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Abstract: The partieular form taken by the maximum prineiple

for a elass of geometrie.problems is examined. A number of

applications are made.

1. Let be an open set in nlR , denote by its (ideal)

boundary. Let u(x) satisfy

L1U = 0

in n, and suppose

lim sup u(x) :;;; 0
x ... E

( 1 )

(2)

in the sense that (2) holds for any sequenee

eompaet subset .cf

x. that leaves any
J

o • The elassieal maximum prineiple now assures

us that either u < 0 or u = 0 in n . Negleeting some details

of rigor, we may eonstruet a proof by observing that if the result

were false, the set n
s

= {x E n : x > E} would be non null for

srnall enough E and have eompaet elosure in n. Thus the funetion
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1u:s
, u(x) > e:

w(x) =
, u(x) :;;;; e:

~, .

would be non constant in Oe:' and

o = f w6udx
n

a contradiction.

2= - f jVul dx
ne:

There are two features of the result that may not have

received sufficient attention in the literature.

i) Insensitivity to the configuration of an. The proof

works for any open set n .

ii) Extreme sensitivity to the completeness of an. If a

single point is deleted, the result can fail.

The second point is sirnply illustrated with the function (in

polar coordinates in the plane)

u(r,8) =
1-2r cos 8 + r 2

which satisfies (1) in n: r < 1 and (2) on E = an except for

the single point (1,0) and for which u > 0 in n.

2. The above considerations apply -- despite the possible

nonlinearity -- to the difference u-v of two solutions of any

elliptic equation



for which

div A (Du) = <,p(U)

<,pI (u) ~ 0 •
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( 3)

(4)

Here A(Du) tß_a vector function of 'Du. Tb i) and ii) above
.... -- ...... ..,

we'may therefore add

(iii) Intensitivity to the ellipticity constants of (3).

That is, no aeeount need be taken of possible degeneration

outside eompact subsets of n.
In what follows, we cancern ourselves ehiefly with ii). It

turns out that the boundary completeness sensitivity can be

greatly ameliorated by restrieting attention to equations (3)

with particular nonlinearities. Because of their geometrie and

physieal signifieance for minimal surfaces, H-graphs, capillarity,

gas dynamies and plastieity we consider elliptic equations of the

form (3) subject to (4) and the single additional restrietion

I "'-""":: • ~~........

1 A( Du) I < 1 (5 )

for all Du that can appear. (We note that the form (5) ean be

achieved as an equivalent relation in any situation~~-for which

jA(Du)·1 is bounded.) Dur partieular interest will be direeted

to the minimal surface equation

div Tu = 0 , Tu = 1

11+IDU12
Du (6 )
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and the capilla.rity equation

div Tu = KU + nH

in the linon-negative gravity " case K ~ 0

( 7)

Definition 1: A set EO c E will be said to satisfy

Hypothesis H if for any E O > 0 I EO can be covered by a

countable number of balls

~.rn-1
L.Ui < E O •

of radius Ö. I such that
1.

The hypothesis is equivalent to the requirement that EO
have (n-1) dimensional Hausdorff measure zero.

Theorem 1: Suppose (5) is satisfied by an elliptic A(Du)

(4) is satisfied by l.P (u) . Let L:;) La U E
O

I where L
O

satis­

fies Hypothesis H. Set

Nu g d iv A (Du ) - tp ( u ) (8 )

and suppose Nu ~ Nv for functions u/v in n . Suppose there

exists A E:: 0 such that for every E O > 0 there holds

lim sup (u-v) ~ A for any seguence x j
c

°0 = n ....... UB o. I for
l.

which x. -+ L Then u $ v + A in n .
] a

-
The proof follows thß general ..lines of § 1. If the theorem

were false for some u/v I then there would exist E/'EO/M > 0
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such that the set

is non-null. Setting

A+S<u-V<M+A+s} " ( 9 )

w(x) =

M ,

u-v- (A+s)

o ,

u-v ;:;;: M+A+s

A+s<u-v<M+A+s

u-v ~ A+s

( 10)

we find from the divergence theorem

o ~ In W(Nu-Nv)dx
o

= I M w 'V·A da
AO,S ( 11 ) .

Here

-In w(~(u)-~(v))dx - I M Dw·[A (Du)-A (Dv)]dx
o no,s

AM = nM n 3(UB x .) , v = unit normal, see Figure 1.O,S O,S u
l.

The last integral on the right in (11) is positive in view

of the assurned ellipticity. The preceding integral is non

negative in view of the hypothesis (4). The crucial new point

is that because of (5) we have

thesis "< Cso . Since

I\)· A·l < 1 on AM . By Hypo­
O,E:

o ~ w ~ M , we obtain a

contradiction by letting sO: 0 .

The same reasoning shows that if Nu ~ Nv and if u-v'~ - A

on Ea in the sense indicated, then u-v 2 - A in n. We may

use the result to prove

Theorem 2 (cf. [1]): The solutions of an elliptic

eguation (3) for which (4) and (5) hold admit no isolated

singularities.
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For if a solution u(x) had such a singularity at p € r2 ,

then for small enough h the solutions u(x) and v(x) = u (x-h)

would be defined and smooth in a common domain V with two

points p, p+h deleted. Letting E c V be a fixed smooth
0:.

surface that encloses the two points for all small enough h ,

and setting EO = P U (p+h) , we find from the above result that

h u(x)-u(x-h)u = h is uniformly bounded interior to Eo:. (since

it is bounded on Ea as h ~ 0 in any way, hence IDul is

bounded at p; the remainder of the proof follows easily from

general properties of elliptic equations.

For other applications of Theorem 1, see, e.g., [2,3,4,5,6].

3. In physical problems arising· in capillarity, it is

necessary to prescribe the angle y formed between the solution

surface and a given support surface (bounding walls of the

container). For ~ cyl'indrical support surfac~(capillary tube) we

obtain._the equation (7) over a domain n , with the condition (see,

e . g . [7J Chapter 1)

'J • Tu = cos Y o :s y S TI ( 1 2)

on a subset Eß c E

condition

analogously, we consider the formal

\) · A = cos y ( 1 3 )

on Eß , corresponding to a solution of (3) in n. Since these

conditions involve explicitly the normal 'J, it is natural

to assume some smoothness of Eß . We also assume at first that



- 8 -

..

~



- 9 -

for each p E L with normal \l \l. A exists as aS p' p

continuous limit as p is approached from within n; note that

this does not imply continuity or even boundedness of Du up to

LS · We obtain

Theorem 3: Let u(x), v(x) be solutions of an elliptic

equation (3) in n, for which (4) and (5) hold. With desig-

nations as above, let L = an = LO U L~ U LS ' and suppose

i..l :;; v + A on LCt ' v · A(Du ) ~ v · A(D v) on in the senses

indicated above. Then

i) if ~(u) ~ ~(v)

u :;; v + A in n
in n or if L: * cf> , thena

ii) if L = cfl and ~(u) ~ ~(v) , then
Ct

u(x) ~ v(x) + const. in n.

The proof is a fairly routine extension of the ~ethod used

for Theorem 1, and we do not give it in detail.

We apply Theorem 3 to the case of equation (7) with K > 0 .

By a vertical tra~~l~tion, we.~p then achieve H = 0 . We eonsider

a domain n bounded in part by asymmetrie eone K of half angle

a , as indieated in Figure 2, and we suppose that the elosure

interior to K of the region n
8

eut off by an open ball Bö

as indicated in the figure lies interior to n. We suppose that

on the smooth part K8 of K cut off by B8 ' the boundary

data y satisfy Ct + Y ~ TI/2 • No boundary data are assigned

at the vertex V (that would not be possible, as there is no

normal vector at V), nor is any growth hypothesis introdueed

on the solution u(x) at V. Nevertheless, we rnay show that
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any 'solution in 0ö with data y on

Iu (x) I < KnÖ + Ö

satisfies

( 14 )

throughout Go ·
To prove the assertion, we introduce a lower hemisphere

v(x) over Bo and observe that div Tv s nö- 1
• We add a

constant to v(x) so that its minimum height va = n/Kö . Then

div Tv = KVO ~ KV and thus Nv ~ Nu in nö We choose

E
O

= V u (aBo n K) , Eo = cf> , ES = Ko u (aB ö n 0)

By hypothesis , \) · Tu :s \) • Tv on K i also since \). Tv = 1
ö

on aBo n n and ITul < 1 for any differentiable 'U , we have

v · Tu ~ v · Tv on a"B ö n ~ . Since a03 0 n rn = )~-o u Z~ U~Eß and

- . -. n
K > 0 , we obtain from Theorer.1 3 that u < v ::s v 0-- + Ö = K8 + Ö

in Bö -n-~ , aso was to-be shown. The.inequality_for. \ul is
.._:_~

o~)tained b~{ repeating the reasoning '\~ith u repl--G:cec. by i ts

negative.

The result just shown continues to hold in the limiting

case ~ + y s n/2 . It is remarkable in that if a + y < TI/2

then there exists A < 00 such that, in ~erms of polar distance

r and spherical angle ~ measured from V, there exists

f(~) > 0 for which

- 1lu - - ~f (tp)
r < A ( 15 )

in Bö n n . Thus, the solutions in such a domain depend dis­

continuously on the boundary data y.

The proof of (15) i5 obtained using the same maximum prin-

ciple Theorem 3, cf. [ 8].
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The existence of solutions, smooth up to the smooth parts

of an, has been shown in both cases (see [10) or'" ('7]
,'-.~--

Chapter 7).

4. We wish to apply the maximum principle to general

configurations whose existence has been proved. For the equation

(3) under the conditions (4), (5) with"data (13) on at least

part of the boundary, there is currently no existenee theory

available. Depending on properties of ~(u) and on the domain,

existence (or nonexistenee) of a variational solution (see

below) has been proved for the equation

with

div Tu ::::: ~(u) , ~I (u) ~ 0 (16 )

v · Tu := cos y

on E, see, e.g. [7.], Chapfez~6~an'd~ 7-. '-..:.-_.
- -~ '~..--""- -.......----

( 1 7)

Definition 2: A func·tion u (x-j . :is a variational solution of

( 3), (1 3) in r2 if u(x) E H
1
1 ,1 (r2) and satisfies
oe

fn(Dn • A + n~(u) )dx ::::: Pr. n cos y da

for all Tl E H
1 , 1 (r2) •

( 18)

In the ease of (16), existenee has been shown for very
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general domains when lim l~(u) I = 00 j'otherwise existence is
lul~oo

kpown~-for certain domains, nonexistence for others (see [7]

Chapter 6 and 7). In both cases, if Icos Yl < 1 on L the

existence theory leads to u(x) E H1 ,1 (n) , and uniqueness in

this class can be shown essentially by the preceding methods

(simpler, as there is no need to introduce the set A!). But if

cos y = ± 1 on EI C L the reasoning breaks down, as it can no

longer be expected that u(x) E H1 ,1 (n) and hence the difference

u-V of two variational solutions cannot in general serve as a

test function'.

Nevertheless information can still be obtained, at least in

the case that LI is smooth.

Lemma 1: Let u be a variational solution of (16), (17) in

n , and let EI ce LII
, where Eil is a smooth subset of L-.

Then there is a neighbourhood n' c n of LI for which

( 19 )

Proof: If ~(u) is bounded apriori there is nothing to

prove. Suppose 1im ~(u) = 00 • Then the same procedure that was
u~co

used in § 3 to prove (14) yie1ds that u(x) is bounded above

near LI j hence ~(u) is bounded above. Similarly w(u) 1s

bounded below ..

Lemma 2: Let EI be a smooth piece of surface on E,

with smooth boundary on E. Let n l c n be bounded by EI and
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by a smooth surface 51 c n . Then for any variational solution

u(x) of (3), (1,3) in n there holds

(20)

Proof: Choose n = 1 in n l
1 0 in n,n l

1 except for a

transition strip region across S' in which n changes linearly

across the normal to SI • A simple limiting proeedure yields

the result.

In view of Lemma .1 we obtain

Corollary 2: In the configuration as above, replace Si ~

a family of surfaees E~ whieh converge weakly to EI in the

sense that the corresponding [n~1 ~ 0 . Then for any variational

solution of (16), (17) we have

1im JE' v·Tudcr = JE' cos Y ds
n.-.oo n

( 21 )

Here we have taken for v on

E' •

EI the orientation of v onn

Lemma 3. Let u be a variational solution of (16), (17)

with cos Y = 1 (cos ~ -1) on a smooth EI with smooth boundary

on L. We write EI in leeal coordinates x(a,ß) , and we

suppose a family of surfaces E~: xn(a,ß) can be introduced

as above, such that x ... x , DX n .-. Dxn . uniformlyon the para-

meter domain. Then,"denoting by ~(S) the area of a smooth

set S C EI we have if
n ' y = 0 on E'



lim \l {x E E~
n ....oo
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1-V'Tu>d=o (22a)

for any E > 0 . If Y = TI on E' then

1+V'Tu>d=o (22b)

Proof: By Corollary 2, if y = 0

lim J",{:aa - v; TU}dan
l.n n

But

= lim JE' {( 1 - v • TU) + (ddaa
n

- 1)}dan = 0 .

n

and thus

J (da
E' da ­

n n

1\da .... 0
) n

lim
n ....oo

J (1 - v • Tu) da
E' n

n

= 0

Since v· Tu < 1 , the resul t follows. The case y = TI on E'

is analogous.

Lemma 4: Let u 1 ' u 2 be variational solutions of (16), (17)

with data for which Y1 a 0 or Y2 " TI on E' c E as

above. Then for any sequence E' as above there holds
n

lim inf
n ....oo

J n (v
E'n

. Tu - v . Tu ) da ;: 0
1 2

for any non negative bounded nIx)
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Proof: If Y1 = 0 we write

\) • Tu - 'J • Tu1 2 = ('J. Tu 1 - 1) + (1 - \) · Tu2 )

> \) • Tu - 11-

since I'J· Tu21 < 1 . Hence for any E > a

lim lJ {x E LI
nn-+OO

(\) · Tu 1 - \) • Tu 2) < - E} = 0 (23)

by Lemma 3, from which the result follows.

5. With the aid of Lemma 4 and the previously described

methods, it is not difficult to prove the following form of the

maximum princ iple (c f. [ 9 , 1-0 , 11 , 12] ) :

Theorem 4: Suppose L = an admits a decomposition

L = LQ U La U Lß U L~ , such that L~,~. L~ are smooth and are

bounded by smooth submanifolds on L, and La satisfies

hypothesis H. Let u 1' u 2 be variational solutions of (16),

(17) in n relative to data Y1' Y2 on Lß , with Y1 = 0

sequence

or Y = TI2
on each component of Lß . Suppose there 1s a

L~n) of bounded length tending to Lß weakly as in

Corollary 2, on which \). TU
1

~ \) · TU 2 in the sense of (23)

above. Suppose further that for some A > 0 there holds

1im inf (u l -u2 ) ~ - A for any sequence exterior to

some covering of LQ . Then if La = ~ and ~(u1) ~ ~(u2)

there holds U 1 9 U2 + C for some constant C . Otherwise
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u 1 2:: u 2 - A in n ·

From Theorem 4 in turn the following result can be proved

for solutions cf a (normalized) capillary equation in the absence

of gravity [12 ]:

Theorem 5: Let u(x) be a solution of

in

div Tu = 2

. 2n cm , and suppose u(x)

(24)

is a variational solution relative

to boundary data y, with y = 0 on a srnooth subarc ~'c an .

Then on any normal v through p E EI at distance d to p ,

there holds

Iv · Tu - 1 I < C d

The constant C can be estimated explicitly-in terms of

elliptic integrals.

(25)
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