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0. Introduction

IPSL(2,C) is naturally endowed with a conformal structure by left trans-
lation of its Cartan-Killing form. Viewing IPSL(2,C) as the oriented or-
thonormal frame bundle of IH3, the 3-dimensional hyperbolic space of cur-
vature -1, Bryant [4] showed that a holomorphic curve in IPSL(2, C) that is
null with respect to this conformal structure projects to i3 to give a surface
of constant mean curvature 1, and furthermore that every such surface in
IH3 arises in this way. This is analogous to the fact that holomorphic curves
in C® that are null with respect to the complexification of the Euclidean
structure on IR3 project to IR3 to give surfaces of constant mean curvature
0, i.e. minimal surfaces.

In this paper we give a simple characterization of such null curves in
PSL(2,C) in terms of the geometry of its compactification, /P3. This fa-
cilitates the study of a natural correspondence which exists between these
null curves and free holomorphic curves on a non-singular quadric surface in
the dual /P3, see 2.7. This correspondence is the analogue of the correspon-
dence between null curves in C3 and curves on the singular quadric surface
in IP3 given by the cone over a quadric curve. That correspondence was
first discovered by Lie and underlies the classical Weierstrass representation
formulae for minimal surfaces in IR®, see [12]. Both correspondences are
particular instances of the classical duality between curves in IP3 and IPj
determined by osculation. In another direction they may be generalized to
a correspondence for null curves in an Einstein-Weyl space, see [14].

We describe analogues of the Weierstrass formulae that generate null mero-
morphic curves in IPSL(2,C) from pairs of meromorphic functions on a
Riemann surface of arbitrary genus and thus determine explicit formulae for
surfaces of constant mean curvature 1 in JH 3. We describe how various fea-
tures of the geometry of the null curve are determined by the meromorphic
functions. In addition we describe moduli for null meromorphic curves in
IPSL(2,C) and calculate rational and elliptic examples. Finally we outline
a possible application of this work to the study of monopoles on hyperbolic



space.

There is renewed interest in surfaces in JH™ and surfaces of constant mean
curvature in particular, see [10] and the references cited therein. Recently,
Bobenko [3], using methods from soliton theory, has given explicit construc-
tions for all constant mean curvature tori in IR®, 3 and JH3 in terms of
theta functions.

The differential geometric significance of our work rests on Bryant’s results
[4]. Our approach however, which is similiar to that in [12], is derived from
Hitchin’s work in [7]. It has been drawn to our attention that Kerbaugh [9]
has derived Weierstrass formulae similiar to those described in section 3.

1. Duality and the Einstein-Weyl Structure

(1.1) PSL(2, C) may be viewed as the complement in iP5 of the non-singular
quadric surface, @3 = (ad — be = 0). Let Q3 C IPj parameterize the
collection of hyperplanes in /P3 that lie tangent to @2; it is clear from
duality that @2 parameterizes the hyperplanes in /P3 that are tangent to
Q3, and Q3 = Q2. Thus points of IPSL(2,C) are characterized by the fact
that they are dual to hyperplanes in /P35 that are not tangent to Q3.

Q3 is isomorphic to P4 X IPg, where IP 4 and [P g parameterize the families
of A-lines and B-lines on @} respectively, see [5] . Each factor is isomor-
phic to /P, and non-tangential hyperplane intersections comprise the (1,1)-
homology class. Consequently, identification of the factors by a choice of
a non-tangential hyperplane intersection together with an ordering of the
factors identifies IPSL(2, C) with Aut(IP;), since [Py, the (1,1)-curve on Q%
dual to ¢ € IPSL(2,C), then gives the graph of an automorphism of IP;.
We identify the factors using the curve that corresponds with, e, the usual
identity element of IPSL(2,C).

(1.2) Hitchin [7} has shown that the moduli space of a complete family of
rational curves on a complex surface which have self-intersection number
2 is naturally an Einstein-Weyl space. So, in particular, IPSL(2,C) has
such a structure, He uses a theorem of Kodaira which describes the tangent
space at a point of the moduli space. Here this says that there is a canonical
isomorphism:

k: T,IPSL(2,C) = HY(IP,, O(N,)),



where N, — IP, is the normal bundle. Since N, has degree 2, the set of
global holomorphic sections which possess a double root on P, gives, via
this isomorphism, a null cone in TgIPSL(2, C): thus one obtains a conformal
structure on JPSL(2,C). A direction at ¢ € IPSL(2,C) is determined by
a pair of points {5, u} C IP, and the set of (1,1)-curves whose intersection
with [P, is {n, u} gives a curve on IPSL(2, C) with this direction at q. This
determines a distinguished class of curves on IPSL(2,C): Hitchin shows
that they are the geodesics of a projective connection and furthermore that
if n = p then the corresponding geodesic is null.

(1.3) Proposition The totally geodesic null hypersurfaces of the Einstein-
Weyl structure on IPSL(2, C) are cut out by the hyperplanes in IP3 that lie
tangent to Q3.

Proof Fix u € Q3 and consider the dual hyperplane u* and the hypersurface
S, = p* N IPSL(2,C). The tangent directions 7,8, C H°(IP,, O(N,)) give
the infintesimal deformations of IP, in directions on §,: these are of the
form {o;o(p) = 0}. It follows immediately from 1.2 that the geodesics thus
determined lie on S, and furthermore that there is a unique null geodesic
through ¢ that lies on §,,. Hence S, is a totally geodesic null hypersurface
of PSL(2,C).

Conversely, suppose that ¢ € IPSL(2,C) lies on a totally geodesic null
hypersurface S. T,S is a null plane in HO(/P,, O(N,)) and is therefore of
the form {o;0(s) = 0} for some fixed p € IP;. For any other ¢’ € S, Py
intersects IP, at 2 points, counted with multiplicity, giving the geodesic in
IPSL(2,C) that passes through g and ¢’. Since § is totally geodesic this
geodesic lies on § and consequently must give a tangent direction at ¢, which
implies that u € Py N IP,. So for any ¢’ € IPSL(2,C), [P, passes through
p# and hence § C S,. We suppose that every totally geodesic surface is
extended to its maximal domain of definition and hence § = §,,.

Remark Observe that [P, parameterizes the set of totally geodesic null
hypersurfaces which pass through ¢ € PSL(2,C).

(1.4) A deformation of a (1,1)-curve IP, on Q} amounts to the same thing
as a curve of automorphisms of 1P, which passes through ¢, viewed as an
element of Aut(/P,) following 1.1. Let m, 7y : Q3 — IP; denote the
projection maps into the factors of Qj ~ IP; x IP;. The following gives an



isomorphism, Ny 2 (qo m|p,) ' TIPy:
Tic.atep(P1 X P1) = To()dP1,

where (u,v) — v — dg(u), since the kernel is T(¢ o(¢))/Pq. Hence the bijec-
tivity of m;|p, gives the isomorphism:

v HO(IPy, O(q7'TIPy)) = HO(IP,, O(N,)),

where (o) = g o m|p,.

In these terms Kodaira’s isomorphism may be described as follows: suppose
that w : U — IPSL(2,C),U C C open, is such that w(ug) = ¢, then
writing w : U x IP; — P, we have

o k(01 ))(€) = G0, O 7o

(1.5) Proposition The conformal structure on IPSL(2,C) determined by
Kodaira’s isomorphism coincides with that induced by left translation of the
Cartan-Killing form.

Proof At the identity element, :™ ok : T.IPSL(2,C) ~ HO(P,O(TIP;))
gives the usual isomorphism of Lie algebras determined by the identification
of IPSL(2,C) with Aut(/P;) described in 1.1. It is easily checked that the
Cartan-Killing form on H°(IP,, O(TIP,)) determines the same null cone as
described in 1.2 and hence it only remains to observe that the conformal
structure induced by ¢7! o & is left invariant, which is clear.

2. The Gauss Transform, Osculation and the Correspondence

(2.1) Let M be a Riemann surface and recall that a non-constant holomor-
phic curve w : M — IPSL(2, C) is said to be null if dw(£) is a null vector
for all u € M.

Away from the zeros of dw, n(aw(%)) has a double root on IP,(y), at T'y{u)
say. 'y, extends over the zeros of dw in the usual way and thus one obtains
a holomorphic map Ty, : M — @3 which, because of the close analogy with
the Euclidean case [12], we call the Gauss transform of w. Projection of Ty,
to the IPy-factors yields a pair of Gauss maps to IPy: Ty, = (71, 72)-
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Remark T'y(u) gives the totally geodesic null hypersurface of IPSL(2,C)
that is determined at w(u) by dw(£).

From 1.4 it follows that if dw(z) # 0 then %‘f(u,_) has a double zero at
11{u) € IP,. This gives:

Proposition A non-constant map w: M — JPSL(2,C) is null iff

2 (4,€) = O[(¢ ~ ()Y
Note that y2(u) = w(u, 11(u)).

(2.2) Recall that a holomorphic curve p : M — IP3 is said to be full if
A = p(M) does not lie on any hyperplane (and that if A is algebraic then

its degree is at least 3). The map u* : M — IP}, given on a dense open set
by

() = span{p(w), D (41), (o))

where py : U — C*is a lift of x over U, the domain of a coordinate chart
in M, is well-defined and gives the dual curve of u. The same construction
applied to u* yields pu.

At a point u € M where A is smooth, pu*(u) gives the hyperplane of IP3
that intersects A at u(u) with multiplicity (at least) 3. If A C IP3 is an
algebraic curve this determines a birational map between A and a dual curve
A* C IP3. See [5] or [6] for further details.

(2.3) It is useful for our purposes to observe that when A = p(M) C P}
lies on Q3 ~ [Py X IP;, osculation may be described as follows.

An automorphism of IPy is determined by its 2-jet at any point and hence
there is a (canonical) holomorphic map

v:Ep, — Aut(IlP,),

where £p, is the étalé space of the sheaf whose stalk at { € IP; comprises
the germs of holomorphic functions with non-zero derivative at (. v is
given on the stalk at ¢ by sending a germ at { to the uniquely determined
automorphism that has the same 2-jet there.



Provided that yu is full, it lifts into £p, over a dense open subset M, C M,
and composition of this lift with v determines a holomorphic map

pa : Mo — Aut(IPy).

It is clear that the graph of the osculating automorphism thus determined
at u € M, is cut out by the hyperplane of P53 that osculates there in the
classical sense, and hence p. = p1*|pr.-

(2.4) Proposition The holomorphic curve v Spl — IPSL(2,C) is null
and its Gauss transform is given by:

L ((f1e) = (¢, SO
(Cf. Theorem 3.6 of [12].)

Proof By definition of v, for any [f]¢, € £p, there is some neighbourhood
of (o on which the following equation holds:

F(©) = v[fleos €) = OI(C = G0)°)-
In the local chart [f]¢, — (o on Ep,, differentiation of this equation gives
v _ RY:
52;([”(01() = O[(¢ = ¢o)°]

so it follows from 2.1 that v is a null curve and 1 ([fl¢,) = Co-

L([fl) = (m{Ufleo)s v([Fkor 11([£1e0))
(CO&U([f]CpaCO))
(CD:f(CU))’

]

il

from the first equation above.

(2.5) Corollary Suppose that the image of a full curve p : M — [P} lies
on Q3. Then p*(M)NIPSL(2,C)is a null curve in PSL(2,C).

(2.6) We now show that all full null curves in IPSL(2,C) arise in this way
and that they are dual, as curves in IP3, to their Gauss transforms.
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Proposition Let M be a Riemann surface and suppose that w : M —
IPSL(2,C) is a null holomorphic curve such that -; is non-constant. Then
w=T75.

Proof Suppose 971(u) # 0 and that 4, is an inverse for ; on a neigh-
bourhood of (o = 71(u0) such that v;7'(¢o) = uo.

The Gauss transform is given by I'y(u) = SMw(%, 11(2)) and hence
F(¢) == w(y71({), ) gives a local implicit description over IP; of part of it.
Now,

-1
1(60) = 5200, o) 2 (o) + 520, o).

But, from the nullity criterion of 2.1, %“E(ug, (o) = 0 and hence
" w dy, ! 0w
f7(Co) = M(HO,CO)E (0, o) + W(uo,é‘o)-

Again from 2.1, 3%‘”?(110, (o) = 0. Consequently,
v({fleo) = w('fl-l(co)a =)

So w coincides with Ty, on an open subset and hence, by uniqueness of
analytic continuation, they coincide where the latter is defined.

Remark From this, together with the fact that u** = g, it follows that
Iy, = w*, i.e. the Gauss transform of a null curve in IPSL(2,C) is given by
osculating the curve as a subset of IP3 in the classical sense. Note that if
w: M — IPSL(2,C) is full then v, is non-constant.

(2.7) Corollary Null curves in IPSL(2, C) are characterized by the fact that
the hyperplanes of IP3 that osculate them lie tangent to Q,, the quadric at
infinity of IPSL(2,C).

Accordingly, we call a curve u : M — IP3 such that p*(M) C @3, a null
curve. We summarise these results in the following

Theorem If a full curve A C IP] lies on @3 then A is the extension to /P3
of a full null curve in IPSL(2,C). Every full null curve in IPSL(2, C) arises
in this way.



Remarks The above calculations could equally well have been phrased in
terms of 7,.

The degenerate, non-full, case is trivial and left as a simple exercise.
3. Weierstrass Formulae and the Geometry of Null Curves

(8.1) Suppose that (g, f) is a pair of meromorphic functions on a Riemann
surface M and that ¢ is not constant. It follows from inspection of v :
Ep, — IPSL(2,C), as described in 2.3, that the following formulae give a
null meromorphic curve w : M* — IPSL(2,C):

(3 9)

where M™* is M punctured at a finite positive number of points and
o« = (- Zi
B = HUNE+ ol R - o
1= -y
5= () HgeUn s,
where

df d*f

Y e _ O T

f - dg b f dg2 .

If (g, f) are such that f = 6(g), for some 8 € IPSL(2,C) then the resulting
curve is constant.

Observe that if both f and g are non-constant then the pair ( f, g) generates
w~! from the above. This accords with the identification in 1.1 of IPSL(2, C)
with Aut(Py).

(3.2) Conversely, it follows from 2.7 that every full null meromorphic curve
in IPSL(2, C) has such a representation in terms of its Gauss maps. (We re-
strict attention here to meromorphic curves simply for the sake of simplicity.
It is clear that similiar statements hold for general curves.)



(3.3) Explicit formulae for the surface of constant mean curvature 1 in H3c
IR3! that is determined by projection of w are given by solving:

_ 2o+ 23 z1+iz
wwt= 0 .3 ! z .
Ty — 1Ty ITog— I3

(3.4) Given meromorphic functions (g, f) on a Riemann surface M, we char-
acterize, in terms of (g, f), the ends of the null curve generated by 3.1, i.e.
those points of M in the vicinity of which the null curve determined by
(g, f) leaves every relatively compact subset of IPSL(2,C). This gives the
end structure of the corresponding constant mean curvature 1 surface in
m3.

Recall from 1.1 that points on the quadric at infinity, {2, give the tangential
hyperplane intersections with @5 ~ Py x IP;. Hence it follows that we
simply have to characterize those points where (g, f)(M) osculates such an
intersection:

Theorem Suppose that the meromorphic functions (g, f) are such that g is
non-constant and f # 0(g) for any 8 € IPSL(2,C). Let Dyo(g), Peo(f) and
Do (f, g) denote the divisor of poles of g, f and their intersection respectively.
Then the ends of the null meromorphic curve in IPSL(2,C) generated by
3.1 are given as follows:

{eeM—(Dm(g)UDOO(f));%(s) 0 rﬂ(f) o},

LS (&)= o),

{£ € Do(9) ~ Doo{f,0) 5 1)z

( )(E)—Oor

d 1 d2 1
{€ € Doo(f) = Do 9) ; (f)(s) (f)(f) oo},
d 1 2
(€ € Dulti); (O =0 d(( )3 (© =



Remark Symmetry here in (g, f) follows from

dfz = dg?'df

(It is straightforward to recast the above for arbitrary holomorphic func-
tions.)

(8.5) It follows from 3.1 that

d (a ﬂ)_ ldg -1 ( "gf)
where Sq( f) is the Schwarzian derivative of f with respect to g. Away from
ends, the vanishing of S,(f) at a point means that the osculating section

actually hyperosculates the curve in @3, i.e. agrees with the curve at that
point to order 3.

Note that an automorphism hyperosculates iff the hyperplane of /P3 that
cuts out its graph hyperosculates the curve in the classical sense.

(3.6) Lifting w locally over U C M to a curve & in C* gives a null curve with
respect to the complexified Euclidean structure on R* and thus a minimal
surface ¢ : U —— IR*, Note that the branch points of the metric induced
by the (branched) minimal immersion in /R* are given by the vanishing of

Se(f)-

Remark For f : M — IP3let f* : M — IPj describe the osculating
hyperplanes and f# : M — G(2,4) the osculating lines. G(2,4) ~ C*U Q3
and such f# give null curves in C*, and thus minimal surfaces in R4, see [11],
[13]. Hence there is a globally defined minimal surface in IR* associated to
a null curve in IPSL(2,C). In the algebraic case the degrees of these curves
are linked by the following Pliicker formula:

deg(f) — 2deg(f*) + deg(f*) = 29 — 2 - f*,
where g is the genus of M and 8# is the total ramification of f#, see [5].

(3.7) Suppose that A C Q3 ~ [Py x IPy is an irreducible algebraic curve,
which is full as a curve in [P3. Let £ denote the divisor [P, x{0} and F denote
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the divisor {0} x /Py. The corresponding null meromorphic curve 4 in
IPSL(2,C) has as domain of definition the desingularization 64 : 4 — A.

(A-F,A-&) = (k1,k2), is the bidegree of A and gives the bidegree of the
Gauss transform Ty, = (11, ¥2).

ki + k2 = d, the degree of A as a curve in IP3.

A lies in the linear system |k;& + k2F|: fullness, together with irreducibility
imply that ky,k2 > 0, see [6] section V.2. It follows from 2.7 that these
linear systems give natural compactifications of the moduli spaces of null
meromorphic curves in IPSL(2,C) and thus the corresponding ‘algebraic’
surfaces of constant mean curvature 1 in IH3.

The genus of a generic curve A € |k€ + k2 F|, which is smooth, is given by
the adjunction formula: g = ky1kz2 — (k1 + k2) + 1, see [4], [5].

Remark For such an A, full in [P35, there are 12k1k; — 8(ky + k2) points
where A is hyperosculated.

(3.8) Example For (g(£), f(£))

null meromorphic curve ¥ 4:

(£9,€P), p,q > 0 coprime, 3.1 gives the

off) = DTLem

N
) = g;\/p_’;f%ﬂ
1E) = LeF

2\/p_q
5(6) = ;Lj-%s“%z

A = (g, /)(IP1) lies in |¢€ + pF| and is smooth iff ¢ =1 or p = 1.
If p= ¢ =1 the .A* is simply a point, otherwise ¥4 has ends at 0 and oo.

(3.9) Example Let A C C be a lattice with Eisenstein constants g9, g3 and
p be the associated Weierstrass function. The elliptic curve A in Py X
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Py ~ @3, given by completion of n? = 4¢3 — go{ ~ g3, is parameterized by
(p,p'): C/A — A. Alies in |2€ + 3F| and has degree 5 as a curve in IP3.
The virtual genus of A is 2, which is the genus of a smooth curve in |2£4-3F]|:
the difference between this and the real genus of A is a contribution from a
singularity.

Osculation of A, gives the following genus 1 null curve in IPSL(2,C):

3922 + 48gsp — 24gep? + 240p*
2V2(—ge + 12p2) ¥ (=05 — gep + 4p%)*
g = 4gegs + ge’p — 96gsp® — 40gep® — 48p°
2v2(-g2 + 12p3)§(—-g3 = gep+ 4;@3)i
922 +48gsp + 24g0p? — 48p*

2V2(—gz + 12p%) ¥ (=gs — gep +4p%)}
49095 + 3g2%p — 96g3p? — 88g0p° + 240p°

2V2(—gp + 120} (— g5 — gep + 4p)}

This curve has 4 ends. Note that variation of g7, g3 gives a family of such
curves.

4. Final Remarks

(4.1) Atiyah [1] has shown that finite energy solutions of the
SU(2)-Bogomolny equations over JH> may be encoded into an auxiliary spec-
tral curve S, which is an algebraic curve on Q3 . S has bidegree (k, k) where
k is the magnetic charge of the monopole. This is analogous to Hitchin’s
[8] enciphering of finite energy solutions of the SU(2)-Bogomolny equations
over IR® into algebraic curves on a singular quadric surface in IP3 . Atiyah
suggests that various aspects of the Euclidean case might be elucidated by
the limiting behaviour of monopoles on H3(—t) — I3, as the curvature
t — 0. This corresponds to the degeneration of a family of non-singular
quadric surfaces in IP3 : Q(—t) — singular quadric cone as t — 0.

(4.2) It follows from 2.7 that osculation of § determines a null meromorphic
curve in IPSL(2,C) and thus a surface X, of constant mean curvature 1 in
3. The monopole may be recovered from L. How does the geometry of
reflect the structure of the monopole? In particular, the following features
of ¥ might elucidate the monopole’s structure:
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¢ the ends of
o the points of hyperosculation of §

e the total Gaussian curvature of the metric induced on .

(4.3) Bryant asserts that the total Gaussian curvature induced by an alge-
braic mean curvature 1 immersion is some (negative) integer multiple of 4.
When the dual curve has bidegree (k;, k2) it seems likely that this is some
expression symmetric in ky, k2. It would follow that the charge of a hyper-
bolic monopole may be written as the integral of the Gaussian curvature of
the natural metric induced on the spectral curve.

This is analogous to the observation we make in the Euclidean case [15]
where furthermore, we show that the null curve determined by osculation
of the spectral curve generates the singularity set of the extended solution
on C? and the corresponding integral representation has a residue theoretic
interpretation. (The latter is analogous to the fact that the charge of an

instanton equals the degree of the corresponding hypersurface of jumping
lines, see [2].)

(4.4) The analogue of Atiyah’s limiting process for us realises minimal sur-
faces in IR® as limits of constant mean curvature t surfaces in IH3(—t) as
t — 0. This follows from the degeneration of Q(—t) and the corresponding
“PSL(2,C)” — C3.

Does this process underlie the ‘Lawson Correspondence’ that is referred to

in [4]°

(4.5) Polar decomposition gives a map SL(2,C) — SU(2). What surfaces
in §3 are generated by projection of null curves?

(4.6) Use of real structures should facilitate the construction of non-orientable
examples of constant mean curvature 1 surfaces in IH3,

(4.7) There should be an analogous construction for IH4, see [7].
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