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Convexity and integrability

A. M. Bloch* and T. S. Ratiu**

Abstract

In this review we present the main convexity results of Atiyah, Duistermaat, Guillemin,

Kostant, and Stemberg and their relationship to the dynamic behavior of the generalized

non-periodic Toda lattice. A "symplectic" proof of one of Kostant's convexity results at

group level is also sketched. This review is an expanded version· of the talk one of us

(T.S.R.) presented at this conference and is based upon the papers, Bloch, Brockett and

Ratiu [1990 a,b], Bloch, Flaschka and ·Ratiu [1990], and Lu and Ratiu [1990].

§1. Introduction

In symplectic and Poisson geometry one of' the main objects of study is the momentum

map associated to a Hamiltonian action. This map, with values in the dual of the Lie

algebra of symmetries, was introduced in its modem fonnulation by Kirillov ( see Kirillov

[1976]), Kostant [1970], Souriau [1970] and Smale [1970] and it turns out to be at the.

center of maoy important geometrical facts that are useful in a variety of fields of both

pure and applied mathematics. Oue of the most striking aspects of the momentum map

are its convexity properties as fonnulated in the now famous theorems of Atiyah [1982],

Guillemin and Stemberg [1982], [1984] and Kirwan [1984]. No serious relationship of this

property with the dynamics of Hamiltonian systems has been forged 'so far even though

already a superficial familiarity with these theorems suggest links to dynamic bifurcation

behavior.

A specific branch of Hamiltonian dynariücs, namely the theory of completely integrable

systems, seems particularly suited to a study via the convexity theorems, since the hierar­

chy of flows comprise the action of a cylinder (often just a torus) whose momentum map
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is simply the coIlection of integrals of motion. To the disappointment of many symplec­

tic geometers, the theory of integrable systems, which interacted so fruitfully both with

algehraic geometry and representation theory, had 00 impact in its recent developmeot

on its own field of origio, namely symplectic geom.etry itself. It may turn out that the

reasoos are simply in the subtlety of such an interaction. In this review we want to outlioe

several results in this direction, some of wmch we came across simply hy accident. We

shall deal here oo1y with one dass of examples: the non-periodic generalized Toda lattices.

Judging from this example the convexity properties of the momentum map have a very

subtle hut decisive influence upon the dynamies of completely integrable systems and this

whole relationship is worthwhile exploring both in general, as weil as in specific examples.

The review is organized as follows. §2 is simply a coIlection of standard defintions and

properties from Poisson geometry and the theory of momentum maps. Hs sole purpose

is to fix notation and conventions for the rest of the work. §3 reviews the relevant sym­

plectic convexity results and §4 discusses their extensions in the important case of I<ähler

manifolds. The different metrics on arbits are also discussed since they are needed later.

§5 introduces an abstract gradient system first studied in the su(n )-case by R. Brockett

[1988]. This gradient system lives on adjoint orbits of compact Lie algehras and the dy­

namic hehavior of its flow is entirely determined by the momentum map on this orbit.

§6 shows that for a special choice of parameters, this gradient system becomes the Toda

lattice on its isospectral set. Thus the famons scattering behavior of the Toda flow, so

'useful in numerical analysis, is simply an inheritance from Hs "partner", the scrfar hidden

gradient system. §7 discusses this relationship on a deeper level: since the Toda hierarchy

is integrable, it nat~ally defines a non-compact torus action on an adjoint orbit which is

canonicallya Kähler manifold. Then why does the isospectral set not have a convex image

under the momentum map? The answer is because the action is not the diagonal one. Can

one embed the isospectral set in a different way so that its image under the projection is

convex? The answer is positive and discussed in §7. Finally, §8 presents a symplectic proof

of one of Kostant's non-linear convexity results. The relationship with the Toda flows is

not clear here hut several formwas and constructions are very similar and suggestive for
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the standard results one finds in the non-periodic Toda-Iattice theory. We hope that a

more serious link can be found. Also, the result in §8 suggests several generalizations.

As mentioned already at the beginning, this paper is a review. We hereby would like

to thank our coauthors R. Brockett, H. Flaschka, and J.-H. Lu without whom the results

presented here would not have been possible. §5 and §6 are based on Bloch, Brockett, Ratiu

[1990a,b], §7 on Bloch [1990] and Bloch, Flaschka, Ratiu [1990], and §8 on Lu, Ratiu [1990].

These papers drew inspiration from the papers Brockett [1988, 1989}. Conversations with

B. Kostant, J. Marsden, A. Reyman and A. Weinstein throughout the period the above

mentioned papers were written have been of indispensable importance. Firially, T. Rathl

would like to thank the Max Planck Institute for Mathematics, Bonn, Germany, where

part of this review was written, and the organizers of this conference for the opportunity

to participate and enjoy both the talks and the lively discussions.

§2 Poisson manifolds and momentum maps.

The only purpose of this section is to intraquce notations, specify ~onventions, and speil

out definitions of concepts used throughout this review. Anyone familiar with tms material

can safely skip it.

A Poi3"on manifold is a pair (P, {,}) formed by a smooth manifold P whose ring of

functions :F(P) is a Lie algebra relative to an operation {, } called a Poü"on bracket wmch

is a derivation in each argument. Thus, for fixed H E :F(P) , the formula F E F(P) t-+

{F, H} E :F(P) determines a vector Held XH called the Hamiltonian vector field determined

by H, i.e. (dF,XH) = {F,H}. There are two main examples of Poisson manifolds:

a) Symplectic manifold, which are manifolds P carrying a closed non-degenerate two-form

w. Defining XH by the "requirement that W(XH, Y) = (dH, Y) for any vector Held Y on P

and setting {F, H} = W(XF, XH) one easily proves that (P,w) becomes a Poisson manifold.

b) DuaL, of Lie algebra.!. Let g be a Lie algebra and let g. be the space of all linear

functionals on g. For F : g. -+ R define the functional derivative SF / SJ.L E g by the

requirement
oF

DF(J.L) . v = (v, 8p. )
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for all v E g*j DF denotes the usual Frechet derivative of F. g* is a Poisson manifold

relative to the Lie-Poi3~on ~truct'Ure

A key property satisfied by the Poisson bracket on (P, {, }) is that F 1-+ X F is a Lie

algebra anti-homomorphism:

for all F, H E :F(P). Poisson manifolds stratify into symplectic manifolds called the

~ymplectic lea1Je~ of P. They are described in the following way. On P define an equivalence

relation which identifies two poin'ts if they can be joined by a piecewise smooth path,

each segment of which is a trajectory of a locally defined Hamiltonian vector field. The

equivalence classes are connected immersed POiSSOR submanifolds (i.e. a Hamiltonian

vector field on P at a point on such a submanifold ia tangent to it) with the Poissbn

bracket defined by a symplectic form. The tangent space at p to the leaf containing p

ia {XH(p)IH E F(P)}. We refer to Weinstein [1983] for more information on Poisson

manifolds. If P is symplectic, its symplectic leaves are its connected components. H

P = g*, its leaves are the connected components of the coadjoint orbits of the underlying

Lie group G of g. The symplectic form on these orbits is the Kirillov-KoJtant-Souriau.

form,

for ~,'1 E g, J.l E g*, J.l on the orbit in question.

Let G be a Lie group acting on (P, {, }) in a canonical fashion, l.e., preserving the

Poisson bracket. For eE g denote by ep the infinitesimal generator of the action, i.e.

where exp : g -+ G is the exponential map and dot denotes the action. Since we consider

leit actions, e1--+ ep is an anti-homomorphism, i.e.
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for all €, 1] E g. We shall say that the G-actioo 00 P is Hamiltonian if there is a Lie algebra

homomorphism p: g --+ :F(P) factoring €~ ep through H ~ XH, i.e.

for all ~ E g. If P ia symplectic and G is. semisimple such a homomorphism always

exists; this ia a corollary of the two Whitehead lemmas. The map J : P --+ g* given by

(J(p), e) = p(€)(p) for all € E g, pEP is called the momentum map of the action. We

shall denote p(€) = Je and therefore we have

for al1 e,7J E g.

§3 A brief review of symplectic convexity results.

Some of the most striking global properties of the momentum map are its convexity

properties. In this section we briefly review the main results in the symplectic context.

Theorem 3.1. (Atiyah [1982], Guillemin and Sternberg [1982]). Let P be a compact

connected symplectic manifold and T a torus acting in a Hamiltonian fasbion on P witb

. momentum map J : P --+ Rn, n = dimT. Let pT denote tbe 11xed point set ofT. Then:

(i) J(pT) is finite and each point is tbe image ofa connected compenent of tbe set where

tbe derivative of J vanishes;

(il) each :fiber J-1 (c), c E Rn, if non-empty, is connected;

(ili) J(P) is tbe convex bti11 of J(pT )

This theorem generalizes to the symplectic setting the following remarkable result of

Kostant:

Corollary 3.1. (Kostant [1973J) Let G be a connected semisimple or a compact connected

Lie group, T a maximal torus. Let g, t denote tbe Lie algebras of G and T respectively.
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\

Fix aG-invariant metrie on g. Tilen tile ortbogonal projection of an adjoint orbit 0 onto

t is tile convex bull of tile corresponding Wer] group orbit 0 nt.

Indeed, by the G-invariant metric, adjoint and coadjoint orbits are identified anP the

orthogonal projection is just the momentum map of the T-action on O. The fixed point

set of the T-actioo on 0 is the Weyl group orbit W no and the corollary is thus a direct

consequence of Theorem 2.1. Kostant's result is itself a generalization of the following

classical result:

Corollary 3.2. (Schur {1923}, Horn [1954]) Denote by {a} tne set of diagonals of a11

Hermitian n x n matrices witil given eigenvalues .-\ = (Al,"" An). Let tile symmetrie

group Sn act on Rn by permutation of coordinates. Then {a} is the convex hull of Sn ·l,

tile Sn-orbit through A

This follows from Corollary 3.1 by taking G = U(n). Going in the opposite direction,

Kirwan has generalized Theorem 3.1 to compact connected Lie groups.

Theorem 3.2. (Kirwan [1984}) Let P be a compact connected symplectic manifold and

let tile compact connected Lie group G act in a Hamiltonian fashion on P with momentum

map J : P -+ g-. Let T be a maximal torus in G, t its Lie algebra and let t+ denote tile

positive Weyl chamber relative to a fixed ordering. Tben

(i) each fiber J-I(p.), jf non-empty, is connected;

(il) J(P) n t+ is convex.

Theorems 3.1 and 3.2 can be proved together by a method different from' the ones used

in the original papers; this is done in Condevaux and Molino [198B}. A beautiful survey of

applications of theorem 2.1 can be found in Atiyah {1983].

The question naturaIly arises whether the image of the momentum map characterizes

the action. For so-called completely integrable toral actions the answer is positive. A

toros action on a symplectic manifold P is called completely integrable if the action is

Hamiltonian, faithful, and dirn P is twice the dimension of the torus.
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Theorem 3.3. (Delzant (1988J) Let PI, P2 be two compact connected symplectic mam­
folds oE dimension 2n and Tann-dimensional torus acting in a completely integrable fash­

ion on both PI and P2 With momentum maps J1 and J2 respectiveIy. H J1 (P1 ) = J2(P2 }

then there is a T -equivariant sympiectic diffeomorphism c.p : PI -+ P2 such that J2 0ep = J1 .

Theorem 3.3 is a companion to the Theorem 3.1. The correspnding companion to

Theorem 3.2 is not knawn in 'full generality but there are results far graups of low rank by

Delzant.

In order to deal with the analog of projections of re81 Hag manifolds as opposed to

complex ones, Duistermaat has proved the following:

Theorem 3.4. (Duistermaat {1983}} Let (P,w) be a compact connected symplectic man­

ifold on which the torus T acts in a Hamiltonian fashion witb momentum map J. Assume

tbat, : P -+ P ~ an antisympiectic involution (i.e. ,0, = identity and ,*w = -w) whicb

leaves J invariant (and so it will necessarily invert tbe toral action: T 0 9 0 ,-I = g-1 for

al1 9 E T)~ Let Q be the fuced point set of P wbich is assumed to be non-empty. Then

(i) J(Q) = J(P)

(il) J(Q) is tbe convex hull of tbe Bnite1y many points J(pT nQ), where pT is the fixed '

point set of tbe T -action on P;

(ili) pT n Q = {p E QI tbe derivative oE JIQ at p vanisbes}; each connected component oE

this set equals tbe intersection oE a connected component oE pT witb Q; it is mapped

by JIQ into one point;

(iv) a11 results above bold if Q is replaced by one of its connected components.

There are many other convexity results in the literature. We have deliberately avoided

tbe infinite dimensional case and those theorems for which a symplectic analog is not yet

known. The notable exception is one of the non-linear convexity results of Kostant [1973]

dealing with the Iwasawa projection which will be reviewed in a more natural setting in

the last section of this paper; a "symplectic proof' for it will also be sketched. It is a

challenge, in view of this, to try to "symplecticize" the great variety of convexity results
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aWnable. The Kähler case is special and very important. It will be dealt with in the next

section.

§4 The Kähler convexity theorem and coadjoirit orbits.

The convexity results reviewed in §3 hold also for Kähler manifolds, since every Kähler

manifold is sympleetic. However, due to the extra strueture there is an important refine·

ment, partieularly relevant to integrable systems, proved by Atiyah [1982]; see also Atiyah

[1983]. In this seetion we review this result and diseuss it also in the important context

of eoadjoint orbits of compact Lie groups. In addition, we will briefly recall the relevant

facts about the p08sible invariant metrics on these orbits; this material ia needed in §7.

On a Kähler manifold one has a Riemannian metric g, a symplectic form w, and an

integrable almost complex structure J (Le. \lJ = O· where \l is the covariant derivative

of the Riemannian connection define~ by g). We have J-1 = J* = -J the adjoint being

taken relative to g. The relationship between grad f and XI, where XI is the Hamiltonian

vector field corresponding to f : P -+ R, is the following:

grad! = JXI'

This follows from the interdependence of (g, w, J) established by the formula

w(u,Jv) = g(u,v)

for all u, v E TpP, pEP. Any two of (g,w, J) uniquely determine the third. We have

Jv = iv for a1l v E T P.

Assume a torus T acts on the Kähler manifold P preserving all structures. Thus the

action of T consiats of holomorphic mappings. Since the automorphiam group of a complex

manifold is a complex Lie group, the T-action extends to a holomorphic action of the

complexification Tc of T. The Lie algebra te of Tc ia tEB a, where t ia the Lie algebra of T

and a = it. Define A = exp a C Tc; it ia a vector Lie aubgroup of Tc since exp ia i.njective

on a. Moreover (t, a) E T x A ...... ta E Tc ia a diffeomorphism. We phrase the following

theorem both·in terms of complex tara! orbits and in tenns of the 'noncompact real toral

orbita. Aa usua!, the standing assumption is that P i" compact and connected and that the

T ·action i3 Hamiltonian with momentum map J : P -+ t*.
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Theorem 4.1. (Atiyab [1982J) (i) Let X be tile c10sure in P of tbe complex toral orbit

Tc . p, pEP. Tbe set of fixed points of tile T -action in X, pT nX, equals tile intersection

of X witb tbe set of points in P where tile derivative of J vanishes. Eacb connected

component of tbis set is mapped by J to one point in t*. The image J(X) equals tile

convex hull of these points whicb are tile vertices of a convex polytope. For eacb open

face U of this polytope J-1(U) C X consists of a single Tc-orbit. Moreover, J induces a

homeomorphism of XIT onto tile polytope.

(il) Let Y be the dosure in P of tile A-orbit A . p, pEP. pT nY equals the intersection

of Y with tile set of points in P wilere tile derivative of J vanishes. Eacb connected

component of this set is mapped by J to one point and J(Y) is the convex hull of these

points whicb are tbe vertices of a convex polytope. For eacb open face (J of this polytope,

J-1(u) consists of a single A-orbit. Moreover, J induces a bomeomorphism ofY onto tbe

polytope.

(m) For generic X and Y as in (i) and (il), J(P) = J(X) = J(Y).

The fonnulation (ii) was explicitly spelled out by Duistennaat [1983] and used to gen­

eralize Kostant's theorem on the convexity of certain projections of real flag manifolds.

H G is a compact Lie group it admits a complexification Ge. Any coadjoint orbit of

G is of the form GIC(T') where C(T') is the centralizer of a subtorus T' of the maximal

torus T of G. So, generically, the orbits are flag manifolds. Fix·8 positive Weyl chamber

in t and hence a Borel subgroup B of Ge, B :> T, and a parabolic subgroup P of Ge,

P :> C(T'). Since GIC(T') and GelP (generically GIT and GelB) are diffeomorphic,

one can naturally induce a complex structure on GIC(T') which is homogeneous under

the Ge-action. Thus on each coadjoint orbit of G in g. we get a homogeneous complex

structure. Together with the Kirillov-Kostant·Souriau form this makes the coadjoint orbits

Kähler. Theorem 4.1 immediately implies the follow:ing:

Corollary ·4.1. (Atiyah [1982J) Let A be the non-compact part of Tc, i.e. A = exp a,

a = it, t the Lie algebra ofT. Relative to tbe invariant metric on G identify coadjoint and

adjoint orbits. Let Y be the dosure of an A-orbit in g* = 9 wbicb lies in the (co)adjoint

orbit 0 of G. H J : 0 -Jo t is tbe orthogonal projection then J (Y) is the convex hullof the
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points in t which are the images oE tbe points in Y wbere the derivative oE J l'aflishes. J

is a bomeomorpbism oEY·to tms dosed convex polytope. For generic Y, J(Y) = J(O).

For our later purposes it will be useful to review here several of tbe many natural metries

on coadjoint orbits of compact Lie groups. Let G be a compact connected seInisimple Lie

group and 01'0 an adjoint orbit through J.lo E g. Let K denote the Killing form on g. Most.

of tbe material below may ~e found in Besse (1987J.

(i) g is a Riemannian manifold with the constant metric given by the negative of the Killing

form. Pull this metric back to 01'0 by the indusion. One gets the induced metric given by

for all [J.l,11], [Jl,e] E TpO po ' J.l E 01'0'

(ii) Left translate -K('J') from g = TeG to TgG to obtain a left-invariant metric on G.

This metnc is actually bi-invariant since K is invariant under the adjoint action. The

quotient of G by the stabilizer of P.O inhertis in this way a. Riemannian structure. Thus

01'0 becomes a Riemannian manifold. In 'Besse {1987] the metric 'obtained in this fashion

is called the normal metric; Atiyah {1982J calls it the 3tandard metric. To write an explicit

formula, let J.l Eg, g'p = {e E gl{e, p.] = O}, g" = im ad J.l}, and denote for "1 E g by "11' tbe

gl'-component of 1] in tbe direct sum decomposition g = gl' E9 gl'j the two summands are

orthogonal relative to -K(',.). Then for {J.', "1], [J.l, (] E T,,0l'o the normal metric has the

expresSIon

(iii) Finally there is the large family of G-invariant Kähler metries on 01'0 which are

in bijective correpsondence with the points of tbe positive Weyl chamber t+ by Borel's

theorem. Among all of these we single out tbe one corresponding to tbe intersection point

of 01'0 with t+. An explicit formula in the spirit of the above two expressions is not

possible. Let A(J.l) = J-(adJ.l)2 be the positive square root of -(adJ.')2. Then the Kähler

metric is given by
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whereas the induced metric and the normal metric are related by

([I-', 7J], [I-', (]) i = (A(I-')2 [1-',7]], [I-', (]) n

as can be easily checked. From the formula of the Kähler metric one sees that the root

space decomposition of g enters quite explicitly.

Generically, if 0 ~o is diffeomorphic to G/T, the Kähler metric is determined by a T­

invariant metric on g/t =EB ga, where ga is the root space determined by the root o. Let
a

I-' E O~O be in the interior of the positive Weyl chamber, Le. 0{1-') > 0 for any positive

root o. On each two-dimensional space go EB g-a, for 0 a positive root, the negative of the

Killing form determiries an inner product. Auy other inner product is given by multiplying

it by a scalar., Then these scalars are all equal to 1 for the normal metric, equal to o(IJ)

for the Kähler metric, and equal to a{Jl)2 for the induced metricj the spaces go ffi g-o and

g,8 E9 g-p for different positive roots Q, ß are orthogonal..

§5. A special gradient system rar a linear function on coadjoint orbits.

In this section we begin by discussing a gradient system on a compact Lie group and

its induced system on a specif1c coadjoint orbit. We wil show that this new system is

also gradient relative to the restrietion of a linear function to the orbit. The dynamic

properties of its flow turn out to be intimately connected with the convexity ~esults of §3.

The material in this section reviews the work in Bloch, Brockett, Ratiu [1990a], [1990b]

some of which was in turn influenced by the results in Brockett [1988], [1989] dealing with

the SU(n )-case.

Let K be a compact semisimpie Lie group, eits Lie algebra and ,.. is Killing form. Fix

two elements Q, N E eand define the function F : K ~ R by

F(B) = K(Q, AdeN). (5.1)

Endow K with the bi-invariant Riemannian metric (.,.) whose value at the identity is

minus the Killing form. Denote by B . P the left translate of P E eby B E K to TsK. H
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Vs = 8· R E TeK, RE·!, then

d
dF(8) . Ve = dt It=o F(8 exp tR)

d
= dt It=o K(Adg-l Q, Adexp tRN)

=K(Ads-l Q, [R, ND
= K([N,Adg-1Q],R)

= -(8· [N, Ads-l Q], VS)

whence

and we get

\JF(8) = B. [Adg-l Q, N] (5.2)

Proposition 5.1. Tbe gradient f10w on K relative to (".) and tbe function (5.1) is given

by iJ =9 . [Adg-l Q, N].

Let 0 be the adjoint orbit containing Q. The projection of K to 0 is given by

8 1-+ Ad,-l Q.

Via tms map, the gradient ßow in proposition 5.1 transfonns to

t = [L, [L, N]]

. (5.3)'

(5.4)

Indeed, put L(t) =Ads(t)-l Q, where 8(t) -is an integral curve of iJ = 8 . [Ad,-l Q, N]; then

L(t) = _[0-1(t)iJ(t), Ad'(t)-l Q]

= [L(t), O(t)-l B(t)] = [L(t), [L(t), N]].

Next, decompose orthogonally e= !L ffi eL, eL = {x E el[L, X] = O}, eL = im(adL), and

denote by X = XL + XL the decomposition of X E e ioto its eL and eL-components (see

the end of §4). Endow 0 with the normal metric

(5.5)
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and define ..

H : LEe t-+ K(L, N) E R (5.6)

By definition of the gradient relative to (',')n on 0 we have for the restrietion of H to 0

(gradH(L), [L, SLDn = dH(L) . [L, SL]

= -dH(L)· [SL, L]
d

= -- I H(exp taL· L)dt t=O

d
= dt It=O (exp taL· L-, N)

= ([SL,L],N)

= ([L, N], ÖL)

= ([L, N], (aL)L).

Therefore, if we set gradH(L) = [L,X], the above equality and (5.5) say that

(X L , ( ÖL) L) = ([L, N], (SL)L )

whence XL = ([L, N])L = [L, N]. Thus

grad H(L) = [L, [L, N]]

which coincides with (5.4). We summarize these results in the following:

Theorem 5.1.' The projection (5.3) oE the gradient Bow iJ = fJ • [Ad8-1 Q, N] to the orbit

o tbrougn Q is the gradient fIow t = [L, [L, N]] on 0 relative to tbe normal metne and

the funetion H given by (5.6).

The connection of the dynamies defined by this gradient system and the convexity

results of §3 is given by the following.

Theorem 5.2. On tbe orbit 0 oE K in econsider tbe gradient flow t = [L, [L, N]] tor lV

a Jixed regular element. Let Ft be tbe f10w oE tbis vector neId on O. Tbe set oE equilibria

equals 0 n t wbere t is tbe Cartan subalgebra of e containing N. Tbis set 0 n t consists

oE a single Weyl group orbit. Tbe convex hull of these equilibria is a ·compact-polytope P
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. which is the. image oE 0 under the momentum map 11" : 0 -+ t (the orthogonal projection)

denned by the adjoint T-action on 0, wbere T is the maximal torus in e obtained by

exponentiatmg t. 1I"(Ft (0)) lies entirely in 'P.

Proof. Indeed, by Kostant's theorem, stated in Corollary 3.1, the theorem is proved pro­

vided we show that the equilibria of t = [L, [L, N]] oecessarily lie in t. Sioce this gradient

field is defined 00 the compact manifold 0, its flow is complete, so all that needs to be

showo is that lim L(t) E t for any integral curve L(t). Hut
t-oo

d
dt (K(L, N)) = K.(N, [L, [L, N]])·= -~([L,N], [L, N]) ~ 0

so that K.(L(t), N) is increasing as a functioo of time. It must also be bounded since

L(t) E 0 and 0 is compact. Thus K(L(t), N) has a limit and its derivative vanishes if and

only if L(00) and Neommute, Le. the equilibrium L(00) roust lie in t. 0

By taking advantage of this theorem, Bloch Brockett, Ratiu [1990b] prove the following

Theorem 5.3. In tbe bypotheses and notation oE Tbeorem 5.2 we bave:

0) Tbe only stable equilibrium (a sink) oE this gradient vector neId is the one tbat lies in

the Weyl chamber oE -N.

(il) Tbe only source of this vector Held is tbe unique equilibrium wbich lies in tbe same

Weyl chamber as N.

(ili) Tbe dimension of tbe stable manifold at any of tbe equilibria equals tbe lengtb oE tbe

Weyl group element wbich maps the Weyl chamber of N to tbe Weyl chamber containing

this equilibrium.

§6. The Toda equations as a gradient system.

In this section we show the relationship between the non-periodic Toda lattice equations'

and the. gradient system in §5. It turns out that for very special choices of N, the two

systems coincide on the isospectral set. Thus, the Toda flow naturally inherits al1 the

scattering behavior of its "brother" , the gradient system discussed in §5. This property of

the Tod~ flow has found remarkable applieations in numerical analysis, especial1y regarding
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tbe QR-algorithm; see Deift., Nanda, Tomei [1983], Lagarias [1988], Symes [1982]. The

material in this section reviews the results in Bloch, Brockett, Ratiu [1990a], [1990b],

Bloch, Flaschka, Ratiu [1990],

We begin with a slight generalization of the non-periodic Toda lattice associated to an

arbitrary Dynkin diagram. These equations willlie on orbits of subalgebras in a compact

Lie algebra which is the compact real form of a complex semisimple Lie algebra. For certain

values of the parameters, the usual generalized non-periodic Toda lattice is recovered as

we shall explicitly point out later on. This set-up is the natural one in which one links

the Toda equations with the gradient system in §5 and also gives rise to several interesting

questions, some of which will be addressed in §7.

We build on the Lie algebraic notations and conventions at the end of §4 which are

in agreement with Humphreys [19.72]. g denotes a complex semi-simple Lie algebra of

rank f.. Fix a Cartan subalgebra of 9 and denote by ~,~+,~-, ß the systems of roots, of

positive roots, of negative roots, and of simple roots .6. = {al,' .. , al} respectively. The

Killing form on g is denoted by K, and the inner product on roots by (', .). The notation

(a, ß) = (a, ß)/(ß, ß) fot ,;, ß E ~ will also be employed. ga denotes tlie a-root space of

g. Fix a Chevalley basis {h i , ea li = 1, ... ,f., Ct E ep} and recall that ea is the basis vector

of the one-dimensional complex vector space gal ha = [ea , e_a] for a E ~+, h i = hai' and

K(ha, h) = 2a(h)/(a, a) for all h E g and a E ep+. Let X a = ea - e-a, Ya = i(ea + e_a )

for a E ep+ and deBne:

(i) the compact real fonn of g

1

e= {i L bjhj + L i(caxa + daYa)lbj,Ca,da E R}
j=1 aE4t+

(ii) the nonnal real form of g

1

gn = {L ibjhj + L caealbj, Ca E R}
j=1 aE4t+

(iii) the compact tomI "ubalgebra of g

1

t = {i L bjhjlbj E R}
j=1
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(iv) the non-compact toral "u.balgebra of g

l

a = it = {L bjhjlbj E R}
j=l

Think of g as areal Lie algebra and thus diwR g = 2 dime g. We shall always deoote by 9

this real Lie algebra and will write ge whenever g is thought of as a complex Lie algebra.

We have g = eEB b. The adjoint groups correspooding to these Lie algebras are denoted

by G,K,Gn,T,A,B,N± repsectively. For the Iwasawa decomposition G = KAN = KB

we will write the factorization of 9 E G as 9 = k(g)b(g) for k(g) E K, b(g) E B.

There are two Poisson structures on e. The first one is obtained by pulling back the Lie­

Poisson structure of e- to evia the restrietion of the Killing form It to ewhich is negative

definite. The other Poisson structure comes from a construction used by Lu and Weinstein

[1990]. The non-degenerate bilinear form Im It on g vanishes on esinee eis a real form of

ge. Also It(ga, gp) = 0 unless er. +ß= 0 and thus K( b, b) = K( a, a) E· R; thus Im Kvanishes

on b. The annihilator of erelative to Im K is e itself,. and is isomorphie to. b* as areal

vector space. We summanze these' observations together with the Adler-Kostant-Symes

theorem in the following:

Proposition 6.1.' (i) e is equipped witb tbe usual Lie-Poisson bracket. Tbe coadjoint

orbits 0 are the symplectic leaves oftms Poisson manifold. The symplectic form is given by

the Kirillov-Kostant-Souriau formula (see §2). Tbe coadjoint orbits () are Käbler relative

to tne canonical Käbler structure (see §4).

(il) e,...... b· bas a second Lie-Poisson bracket given by

where 1, h are arbitrary extensions to g oE /, h : e--+ R, \l is the gradient relative to Im K,

J.e.

1rb is tne projection onto b corresponding to the decomposition g = eEB b, and e, Se E e.
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(ili) H f is an invariant function on g, Le. [\7 f( (), (] = 0 for a11 ( E g, then tbe Hamiltonian

vector Eeld relative to tbe Poisson structure in (ii) deflned by fle is given by tbe Lax

equation

HamiltotJian vector nelds deJined by invariant functions commute.

The Toda equations are a Hamiltonian system on a coadjoint orbit in b'" = eof dimension

21. The following is a straightforward verification following the pattern in Kostant [1979J:

Proposition 6.2. Let 0 = (01,"" Ol) be a vector of O's and 1 's and fix (81 ,., . ,8l),
l

Bj E [0, 21l"]. Let L(ö,9) = L: Öjei8jxaJ' Tben the coadjoint B-orbit tbrough L(0,8) is
j=l

given by

Jac: = {1rtAd? L(ö, 8)lb E B}
l

= {L = L[bjhj + Dj(ajeaj - nje_aj )]Iibj E R,
j=l

aj E C\{O}, arg aj = Bj jf fJ j =F O},

wbere AdG denotes tbe usual adjoint action of G on g.

(6.1)

Hone takes Bj = rr/2 and Öj = 1, for all j = 1, ... ,l, then L is, up to a factor of i, a

typical element of a so-called "Toda orbit" in gn of Symes [1982]. We will call all elements

L appeanng in (6.1) Jacobi elementJ.

Let 11", ... ,ll be a set of homogeneous generators of the ring of invariant polynomials on

g chosen such that their restrietions to t are real and generate the invariant polynomials

on t. The Hamiltonian equations

(6.2)

on the B-orbit Jac of Jac~bi elements (5.1) will be called the Toda hierarchy. Fix an element

A in the interior of the positive Weyl chamber of t and let 0 A be the K -orbit through A.

The the Toda hierarchy leaves (JA n Jac invariant. For Al, (JA consists of matrices with

fixed spectrum A and 0 A n Jac is the isospectral manifold. After multiplying by i (and
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setting 8; = 1r/2, c; = 1 for j = 1, ... ,l) the first vector field in the Tod~ hierarchy for At

takes the familiar form t = [B, L], where

L= ,B (6.3)

For an arbitrary Lie algebra

t

B = L aj(eOj - e-Oj )

;=1
(6.4)

Theorem 6.1. Tbe Toda hierarchy is a completely mtegrable system and tbe 2l integrals

in involution are 11 , ••• ,1t..

For a proof of this and a wealth of additional material on the Toda Iattice see Kostant

[1979] and Symes [1980], [1982a]. We will return and sketch how a solution of the Toda

Iattice ia found in terms of the Iwasawa decomposition in the next section. In the sequel

we shall fix al1 8; = 'Fr/2 and all 8; = 1 and set arg aj = 1r/2.

Theorem 6.2. H H is minus i tirnes the sum o[ the simple coweigbts o[ g, then for

t t

L = L ib;hj +L ia;(eo ; + eOj ),

)=1 ;=1

bj , a; E R, equation t = [L, [L, N]] gives the generalized Toda fIow on the isospectral set
t

JacnOA. Explicitly, N = l: iXjhj wbere (Xl"", Xt) is tbe unique solution o[the system
;=1

t
L: x;Ctk{h;) = -1, k = 1, ... ,l.
;=1

For the proof, it is enough to require that [L, N] = -B with B given by (5.4) and to

observe that the solution of the system in (Xl,' .. , Xt) gives N = -ih!, where h! = L:~1 'xi

since (h!, eOi ) = 1, ( , ) heing the inner product. Therefore we can conelude
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Corollary 6.1. The generalized Toda lattice equations are"a gradient f10w on Jac n (JA

when OA is equipped with the normal metric.

The coefficients Xi in N are listed for all simple Lie algebras below

•

Es

Xi = -!i(i - i + 1), i = 1,2, , i

xi=-~i(2l-i+l), i=I,2, ,i-l

Xl = -~i(i +1)

Xi = -~i(2l- i) i = 1,2, ... , i

Xi = -~i(2i -1- i), i = 1,2, ... ,f - 2

Xl-l = Xl = -ii(f - 1)

Xl = -3, X2 = -5

Xl = -11, X2 = -21, X3 = -15, X4 = -8

Xl = -8, X2 = ..:..11, X3 = -15,

X4 = -21, X5 = -15, Xa = -8

Xl = -17, X2 = _~9, X3 = -33,

X4 = -48, X5 = - 725, Xa = -26,
_ 27

X7 --2"

Xl = -46, X2 = -68, X3 = -91,

X4 = -135, Xs = -110, Xa = -84,

Xr = -57, Xe = -29

For the classical simple Lie algebras represented as in Sattinger and Weaver [1986], for

example, we have

Al : hl = diag(1, -1,0,0, ... ), h2 = diag(O, 1, -1,0, ... ) ... ,

h l = diag(O, ... ,0,1 - 1) and hence
l-'2

N=i
l-2
-2-

l
"2
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Bl : h1 = diag(O, 1, -1, -1,1,0, ... ), h'J = diag(O, 0, 0, 1, -1, -1, 1, ... ) ... ,

hl = diag(O, ... ,0,2, -2) and

° -i
i

N=
-i+ 1

I-i

-1
1

Cl : h1 = diag(1, -1, -1, 1,0, ... ), h2 = diag(O, 0,1, -1, -1, 1, ... ) ... ,

hl = (0,0, ... ,0,1, -1) and
!(I - 2f)

~(3 - 2i)

N=i

3
'2

1
2

Dl: hi as for Cl and
-e+ 1

i-I
-l+2

2-l
N=

-1
1

o
o

Corollary 6.1 and Theorem 5.2 imply

Corollary 6.2. The projection of tbe fIow of the Toda lattice to t lies in tbe interior of

tbe polytope whicb is tbe convex bull oE 0 A n t.

This polytope is, however, not filled by all flows of the Toda hierarchy. For Aa the

image is polygonal hut lies inside the polytope. However, in general the image is not even

polygonal as shown by some explict cases studied by M. Zou at the University of Arizona.

•



21

§7 A convexity theorem for Jacobi elements

This section surveys the main results of Bloch, Flaschka, Ratiu [1990]. The starting

point is the observation at the end of §6 that Jhe Toda hierarchy flows do not fill out a

eonvex polytope by orthogonal projection. Return to the notations and eonventions of

§6; set Oj = 1, 8j = 7r /2 and so argaj = ~ for all j = 1, ... , i. The latter condition is

inessential since the arguments of the aj are always constant on Jac. Thus in this case

l

Jac = {L = i L[bjhj + aj(eer; + ej-er;)] I aj, bj E R}
.' j=1

and we shall fix onee and for all the B-orbit in b- ~ e. Define

Jg = {L E (JA n Jac Iaj > 0 for all j = 1, ,l}

:JA = {L E ()An J ac Iaj > 0 for a1l j = 1, , l} .

The closure of Jg is :JA and the boundary of :JA is a disjoint union of 2l - 1 strata each

stratum being given by the vanishing of some of the a/s. It is straightforward to see (as

in Kostant [1979] for example) that :Jl is preserved by the flows of the Toda hierarchy.

For the case of K = SU(l + 1) the Jacobi matrix L is

L = i

and
3g = {L I.L is conjugate to A and aj > 0 for all i},

:JA = {L I L is conjugate to A and aj 2: 0 for all j},

.:JA is the closure of .:Jg whieh in this case is the i30Jpectral Jet of the Jacobi matnces L. We

shall refer to JA as the cloJed iJOJpectral Jet and to Jac n 0 A as the iJoJpectral maniJold.

We shall use the same names when dealing with a general Lie algebra. Since the Toda

lattice is integrable and the integrals are 11 , .•• ,1l (see §6), 3g is an orbit of the 000­

eompact torus given by the fiows of the Hamiltonian vector fields corresponding to these

functions. Thus :JA is the closure of a non-compact torus orbit in the Kähler manifold (JA.
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In view 0/ Atiyah 'J Theorem 4.1, the map (11,'" ,It) to Rl mUJt have convex image. But

we jUJt Jaw at the end 0/ §6 that the orthogonal projection doeJ not have convex image.

There/ore, the queJtion naturally 4Ne3: can one embed JA in a different way in 0 A Juch

that it3 projection Mconvex~ The answer to this question is positive and solved in Bloch,

Flaschka, Ratiu [1990]; we will describe below the main ideas.

There has been prior work in which JA and J~ appear in the context of convexity

properties. Moser [1975] proved that J~ is diffeomorphic to Rl and Tomei [1984] proved

that JA is homeomorphic to a convex c10sed polyheclron. The first pictures of convex

polyhedra appear in van Moerbeke [1976} and then again in Deift, Nanda, Tomei [1983} ..
These polyhedra are used in these works as a useful tool to describe certain topological

relationships. In view of the convexity results of §4, it should be expected that these

polyhedra have a symplectic significance as we shall outline below. The construction

employed to achieve this goal is relatively involved and we shall omit it in this review. But

it is based on a mysterious relationship between diagonal non-compact toral actions and

left dressing transformations. Together with the ideas of §6, this work has relations~ps

to Fried's [1986] cohomology computations and to the work of Davis [1987] and Davis and

Janusiewicz [1990] on aspherical manifolds. The work of Lu and Weinstein [1990] and Lu

[1990] on dressing transformations seems particularly relevant to this circle of ideas as will

also be seen in §8.
. .

Before outlining the results, a very simple example is in order. Let e= su(2) and identify

su(2)* with R3
• The Lie-Poisson structure of su(2)* has the concentric spheres and the

origin as symplectic leaves. Represent A = diag(iA, -i.-\), A > 0 by the point (0,0, A) so

that 0 A is a sphere of radius .-\ eentered at the origin. The symplectic form is, up to a faetor

of -1/A, the area form, and the complex structure, making (JA into a Kähler manifold, is

essentially that of the Riemann sphere. The orbit OA consists in this simple example of

Jacobi elements. The other Poisson structure of R3 ~ b* has leaves which are open half­

planes containing the vertical axis and the points of the vertical axis, if one lets B be the

set of upper triangular matrices in SU(2). The compact torus T = {diag( eiS.' e- iS ) IB E R}
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acts by rotating the sphere (JA about the vertical axiSj namely

(
ib a)L E -a -ib E (JA C su(2),

b E R, a E C, is sent to

(
ib ae

29
)

_ae-29 -ib .

The momentum map J of this action maps L E (JA to b, i.e. it projects the point on the

sphere (JA parallel to the horizontal plane onto the vertical axis. The image of the sphere

(JA and of the "meridian", which is the intersection of (JA with aB-orbit (a "page" of the

"bock" b*), coincide and equal the convex interval [-..x, A].

This example generalizes completely, except for tbe very difficult projection part, which

does not give any problems here due to tbe low dimensionality of the example. What is

true is that JA (here the "meridian") can be embedded in a special way in OA such that

its projection is a convex polytope.

The convexity result alluded to above is built upon two main ingredients. The first one is

the explicit solution of the Toda lattice equation in terms of the Iwasawa decomposition as

it can be found in Kostant [1979], Reyman, Semenov-Tijan-Shanskii [1979], Symes [1980],

or GoodmaD;, Wallach [1984]. The goal is to solve

L(t) = [7rt 'V Ij(L(t)), L(t)], L(G) = L, (7.1)

where 11 , ••. ,Il are tbe homogeneous generators of the ring of real K -invariant polynomials

on e. First one shows that if cp : e--+ R is a homogeneous polynomial and one extends <.p

to gc in the obvious way using homogeneity, then if X = Re c.p and the gradient is taken

relative to Im It, 'VX(e) E ie for all e E e. From here it follows that 'VIj(L), j = 1, ... , i,

generate iC(L), where C(L) is the centralizer of L. Secondly, carry out the factorization

exp(t 'V Ij(L)) = k(exp(t 'V Ij(L)))b(exp(t 'V Ij(L)))j

then the solution of (7.1) is

(7.2)

(7.3)
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where 9 = k(g)b(g) ia the factorization of 9 E G defined by G = K B . Since L E C)A,

we can write L = AdkA for seme k E K. By our first comments, Adk-li \J Ij(L) E l, or,

equivalently, Adk-l \J Ij(L) E a = il Consequently, if j.l E a, X := Adkj.l, L := AdkA, the

curve L(t) = Adk(exptX)-tL is a solution of a linear combination of the equations (7.3).

But L(t) CRD clearly be rewritten a.s

L = AdJ:A 1-+ L(t) = Adk(exp(tll)k-1)-tA, exptj.l E A, (7.4)

which deflnes the Zefi dreJJing action of the non-compact real torus A on "A (see Lu,

Weinstein [1990], Lu [1990]). Unfortunately, tbe action of A defined by (4) is not the .

diagonal action

(7.5)

and Atiyah's theorem stated in Corollary 4.1 does not apply. Let J denote the momentum

map of the diagonal T-action, i.e. the orthogonal projection onto t relative to the invariant

metric coming from the Killing fonn on e. The image J(JA) is neither convex, nor a

polytope, a.s shown by examples by M: ZOll. One ean turn, however, (7.4) into (7.5) by

inversion. Namely, define t : TA -+ "A by t( kAk -1) = k-1 Ak and the Toda flow (4)

becomes

which is exactly the diagonal action. Therefore J(t(JA)) will be a. convex polytope by

Atiyah's theorem. The trouble ia that the "inversion" AdkA 1-+ Adt-l A makes no sense on

VA: when oue replaces k by kh, h E T, the image under twill depend on h.

More precisely , given L E (JA n Jac, L = AdkA, determines k only up to the right

multiplication of an element of T; remember, A is chosen once and for all in the interior

of tbe positive Weyl chamber of t. And this leads to the second main ingredient, namely,

k must be chosen in a smooth way and uniquely for each L E :JA. That this is possible

is ultimately based on the Bruhat decomposition of !( ioto cells and constitutes the main

technical part of the proof. It was inspired by ideas that show up also in Flaschka, Haine

[19901 and Ercolani, Flaschka, Haine [1990]. The upshot of this work is that the "inver"ion
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map" t can be extended continuowly to the boundary JA \J~ and that it j., a diffeomorphüm

on J~ and a komeomorph~m on JA. Here is its very simple and concrete description in

the case of SU(.e + 1). Let L = kAk -1. The columns of k are orthonormalized eigenvectors

of L. Let now L E J~; then the first row entries Tj of k da not vanish. Fix k by the

requirement that rj Irl E R. This is the smooth unique choice of k for a given L. The

"inversion" Lis now easy to describe. The Toda hierarchy acts on L(J~) as the noncompact

°torus Aasfollows: Consider the element

where Ck = i for k odd, Ck = 1 for k even, and PI, ... ,pi+l are arbitrary real coristants.

We have the mapping

It is a straightforward check to see that this action preserves the normalization of the r/s

described above.

Now, several. conclusions are possible.

Theorem 7.1. The image of JA under the map J 0 L : JA -+ t is the convex bu11 of the

Weyl group orbit tbrougb A.

Combined with the results of §6 and those in Duistermaat, Kolk, Varadarajan [1983]

who· show that the action of the one-parameter group exp tJ.l for J.l E a, on 0 A, is a gradient

flow generated by -K,(J.l,') relative to the Kähler metric, Theorem 7.1 now implies

Theorem 7.2. Tbe Toda Bows in :JA are gradient Bows in tbe metric induced by pulling

back tbe Kähler metric of L(JA) to JA.

It should be emphasized that the functions which generate the gradient flows are not

the Toda Hamiltonians. Theorem 7.2 is complementary to Theorem 6.2, where the Toda ,

flow is seen to be gradient relative to another metric which, geometrically, is more natural.

Shades of the "inversion map" L will appear also in §8 and there seems to be a connection

between these results and the ones of next section.
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We elose with some comments on the relationship between the results in §6, §7 and

Moser's [1975] gradient fiows associated with the Toda lattice.

We recall from Sections 5 and 6 that the Toda lattice equations are gradient with respect

to the normal metric on an orbit (JA and hence may be written in the form t = [L, [L, N]].

Now one can project the fiow on OA (which is diffeomorphic to K/T) to K/P, P a

parabolic subgroup of K.

Consider specifically the esse K = SU(l + 1) and let Po = diag(l, 0, ... 0) - l~l' Now

take the K-orbit (JiPo through iPo with points k(iPo)k-1 , k E K. This orbit consists of

points of the form: rank 1 projection matrix ~nus a multiple of the identity, an~ may thus

be identified with Cpl. Now we ean check that for iP E 0;Po, - (ad i P)2 ([iP, 1]]) = [iP, Tl]

and henee (see seetion 4) the normal and Kähler metric coincide. (This also applies to a

general Grassmannian; see Bloch, Flaschka and Ratiu [1990].)

Now consider the gradient fiow with respect to the Kähler (or normal!) metric of

l/J,,(iP) = -cTr(iPA") on Cpl. Here A = diag(.\1,' . . .\l) and c is 1 or i as needed to make

ifJ1: real. The gradient How ia

iF = [iP, [iP, cAk]].

t+1

ITjl = -Irjl(.\j - L AflriI 2
), j = 1 ... l +1

;=1

which is Moser's equation for the Toda lattice.

Note that this ßow is just conjugate to the Hamiltonian ßow iP = (iP, cAk] - just apply

the complex structure [iP, .]!

Note" also that Atiyah's theorem also applies to KIP. Ignoring the constant shift in

Po, the momentum mapping Jp : KIP -+ t is given by k-1 mod P -+ idiag(r ~r). The

Jacobi matrix L ia thus sent to (i Ir112 , ... , i Irt+112) and the image in t = Rt is the standard
t+1 .

simplex E ~; = l.
;=1
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§8 The non-linear convexity theorem of Kostant

This section reviews the results in Lu, Ratiu [1990]. It is not direetly related to the

previous ideas on the relationship between integrable systems and convexity. However,

the dressing transformation that appeared so prominently in §7 and certain aspects of the

"inversion map" on (JA can be found her~ too. There ~ms to be a mueh deeper conneetion

between the ideas in this section and the Toda lattice. Qn the symplectic geometrie side, we

think, the result cliscussed below raises a hast of other questions. For example, are there

other convexity theorems that have ultimately a symplectic origin? There are several

one can think of, among which are other convexity results proved in the same paper of

Kostant [1973], a.s Kostant himself has pointed out to uso On the other hand, are there

meaningful generalizations of the result below to a symplectic group setting? Finally,

do the constructions below shed Borne light on the second Hamiltonian structure for the

ArToda lattice (as opposed to the well-known results on the gl.(1. + l)-Toda lattice)?

We return to §3 on tbe symplectic convexity results and set the stage'for the statement

of one of Kostant's non-linear convexity results at Lie group level.

Gis areal connected semisimple Lie group with Lie algebra g and eis the Lie subalgebra

corresponding to a maximal compact subgroup of the adjoint group of G. g = 2EB P is the

Cartan decompo3ition, i.e. p is the orthogonal complement of e in g relative to the Killing

form. Tbe elements of p are all semisimple and P = exp p is a closed submanifold of G; exp

is a diffeomorphism bet~een p and P. A~ the group level, the map (k,p) E K x P J-+ kp

is a diffeomorphism, where K is a connected subgroup of G with Lie algebra e; one writes

G = K P and calla trus the Cartan decompo"ition 0/ G.

By the invanance of the Killing form, [2, p] C Pand therefore K acts on p by the adjoint

action and also on P by conjugation; the exponential map exp : p -+ P is K-equivariant.

Let adenote a maximal abelian subalgebra of p. The elements of a are all semisimple

and thus the adjoint representation of a on g decomposes as g = [EB U ga where { is the
aE~

centralizer of a in g, and for a linear functional a on Q, ga = {~ E g I [1], el = O:(1])~ for al1

7J E a}; cl» is the set of all such non-zero a's. Fix a basis in a and introduce the lexicographic

ordering on functionals on a. Put n·= U Qo and then g = eEB affin is the Iw~awa
a>O
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decompo~ition 0/ g. Let A, N be the connected subgroups of G with Lie algebras a and n

respectively. The IWa.5awa decompo~ition of G states that (k, a, n) E K x A x N 1-+ kan E G

is a diffeomorphism; one writes G = KAN. By W we denote the relative Weyl group of

(K, a), i.e. W is tbe quotient of the normalizer of a in K by the centralizer of a in K.

H G ia a complex semisimple Lie group, hut tbougbt of as areal Lie group, the ahove

choices are easier. e is a compact real fonn of g, the Killing form on g is the complex

line~ extension of that on e, p = ie, a = it, where t is a Cartan subalgebra of e. The

Weyl group of (K, t) is that of (K, a). Fixing a basis of twill ultimately define an Iwasawa

decomposition of g and G.

Now let G be a semisimple Lie group, real or complex. The Cartan and Iwasawa

decompositions define a diffeomorphism between P and AN, namely, if p. = kan, then

associate to p the element an. Let PA be the projection from G, P, or AN to A according

to the Iwasawa decomposition.

Theorem 8.1. (Kostant [1973J) For a E Adenote by (Ja tbe K -orbit oE a in P. Tben

PA( Oa) is tbe convex hull oE the Weyl group orbit W· a in A. (The Lie group Ais identified

with its Lie alegbra a via tbe eXponential map, so convexity makes sense.)

This statement is one of Kostant's nonlinear convexity theorems. The term is justified

by the following remarks and the example to be discussed below. The differential (tangent

map) of PA : P ---+ A gives the orthogonal projection Pa : P ---+ Q relative to the Killing form.

Let log: A ---+ Q be the inverse of exp and define J) := log 0 PA 0 exp : P ---+ Q. We compare

J) to Pa. J1 is non-linear and its differential at zero is pa. What K o~tant'~ theorem ~tate"

iJ the remarkable fact that ea.ch K .orbit in P hl1.5 the Jame convex image 'Under both J1 and

Pa and thi3 polytope iJ the convex kulI of the corre~ponding Weyl gro'Up orbit.

Let's sketch the simplest example: G = SL(n, C), K = SU(n), P = {n x n positive

definite Hermitian matrices with determinant I}, N = {n X n strictly upper triangular

complex matrices}, g = si(n, C), e= su(n ), Q = {n X n real diagonal traceless matrices},

P = {n x n traceless Hermitian matrices }, n = {n x n strictly upper triangular complex

matrices}. The Cartan decompositions are SL(n, C) = SU(n)P and seen, C) = su(n) EB p.
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The lwasawa decompositions are SL(n, C) = SU(n)AN, sl(n, C) - su(n) ffi affin. H

X E p, Pa(X) is the diagonal part of X. On the other hand

where .6.k is the determinant of the left upper corner k x k matrix. For X = (Xl, ... ,Xn ) E a,

the Hag manifold Ox (the K-orbit in p through X) is the set of all Hermitian matrices with

Xl, ... , X n as their eigenvalues. The relative Weyl group is in this example the permutation

group on n letters.

The expressions appeari~g in J1(X) remind one of the explicit solution of the Toda

lattice equations (see Kostant [1979]); we don't believe this to be an accident but cannot

explain it so far.

Let us outline below the main' ideas gaing into the "symplectic praof" of Kostant's

theorem. We begin with tbe complex case, i.e. G is a complex semisimple Lie group, K is

areal compact form of G, and G = KAN ia tbe Iwasawa decomposition. We let b := affin,

B := AN and remark as in §7 that eis isomorphie to 0" via the imaginary part of the

Killing form K.. Let Pt and Pb be the projections of g on eand 0 respectively relative to

the Iwasawa decomposition g = effi b. We will denote by Rb the right-translation in B by

b, its differential, and all its tensorially induced maps. The following theorem is deduced

form ~batract considerations in Lu, Weinstein [1990], Lu [1990] and carried out "by hand"

in Lu, Ratiu [1990].

Theorem 8.2. On B denne a bivector neId 1r, by

where bEB, X, Y E t ~ b". Tben 1r deB.nes a Poisson structure on B = AN wbich is

mu1tiplicative.

The property of multiplicativity means that 1r satisfies
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where Li) is left translation by b. A Poj.,80n Lie group is a Lie group endowed with. a

multiplicative Poisson structure. Thus theorem 8.2 gives a concrete natural formula for a

Poisson Lie group structure on B.

Tbe Iwasawa decomposition at group level G = KB induces a smooth projection PB :

G --+ B, PB(kb) = b. Define tbe K-action on B by

t7 : (k, b) E K x B .-+ PB(kbk-1
) E B.

Theorem 8.3. The symplectic leaves of tne Poisson structure 7t" in Theorem 8.1 are the

K -orbits in B relative to the action t7.

" Let t = ia and T be the connected subgroup of K with Lie algebra t. T is a maximal

torus in K.

Theorem 8.4. Tbe restrietion t7 to T leaves tbe Poisson.structure 7t" on Binvariant and

tbe map
J = log OPA : B = AN --+ a

J(an) = log(a)

is the momentum map for tms T -action.

It should be noted that the Poisson structure 1f" on B is not K-invariant, but only T­

invariant. In Lu, Weinstein [1990] it is shown that there is a natural Poisson structure on

K such that tbe map t7 : K x B --+ B is a Poisson map if one thinks of K x B as a product

Poisson manifold (see Weinstein [1983]). This Poisson structure on K alluded to above

happens to vanish on T and this is why this T-action is Hamiltonian.

Tbe Poisson structure 7t" on B and the T-momentum map J : B --+ a· are tbe first

. ingredient in the proof of Kostant's theorem in the complex case. The second ingredient

is the convexity Theorem 3.1. P and AN =. B are identified via PB (and both of them

are diffeomorphic to K\G). Tbe action q of K on B becomes tbe conjugation of K on

P. We will still denote by 7t" the pusb-forward to P of tbe Poisson structure on B and

so tbe symplectic leaves are the K -orbits on P. Every K -orbit in P intersects A and tbe

fixed point set of the T-action on tbe K-orbit is tbe corresponding vVeyl group orbit. Now
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apply Theorem 3.1 to the equivariant momentum map J of Theorem 8.4 to immediately

conclude Kostant's convexity result in Theorem 8.l.

Ta prove Theorem 8.1 for real Lie graups, a last ingredient is needed: namely Duis­

termaat's Theorem 3.4. For this, we need to identify an ant.isymplectic involution on the

K -orbits in P. We will do better and find an anti-Poisson involution; it will be induced

by a Cartan involution. Here is the construction. Let G be a connected real semisimple

Lie group with Lie algebra g. Without 10s8 of generality we may assume G has trivial

center so it aclm.its a complexificaton Ge. Then the Lie alegbra of Ge is ge = g EB ig,

the complexification of g. Let T(X + iY) = X - iY be conjugation in ge, X, Y E g, and

denote also by T the unique automorphism ef Ge whose differential at the identity is the

conjugation. The identity component ef the fixed point set of T is G. H 9 = ! ffi P is the

Cartan decomposition of g, let !e = ! EB ip, Pe = it ffi P = ite so that beth te and Pe

are T-invanant and the fixed point sets of T I !e, T I Pe are eand p respectively. !e is a

cempact real fenn ef ge and ge = !e EB Pe is a Cartan decomposition of ge. Let 0. be a

maximal abelian subalgebra of P, 0.' a maximal abelian subalgebra of 9 containing 0. and

let ae = a EB i(a' n !). Then Oe is a maximal abelian subalgebra of Pe and 0. is the fixed

point set of T I Oe. Bases in 0 and ac are chosen such that the basis in Oe is a prolongation

of the basis in a. Relative to such a choice (and a lexicographic ordering), we have the

Iwasawa decomposition

9 = eEB a EB n, gc = !c El1 ae El1 ne.

nc is T-invariant and, as before, the fixed point set of Tlne is n. Now pass to the group

level and use the same notational scheme.

Theorem 8.5. Let 1T' be tbe multiplicative Poisson structure on Be = AeNe defi.ned in

Tbeorem 8.2. Then TIBe is an anti-Poisson auto~orphism, i.e. T*7r = -1T'.

Now Kostant's Theorem 8.1 for real Lie groups is a direct consequence of Duistermaat's

Theorem 3.4 applied to a K-orbit in P viewed as the fixed point set of T on the Ke-orbit

in Pe through the same point. The oo1y missing link is the momentum map Pe --+ a,

which, after a suitable identification becomes the Iwasawa projection Pe --+ A. This is
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constructed in the following way. Let Tc be the maximal torus of Ke with Lie algebra

iae. By Theorem 8.4, Tc leaves the Poisson structure on Pe invariant (recaJl, we identify

Pe and Be = AeNc). Let T be the subtorus generated by t = ia. Apply theorem 8.4 to

conclude that this action has equivariant momentum map

JT : (kcacne) E Pe 1-+ proja(1og ae}

where ke E Ke, ae E Ae, ne E Ne and proja: Oe -+ a is the orthgonal projection

relative to the Killing form. Let ao be the orthogonal complement of a in ac and define

Ao = exp ao. Then Ac = AAo and we can regard JT as

JT : (keaaone) E Pe H a E a

for kc E Kc, a E A, ao E Ao, ne E Ne. As before, this map is T-invariant. Now restriet

the T-action and the momentum map to a Kc-orbit in Pe. By Theorem 3.4 the image of

the T-fixed point set, which is the K-orbit in P through the same point, has JT-image in a

equal to the convex huH of the image of the fixed point set of the T-action on the K -orbit.

But this fixed point set is the intersection of the K -orbit with A, i.e. the corresponding

Weyl group orbit in A. Finally, JT restriets to the identity map on A. This proves Theorem

8.1 in the real case.

It ia worthwhile noting that the symplectie leaves of 1T' in p and the symplectic leaves

of the Lie-Poisson structure on e'" = p coincide: Moreover, a theorem of Conn [1985]

guarantees that locally, around zero, these two Poisson structures are isomorphie (the key

assumption in CollO's theorem, that eis eompact semisimple, ia automatieally fulfilled in

our case). We suspect that these Poisson structures are globally isomorphie and hope

that the isomorphism is relevant to questions regarding the multi-Hamiltonian structure

of the Toda lattice equations. Duistermaat [1984] has already shown that the momentum

maps for these two struetures can be obtained from each other by a homotopy argument.

The hoped for Poisson isomorphism between 1T' and the Lie-Poisson strueture cannot be

K -invariant since 1T' is not whereas the Lie-Poisson structure iSj it must, however, be T­

invariant.
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