a curve of P-1(f) , and any invariant proper sub-multicurve of f has the
leading eigenvalue less than oue.

Suppose f is a minimal Thurston's obstruction for P . Let us make a decolnposition
of f into f 1 U f 2 (f1 n r 2 = 1» , with f 2 a maximal invariant proper sub-multicurve of
f . By the assumption of minimality, we have 'x(f2 ) < 1 .

3.4 THEOREM. Let r 1 and f 2 be as above. Suppose moreover that f] veri/ies the
condition (3.3). Then f 1 is adegenerate Levy cyc1e.

PROOF: Since f is minimal, any 1 E f 1 is homotopic to a curve in P-l(f) = p-1(r1 )U
F- 1 (f2) . Since f 2 is F -invariant, Le. F- 1(r2) is homotopically contained in 'G2 , so
1 cannot be homotopic to a curve in F-1(f2 ). Therefore it is homotopic to a curve in
P-l(f]) . Hence f 1 verifies the condition (3.1).

Let I E r 1 . Suppose P-l(,) does not contain any curve homotopic to a curve in
r1 . Then f' = {,} u f 2 is an invariant sub-multicurve of f . Since r 2 is a maximal
invariant proper sub-multicurve of r, we have f = f' , hence A(f) = A(f') = A(f2 ) < 1.
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This contradicts the fact that r is a Thurston obstruction. Thus r 1 verifies also the
condition (3.2).

So if moreover r 1 verifies the condition (3.3) , we can apply the Proposition 3.2 to it.
Since for every cycle {Di,j Ij = 1, ... , s} , the set

{8D i ,jlj = 1, ... ,s} urz

is P-invariant, and we assumed that r2 is maximal, so there is only one cycle {D j }

On the other hand, we should have

Hence by the proposition, r 1 is adegenerate Levy cycle. I

3.5 COROLLARY. Suppose P is of degree two and r is a Thurston's obstruction for F,
then there is a Levy cycle in r .
PROOF: Replacing r by a sub-multicurve, we may suppose that r is minimal. Decom­
pose r = r l U r2 as above.

1) If there is I E r 1 such that the two critical values of F are in different components
of 82

-, , then each disc component D of 82 - r 1 contains at most one critical value.
So P-l(D) consists of only discs. By Theorem 3.4, r 1 is adegenerate levy cycle.

2) Hfor each I E r 1 , the two critical values of P are in the same component of 8 2 -,)

then p-1
(,) consist8 of two curves and each of them i8 sended by F to I with degree

one. This implies every periodic cycle of r 1 is a Levy cycle. S~nce r is a Thurston's
obstruction, we can find aperiodie cycle, hence a Levy cycle. I
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§III.4 GOOD LEVY OYCLE

Let F = 9aJL Pi , where a E M' C M 3 . Then F is a branched covering of g2 to
itself of degree three, x, y E C Pi are two simple critical points with x --t y ---+ Z ---+ x
and w E C 94 is a double critical point with w ---+ a .

4.1 THEOREM. H r is a non-degenerate Levy cyc1e for F , then there is a good Levy
cycle r' , with #r' ~ 2 .

PROOF: As a Levy cycle, r verifies automatically the conditions (3.1) , (3.2) of §III.3.
Let

8 2
- r = D 1 u ... U D k U Al U ... U Al ,

where {Di, i = 1, ... , k} denotes the set of disc components of S2 - r . We have k ~ 2 .
Let X = {a, x, y, z} . Then:

1) For each i , Di n {x, y, z} =f </J. In fact if for same i , Di n {x, y, z} = <P ,

then F-I(Di) are discs and F- 1(Dd n {x,y,z} = <P . So for '1 = aDi and for every
n , each component of F-nC"Y) bounds a disc B in 8 2 with B n {x, y, z} = <p. But
r C UnF-n(I), so in fact for each i , Di n {x, y, z} = <p , and F-I(Dd are dises. Hence
r verifies also the condition (3.3) of §III.3. So by the Proposition 3.2, we conclude that
r is adegenerate Levy cycle, contradiction.

2) Suppose for some i , #Di n X = 1 . Then by 1), Di n X = {a} is impossible. H
Di n X = {y} or {z} , then F-1 (Dd = D' UD" with Dir n {x,y,z} = {x} or {y} ,
D' n {x, y, z} = 1> and deg(F : Dir --t Dd = deg(F : aD" --t aDi) = 2 . Hence by 1)
neither aD' nor aD" can be in the Levy cycle r . This contradicts the condition (3.2).

H DinX = {x}, then F-I(Di) = D'UD"UD'" ,with z E D'nX and D"n{x,y,z} =
D'" n {x, y, z} = 1> . By Lemma 3.1, D' has to be isotopic to some D j . By the above,
UD D j verifies Dj n X = {z} , so D' n X =f {z} . But x, y r;. D' , we have finally
D'nX = {a, z} . Suppose j = 1 i.e. D' is isotopic to D I , with D I nx = D' nX = {a, z}.
For D 1 , we have F-1 (D 1 ) = A , A is an annulus with y E A , BA = " U ," ,
deg(F : " ---+ '1) = 1 and deg(F : ," ---+ '1) = 2. Hence ," ~ rand " has to
be homotopic to a curve 8 Er. By checking the degree, we see that x and y are in
different components of 8 2

-," . Let B be the annulus bounded by BD1 and 8 . Then
B n X = 1> , F-1 (B) = B' U B" , deg(F : B' ---+ B) = 1 , deg(F : B" ---+ B) = 2 ,
B' is isotopically contained in B and B" is isatopically contained in the component of
g2 - A containing x . Set successively BI = B' , B n+1 = the degree one companent of
F- 1(Bn) . Then B n+1 is isotopically contained in B n . So for some n , B n+1 is isotopic
to B n and {BBn } farmes a good Levy cycle.

3) Now we cau suppose that for each i , #Di n X = 2 . In fact if #D I n X ~ 3 then
since k ~ 2 , D 2 exists and #D2 n X ~ 1 . This reduces to the case 1) or 2).

Let B2 - r = D 1 U D 2 U Al U ... U Al (l 2:: 0) , with #D1 n X = #D2 n X = 2 . Let,I = aDI and,2 = aD2 and suppose a E D 1 • There are only three possibilities:

3.1) D 1 nx = {a, x} . Then F-1 (D1 ) = D' is a disc with deg(F: D' ---+ D I ) =deg(F:
aD' --t ,1) = 3 , which contradicts the fact that ,I is in the Levy cycle r .
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3.2) D 1 n X = {a,y} . Then D2 n X = {x,z} , hence P-l(D2 ) = D' UD" with
deg(F: D' ~ D2 ) = 1 , and deg(P : DU ~ D2 ) = 2 . So aD" cannot be in the Levy
cycle, so DU is isotopic to neither D 1 nor D 2 • Moreover x ~ F- 1 (D2 ) , y, z E P- 1 (D2 ),

and y E D" since deg(F : D" ~ D2 ) = 2 . Hence x, y r/:. D' . So D' is isotopic to neither
D 1 nor D 2 • This contradicts the Lemma 3.1.c).

3.3) D1 n X = {a,z} . Then D2 n X = {x,y} , hence F- 1 (D2 ) = D I UD" with
deg(F : D I ~ D 2 ) = 1 and deg(P : D" ~ D 2 ) = 2. We have y r/:. F- 1(D2 ) and
x, z E F- 1 (D2 ) , moreover x E DU because of the degree of F on D" . So aD" ~ r and
hence aDI must be homotopic to a curve in r . By Lemma 3.1, D' is isotopic to D 1 or
D 2 • Since x r/:. D', D I has to be isotopic to D1 , and an' is homotopic to ,1 = aD1 .

On the other hand, we have F- 1(D1 ) = A, Ais an annulus with y EA, aA = ""/ U"''/',
deg(F : " -Jo 11) = 1 and deg(F : ," --J. 11) = 2. Hence," r/:. r and " has to be
homotopic to a curve r . By Lemma 3.1, A is isotopically contained in a component
of S2 - r . Since A n D 2 f:. 4> , we get in fact that A is isotopically contained in D 2 .

Hence " has to be homotopic to 12 = aD2 . Therefore we conclude that r = {,1,,2}
forms a Levy cycle. If'l = 12 then r is a good Levy cycle. H 11 f. 12 then let B
be the annulus bounded by 11, /2 , p-1 (B) = B' U Elf with BI isotopic to B , B U is
isotopically contained in D 2 and deg(F : BI --J. B) = 1 . This implies also that r is a
good Levy cycle. I

4.2 PROPOSITION. For F = gaJL Pi , if there is a non-degenerate Levy cyc1e, then there
is a ray-equivalence c1ass {a] whicb is a simple c10sed curve and which contaills one fixed
point of ga and one fixed ponit of Pi . As a consequence, each of these fixed points l]as
exactly two external ang1es.

PROOF: To prove this, we use the above proposition and the third reduction cf §I.3
(which holds also for matings of higher degree polynomials). I
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§I1I.5 RESULTS ON THE MATING OF ga AND Pi (i = 2,3,4)

Let ga and Pi (i = 1,2,3,4) be as in §IILl.

5.1 THEOREM. For a,r;y a E M' , ga and Pa (ar P4 ) are matable, i.e. Aa = A..t = j\;[' .

PROOF: Let, F be the degenerate mating of ga and Pa (a E AI'). Suppose F has a
Thurston's obstruction. By Theorem 111.2.1, there exists a Levy cycle. This Levy eyde
lifts to a non-degenerate Levy cycle for F = gaJL Pa . It follows from Proposition 4.2
that there is a fixed point of P3 which has exactly two extemal angles. However, by
computation one can show that Pa has three fixed points a, 13, 13' with extemal angles:

Ang(a) = {8/26, 20/26, 24/26}, Ang(f3) = {O}, Ang(ß') = {1/2/} .

So none of them have' exactly two extemal angles. This gives a contradiction.
Hence' 9a- and Pa (or P4 ) are matable.•"

Let x -+ y -+ z -+ x be the periodie cycle of P2 containing two simple critical points
x, y. Suppose x < Y < Z (otherwise consider -P2(-Z)). We may suppose that the
coefficient of Z3-term is -1. Denote F'2(Z) =iP2(-iZ) then F2 ia monie. Let L be the
limb of the cubic Mandelbrot set lV/3 of interna! angle -1/4 .

5.2 THEOREM. For a, E M' n L , ga and F2 are not matable. In fact there is a good
Levy cyde for gaJL F2 , which consists oE one curve made of two external mys of fixed
points of 9a, and F2 •

PROOF'.: For a, E M' n L,. 90. has· a fixed point a with external angle 5/8 and 7/8 . It
ia easy to see that Pi has a· fixed point with external angles 1/8 (= -7/8 modI) and,
3/8 (= -5/8 modl) . Let

'Y = R(5/8) UR(7/8) = (Rg• (5/8) U Rp2 ( -5/8)) U (Rga (7/8) U Rp2 (-7/8))

which is· a simple closed curve in- 5'2' 15 • If ais, not postcritical, then r = {,} iso a good
ga1 4 2'

Levy cycle. If a is· postcritieal, take a.. thin annulus' A· along , (So tubular neighborhood
of;) so' that, An Pp ={a} and' 8A· consists, of: tWOl simple closed curves·;+, ; _ . Then
r = {/+, "Y-} is, a, good Levy cyele. I~

---- ------ _. -, .. - -~---_ ... _---. -~--

Y3- ~

~% (j..

~

X 0
x...

~~
3

35



§III.6 SHARED MATINGS

In this seetion we discuss shared matings.

Recall that M 3 is the cubic Mandelbrot set and M' denotes the set of a E M 3 for
which ga is postcritically finite. Let Ai C M' , i = 1,2,3,4 be as in §III.1.

Let us denote by Wo the main hyperbolic component of M3 . In M3 , for each rational
angle t there is a hyperbolic component V(t) attached to Wo , with interna! angle t .
Let b(t) be the center of V(t) . We caU the limb 0/ M 3 with internal angle t , denoted
by L(t) , the connected component of M3 - Wo containing b(t) . There are two period
two angles 1/4,3/4 and four period three ~gles 1/6, 1/3,2/3,5/6 .

We denote by x, y, z the periodic cycle of Pi of period three containing critical points
x, y. To simplify the notation, we make a change of Pt and P2 : for w the complex
variable, replace Pt (w) by -Pt (-w) so that y < x < z ; replace P2 by 1'2 defined
in §III.5. The Hubbard trees of P3, P4 are stars. To distinguish them, let P3 be the
polynomial so that the Hubbard tree H 3 has {x, z, y} as the cyclic order around the
unique branched point of the tree, and hence H4 has {x, y, z} as the cyclic order around
the branched point.

In S;Q ,Pi' recall that R(S) = Rga (S) U RPi (-8) is the external ray of F = gaJL Pi of
angle 8 . Let us denote by B(x), B(y), B(z) the immediate attractive basin of x, y, z in
~Q ,Pi respectively.

1) Let us look at the mating F = gb(1/3)JL P1 . To simplify, put b = b(1/3) . We will
see that we cau find a E A 3 such that F can be also considered as the mating ga JL P3 .

In C g~ C 8g
2 P ,there is a unique fixed point 0' for F with more than one extemal
", I

angles. In fact Ang(a) = {6/ 13, 5/13, 2/13} . By our assumption for Pt , the Q-external
ray arrives at ß" in C PI (the fixed point such that [ß", y] does not intersect x ). Then
in C PI C 8g

2
P

", I

R(6/13) lands on the point of 8B(z) with interna! angle 1/3 ;
R(5/13) lands on the point of 8B(x) with interna! angle 1/3 and
R(2/13) lands on the point of 8B(y) with interna! angle 2/3 .

Let r(z) be the closure of the internal ray of B(z) of angle 1/3 j

r(x) be the closure of the interna! ray of B(x) of angle 1/3 j

r(y) be the closure of the interna! ray of B(y) of angle 2/3 .

Then

Y = {al U R(6/13) U r(z) U R(5/13) U TeX) U R(2/13) U r(y)

is an abstract Hubbard tree ([DHl]) homeomorphic to H 3 , and Y is invariant by F .
We can then take a smali neighborhood U of Y such that U nPp = {x, y, z} (recall that
PF is the postcritical set of P ) and , = au is a simple c10sed curve. It is easy to check
that p-t (,) is also a simple closed curve homotopic (rel Pp ) to , and F : F-1(,) -+ ,

36



is of degree three and preserves the orientation. So we can consider , as a new equator
of the sphere, which separates the sphere into two hemi-spheres, on one of which F is
equivalent to Pa , and on the other one F is equivalent to a cubic polynomial with only
one critical value (i.e. is affinely conjugate to a polynomial of our family M a ) (see ['IV]).
So there is a value a E M' such that F is equivalent to gaJL Pa, moreover, a is periodic
of period 3 for ga .

In fact instead of b(I/3) , for any bE M' n L(1/3) , there is a fixed point a(b) of gb
which has the same set of external angles as a(b(I/3)) . So for any b E M' n L(I/3)
such that a(b) is not postcritical, the same argument as above works, Le. we can find a
point a = a(b) E M' such that gbJL PI is equivalent to gaJL Pa . Hence we get a lot of
shared matings. Moreover, by §III.5, Aa = M' , it means that ga and Pa are matable,
so 9b and PI are also matable.

2) Now let us consider gaJL P2 • In M a , take the point b = b(5/6) , and let F =
9b JL P2 •

In C gb C S;b,P2 ' there is a unique fixed point a for F with more than one external
angles, and Ang(a) = {25/26, 23/26, 17/26} . By our choice of P2 , we have: in C P2 C

~&,P2 ,

R(25/26) lands on the point of 8B(x) with interna! angle 0 ;
R(23/26) lands on the point of 8B(y) with interna! angle 0 and
R(17/26) lands on the point of 8B(z) with interna! angle 0 .

Let r( x) be the closure of the internal ray of B(x) of angle 0 ;
r(y) be the closure of the internal ray of B(y) of angle 0 ;
r(z) be the closure of the internal ray of B(z) of angle 0 .

Then as in 1)

Y = {al U R(25/26) U TeX) U R(23/26) U r(y) U R(17/26) U r(z)

is an abstract Hubbard tree homeomorpruc to Ha , and Y is invariant by F . Hence we
can take a small neighborhood U of Y such that U n Pp = {x, y, z} and 'Y = au is a
simple closed curve. Just as in 1), F-I

( ,) is also a simple closed curve, is homotopic
(rel PF ) to I and F : F- I (,) -+ 1 is of degree three and preserves the orientation. So
we can consider again 1 as a new equator of the sphere, on one of the new hemi-sphere
Fis equivalent to Pa , and on the other one F is equivalent to 9a for sorne a E M' = Aa
such that a is periodic of period 3 for ga . Therefore F is equivalent to ga JL P3 .

By the same argument we see that instead of b(5/6) , for any b E M' n L(5/6) so
that a(b) is not postcritical, we can find a point a = a(b) E A3 such that F = gbJL P2

is equivalent to gaJL P3 . Hence F is a shared mating and gb and P2 are matable.

3) Now let us consider matings with P4 • In M3 , take the point b = b(5/6) , and let
F = 9bJL P4 .

As in 2), in C gb C Sg2 p we have a fixed point a with
b, 4

Ang(a) = {25/26, 23/26, 17/26} . For P4 , let us choose the landing point of O-extemal
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ray to the fixed point J.L such that fl rt H4 and [fl, y] does not intersect x . Then in

C P4 C S~6,P,l ,

R(25/26) lands on the point of 8B(y) with internal angle 1/3 j

R(23/26) lands on the point of 8B(z) with interna! angle 2/3 and
R(17/26) lands on the point of 8B(x) with internal angle 2/3 .

Let T(y) be the closure of the internal ray of B(y) of angle 1/3 ;
T(Z) be the closure of the internal ray of B(z) of angle 2/3 j

T( x) be the closure of the internal ray of B (x) of angle 2/3 .

Then

Y = {a} U R(25/26) U T(y) U R(23/26) U T(Z) U R(17/26) U T(X)

is again an abstract Hubbard tree homeomorphic to H 3 ,and Y is invariant by P. Hence
as weH as in 2) we can take a small neighborhood U of Y such that U n Pp = {x, y, z}
, , = 8U are P- t (,) simple closed curves homotopic (rel Pp ) to each other, and
P : p-l (,) ~ , is of degree three and preserves the orientation. So we cau consider ,
as a new equator of the sphere, on one of the hemi-sphere P is equivalent to P3 , on
the other one F is equivalent to some ga with a E M' = A 3 such that a is periodic of
period 3 for ga . So F is equivalent to ga JL P3 .

We can also generate this result to any b E M' n L(5/6) such that a(b) is not post­
critical, and find a point a = a(b) E A3 such that gbJL P4 is equivalent to gaJL P3 . This
gives also that gb and P4 are matable.

4) Now let us consider again gbJL Pt hut with b = b(1/4). This time it has nothing to
do with P3 . The situation is slightly different from the above cases. Let P = gbJL P1 .

As in 1), the Q-external ray for P1 lands at the fixed point ß" such t hat (ß", y] does
not intersect x . In C Pi C 5g

2 P ,there is a tlllique fixed point a' with more than one
6, 1

external angles, and Ang(a') = {1/4,3/4} . For gb , the dynamic of the critical point
w is w -t b -t W • Let us denote by B (w ), B (b) the immediate attractive basin of w, b in
Sg2 P respectively. Then in C g6 C 8g

2 P
6, 1 6 I 1

R(1/4) lands on the point of 8B(b) with internal angle 1/2 ;
R(3/4) lands on the point of 8B(w) with interna! angle 1/2 .

Let T ( b) be the cIosure of the interna! ray of B (b) of angle 1/2 ,
T(W) be the closure of the internal ray of B(w) of angle 1/2 .

Then

y = {a'} U R(1/4) U T(b) U R(3/4) U T(W)

is an abstract Hubbard tree homeomorphic to Hg~ , where b = b( -1/4) is the complex
conjugate of b. Y is invariant by P. Take a small neighborhood U of Y such that
U n PF = {w, b} 1 and , = au is a simple closed curve, then p-l (,) is also a simple
closed curves, and is homotopic (rel PF ) to·, ,and F : F-1(,) -t , preserves the
orientation. So we can consider , as a new equator of the sphere on one of the new
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hemi-sphere Fis equivalent to gb , and on the other one F is equivalent to a polynomial
P' , wmch is aue of Pi . We claim it is also PI (so F is in fact a selj-Jhared mating),
however in this case we are not able to draw the abstract Hubbard tree of p' in 52
explicitly. So we have to determine it in an other way.

At first let us prove, as in §I1.3 and 4, that the topological mating F* (§1.1.8) of
9b and PI exists, Le. S;",Pt / ....... F is homeomorphic to a sphere, where ....... F denotes the
ray-equivalence relation of F . In fact in the Hubbard tree H gb there is only one point
which accepts more than oue external rays (Le. is multiple), it is the fixed point a , and
Ang(a) = {1/8,3/8} . Since the external rays R(I/8),R(3/8) land in C Pt C 5;b,P

1
on

different simple points, we have [0'] = R(I/8) U R(3/8) , which is an arc. Let E be the
equator of 5;b,Pt , then #[a] n E = 2. Since every multiple point in the Julia set of
9b is apreimage of a , and no critical point of F is multiple, we claim that for every
'U E 5;b ,Pl , #[u] n E ~ 2 . By Proposition 11.4.4 and Corollary HA.5, we conclude that
S;b'P

l
/ rvF is homeomorphic to a sphere.

Suppose P' were P3 or P4 . Then there would be a periodic point U of F of period less
than or equal to three such that the ray-equivalence dass [u] is fixed by Fand connects
the t hree att ractive basins B (x ), B (y ), B (z) , so that in S;b ,Pt / ....... F the three basins are
attached at one point. At first [u] -=I [a] , since the landing point of R(I/8) in C Pt

is a periodic point of period two, it cannot be on the boundaries of B (x), B (y ), B (z) .
Hence [u] n H gb = 4> . But every non-extremal point of [u] in the Julia set of 9b should
be in H gb (Lermna 11.3.4), so in fact [u] does not exist. Hence P' is not P3 nor P4 .

Finally, we will see that P' cannot be P2 . By the above calculation, [a'] connects
the basins B(w), B(b) . So in S;",P

1
/ t'VF the two basins B(w), B(b) are attached at

two points [0'] and [a'] . In M' there are only two values of b such that the critical
point w is periodic of period two for gb , they are b(I/4) and b(-1/4) . For b= b(3/4),
the topological mating of 9b and P2 does not exist (§III.5) . And for the topological
mating of gb and P2 , where b = b(1/4) , the two basins B(w), B(b) are attached only
at one point. In fact R(I/4) (resp. R(3/4) ) lands on the periodic point of period two
on 8B(w) (resp. 8B(b)) in C gb and lands on a simple point in the Julia set of P2 . So
P' can not be P2 .

We conclude finally that P' = PI .
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§III. 7 SOME GENERAL RESULTS

Let F be a branched covering of 52 to itself of degree three, with x, y two simple
critical points and x -t y -+ Z -t X , with 0 a double critical point and 0 -t a -t a' -t a"
. Let X = {a, x, y, z} . Let f be a minimal Thurston's 0 bstruction for F (Definition
III.3.3). Let

f~ = {, E fl one component of 52 -, does not intersect {x, y, z} }

f 2 = {, E fl for some n every curve in F- n
( ,) is either peripheral

or homotopic to a curve in f~}

and f I = f - f 2 . Let

52 - f l = D I U ... U Dk U Al U ... U A, ,

where {Di, i = 1, ... , k} denotes the set of disc components of 52 - f l

7.1 THEOREM. Let f be a minimal Thurston's obstruction and f = f l U f 2 be the
decomposition as above. Then f 2 is F-invariant, f l verifies the conditions (3.1),(3.2)
in §III.3, and exactly one of the following holds:

a) f l = 1> . In this case f 2 contains adegenerate Levy cyc1e..

b) f Ireduces to a good Levy cyc1e f' with #f' ::; 2 ;
or

c) k = 2 with a, y E D I , a', z E D 2 , x E Al and a" is not in the component of
52 - Al containing a .

PROOF:

Let 1 E f~ and let D be the component of 52 - 1 wi thout intersecting {x, y, z}
Then the set F-I(D) consists of discs and none of them intersect {x, y, z} . Hence f~

is F-invariant. It is easy to see that f 2 is F-invariant, and 'x(f2 ) = 'x(f~) . H f l = 1J
, then there is a minimal Thurston's obstruction f 3 contained in f~ . And f 3 verifies
the condition (3.3) in §III.3. Applying the Theorem III.3A to f 3 , we get adegenerate
Levy cycle in f 3 C f~ .

1) Suppose now fIt- 1> . By the minimality of G , we get 'x(f2) < 1 and 'x(f1) =
'x(f) ~ 1 .

2) From the defini tion, for each i , D i n {x, y, z} t- 1>. Moreover, since every curve , in
f l is homotopic to a curve in F-I(f l Uf2 ) , and f 2 is invariant, so, is in fact hOlllOtopic
to a curve in F-1(f1) ,i.e. f l verifies the condition (3.1) . From the definition, für
each 1 in f l , at least one curve in F-1(,) is homotopic to a curve in f 1 , so f 1 verifies
also the condition (3.2).

3) For each i , #Di n X t= 3 . Suppose #DI n X = 3 . Since k 2:: 2 , there is D2

such that #D2 n X = 1 . Then P-I(D2 ) are discs and a compünent of it either does
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not intersect {x, y, z} or is isotopieally eontained in D 1 but is not isotopic to D 1 . This
eontradiets the Lemma 3.1.

4) Suppose for each i ,either D i contains at most one critical value, or DinX = {V, z}
. Then P-I(Dd are dises and hence f 1 verifies also the condition (3.3). flom the
Proposition 3.2, either '\(f1 ) < 1 or f 1 contains adegenerate Levy eycle, made by the
boundary of some disc components of 52 - f 1 . But '\(f1 ) < 1 is impossible by 1). And
sinee for any Levy eyde f; in f 1 there are at least two dise eomponents 52 - r; , one
of them D should verify D n X = {y}, {z} or {y, z} . Then only one component D' of
P-1(D) verifies D' n X i=- cl> . We get that D' is a dise and deg(P : aD' -+ aD) > 1 .
Hence 8D is not in the Levy cycle. Contradiction.

5) Prom 3) ,4), we ean suppose that D I n X = {a,y} or D 1 n X = {a,z}.

6) Suppose k = 2 and #D 1 nx = #D2 nX = 2 . Let,l = aD l and,2 = aD2 • then

6.1) D I n X = {a, z} gives us a good Levy eyc1e as in the Proposition 4.l.

6.2) D1 n X = {a, y} . We will prove that in this ease ,\(fI) < 1 and henee get a
eontradiction.

Since D 2 n X = {x, z} , p-1 (D2 ) = D' U D" with deg(P : D' -+ D 2 ) = 1 and
deg(F: D" -+ D 2 ) = 2 . We have x ~ p-I (D2 ) , and y E D" because of the degree. So
x, y tp. D' , henee D' is isotopic neither to D1 nor to D2 • By the Lemma 3.1, DU has to be
isotopic to D 1 and deg(P: aD" -+ 1'2) = 2. We have also P-1 (D1 ) = A,x E A,z ~ A
, A is an annulus with BA =,' U ," , deg(P :,' -+ ,I) = 1 , and deg(F : ,11 -+ '1) = 2
. Moreover x and z are in different components of 52 - " . So by the Lemma 3.1,
A is isotopically contained in D 2 and " f/; f I . Hence," is homotopic to ;2 . Set
f" = {,I,,2} , then ,\(f") < 1 and fll U f 2 is P -invariant. Let r;' = r1 - r" , then
every curve in f~ separates {a, y} and {x, z} . Repeating the same argument, we would
get finally A(r I) < 1 . Contradietion.

7) k = 2 , #D1 r~ X = 2 , c E D 1 , #D2 n X = 1 , and #A I n {x, y, z} = 1 . Sinee
P -1 ( D 2 ) consists 01' discs and has only one eomponent D' intersecting {x, y, z} , if D'
intersects Al , then D' is isotopic neither to D 1 nor to D 2 , this contradicts the Lemma
3.1. So D' should be isotopic to D I . The only possibilities are

7.1) D 1 nx = {a,z} and D 2 nx = {x} . We will get a good Levy eyc1e with at most
two curves in this case. P- I (D 1 ) = A is isotopie to Al . Let 52 - A = BI U B2 with
a E BI. Then deg(F : BI -+ 52 - D 1 ) = 1 . Using the same method as in the thesis of
Tan Lei [TL2] , we will find a good Levy cycle in BI .

7.2) D1 nX = {a,y} and D2 nX = {z} . For this case, see the Proposition 7.2 below.

8) k = 3 , #D I n X = 2 , c E DI , #D2 n X = #D3 n X = 1. Then in fact
#Di n {x,y,z} = 1 , i = 1,2,3. In any ease for r" = {oD I ,oD2 ,8D3 } , we have
A(f ll

) < 1 and f" U f 2 is P-invariant. Let r~ = r l - fll , then r~ is in case 6), 7) or
8) .

7.2 PROPOSITION. Suppose r is a minimal Thurston obstruction for P. For tbe de­
composition r = r 1 U f 2 as at the beginning of this section, suppose
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S2 - r 1 = D 1 U D2 U Al U ... U A, ,

with only two disc components D 1 , D2 , D 1 n X = {a, y} , D 2 n X = {z} and x E Al
Then a' = P(a) E D2 . And a" = F( a') is not in the componen t of S2 - Al containing
a.

PROOF:

Since D1 n X = {a, y} , D2 n X = {z} , the set F -1 ( D2 ) = D' UD" is a union of two
discs, with deg(F : D' ~ D2 ) = 1 , and deg(F : D" ~ D2 ) = 2 . Because of the degree,
D" n {x,y,z} = {y} and D' n {x,y,z} = fjJ ,hence BD' rt r 1 • By Lemma 3.1 c), D" is
isotopic to D 1 since y E D 1 n D" . Therefore a' = F(a) E D 2 •

Let us look at D 1 now. The set p-1(D1 ) = A is an annulus with BA = " U ," such
that deg(P : " ~ aD1 ) = 1 and deg(F : ," ~ aD1 ) = 2. By the Lemma 3.1, A
is isotopically contained in Al . Let BI, B 2 be the discs of S2 - A bounded by ,', ,"
respectively. We claim that z E BI . At first y E B 2 because of the degree. If z f/:. BI,
then " rt r l hence ," E r l by the condition (3.2). Since y, z rt A , the disc A U BI
contams a disc component of S2 - r l wrnch does not contain y, z . This contradicts the
assumption. So z E BI.

We say that a curve , E S2 separates two sets U and V if U is contained in one
component of S2 -, and V is contained in the other component of Ef2 - , .

Let us define

SI = {, E r l l, separates {a,y} and {x,z}},

S2 = {, E r 11, separates {a, y, x} and {x, z} } .

Since there are only two disc components of 52 - r1, all curves in r 1 are nested, hence
every , E r l separates {a, y} and {z} . So in fact r l = SI U S2 .

Take, E r l . Let us denote by ~ the component of S2 - , containing z , and by ~'

, ~" the two components of P- l (.6.) , with deg(F : .6.' ~ .6.) = 1 and deg(F : .6." ~
.6.) = 2 . Then .6.',.6." are dises. Moreover, let us denote ,* = a~' and ,*" = 8.6." .
We have also deg(F : ,* ~ ,) = 1 and deg(F : ,** ~ ,) = 2 .

For each , E r i , we have D2 C .6. C S2 - D l , hence D' C .6.' C BI and DU c .6." C

B2 . Note that x E A = S2 - BI U B 2 , a, y E D" and z E BI . It follows that for
, E r 1 , if ,* is in r 1 then it is in S2 , and if ,** is in r 1 then it is in SI . Moreover if
, E 52 , then ,* is not in r}, since z rt ~' .

Let
v = L c,,/,

,Er 1

be a positive eigenvector (i.e. every c"/ is positive) of the Thurston's linear transforma­
tion Fr1 with the eigenvalue A = A(f1) . Such a positive eigenvector exists, since by
the assumption f is a minimal Thurston's obstruction. Let us denote
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for v' = 2: c~,
..,.Er l

set Iv'j = 2: c~ .
,Er l

Recall that [7]] r 1 denotes t he curve in r 1 homotopic to 7] , and by convention [7]] r 1 = 0
if no such curve exists. Using the above notation, we have

Fr.( 2: c..,'Y) = 2: c..,['Y·lr. + 2: ~c..,h··lr.
,ESl ..,.ESl ..,.ESl

Fr, (2: c..,'Y) = 2: ~c"'['Y"Jr,
,ES:z ,ES:z

and

2: ~c..,h··lr. + 2: ~Cy['Y··lr. = A 2: c..,'Y AVI ,
..,.ESl ,ES:z ..,.ESl

2: c""['*]r l = ,,\ 2: c" AV2 .

,ESl ..,.ES:z

Hence we have

(1)

(2)

1 1 1
2(lvi 1+ IV21) = 2: 2c, + 2: 2c-y ~ A 2: c, = Alv11

"'YESl "'YES:z -yESt

IV] I = 2: c..,. ~ A 2: c-y = AlV2j .
,ESl -yES:z

The equalites in (1) and (2) hold if and only if

(*) for each , E 81 , both ,* and , •• are homotopic to curves in r 1 ; for each , E 8 2

, •• is homotopic to a curve in r 1 .

Summing twice of (1) to (2), we obtain

Hence A ::; 1 . Eut we have ). ~ 1 by the assumption that r is a Thurston's obstruc­
tion. It follows that ). = 1 , and the equalities in (1 ),(2) hold. Hence (*) holds. In
particular, für, = aD] E 8 1 and ,** =," the boundary curve of A separating {a} and
{x} , we have that ," is homütopic to a curve in SI . Applying (*) to ," , we obtain
that (,"). is homotopic to a curve in r I . Let .6. be the disc bounded by ," cüntaining
z. Then.6.' defined as above contains D2 , so a' E .6.' therefore a" = F(a') E .6. .
Moreover x E .6. . This implies that ," does not separate x and a" . I
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§11I.5 RESULTS ON THE MATING OF ga AND Pi (i = 2,3,4)

Let ga and Pi (i = 1,2,3,4) be as in §11I.1.

5.1 THEOREM. For any a E M' , ga and Pa (ar P4 ) are matable, i.e. Aa = A4 = M' .

PROOF: Let F be the degenerate mating of ga and Pa (a E M'). Suppose F has a
Thurston's obstruction. By Theorem 111.2.1, there exists a Levy cycle. This Levy cycle
lifts to a non-degenerate Levy eycle for F = gaJL Pa . It follows from Proposition 4.2
that there is a fixed point of Pa whieh has exaetly two external angles. However, by
eomputation one ean show that Pa has three fixed points a, ß, ß' with external angles:

Ang(a) = {8/26, 20/26, 24/26}, . Ang(ß) = {O}, Ang(ß') = {1/2/} .

So none of them have exaetly two external angles. This gives a eontradiction.
Henee ga and Pa (or P4 ) are matable. I

Let x ---+ y ---+ z ---+ x be the periodie eyele of P2 eontaining two simple eritieal points
x, y . Suppose x < y < Z (otherwise eonsider -P2 ( -Z)). We may suppose that the
eoefficient of Za_tenn is -1. Denote F2 (Z) = iP2 ( -iZ) then F2 is monie. Let L be the
limb of the eubie Mandelbrot set M3 of internal angle -1/4 .

5.2 THEOREM. For a E M' n L , ga and F2 are not matable. In fact there is a good
Levy cyc1e for gaJL F2 , whicb consists of one curve Inade of two extenlal rays of fixed
points of ga and [>2 .

PROOF.: For a E M' n L, ga has a fixed point Cl' with external angle 5/8 and 7/8 . It
is easy to see that P2 has a fixed point with external angles 1/8 (= -7/8 modI) and
3/8 (= -5/8 mod1) . Let

r = R(5/8) U R(7/8) = (Rgo (5/8) U Rp.(-5/8)) U (Rgo (7/8) U Rp2 (-7/8))

which is a simple closed eurve in 52 p . If a is not postcritical, then r = {,} is a good
go, 2

Levy eycle. If a is postcritical, take a thin annulus A along , (a tubular neighborhood
of 1') so that An Pp = {a} and 8A consists of two simple closed curves r+, 1'- . Then
r = {1'+, r-} is a good Levy eycle. I

'V3-- .....-
%- ---~

x-_.......~----- 0

?3~
-- -- - ~ -------~.........,........-..,,~~-----.--,---------
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polynomial f . So every Levy cycle of F reduces to a eycle of ray-equivalenee classes
with some speeified eonditions. Hence F can not have any degenerate Levy cyde by the
above corollary. H F has a non-degenerate Levy cycle, then it will reduces to a cycle of
ray-equivalenee classes containing closed eurves, which is impossible by Corollary 3.8. I
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(iii) 83 and 85 are homotopic to 81 in SJ1,h - PF . 54 is peripheral in SJl Jz - PF .

PROOF OF THEOREM 1.4.2: Let r = {Öl' 82 }. Then by the above lemma, the matrix
for the Thurston's linear transformation Fr : llF -+ IßT (under basis 81 , 52) is

This matrix has the leading eigenvalue Ar = 1 with eigenvector (~). Hence r is a

Thurston's obstruction, then by Thurston's theorem, F is not equivalent to a rational
map. I
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r is degenerate if the cormected components of S2 - Ui Ti are

with Bi dises, C not disc, and each F-I(Bi+l) has a component Bi isotopic to Bi (rel
PF ) , and F : Bi -+ Bi+l is of degree one (i = 0,1, .. , n - 1), wher~ Bo = B n .

FIRST REDUCTION. (Levy's theorem). Suppose F is oE degree two. There is a Thurston's
obstruction for F if and only jf there is a Levy cyc1e for F .

BECOND REDUCTION. Suppose F is of degree two. There is a Levy cycle for F if and
only if there is eithe1' adegenerate 01' a good Levy cycle for F .

THIRD REDUCTION. Suppose F = leJl le' , c, c' E V. Then by using the expansive
metric for F near 8Ke and 8K~ , we can prove that

a) each degenerate Levy cycle for F reduces to a cyc1e of ray-eqwvalence c1asses:
[xoJ, [Xl], ... , [X m], ([xo) = [xmJ) such that for each i, F([Xi]) = [Xi+lJ, #[Xi) n PF ~ 2,
and none of tbe [Xi) contain c10sed curves;

b) each non-degenerate Levy cyc1e for F reduces to a cyc1e of ray-equivalence classes:
[xo), [Xl], ... , [xmJ, ([xol = [x m ]) such that for each i, F([Xi]) = [xi+d , and [Xi) contains
closed curves;

c) eacb good Levy cycle for F reduces to a ray-equivaJence dass [x) such that [xJ
contams at least one c10sed curve and at least two fixed points oE F .

Note that each Levy cycle for the degenerate mating F ' lifts to a non-degenerate Levy
cycle for F . By these reductions, Theorem 3.1 is proved.

-----
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