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Weierstrass Formulae for Surfaces of Constant Mean
curvature 1 in JH3

A.J .Small

o. Introduction

IPS L(2, C) is naturally endowed with a conformal structure by left trans­
lation of its Cartan-Killing form. Viewing IPS L(2, C) as the oriented or­
thonormal frame bundle of ]H3, the 3-dimensional hyperbolic space of cur­
vature -1, Bryant [4] showed that a holomorphic curve in IPSL(2, C) that is
null with respect to this conformal structure projects to ß/3 to give a surface
of canstaut mean curvature 1, and furthermare that every such surface in
]H3 arises in this way. This is analogons to the fact that holomorphic curves
in C 3 that are null with respect to the complex.ification of the Euclidean
structure on JR3 project to JR3 to give surfaces of constant mean cnrvature
0, i.e. minimal surfaces.

In this paper we give a simple characterization of such null curves in
1PSL(2, C) in terms of the geometry of its compactification, IP3 . This fa­
cilitates the study of a natural correspondence which exists between these
null curves and free holomorphic curves on a non-singular quadric surface in
the dualIP;, see 2.7. This correspondence is the analogue of the correspon­
deuce between null curves in C3 and curves on the singular quadric surface
in IP; given by the cone over a quadric curve. That correspondence was
first discovered by Lie and underlies the classical Weierstrass representation
formulae for minimal surfaces in JR3, see [12]. Both correspondences are
particular instances of the classical duality between curves in IP3 and IP;
determined by osculation. In another direction they may be generalized to
a correspondence for null curves in an Einstein-vVeyl space, see [14].

We describe analogues of the Weierstrass formulae that generate null mero­
morphic curves in JPS L(2, C) from pairs of meromorphic functions on a
Riemann surface of arbitrary genus and thus determine explicit formulae for
surfaces of constant mean curvature 1 in ]H3. We describe how various fea­
tures of the geometry 6:{the null curve are determined by the meromorphic
functions. In addition we describe moduli for null meromorphic curves in
1PSL(2, C) and calculate rational and elliptic examples. Finally we outline
a possible application of this work to the study of monopoles on hyperbolic
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spaee.

There is renewed interest in surfaees in lHn and surfaees of eonstant mean
eurvature in particular, see [10] and the references cited therein. Reeently,
Bobenko [3], using methods from soliton theory, has given explicit construe­
tions for all eonstant mean curvature tori in lR3 , 53 and JH3 in terms of
theta funetions.

The differential geometrie significance of our work rests on Bryant '8 results
[4]. Our approach however, which is similiar to that in [12], is derived from
Hitchin's work in [7]. It has been drawn to our attention that Kerbaugh [9]
has derived Weierstrass formulae similiar to those described in section 3.

1. Duality and the Einstein-Weyl Structure

(1.1) JPSL (2, C) may be viewed a.s the complement in lP3 of the non-singular
quadric surface, Q'J = (ad - bc = 0). Let Q2 C IP3 parameterize the
colleetion of hyperplanes in lP3 that lie tangent to Q2 j it is dear from
duality that Q2 parameterizes the hyperplanes in lP3 that are tangent to
Q;, and Q; ~ Q2. Thus points of lPSL(2, C) are characterized by the fact
that they are dual to hyperplanes in lP3 that are not tangent to Q2.

Q2 is isomorphie to JPA X JPB, where JPA and JP B parameterize the families
of A-lines and B-lines on Q2 respectively, see [5] . Each factor is isomor­
phie to 1P t and non-tangential hyperplane interseetions comprise the (1,1)­
homology dass. Consequently, identifieation of the faetors by a choice of
a non-tangential hyperplane intersection together with an ordering of the
factors identifies JPS L(2, C) with Aut(JPt}, since JPq, the (1,1 )-curve on Q2
dual to q E lPS L(2, C), then gives the graph of an automorphism of 1Pt .

We identify the factors using the curve that corresponds with, e, the usua!
identity element of lPSL(2, C).

(1.2) Hitchin [7] has shown that the moduli space of a complete family of
rational curves on a complex surface which have self-intersection number
2 is naturally an Einstein-Weyl space. So, in particular, lPSL(2, C) has
such a structure. He uses a theorem of Kodaira which describes the tangent
space at a point of the moduli space. Here this says that there is a canonical
isomorphism:
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where Nq --+ 1Pq is the normal bundle. Since N q has degree 2, the set of
global holomorphlc sectious which possess a double root on JPq gives, via
this isomorphism, a null cone in TqJPS L(2, C): thus one obtains a conformal
strnctnre on JPS L(2, C). A directiori at q E JPS L(2, C) ia determined by
a pair of points {1], Il} c 1Pq and the set of (1,1)-curves· whose intersection
with JPq is {1], J.l} gives a curve on lPSL(2, C) with this direction at q. This
determines a distinguishcd dass of curves on lPS L(2, C): Hitchin shows
that they are the geodesics of a projective connection and furthermore that
if 7J = J.l then the corresponding geodesic is null.

(1.3) Proposition The totally geodesic null hypersurfaces of the Einstein­
Weyl structure on 1PS L(2, C) are cut out by the hyperplanes in 1P3 that He
tangent to Q2.

Proof Fix J.l E Q2 and consider the dual hyperplane J.l- and the hypersurface
S~ = J.l- n lPSL(2, C). The tangent directions TqS~ C HO(IPq, O(Nq)) give
the infilltesimal deformatiolls of lPq in directions on S~: these are of the
form {a j a(J-L) = O}. It follows immediately from 1.2 that the geodesics thu6

determined lie on S~ and furthermore that there is a uruque null geodesic
through q that lies on Sw Hence S~ is a totally geodesie null hypersurface
of JPS L(2, C).

Conversely, snppose that q E IPSL(2, C) lies on a totally geodesie null
hypersurface S. TqS is a null plane in HO(lPq, O(Nq)) and is therefore of
the form {O' j a (J.l) = O} for same fixed J.l E 1Pq' For any other q' ES, IPq'

intersects 1Pq at 2 points, counted with multiplicity, giving the geodesie in
IPS L(2, C) that passes ,through q and cl. Since S is totally geodesie this
geodesic lies on S and consequently must give a tangent direction at q, which
implies that J.l E 1Pq' n IPq' So for any q' E JPS L (2, C), JPq' passes through
J.l and hence S C Sw We suppose that every totally geodesic surface is
extended to its maxiInal domain of definition and hence S = Sw

Remark Observe that IPq parameterizes the set of total1y geodesic null
hypersurfaces which pass through q E 1PSL(2, C).

(1.4) Adeformation of a (l,l)-curve 1Pq on Q2 amounts to the same thing
as a curve of automorphisms of IP 1 which passes through q, viewed as an
element of Aut(lPI) following 1.1. Let 7r), 11'"2 : Q2 --+ IP I denote the
projection maps into the factoTs of Q; ~ lP i X IP I . The following gives an
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where (u,v) --+ v - dq(u), since the kernel is T«(,q«(»lPq. Hence the bijec­
tivity of 1I'"dpq gives the isomorphism:

,,: HO(lPI,O(q- 1TlP1 )) ~ HO(lPq,O(Nq )),

where L(U) = U 0 1I'"11Pq •

In these terms Kodaira's isomorphism may be described as follows: suppose
that w : U --+ lPSL(2, C), U C C open, is such that w(U()) = q, then
writing w : U X 1P1 --+ JP1 we have

(1.5) Proposition The conformal structure on JPSL(2, C) determined by
Kodaira's isomorphism coincides with that induced by left translation of the
Cartan-Killing form.

Proof At the identity element, ,,-1 0 K. : TeIPS L(2, C) :::: lIO(IPI, O( T 1P1 ))

gives the usual isom.orprusm of Lie algebras determined by the identification
of JP S L(2, C) with Aut( IP1) described in 1.1. It is easily checked that the
Cartan-Killing form Oll HO(JPI, O( T!P 1 )) deterrnines the same null cone as
described in 1.2 and hence it only remains to observe that the conformal
structure induced by ,,-1 0 K. is left invariant, which is dear.

2. The Gauss Transform, Osculation and the Correspondence

(2.1) Let M be a lliemann surface and recall that a non-constant holomor­
phic curve w : M --+ IPSL(2, C) is said to be null if ßw(lü) is a null vector
for all 1L E kJ.

Away from the zeros of GW, K( GW( /ü)) has a double root on 1Pw(u), at r w(u)
say. r w extends over the zeros of ßw in the lisual way and thus one obtains
a holomorpruc map rw : M --t Q2 which, because of the dose analogy with
the Euclidean case [12], we call the Gauss irons/orm of w. Projection of r w

to the 1P t -factors yields a pair of Gauss maps to lP t : r w = (1'1, /2).
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Remark r w( u) gives the totally geodesie null hypersurface of 1PSL(2, C)
that is determined at w( u) by 8w( lü).
From 1.4 it follows that if 8w(u) f. 0 then ~ (u, _) has a doub1e zero at
11 (u) E lPI . This gives:

Proposition A non-constant map w : M ---t IPSL(2, C) is null Hf

GW 2
GU (u, () = 0[(( - 11 (u)) ].

Note that 12(u) = w( u, II(u)).

(2.2) Recall that a holomorphic curve J1. : M ---+ lP3 is said to be full if
A = JL( M) does not lie on any hyperplane (and that if A is algebraic then
its degree ia at least 3). The map J1. ... : M ---+ lP;, given on a dense open set
by

1'"(u) =span{l'u(u),lJl'u( :u),{PI'U( :u)}'

where J.LU : U ---t C 4 is a lift of J.L over U, the domain of a coordinate chart
in M, is well-defined and gives the dual curve of JL. The same construction
applied to JL'" yields J.L.

At a point u E M where A is smooth, J-L. (u) gives tbe hyperplane of IP3

that intersects A a.t J-.L(u) with multiplicity (at least) 3. If A C IP3 is an
algebraic curve this determines abirational map between A and a dual curve
A· c IP;. See [5] or [6] for further details.

(2.3) It is useful for our purposes to observe that when A = J1.(M) C lP;
lies on Q2 ~ lP l X 1PI, osculation may be described as folIows.

An automorphism of lP l is determined by its 2-jet at any point and hence
there is a (canonical) holomorphic map

where CPl is the etale space of the sheaf whose stalk at ( E ./PI comprises
the germs of holomorphic functions with non-zero derivative at (. v ia
given on the stalk at ( by sending a germ at ( to the uniquely determined
automorphism that has the same 2-jet there.
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Provided that fl. is full, it lifts into [PI over a dense open subset M. C M,
and eomposition of this lift with v determines a holomorphie map

p. : M. --+ Aut(lPd.

It is clear that the graph of the osculating automorphism thus determined
at u E M. is cut out by the hyperplane of lP3 that osculates there in the
classical sense, and henee j.l. = j.l·IM•.

(2.4) Proposition The holomorphic curve v : cPI --+ lPSL(2, C) is null
and its Gauss transform is given by:

r v([/]e) = ((, /((».

(Cf. Theorem 3.6 of [12].)

Proof By definition of v, for any [/ko E [PI there is some neighbourhood
of (0 on which the following equation holds:

In the Ioeal ehart [/ko --+ (0 on [PI' differentiation of this equation gives

so it follows from 2.1 that v is a null eurve and 1'l([/ko) = (0.

r v ([/ko ) = (1'1 ([/ko ), v( [/ko, 1'1 ([1] (0»

= ((0, v([/k~, (0»

= ((0, J((0»,

from the first equation above.

(2.5) Corollary Suppose that the image of a full eurve JL : M --+ lP; lies
on Q2' Then /l-*(Af) n lPSL(2, C) is a null curve in lPSL(2, C).

(2.6) We now show that a1l full null curves in 1PS L(2, C) arise in this way
and that they are dual, as eurves in 1Pa, to their Gauss transforms.
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Proposition Let A1 be aRiemann surface and suppose that w : M --+

IPSL(2, C) is a null holomorphic curve such that 11 is non-constant. Then
w=r~.

Proof Suppose D,1 (uo) :f:. 0 and that /11 is an inverse for ;1 on a neigh­
bourhood of (0 = 11(ua) such that '11((0) = Uo·

The Gauss transform is given by rw(u) = _~W(tL'/l(U)) and hence
f(() := w('11

((), () gives a Iocal implicit description over IP1 of part of it.
Now,

, Dw d ,1 - 1 Dw
f ((0) = Du (uo,(o)d(" (uo,(o) + ß( (uo,(o).

But, from the nullity criterion of 2.1, ~('Uo, (0) =:; 0 and hence

D2w d, -1 ß2 w
j"((0) = 8uß( (Uo, (0) d(1 (Uo, (0) + 8(2 (UO, (0).

Again from 2.1, ~(UO, (0) ::= O. Consequently,

v([fko) = w( '11
((0), -).

So w coincides with r:, on an open subset and hence, by uniqueness of
analytic continuation, they coincide where the latter ia defined.

Remark From this, together with the fact that JLu = JL, it follows that
r w =w·, Le. the Gauss transform of a null curve in IPS L(2, C) is given by
osculating the curve as a subset of IP3 in the classical sense. Note that if
w : M --+ IPSL(2, C) is full then /1 is non-constant.

(2.7) CorollaryNull curves in IPSL(2, C) are characterized by the fact that
the hyperplanes of JP3 that osculate them lie tangent to Q21 the quadric at
infinity 01 IPSL(2, C).

Accordingly, we call a curve J-L : M --+ JP3 such that Jl*(M) C Q;, a null
curve. We summarise these resulta in the following

Theorem U a. full curve A C JP; lies on Q; then A* is the extension to IP3

of a full null curve in JPSL(2, C). Every fuU null curve in JPSL(2, C) arises
in this way.
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Remarks The above calculations could equa.lly weIl have been phrased in
terms of 12.

The degenerate, non-full, case is trivial and left as a simple exercise.

3. Weierstrass Formulae and the Geometry of Null Curves

(3.1) Suppose that (g, I) is a pair of meromorphic functions on aRiemann
surface M and that 9 is not canstant. It followB from inspection of v :
[PI --+ IPSL(2, C), as described in 2.3, that the follawing farmulae give a
null meromorphic curve w : M* --+ IPSL(2, C):

w= (~ ~),

where M* is M punctured at a finite positive number of points and

where

f ' = df I" = d
2
I

dg' dg2'

H (g, f) are such that f = 8(g), for some 8 E lPS L(2, C) then the resulting
curve is constant.

Observe that if both fand gare non-constant then the pair (!, g) generates
w- 1 from the above. This accords with the identification in 1.1 of IPSL(2, C)
with Aut(IPt}.

(3.2) Conversely, it fellows from 2.7 that every full null meramorphic curve
in 1PS L(2, C) has such a representatien in terms of its Ganss maps. (We re­
strict attention here to meromorphic curves simply for the sake of simplicity.
It is clear that similiar statements hold for general curves.)
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(3.3) Explicit formulae for the surface of constant mean curvature 1 in IH3 C
JR3 ,] that is determined by projection of w are given by solving:

(3.4) Given meromorphic functions (g, I) on a lliemann surface M, we char­
acterize, in terms of (9, I), the ends of the null curve generated by 3.1, Le.
those points of M in the vicinity of which the null curve determined by
(9, I) leaves every relatively compact subset of lPSL(2, C). This gives the
end structure of the corresponding constaut mean curvature 1 surface in
IH3 .

Recall from 1.1 that points on the quadric at infinity, Q2, give the tangential
hyperplane intersections with Q2 ~ lP] x 1P]. Hence it follows that we
simply have to characterize those points where (9, J)(M) osculates such an
intersecti0 n:

Theorem Suppose that the meromorphic functions (g, f) are such that g ia
non-constant and 1 i= O(g) for any 0 E lPSL(2, C). Let Voo(g), Voo(f) and
V 00 (J, g) denote the divisor of poles of g, f and their intersection respectively.
Then the ends of the null meromorphic curve in lPSL(2, C) generated by
3.1 are given as follows:

df d21
{~ E M - (1)oo(g) U 1>00(/)) j dg (~) =Oor dg 2 (~) =oo},

9



Remark Symmetry here in (g, /) follows from

(It is straightforward to recast the above for arbitrary holomorphic func­
tions. )

(3.5) It follows from 3.1 that

~ (0: ß) = _~ dg(d/)_~S (/) (/ -9/)
d~ I 8 2 d~ dg 9 1 -g ,

where Sg(/) is the Schwarzian derivative of / with respect ta g. Away from
ends, the vanishing af S9(/) at a point means that the asculating section
actually hyperosculates the curve in Q;, Le. agrees with the curve at that
point to order 3.

Note that an automorphism hyperosculates iff the hyperplane of 1Pj that
cuts out its graph hyperosculates the curve in the classical sense.

(3.6) Lifting w locally aver U C M ta a curve win C 4 gives a null curve with
respect to the complexified Euclidean structure on m.4 and thus a minimal
surface 4> : U ~ lR4

• Note that the branch points of the metric induced
by the (branched) minimal immersion in lR4 are given by the vanishing of
S9(f)·

Remark For f : M ---+ 1P3 let f* : M ---+ 1Pj describe the osculating
hyperplanes and f# : M ---+ G(2, 4) the osculating lines. G(2, 4) ~ C 4 UQ3
and such f# give null curves in C4, and thus minimal surfaces in lR4 , see {lI],
(13]. Hence there is a globally defined minimal surface in lR4 associated to
a null curve in IPSL(2, C). In the algebraic case the degrees of these curves
are linked by the following Plücker formula:

where 9 is the genus of M and ß# is the total ramification of f#, see [5].

(3.7) Suppose that A c Q2 ~ lP I x 1PI is an irreducible algebraic curve,
which is full as a curve in 1Pj. Let [ denote the divisor lP I x {O} and F denote
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the divisor {O} X 1P). The corresponding null meromorphic curve ..pA in
1PS L(2, C) has as domain of definition the desingularization 8.A : .Ä --+ A.

(A· F,A· [;) = (k),k2 ), is the bidegree of A and gives the bidegree of the
Gauss transform r tJ.oA = C')"2).

k1 +k2 = d, the degree of A as a curve in IP'3.

A lies in the linear system Ik)[; +k 2FI: fullness, together with irreducibility
imply that k), k2 > 0, see [6] section V. 2. It follows from 2.7 that these
linear systems give natural compactifications of the moduli spaces of null
meromorphic curves in 1PSL(2, C) and thus the corresponding 'algebraic'
aurfaces of constant mean curvature 1 in IH 3 .

The genus of a generic curve A E IkI [; +k2FI, which ia smooth, is given by
the adjunction formula: 9 = k)k'J - (kt + k2 ) +1, see [4], [5].

Remark For such an A, full in 1P"j, there are 12k)k2 - 8(k1 + k2 ) points
where A is hyperosculated.

(3.8) Example For (9(e), f(e)) = (~q, ~P), p, q ~ 0 coprime, 3.1 gives the
null meromorphic curve ..pA:

Q(~) = p+qe?
2Vfi§

ß(e)
q - P .e±.!l= --e:z
2..jiiq

'i'(e) = q - Pe-e:fl
2..jiiq

8(e) = p+qe~
2..jiiq

A = (9, f)(1P)) lies in Iq[; +pFl and is smooth iff q = 1 or p = 1.

Ir p =q = 1 the A* is simply a point, otherwise 7/J.A has ends at 0 and 00.

(3.9) Example Let A C C be a lattice with Eisenstein constants 92,93 and
p be the associated Weierstrass function. The elliptic curve A in IP1 X
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lP t ~ Q2' given by completion of 1]2 = 4(3 - 92( - 93, is parameterized by
(p, pi) : CIA~ A. A lies in j2[ +3FI and has degree 5 as a curve in lP;.
The virtual genus of Ais 2, which is the genus of a smooth curve in 12[+3FI:
the difference between this and the real genus of A is a contribution from a
singulari ty.

Osculation of A, gives the following genus 1 null curve in lPSL(2, C):

392 2 + 4893P - 2492P:;l + 240p"
0' =

2v'2( -92 + 12p2) i (-93 - 9f P + 4p3) t

ß
4g!g3 + 92 2p - 96g3P:;l - 409fp3 - 48 p5

=
2V2(-gf + 12p2)~(-g3 - gfP + 4p3)t

, 9f 2 + 48g3P + 249fp2 - 48p"=
2v'2(-gf + 12p2) i (-g3 - 9f P + 4p3) t

6 = 49293 + 39!4p - 9693P:;l - 88gf P3 + 240p5

20(-92 + 12p:;l)!(-g3 - 92p+4p3)t

This curve has 4 ends. Note that variation of 92,93 gives a family oi such
curves.

4. Final Remarks

(4.1) Atiyah [1} has shown that finite energy solutiona of the
SU(2)-Bogomolny equations over JH3 may be encoded into an auxiliary spec­

tral curve S, which ia an algebraic curve on Q2 . S has bidegree (k, k) where
k is the magnetic charge of the monopole. This ia analogous to Hitchin's
[8] enciphering of finite energy solutions of the SU(2)-Bogomolny equations
over 1R3 into algebraic curves on a singular quadric surface in lP3 . Atiyah
suggests that various aspects of the Euclidean case might be elucidated by
the limiting behaviour of monopoles on JH3( -t) ~ m3, as the curvature
t ~ O. This corresponds to the degeneration of a family of non-singular
quadric surfaces in IP3 : Q( -t) ---+ singular quadric cone as t~ O.

(4.2) It follows from 2.7 that osculation of S determines a null meromorphic
curve in 1PSL(2, C) and thus a surface ~, of constaut mean curvature 1 in
llI3 . The monopole may be recovered from ~. How does the geometry 0/ E
reflect the structure 01 the monopole? In particular, the following features
of ~ might elucidate the monopole's structure:
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• the ends of l;

• the points of hyperosculation of S

• the total Gaussian curvature of the metric induced on S.

(4.3) Bryant asserts that the total Gaussian curvature induced by an alge­
braie mean eurvature 1 immersion is some (negative) integer multiple of 471'".
When the dual eurve has bidegree (kI, k 2) it seems likely that trus is some
expression symmetrie in k1, k2 • It would follow that the charge of a hyper­
bolie monopole may be written as the integral of the Gaussian curvature of
the natural metric induced on the spectral curve.

This is analogous to the observation we make in the Euclidean case [15]
where furthermore, we show that the null curve determined by osculation
of the spectral curve generates the singularity set of the extended solution
on C 3 and the corresponding integral representation has a residue theoretic
interpretation. (The latter is 'analogous to the fact that the charge of an
instanton equals the degree of the corresponding hypersurface of jumping
lines, see [2].)

(4.4) The analogue of Atiyah'8 limiting process for us realises minimal sur­
faces in lR3 as limits of constant mean curvature t surfaces in JH3( -t) as
t ----+- O. Trus follows from the degeneration of Q( -t) and the corresponding
"lPSL(2,C)" ----+- C 3 ,

Does this process underlie the 'Lawson Correspondence' that is referred to

in f4J?

(4.5) Polar decomposition gives a map 5L(2, C) ----+- SU(2). What surfaces
in 53 are generated by projection of null curves?

(4.6) Use of real structures should facilitate the construction of non-orientable
examplea of constant mean curvature 1 surfaces in IH3 .

(4.7) There should be an analogous construction for IH\ see [7].
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