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Abstract: The particular form taken by the maximum principle
for a class of geometric.problems is examined. A number of

applications are made.l

1. Let @ be an open set in r" , denote by I its {(ideal)

boundary. Let u(x) satisfy

in  , and suppose

lim sup u(x) £ 0 (2)
x> I
in the sense that (2) holds for any sequence xj that leavgs any
compact subset of { . The classical maximum principle now assures
us that either u < 0 or u =0 in § . Neglecting some details
of rigor, we may construct a proof by observing that if the result
were false, the set Qe = {x €0 : x > e} would be non null for

small enough € and have compact closure in . Thus the function



u-¢ , ui{x) » ¢
wi(x) =

IA
m

0 ’ u(X)

would be non constant in QE , and

0 = [ whudx = - | IVulzdx ,
Q

& €

a contradiction.
There are two features of the result that may not have

received sufficient attention in the literature.

i) Insensitivity to the configuration of 3Q . The proof

works for any open set Q .

ii) Extreme sensitivity to the completeness of 3Q . If a

single point is deleted, the result can fail.

The second point is simply illustrated with the function (in

polar coordinates in the plane)

1--r2

u(r,9) = 5
1-2r cos 6 +rx
which satisfies (1) in Q@ : r < 1 and (2) on I = 3Q except for

the single point (1,0) , and for which u> 0 in Q .

2. The above considerations apply -- despite the possible
nonlinearity -- to the difference u-v of two solutions of any

elliptic equation



div A (Du) = o@(u) (3)

s e
Ay

for which

@'(u) 2 0 . (4)

Here A(Du) 1is.a vector function of '‘Du . To i) and ii) above

we -may therefore add

(iii) Intensitivity to the ellipticity constants of (3).

That is, no account need be taken of possible degeneration
outside compact subsets of
In what follows, we concern ourselves chiefly with ii). It

turns out that the boundary completeness sensitivity can be

greatly ameliorated by restricting attention to equations (3) .

with particular nonlinearities. Because of their geometric and
physical significance for minimal surfaces, H-graphs, capillarity,
gas dynamics and plasticity we consider elliptic equations of the

form (3) subject to (4) and the single additional restriction
| A(Du) | < 1 (5)

for all Du that can appear. (We note that the form (5) can be
achieved as an equivalent relation in any situation-.. for which
|A(Du)| 4is bounded.) Our particular interest will be directed

to the minimal surface equation

0 , Tu = ————— Du (6)
1+|Du|2

div Tu



and the capillarity equation

div Tu = xu + nH (7)

in the "non-negative gravity" case «k 2 0

Definition 1: A set 20 c I will be said to satisfy

Hypothesis H if for any e, > 0 , I can be covered by a

0 0
countable number of balls Bs of radius 6; + such that
n-1 1
Zﬁi < gy -

The hypothesis is equivalent to the requirement that I

have (n-1) dimensional Hausdorff measure zero.

Theorem 1: Suppose (5) is satisfied by an elliptic A(Du) ,

(4) is satisfied by ¢(u) . Let I =L, U I, , where I, satis-
fies Hypothesis H . Set
Nu s div A (Du) - ¢(u) (8)

and suppose Nu 2 Nv for functions u,v in Q . Suppose there

exists A 2 0 such that for every €y > 0 there holds

lim sup (u-v) £ A for any sequence xj c QO = Q ~ UB , for

S. _—
1

which xj - Ea . Then u sv+AaA in § .

The proof follows the general“lineé of § 1. If the theorem

were false for some u,v , then there would exist E;EO,M > 0



Proof of Theorem 1.

Figure 1:



such that the set

QM = {X€EQ~UB : A+e<u-v<M+A+el}’ (9)
0,¢ §

bR

is non-null. Setting

L2

M, u-v z M+A+e
wi(x) = ¢ u-v-(A+e) , A+e<u-v<M+A+g (10)
o, u-v £ A+g¢

we find from the divergence theorem

0 < [Q w(Nu-Nv)dx = | w v+A do

0 Algs
’ (11)-

—jg w(p(u)-@(v))dx f M Dw- [A (Du) -A (Dv) 1dx

0 QO,S

M M
Here AO,E = QO,E 61

The last integral on the right in (11) is positive in view

unit normal, see Figure 1.

nos3(UB, ) , Vv

of the assumed ellipticity. The preceding integral is non

negative in view of the hypothesis (4). The crucial new point

. M

is that because of (5) we have |v*A]| <t on Ay ¢ - By Hypo-
I

thesis H , |Ag €| < Cey . Since 0 < w § M, we obtain a

I
contradiction by letting €y 0

The same reasoning shows that if Nu = Nv and if u-v'2 - A

on Iz, in the sense indicated, then wu-v 2 - A in Q . We may

use the result to prove

Theorem 2 (cf. [ 1]): The solutions of an elliptic

equation (3) for which (4) and (5) hold admit no isolated

singularities.




For if a solution u({x) had such a singularity at p € Q ,
then for small enough h the solutions u(x) and vi(x) = u(x-h)
would be defined and smooth in a common domain 0 with two
points p, p+th deleted. Letting Zu c P be a fixed smooth

surface that encloses the two points for all small encugh h ,

and setting EO = p U (p+th) , we find from the above result that
ol = u(x)—ﬁ(x—h) is uniformly bounded interior to I (since

it is bounded on I ) as h » 0 in any way, hence |[Du| is
bounded at p ; the remainder of the proof follows easily from
general properties of elliptic equations.

For other applications of Theorem 1, see, e.g., [2,3,4,5,6].

3. In physical problems arising in capillarity, it is
necessary to prescribe the angle vy formed between the solution
surface and a given support surface (bounding walls of the
container). ror a cyl@hdrical support surfaéq_(capillary tube) we
obtain_the equation_(7) over a domain Q , with the condition (see,

e.g. [7] Chapter 1)

v Tu=cosy, 05y s (12)

on a subset EB c I ; analogously, we consider the fofmal

condition
v + A= cos ¥y (13)

on ZB ; corresponding to a solution of (3) in §Q . Since these
conditions involve explicitly the normal v , it is natural

to assume some smoothness of ZB . We also assume at first that



‘punoq Ta0oTtad B 103 uoTjeanbryuc)y :7 2anbrta




for each p € EB with normal vp ' vp * A exists as a
continuous limit as p 1is approcached from within Q ; note that
this does not imply continuity or even boundedness of Du up to
ZB . We obtain

Theorem 3: Let ul(x), v{x) be solutions of an elliptic

equation (3) in @ , for which (4) and (5) hold. With desig-

nations as above, let I = 93§ = ZO U Zu U ZB ; and suppose

1 s&v + A on Ea PRV A(Du) s v o A(Dy) on ZB in the senses

indicated above. Then

i) if e(u) # ¢o(v) in Q or if Ea £ ¢ , then

usv+ A in Q ;

ii) if I =¢ and o(u) = o(v) , then

ul{x) = v(x) + const. in Q

The proof is a fairly routine extension of the method used
for Theorem 1, and we do not give it in detail.

We apply Theorem 3 to the case of equation (7) with k > 0 .
By a vertical tragglétion, we can then achigye H = 0 . We consider
a domain © bounded in part byra symmetric cone K of hélf-angle
o , as indicated in Figure 2, and we suppose that the closure
integior to K of the region QG cut off by an open ball BG
as indicated in the figure lies interior to Q . We suppose that
on the smooth part K, of K cut off by B v the boundary
data vy satisfy o + v 2 m/2 . No boundary data are assigned
at the vertex V (that would not be possible, as there is no
normal vector at V ), nor is any growth hypothesis introduced

’

on the solution u(x} at V . Nevertheless, we—may show that




any solution in @, with data vy on KG satisfies

n
lux) | < o5+ ¢ (14)

throughout QG .

To prove the assertion, we introduce a lower hemisphere

v(x) over B and observe that div Tv = ns™! . We add a

constant to v({x) so that its minimum height Vo = n/ké . Then
div Tv = KV £ kv and thus ©Nv 5 Nu in 96 . We choose

EO = vy (BB6 nK) , Za = ¢ , ZB = KG U (BB6 n Q) .

By hypothesis, v+-Tu<v - Tv on KG ; also since v Tv=1
on GB(S N Q@ and |Tul < 1 for any differentiable 'u , we have

. . T ) (o : = 5 e . -
Vv Tu:S? Tv on BB6 N Q . Since B(B(S n Q) ’ZO U Ea U_ZB and

k > 0 , we obtain from Theorem 3 that u < v vyt 8 o= %% + 8

. in 56 n-@ , as.was to.be shown. The. inequality for . |u| is

A

obtained by repeating the reasoning‘&iﬁh u repldced by its
negative. -
The result just shown continues to hold in the limiting

case o + vy s m/2 . It is remarkable in that if a + v < 1/2 ,

then there exists A < « such that, in terms of polar distance -

r and spherical angle ¢ measured from V , there exists

fi(p) > 0 for which

u -2t | <a " (15)

in B6 n @ . Thus, the solutions in such a doémain depend dis-

continuously on the boundary data vy .

The proof of (15) is obtained using the same maximum prin-

ciple Theorem 3, cf. [ 8 ].
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The existence of solutions, smooth up to the smooth parts
of 3R , has been shown in both cases (see[10] orﬁfT]_

Chapter 7).

4. We wish to apply the maximum principle to general
configurations whose existence has been proved. For the equation
(3) under the conditions (4), (5) with--data (13) on at least
part of the boundary, there is currently no existence theory
available. Depending on properties of ¢(u) and on the domain,

existence (or nonexistence) of a variational solution (see

below) has been proved for the equation
div Tu = o) , ©'(u) 20 (16)
with
v » Tu = cos Y (17)

on I , see, e.g. [71, Chapters.6 and” 7. <

pied

Definition 2: A function uikﬂ -sis a wvariational solution of

(3}, (13) in Q@ if wu(x) € Hlél(ﬂ) and satisfies

[o(on - A+ ne(u))dx = $. n cos ydo (18)

1,1

for all 1 € H ' (Q)

In the case of (16), existence has been shown for very



- 12 -

general domains when lim |p(u)| = « ; otherwise existence is
ul-ma

known-for certain domains, nonexistence for others (see [7]

Chapter 6 and 7). In both cases, if |cos y| <1 on I the

existénce theory leads to u(x) € H1’1

() , and uniqueness in
this class can be shown essentially by the preceding methods
(simpler, as there is no need to introduce the set A !). But if
cos vy =21 on I' <l the reasoning breaks down, as it can no
longer be expected that ul(x) € H1'1(Q) and hence the difference
u-v of two variational solutions cannot in general serve as a
test function.

Nevertheless information can still be obtained, at least in

the case that I' 1is smooth.

Lemma 1: Let u be a variational solution of (16), (17) in

 , and let I' cc " , where I" 1is a smooth subset of &

Then there is a neighbourhood Q' « @ of ' for which

Jqrlo)jax < = . | (19)

Proof: If ¢(u) is bounded apriori there is nothing to

prove. Suppose lim @w(u) = o . Then the same procedure that was

u-e

used in § 3 to prove (14) yields that u(x) 1is bounded above
near I' ; hence ¢(u) 1is bounded above. Similarly ¢(u) is

bounded below.

Lemma 2: Let ' be a smooth piece of surface on I ,

with smooth boundary on I . Let Q' < @ be bounded by I' and




by a smooth surface S' < @ . Then for any variational solution

u{x) of (3), (13) in Q there holds

fng(u)dx = Iz.cos y do + jS,V'A do . (20)

Proof: Choose n =1 in Q' , 0 in O~NQ' , except for a
transition strip region across S' in which n changes linearly
across the normal to S' . A simple limiting procedure yields
the result.

In view of Lemma .1 we obtain

Corollary 2: In the configuration as above, replace S' by

a family of surfaces Zﬁ which converge weakly to I¥' in the

sense that the corresponding [Qﬁ| -+ 0 . Then for any variational

solution of (16), (17) we have

lim IE' veTudo = IZ' cos y ds . (21)
n

n-w

Here we have taken for v on Eﬁ the orientation of v on

.

Lemma 3. Let u be a variational solution of (16), (17}

with cos vy = 1 (cos = -1) on a smooth I' with smooth boundary

on L . We write I' in local coordinates x{(«a,B) , and we

suppose a family of surfaces Eﬁ : xn(a,B) can be introduced

as above, such that Xp 2 Xy, Dxn - Dx uniformly on the para-

meter domain. Then, denoting by w(S) +the area of a smooth

set S c Zﬁ r we have if y =0 on I
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lim u{x(EEﬁ : 1=-v-+Tu > ¢} =0 (22a)

n-»o

for any € >0 , If y =7 on L' then

lim u{xEﬁZﬁ : 1+v-Tu>¢e}l =0 . (22b)

-0

Proof: By Corollary 2, if vy = 0

lim f {dch B "‘Tu}d"n = lim IE,{(1 -V 'T“)+(ddoo ) 1)}d°n=0'
n n
n

In
But
do \
— - 1ldg =0
IZ'(don J °n
and thus
lim f {(1-v-+-Tu)do_ = 0
. n
n-e 7
: n
Since v -:Tu<1 , the result follows. The case vy = on L'

is analogous.

Lemma 4: Let wu,, u, be variational solutions of (16}, (17)

with data Yir Yo for which Y, ® 0 or Y, = T on L'« I as

above. Then for any sequence Eﬁ as above there holds

lim inf [ n(v - Tu, - v+ Tu,)do & 0
- EI!l

for any non negative bounded nix) .
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Proof: If Yq = 0 we write

v -Tu1 - yveeTu, = (v -Tu1-1) + (1=-v-Tu

2 2)

> v »Tu1‘—1

since |v - Tu,| <1 . Hence for any ¢ > 0

limu{xEZI;: (v «* Tu -\)-Tu2)<-e}=0 (23)

n—»0

1

by Lemma 3, from which the result follows.
5. With the aid of Lemma 4 and the previously described
methods, it is not difficult to prove the following form of the

maximum principle (cf. [9,10,11,121):

Theorem 4: Suppose I = 3R admits a decomposition

= 1 . !
T = ZO U Za U ZB U 28 , such that ZBwl.ZB are smooth and are

bounded by smooth submanifolds on ¥ , and ZO satisgfies

hypothesis H . Let Ugs U, be variational solutions of (16),

(17) in @ relative to data 71, Y, on ! , with Yq = 0

B
or y, =T on each component of Eé . Suppose there is a
sequence Zén) of bounded length tending to EB weakly as in

Corollary 2, on which v -Tu1 2 v -Tu2 in the sense of (23)

above. Suppose further that for some A > 0 there holds

lim inf (uq—uz) 2-A for any seguence X4 Ly exterior to

some covering of 20 . Then if Zu = ¢ and w(u1) s m(uz)

there holds u, = u, + C for some constant C . Otherwise




From Theorem 4 in turn the following result can be proved
for solutions of a (normalized) capillary equation in the absence

of gravity [12 ]:

Theorem 5: Let u(x) be a solution of

2 (24)

div Tu

in @ é:mz , and suppose u(x) 1is a variational solution relative

to boundary data vy , with y = 0 on a smooth subarc I' < 3Q

Then on any normal v through p € I' at distance 4 to .

~ aan

there holds

lv+sTu-1| <Ccd . (25)

The constant C can be estimated explicitly'in terms of

elliptic integrals.
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