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Convexity and integrability
A. M. Bloch* and T. S. Ratiu**

Abstract

In this review we present the main convexity results of Atiyah, Duistermaat, Guillemin,
Kostant, and Sternberg and their relationship to the dynamic behavior of the generalized
non-periodic Toda lattice. A “symplectic” proof of one of Kostant’s convexity results at
group level is also sketched. This review is an expanded version- of the talk one of us
(T.S.R.) presented at this conference and is based upon the papers, Bloch, Brockett and
Ratiu [1990 a,b], Bloch, Flaschka and-Ratiu [1990], and Lu and Ratiu [1990]. |

§1. Introduction

In symplectic and Poisson geometry one of the main objects of study is the momentum
map associated to a Hamiltonian action. This map, with values in the dual of the Lie
algebra of symmetries, was introduced in its modern formulation by Kirillov ( see Kirillov
(1976]), Kostant [1970], Souriau {1970] and Smale [1970] and it turns out to be at the
center of many important geometrical facts that are useful in a variety of fields of both
pure and applied mathematics. One of the most striking aspects of the momentum map
are its convexity properties as formulated in the now famous theorems of Atiyah [1982),
Guillemin and Sternberg [1982], [1984] and Kirwan [1984]. No serious relationship of this
property with the dynamics of Hamiltonian systems has been forged so far even though
already a superficial familiarity with these theorems suggest links to dynamie bifurcation
behavior.

A specific branch of Hamiltonian dynamics, namely the theory of completely ini;egrable
systems, seems particularly suited to a study via the convexity theorems, since the hierar-

chy of flows comprise the action of a cylinder (often just a torus) whose momentum map
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is simply the collection of integrals of motion. To the disappointment of many symplec-

tic geometers, the theory of integrable systems, which interacted so fruitfully both with
algebraic geometry and representation theory, had no impact in its recent development
on its own field of origin, namely symplectic geometry itself. It may turn out that the
reasons are simply in the subtlety of such an interaction. In this review we want to outline
several results in this direction, some of which we came across simply by accident. We
shall deal here onl:;r with one class of examples: the non-periodic generalized Toda lattices.
Judging from this example the convexity properties of the momentum map have a very
subtle but decisive influence upon the dynamics of completely integrable systems and this
whole relationship is worthwhile exploring both in genergl, as well as in specific examples.

The review is organized as follows. §2 is simply a collection of standard defintions and
properties from Poisson geometry and the theory of momentum maps. Its sole purpose
is to fix notation and conventions for the rest of the work. §3 reviews the relevant sym-
plectic convexity results and §4 discusses their extensions in the important case of Kahier
manifolds. The different metrics on orbits are also discussed since they are needed later.
85 introduces an abstract gradient system first studied in the su(n)-case by R. Brockett
[1988]. This gradient system lives on adjoint orbits of .compa,ct Lie algebras and the dy-
namic behavior of its ﬁo'w is entirely determined by the momentum map on this orbit.
§6 shows that for a special choice of parameters, this gradient system becomes the Toda

lattice on its isospectral set. Thus the famous scattering behavior of the Toda flow, so

'useful in numerical analysis, is simply an inheritance from its “partner”, the so-far hidden

gradient system. §7 discusses this relationship on a deeper level: since the Toda hierarchy
is integrable, it naturally defines a non-compact torus action on an adjoint orbit which is
canonically a Kahler ma.m'foid. Then why does the isospectral set not have a convex image
under the momentum map? The answer is because the action is not the diagonal one. Can
one embed the isospectral set in a different way so that its image under the projection is
convex? The answer is positive and discussed in §7. Finally, §8 presents a symplectic proof
of one of Kostant’s non-linear 'convexity results. The relationship with the Toda flows is

not clear here but several formulas and constructions are very similar and suggestive for




the standard results one finds in the non-periodic Toda-lattice theory. We hope that a

more serious link can be found. Also, the result in §8 suggests several generalizations.

As mentioned already at the beginning, this paper is a review. We hereby would like
to thank our coauthors R. Brockett, H. Flaschka, and J.-H. Lu without whom the results
presented here would not have been possible. §5 and §6 are based on Bloch, Brockett, Ratiu
[1990a,b], §7 on Bloch [1990] and Bloch, Flaschka, Ratiu [1990], and §8 on Lu, Ratiu [1990].
These papers drew inspiration from the papers Brockett {1988, 1989]. Conversations with
B. Kostant, J. Marsden, A. Reyman and A. Weinstein throughout the period the above
mentioned papers were written have been of indispensable importance. Finally, T. Ratiu
would like to thank the Max Planck Institute for Mathematics, Bonn, Germany, where
part of this review was written, and the organizers of this conference for the opportunity

to participate and enjoy both the talks and the lively discussions.

§2 Poisson manifolds and momentum maps.

The only purpose of this section is to introduce notations, specify conventions, and spell
out definitions of concepts used throughout this review. Anyone familiar with this material
can safely skip it.

A Poisson manifold is a pair (P, {,}) formed by a smooth manifold P whose ring of
functions F(P) is a Lie algebra relative to an operation {, } called a Poisson bracket which
is a derivation in each argument. Thus, for fixed H € F(P), the formula F € }'(P) b
{F,H} € F(P) determines a vector field Xy called the Hamiltonian vector field determined
by H, i.e. (dF,Xy) = {F,H}. There are two main examples of Poisson manifolds:

a) Symplectic manifold, which are manifolds P carrying a closed non-degenerate two-form
w. Defining Xy by the requirement that w(Xyg,Y) = (dH,Y) for any vector field ¥ on P
and setting {F, H} = w(Xp, Xy) one easily proves that ( P,w) becomes a Poisson manifold.
b) Duals ﬁf Lie algebras. Let g be a Lie algebra and let g* be the space of all linear
functioga.ls on g. For F' : g* — R define the functional derivative §F/6p € g by the

requirement

DF()-v = (1 5)




for all v € g*; DF denotes the usual Frechet derivative of F. g* is a Poisson manifold

relative to the Lie-Poisson structure

(F H)a(s) = £ [‘}—f i—f])

A key property satisfied by the Poisson bracket on (P, {,}) is that F' — Xp is a Lie
algebra anti-homomorphism:

X(ruy = =[XF, XH]

for all FJH € F(P). Poisson manifolds stratify into symplectic manifolds called the
symplectic leaves of P. They are described in the following way. On P define an equivalence
relation which identifies two poin'ts if they can be joined by a piecewise smooth path,
each segment of which is a trajectory of a locally defined Hamiltonian vector field. The
equivalence classes are connected immersed Poisson submanifolds (i.e. a Hamiltonian
vector field on P at a point on such a submanifold is tangent to it) with the Poisson
bracket defined by a symplectic form. The tangent space at p to the leaf containing p
is {Xu(p)|H € F(P)}. We refer to Weinstein [1983] for more information on Poisson
manifolds. If P is symplectic, its symplectic leaves are its connected components. If
P = g*, its leaves are the connected components of the coadjoint orbits of the underlying
Lie group G of g. The symplectic form on these orbits is the Kirillov-Kostant-Souriau
form,

w(p)(adgy, adyu) = £(u,[¢,7])

for £,n € g, 4 € g*, 1 on the orbit in question.
Let G be a Lie group acting on (P,{,}) in a canonical fashion, i.e., preserving the
- Poisson bracket. For £ € g denote by p the infinitesimal generator of the action, i.e.

. d
¢p(p) = = |izo (expt€) - p

where exp : g — G is the exponential map and dot denotes the action. Since we consider

left actions, £ ~ {p is an anti-homomorphism, i.e.

[E$ 77]P = —[fPJTP]




for all £,7 € g. We shall say that the G-action on P is Hamiltonian if there is a Lie algebra

homomorphism p : g — F(P) factoring £ — £p through H »— Xpg, i.e.

{p = Xp(«f)

for all £ € g. If P is symplectic and G is semisimple such a homomorphism always
exists; this is a corollary of the two Whitehead lemmas. The map J : P — g* given by
(J(p), &) = p(€)(p) for all £ € g, p € P is called the momentum map of the action. We
shall denote p(€) = Je and therefore we have .

Jem = {Je, Jq}

for all £, € g.

§3 A brief review of symplectic convexity results.
Some of the most striking global properties of the momentum map are its convexity

properties. In this section we briefly review the main results in the symplectic context.

Theorem 3.1. (Atiyah [1982], Guillemin and Sternberg [1982]). Let P be a compact
connected symplectic manifold and T a torus acting in a Hamiltonian fashion on P with
' momentum map J : P — R", n = dimT. Let PT denote the fixed point set of T. Then:

(i) J(PT) is finite and each point is the image of a connected compenent of the set where

the derivative of J vanishes;
(ii) each fiber J~!(c), ¢ € R®, if non-empty, is connected;

(iii) J(P) is the convex hull of J(PT)

This theorem generalizes to the symplectic setting the following remarkable result of
Kostant:

Corollary 3.1. (Kostant [1973]) Let G be a connected semisimple or a compact connected

Lie group, T a maximal torus. Let g,t denote the Lie algebras of G and T respectively.
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Fix a G-invariant metric on g. Then the orthogonal projection of an ad ljoint orbit O onto

t is the convex hull of the corresponding Weyl group orbit O Nt.

Indeed, by the G-invariant metric, adjoint and coadjoint orbits are identified and the
orthogonal projection is just the momentum map of the T-action on O. The fixed point
set of the T-action on O is the Weyl group orbit W N O and the corollary is thus a direct
consequence of Theorem 2.1. Kostant’s result is itself a generalization of the following

classical result:

Corollary 3.2. (Schur [1923], Horn [1954]) Denote by {a} the set of diagonals of all
Hermitian n X n matrices with given eigenvalues A = (A,...,A,). Let the symmetric

group S, act on R™ by permutation of coordinates. Then {a} is the convex hull of S, - A,
the S,-orbit through A.

This follows from Corollary 3.1 by taking G = U(n). Going in the opposite direction,

Kirwan has generalized Theorem 3.1 to compact connected Lie groups.

Theorem 3.2. (Kirwan [1984]) Let P be a compact connected symplectic manifold and
let the compact connected Lie group G act in a Hamiltonian fashion on P with momentum
map J : P — g*. Let T be a maximal torus in G,< t its Lie algebra and let t}. denote the
positive Weyl chamber relative to a fixed ordering. Then

(i) each fiber J~(u), if non-empty, is connected;

(ii) J(P)Nt; is convex.

Theorems 3.1 and 3.2 can be proved together by a method different from the ones used
in the original pa.pex;s; this is done in Condevaux and Molino [1988]. A beautiful survey of
applications of theorem 2.1 can be found in Atiyah [1983].

The question naturally arises whether the image of the momentum map characterizes
the action. For so-called completely integrable toral actions the answer is positive. A

torus action on a symplectic manifold P is called completely integrable if the action is

Hamiltonian, faithful, and dim P is twice the dimension of the torus.




Theorem 3.3. (Delzant [1988]) Let Py, P; be two compact connected symplectic mani-

folds of dimension 2n and T' an n-dimensional torus acting in a completely integrable fash-
ion on both P, and P, with momentum maps J, and J; respectively. If J1(P) = J2(P2)
then there is a T-equivariant symplectic diffeomorphism ¢ : Py — P3 such that Joop = Jy.

Theorem 3.3 is a companion to the Theorem 3.1. The correspnding companion to
Theorem 3.2 is not known in full generality but there are results for groups of low rank by
Delzant.

In order to deal with the analog of projections of real flag manifolds as opposed to

complex ones, Duistermaat has proved the following:

Theorem 3.4. (Duistermaat [1983]) Let ( P,w) be a compact connected symplectic man-
ifold on which the torus T acts in a Hamiltonian fashion with momentum map J. Assume
that T : P — P is an antisymplectic involution (i.e. o7 = identity and T*w = —w) which
leaves J invariant (and so it will necessarily invert the toral action: Togor~1 =g~ for

all g € T). Let Q be the fixed point set of P which is assumed to be non-empty. Then

(i) J(@)=J(P)
(ii) J(Q) is the convex hull of the finitely many points J(PT N Q), where PT is the fixed -

point set of the T-action on P;

(iii) PTNQ = {p € Q| the derivative of J|Q at p vanishes}; each connected component of
this set equals the intersection of a connected component of PT with Q; it is mapped

by J|Q into one point;

(iv) all results above hold if Q is replaced by one of its connected components.

There are many other convexity results in the literature. We have deliberately avoided
the infinite dimensional case and those theorems for which a symplectic analog is not yet
known. The notable exception is one of the non-linear convexity results of Kostant {1973]
dealing with the Iwasawa projection which will be reviewed in a more natural setting in

the last section of this paper; a “symplectic proof” for it will also be sketched. It is a

challenge, in view of this, to try to “symplecticize” the great variety of convexity results




available. The Kihler case is special and very important. It will be dealt with in the next

section.

§4 The Kahler convexity theorem and coadjoint orbits.

The convexity results reviewed in §3 hold also for Kahler manifolds, since every Kahler
manifold is symplectic. However, due to the extra structure there is an important refine-
ment, particularly relevant to integrable systems, proved by Atiyah [1982]; see also Atiyah
[1983]. In this section we review this result and discuss it also in the important context
of coadjoint orbits of compact Lie groups. In addition, we will briefly recall the relevant
facts about the possible invariant metrics on these orbits; this material is needed in §7.

On a Kahler manifold one has a Riemannian metric g, a syrﬁplectic form w, and an
integrable almost complex structure J (i.e. 7J = 0 where ¥ is the covariant derivative
of the Riemannian connection defined by g). We have J™! = J* = —J the adjoint being
taken relative to g. The relationship between grad f and Xy, where X is the Hamiltonian
vector field corresponding to f : P — R, is the following:

grad f = JX;.
This follows from the interdependence of (¢,w, J) established by the formula
w(u, Jv) = g(u,v)

for all u,v € T,P, p € P. Any two of (g,w,J) uniquely determine the third. We have
Ju=1vforall v € TP.

Assume a torus T acts on the Kahler manifold P preserving all structures. Thus the
action of T consists of holomorphic mappings. Since the automorphism group of a complex
manifold is a complex Lie group, the T-action extends to a holomorphic action of the
complexification T¢ of T'. The Lie algebra tc of T¢ is t@ a, where t is the Lie algebra of T
and a = it. Define A = expa C T¢; it is a vector Lie subgroup of T¢ since exp is injective
on a. Moreover (¢,a8) € T x A — ta € T¢ is a diffeomorphism. We phrase the following
theorem both in terms of complex toral orbits and in terms of the noncompact real toral

orbits. As usual, the standing assumption is that P is compact and connected and that the

T-action is Hamiltonian with momentum map J : P — t*.




Theorem 4.1. (Atiyah [1982]) (i) Let X be the closure in P of the complex toral orbit
Tc-p, p € P. The set of fixed points of the T-action in X, PT N X, equals the intersection

of X with the set of points in P where the derivative of J vanishes. Each connected
component of this set is mapped by J to one point in t*. The image J(X) equals the
convex hull of these points which are the vertices of a convex polytope. For each open
face o of this polytope J™*(0) C X consists of a single T¢-orbit. Moreover, J induces a
homeomorphism of X/T onto the polytope.

(ii) Let Y be the closure in P of the A-orbit A-p, p € P. PT NY equals the intersection
of Y with the set of points in P where the derivative of J vanishes. Each connected
component of this set is mapped by J to one point and J(Y') is the convex hull of these
points which are the vertices of a convex polytope. For each open face o of this polytope,
J~Y(o) consists of a single A-orbit. Moreover, J induces a homeomorphism of Y onto the
polytope.

(iii) For generic X and Y as in (i) and (i), J(P) = J(X) = J(Y).

The formulation (ii) was explicitly spelled out by Duistermaat [1983] and used to gen-
eralize Kostant’s theorem on the convexity of certain projections of real flag rﬁanifolds.

If G is a compact Lie group it admits a complexification G¢. Any coadjoint orbit of
G is of the form G/C(T") where C(T") is the centralizer of a subtorus T' of the maximal
torus T of G. So, generically, the orbits are flag manifolds. Fix a positive Weyl chamber
in t and hence a Borel subgroup B of G¢, B D T, and a parabolic subgroup P of G¢,
P D> C(T"). Since G/C(T") and Ge¢/P (generically G/T and G¢/B) are diffeomorphic,
one can naturally induce a complex structure on G/C(T") which is homogeneous under
the Gc-action. Thus on each coadjoint orbit of G in g* we get a homogeneous complex
structure. Together with the Kirillov-Kostant-Souriau form this makes the coadjoint orbits

Kahler. Theorem 4.1 immediately implies the following:

Corollary -4.1. (Atiyah [1982]) Let A be the non-compact part of Tc, i.e. A = expa,

a =1, t the Lie algebra of T. Relative to the invariant metric on G identify coadjoint and

adjoint orbits. Let Y be the closure of an A-orbit in g* = g which lies in the (co)adjoint
orbit O of G. If J : O — t is the orthogonal projection then J(Y) is the convex hull of the
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points in t which are the images of the points in Y where the derivative of J vanishes. J

is a homeomorphism of Y “to this closed convex polytope. For genericY, J(Y) = J(O).

For our later purposes it will be useful to review here several of the many natural metrics
on coadjoint orbits of compact Lie groups. Let G be a compact connected semisimple Lie
- group and O,,, an adjoint orbit through uo € g. Let s denote the Killing form on g. Most.
of the material below may be found in Besse [1987].

(i) g is a Riemannian manifold with the constant metric given by the negative of the Killing

form. Pull this metric back to O,, by the inclusion. One gets the induced metric given by

([P? '7]7 [us 'S])l = —ﬂ([p, 77]7 [Aus E])

for all (4, 7], {1,€] € TuOpo, pt € Opo-

(i) Left translate —«(-,-) from g = T.G to T,G to obtain a left-invariant metric on G.
This metric is actually bi-invariant since x is invariant under the adjoint action. The
quotient of G by the stabilizer of uo inhertis in this way a Riemannian structure. Thus
O,, becomes a Riemannian manifold. In Besse [1987) the metric obtained in this fashion
is called the normal metric; Atiyah [1982)] calls it the standard metric. To write an explicit
formula, let u € g, ﬁ,, = {€ € g|[&, 4] = 0}, g* = imadpu}, and denote for 7 € g by n* the
g#-component of 1 in the direct sum decomposition g = g, @ g#; the two summands are
orthogonal relative to —«(+,+). Then for [g,7)],[s,(] € T,O,, the normal metric has the

expression

((#JI], [I‘v fl)n = “K(ﬁp, C'u)

(iii) Finally there is the large family of G-invariant Kahler metrics on O,, which are
in bijective correpséndence with the points of the positive Weyl chamber t] by Borel’s
theorem. Among all of these we single out the one corresponding to the intersection point
of O, with t]. An explicit formula in the spirit of the above two expressions is not
possible. Let A(u) = /=(ad u)? be the positive square root of —(ad u)?. Then the Kihler

metric is given by

((Ju’ ’7], [/‘1 C])K = (A(f-‘)[f‘1 C]v [,u, C])n
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whereas the induced metric and the normal metric are related by

([#?n], [, C1)i = (A(u)* (1, 7], [, C])m

as can be easily checked. From the formula of the Kahler metric one sees that the root
space decomposition of g enters quite explicitly.

Generically, if O,, is diffeomorphic to G/T, the Kahler metric is determined by a T-
invariant metric on g/t = € ga, where g, is the root space determined by the root a. Let
u € O, be in the interioraof the positive Weyl chamber, i.e. a{u) > 0 for any positive
root a. On each two-dimensional space go @ g—q, for a a positive root, the negative of the
Killing form determires an inner product. Any other inner product is given by multiplying
it by a scalar. Then these scalars are all equal to 1 for the normal metric, equal to a(u)
for the Kahler metric, and equal to a(u)? for the induced metric; the spaces go @ g—o and

gs ® g—p for different positive roots a, § are orthogonal. .

§5. A special gradient system for a linear function on coadjoint orbits.

In this section we begin by discussing a gradient.system on a compact Lie group and
its induced system on a specific coadjoint orbit. We wil show that this new system is
also gradient relative to the restriction of a linear function to the orbit. The dynamic
properties of its flow turn out to be intimately connected with the convexity results of §3.
The material in this section reviews the work in Bloch, Brockett, Ratiu [1990a)], [1990b]
some of which was in turn influenced by the results in Brockett [1988}, [1989] dealing with
the SU(n)-case. |

Let K be a compact semisimple Lie group, ¢ its Lie algebra and « is Killing form. Fix
two elements Q, N € ¢ and define the function ¥ : K — R by

F(6) = x(Q, Ads ). (5.1)

Endow K with the bi-invariant Riemannian metric {-,-) whose value at the identity is

minus the Killing form. Denote by 8 - P the left translate of P € E by § € K to TyK. If
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vg=0-Re ToK, R€?, then

dF(6) -vg = F(fexptR)

7 o |
= & |1o M(Ado-1 Q, Adexp )
= x(Ady-1Q, [R, N))

= k([N, Ady-1Q], R)

= —(8- [N, Ads-1Q)],ve)

whence
ZF(8) =6-[Ads-1Q, N] _ (5.2)

and we get

Proposition 5.1. The gradient flow on K relative to (-,-) and the function (5.1) is given
by § = 6 - [Adg-1Q, N]. ‘

Let O be the adjoint orbit containing (). The projection of K to O is given by
0 — Adg-1Q. . (5.3)

Via this map, the gradient flow in proposition 5.1 transforms to

-

Indeed, put L(t) = Adg)-1Q, where 6(t) is an integral curve of § = 8- [Adg-1Q, N]; then
£(t) = —[87 (19(8), Adyc+ Q)

= [L(t),8()"6(2)] = [L(2), [L(¢), N1l

Next, decompose orthogonally ¢ = b @ ¢~, ¢, = {z € #|[L, X] = 0}, 8¢ = im(ad L), and
denote by X = X1 + X’ the decomposition of X € ¢ into its ¢, and £*-components (see
the end of §4). Endow O with the normal metric

(L, X, (L, Y))n = (Xt YTy ~ (5.3)
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and define. .
H:Let—x(L,N)eER (5.6)

By definition of the gradient relative to (-, ), on O we have for the restriction of H to O
(gradH(L),[L,6L))q = dH(L) - [L,$L]

= —dH(L)-[6L, L]
d

- |!=0 H(exptéL - L)

= dﬁt' |t=0 (exptéL - L,N)
= ([6L, L}, N)

= ([L,N},éL)

= ([L,N],(8L)").

Therefore, if we set grad H(L) = [L, X], the above equality and (5.5) say that
(X, (6L)*) = ([L, N}, (6L)")
whence Xt = ([L, N))l = [L, N]. Thu.;;
grad H(L) = [L,[L, N]|

which coincides with (5.4). We summarize these results in the following:

Theorem 5.1." The projection (5.3) of the gradient low 6=9. [Adg-1Q, N] to the orbit
O through Q is the gradient flow L = [L,[L,N]] on O relative to the normal metric and
the function H given by (5.6).

The connection of the dynamics defined by this gradient system and the convexity
results of §3 is given by the following.

Theorem 5.2. On the orbit O of K in ¢ consider the gradient flow L = [L,[L, N]] for N
a fixed regular element. Let F; be the flow of this vector field on O. The set of equilibria
equals O Nt where t is the Cartan subalgebra of ® containing N. This set O Nt consists

of a single Weyl group orbit. The convex hull of these equilibria is a compact-polytope P
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. which is the image of O under the momentum map 7 : O — t (the orthogonal projection)
defined by the adjoint T-action on O, where T is the maximal torus in ¥ obtained by
exponentiating t. w(F¢(O)) lies entirely in P.

Proof. Indeed, by Kostant’s theorem, stated in Corollary 3.1, the theorem is proved pro-
vided we show that the equilibria of L = [L, [L, N]] necessarily lie in t. Since this gradient
field is defined on the compact manifold O, its flow is cbmplete, so all that needs to be
shown is that tlingo L(t) € t for any integral curve L(t). But

%(K(L, N)) = &(N, [L,[L, N)})-= —~([L, N}, [L,N]) > 0

so that x(L(t), N) is increasing as a function of time. It must also be bounded since
L(t) € O and O is compact. Thus x(L(t), N) has a limit and its derivative vanishes if and
only if L{co) and N commute, i.e. the equilibrium L(oo) must lie in t. O

By taking advantage of this theorem, Bloch Brockett, Ratiu [1990b] prove the following

Theorem 5.3. In the hypotheses and notation of Theorem 5.2 we have:

(i) The only stable equilibrium (a sink) of this gradient vector field is the one that lies in
the Weyl chamber of —N. '

(ii) The only source of this vector fleld is the unique equilibrium which lies in the same
Weyl chamber as N.

(iii) The dimension of the stable manifold at any of the equilibria equals the length of the
Weyl group element which maps the Weyl chamber of N to the Weyl chamber containing
this equilibrium. |

§6. The Toda equations as a gradient system.

In this section we show the relationship between the non-periodic Toda lattice equations
and the. gradient system in §5. It turns out that for very special choices of N, the two
systems coincide on the isospectral set. Thus, the Toda flow naturally inherits all the
scattering behavior of its “brother”, the gradient system discussed in §5. This property of

the Toda flow has found remarkable applications in numerical analysis, especially regarding
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the QR-algorithm; see Deift, Nanda, Tomei [1983], Lagarias [1988], Symes [1982]. The
material in this section reviews the results in Bloch, Brockett, Ratiu [1990a], [1990b],
Bloch, Flaschka, Ratiu [1990],

We begin with a slight generalization of the non-periodic Toda lattice associated to an
arbitrary Dynkin diagram. These equations will lie on orbits of suBa.lgebras in a cohpact
Lie algebra which is the compact real form of a complex semisimple Lie algebra. For certain
values of the parameters, the usual generalized non-periodic Toda lattice is recovered as
we shall explicitly point out later on. This set-up is the natural one in which one links
the Toda equations with the gradient system in §5 and also gives rise to several interesting
questions, some of which will be addressed in §7.

We build on the Lie algebraic notations and conventions at the end of §4 which are
in agreement with Humphreys [1972]. g denotes a complex semi-simple Lie algebra of
rank £. Fix a Cartan subalgebra of g and denote by &, ®*,®~, A the systems of roots, of
positive roots, of negative roots, and of simple roots A = {a,...,a¢} respectively. The
Killing form on g is denoted by , and the inner product on roots by (-,-). The notation
(a, B) = (a,8)/(B,B) for a,B € & will also be employed. g, denotes the a-root space of
g. Fix a Chevalley basis {hi,eqlt = 1,...,4,a € ®} and recall that e, is the basis vector
of the one-dimensional complex vector space ga, ha = [€a,e—q] for @ € &, h; = hy,, and
K(ha,h) = 2a(h)/(a,a) for all h € g and a € . Let 2, = €0 — €—a, Ya = i(€a + €=a)
for « € ®t and define: ‘

(i) the compact real form of g

{
B={i) bjhj+ Y i(caZa + daYa)lbj,Cca,da € R}
i=1 acdt

(ii) the normal real form of g

4
Gn = {Zibjhj + Z Caealbjaca € R}

Jj=1 agdt

(i) the compact toral subalgebra of g

4
t={i) bjhjlb; € R}

=1

SrrnearE T o T e nd =3
A T L
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(iv) the non-compact toral subalgebra of g

(4
a=it={) bjh;lb; €R}

=1

b=a® U ga, n¥= U g
(V) ®ae¢+9°’ acdt fa

Think of g as a real Lie algebra and thus dimg g = 2dimc g. We shall always denote by g
this real Lie algebra and will write gc whenever g is thought of as a complex Lie algebra.
We have g = ¢ b. The adjoint groups corresponding to these Lie élgebras are denoted
by G,K,G,,T, A, B, N* repsectively. For the Iwasawa decomposition G = KAN = KB
we will write the factorization of g € G as g = k(g)b(g) for k(g) € K, b(g) € B.

There are two Poisson structures on ®. The first one is obtained by pulling back the Lie-
Poisson structure of ¢* to & via the restriction of the Killing form « to & which is negative
definite. The other Poisson structure comes from a construction used by Lu and Weinstein
[1990]. The non-degenerate bilinear form Im x on g vanishes on ¢ since ¢ is a real form of
gc. Also £(ga,9s) = 0 unless a+ # = 0 and thus «(b, b) = x(a,a) € R; thus Im x vanishes
on b The annihilator of ¢ relative to Im« is ¢ itself, and is isomorphic to b* as a real
vector space. We summarize these observations together with the Adler-Kostant-Symes

theorem in the following;:

Proposition 6.1.'(i) ¥ is equipped with the usual Lie-Poisson bracket. The coadjoint
orbits O are the symplectic leaves of this Poisson manifold. The symplectic form is given by
the Kirillov-Kostant-Souriau formula (see §2). The coadjoint orbits O are Kihler relative
to the canonical Kahler structure (see §4).

(ii) ¢ = b* has a second Lie-Poisson bracket given by

{£,8}(€) = —Im (&, [ms 7 F(€), T 7 R(E)])

where f,h are arbitrary extensions to g of f,h: ¢ = R, 7 is the gradient relative to Im «,

ie.

df(£) - 6¢ = Im x(v £(£), 6€),

ne 18 the projection onto b corresponding to the decomposition g = €@ b, and &, 86 € L.
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(iii) If f is an invariant function on g, i.e. [V f(¢),(] = 0 for all { € g, then the Hamiltonian
vector field relative to the Poisson structure in (ii) defined by f|t is given by the Lax

equation

Xpe(€) = [me v f(€),€], €€t
Hamiltonian vector fields defined by invariant functions commute.

The Toda equations are a Hamiltonian system on a coadjoint orbit in b* = & of dimension

2¢. The following is a straightforward verification following the pattern in Kostant [1979]:

Proposition 6.2. Let § = (61,...,8;) be a vector of 0’s and 1’s and fix (6:,...,0¢),
: ¢
8; € [0,2n). Let L(6,8) = 3 6;e'% zo;. Then the coadjoint B-orbit through L(§,9) is
=1
given by

Jac: = {mAdF L(6,0)|b € B}

. _
={L= Z[b,-h,— + 6;{ajea; — Tje—a, )lid; € R,

=1 |
aj € C\{0}, arga; =46; if§; #0}, (6.1)

where AdC denotes the usual adjoint action of G on g.

If one ta.i:es §; =n/2and §; =1, forall j =1,...,¢ then L is, up to a factor of 7, a
typical element of a so-called “Toda orbit” in g, of Symes [1982]. We will call all elements
L appearing in (6.1) Jacobi elements.

Let I1,...,I; be a set of homogeneous generators of the ring of invariant polynomials on
g chosen such that their restrictions to £ are real and generate the invariant polynomials

on 8. The Hamiltonian equations
L =[mv (L), L] (6.2)

on the B-orbit Jac of Jacobi elements (5.1) will be called the Toda hierarchy. Fix an element
A in the interior of the positive Weyl chamber of t and let O4 be the K-orbit through A.

The the Toda hierarchy leaves O N Jac invariant. For Ay, 04 consists of matrices with

fixed spectrum A and O N Jac is the isospectral manifold. After multiplying by ¢ (and

D e S SR o PO T er e T A R
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setting 8; = 7/2, §; = 1 for j = 1,...,£) the first vector field in the Toda hierarchy for A
takes the familiar form L = [B, L], where

i bl ay 1 [ 0 23] 1
a1 b—b a —-a; 0 @ )
L= , B (6.3)
be — b1  ag 0 ag
L ag —bg- L —ag 0 .

For an arbitrary Lie algebra

., |
B = Zaj(eaj - €—q;) ' (6.4)

=1

Theorem 6.1. The Toda hierarchy is a completely integrable system and the 2¢ integrals

in involution are I,..., I,.

For a proof of this and a wealth of additional material on the Toda lattice see Kostant
[1979] and Symes [1980], (1982a]. We will return and sketch how a solution of the Toda

lattice is found in terms of the Iwasawa decomposition in the next section. In the sequel

we shall fix all §; = n/2 and all §; = 1 and set arga; = 7/2.

Theorem 6.2. If H is minus i times the sum of the simple coweights of g, then for

4 4
L=Y ibjhj+ ) iaj(ea; + eq;),
j=1

J=l

b;, a; € R, equation L = [L,[L, N]] gives the generalized Toda flow on the isospectral set
¢

JacNOp. Explicitly, N = 3 izjh; where (z1,...,z¢) is the unique solution of the system
]

, 5
zjar(h;)=-1,k=1,...,¢L
=g |
For the proof, it is enough to require that [L, N] = —B with B given by (5.4) and to

observe that the solution of the system in (z1,...,z¢) gives N = —ihy, where hy = E:=1 X

since (hg,eq;) =1, (, ) being the inner product. Therefore we can conclude

I T Ty ey
SNSRI B s
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Corollary 6.1. The generalized Toda lattice equations are a gradient flow on JacN Oy

when Q) 1s equipped with the normal metric.

The coefficients z; in IV are listed for all simple Lie algebras below '

g z

A, xg:—%i(f—i-{-l),i=1,2,...,£

B, zi=—31(2—-i+1),1=1,2,...,-1
ze=—1L£+1)

Ce zi=—-31(20-9)i=1,2,...,¢

Dq C mi=-di2-1-i),i=1,2,...,4-2
T 1 =T¢ = —%E(E -1)

G, 21 =-3, 22 =-5

Fy zy = —11, 22 = -21, z3 =15, z4 = -8

, Eg z, = —8, 9 = =11, z3 = —-15,

z4 =-21, 25 = -13, z¢ = -8

Eq _ Ty =—17, 29 = —%9, z3 = =33,
T4 = —48, 5 = -—%, zg = —26,
2y = 1

Eg T, = —46, zo = —68, z3 = —91,
z4 = —135, z5 = —110, zg = —84,

z7 = =587, g = -29
For the classical simple Lie algebras represented as in Sattinger and Weaver [1986], for
example, we have
A¢: hy = diag(1,-1,0,0,...), h; = diag(0,1,-1,0,...)...,
he = diia.g((l), ...,0,1-1) and hencfe

—42
2

N =1 N

wles
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By : hy = diag(0,1,-1,-1,1,0,...), hy = diag(0,0,0,1,-1,-1,1,...)...,
h¢ = diag(0,...,0,2,-2) and
-0 -
—£

Cy: hy = diag(l,~1,-1,1,0,...), hy = diag(0,0,1,-1,-1,1,...)...,

ke =(0,0,...,0,1,-1) and
-%(1_% -
“3(1-20
2(3—2¢)
~33-20
N=1 .
_3
? 3
2
=1
2
1
L 5 -
Dy: h; as for Cy and ‘ ‘
-+ 1 ' 7
-1 -
~£L+2
2-¢
N = .
-1
1
0
i 0.

Corollary 6.1 and Theorem 5.2 imply

Corollary 6.2. The projection of the flow of the Toda lattice to t lies in the interior of
the polytope which is the convex hull of Oy N t.

This polytope is, however, not filled by all flows of the Toda hierarchy. For A3 the

image is polygonal but lies inside the polytope. However, in general the image is not even

polygonal as shown by some explict cases studied by M. Zou at the University of Arizona.
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§7 A convexity theorem for Jacobi elements

This section surveys the main results of Bloch, Flaschka, Ratiu [1990]. The starting
point is the observation at the end of §6 that the Toda hierarchy flows do not fill out a
convex polytope by orthogonal projection. Return to the notations and conventions of
§6; set 6; = 1, §; = m/2 and so arga; = 7 for all j = 1,...,£4. The latter condition is

inessential since the arguments of the a; are always constant on Jac. Thus in this case

{
Jac={L =i [bjhj+a;(ea; + €j-o;)] | a;,b; € R}

i
and we shall fix once and for all the B-orbit in b* 2 8. Define
JY={LeOynJac|a; >0foralj=1,...,¢}
Jr={Le€OsnJac|a; >0forall j= 1,..:,8}.
The closure of J7 is Ja and the boundary of Jj is a disjoint union of 2¢ — 1 strata each
stratum being given by the vanishing of some of the a;’s. It is straightforward to see (as

in Kostant [1979] for example) that J? is preserved by the flows of the Toda hierarchy.
For the case of K = SU(£ + 1) the Jacobi matrix L is

by a
a4 52"'51 a2

be — b1 ae
L ae —be

and
Js = {L| L is conjugate to A and a; > 0 for all ;},

Ja = {L | L is conjugate to A and a; > 0 for all 5},
Ja is the closure of J 1‘\) which in this case is the isospectral set of the Jacobi matrices L. We
shall refer to Jj as the closed isospectral set and to JacN O, as the isospectral manifold.
We shall use the same names when dealing with a general Lie algebra. Since the Toda
lattice is integrable and the integrals are I1,...,I; (see §6), J2 is an orbit of the non-

compact torus given by the flows of the Hamiltonian vector fields corresi)onding to these

functions. Thus Jj is the closure of a non-compact torus orbit in the Kahler manifold Q4.
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In view of Atiyah’s Theorem {.1, the map (I1,...,I¢) to R® must have convez image. But
we just saw at the end of §6 that the orthogonal projection does not have conver image.
Therefore, the question naturally arises: can one embed Jy in a different way in Op such
that its projection is convez? The answer to this question is positive and solved in Bloch,
Flaschka, Ratiu [1990]; we will describe below the main ideas.

There has been prior work in which J4 and JJ appear in the context of convexii‘;y
properties. Moser [1975] proved that J? is diffeomorphic to R¢ and Tomei [1984] proved
that Ja is homeomorphic to a convex closed polyhedron. The first pictures of convex
polyhedra appear in van Moerbeke [1976] and then again in Deift, Nanda, Tomei [1983].
These polyhedra are used in these works as a useful tool to describe certain topological
relationships. In view of the convexity results of §4, it should be expected that these
polyhedra have a symplectic signiﬁcﬁnce as we shall outline below. The construction
employed to achieve this -goa.l is relatively involved and we shall omit it in this review. But
it is based on a mysterious relationship between diagonal non-compact toral actions and
left dressing transformations. Together with the ideas of §6, this work has relationships
to Fried’s [19861 cohomology computations and to the work of Davis [1987] and Davis and
Janusiewicz [1990] on aspherical manifolds. The work of Lu and Weinstein [1990] and Lu
[i990] on dressing transformations seems particularly relevant to this circle of ideas as will
also be seen in §8.

Beforé outlining the results;, a very simple example is in ér.cler. Let ¢ = su(2) and identify
su(2)* with R®. The Lie-Poisson structure of su(2)* has the concentr‘ic spheres and the
origin as symplgctic leaves. Represent A= diag(iA,—iA), A > 0 by the point (0,0,1) so
that O, is a sphere of radius A centered at the origin. The symplectic form is, up to a factor
of —1/A, the area form, and the complex structure, making O, into a Kahler manifold, is
essentially that of the Riemann sphere. The orbit O, consists in this simple example of
Jacobi elements. The other Poisson structure of R® = b* has leaves which are open half-
planes containing the vertical axis and the points of the vertical axis, if one lets B be the

. set of upper triangular matrices in SU(2). The compact torus T = {diag(e'®,e~*%) | § € R}
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acts by rotating the sphere Op about the vertical axis; namely
—-d -—ib

th ae??
—-ge~% b /)

The momentum map J of this action maps L € Oy to b, i.e. it projects the point on the

Le('b e )(—:OAc.su(z),

beR, ae€C,issent to

sphere Oy parallel to the horizontal plane onto the vertical axis. The image of the sphere
Oa and of the “meridian”, which is the intersection of Op with a B-orbit (a “page” of the
“book” b*), coincide and equal the convex interval [—A, A].

This example generalizes completely, except for the very difficult projection part, which
does not give any problems here due to the low dimensionality of the example. What is
true is that Ja (here the “meridian”) can be embedded in a special way in O such that
its projection is a convex polytope.

The convexity result alluded to above is built upon two main ingredients. The first one is
the explicit solution of the Toda lattice equation in terms of the Iwasawa decomposition as
it can be found in Kostant {1979], Reyman, Semenov-Tijan-Shanskii [1979], Symes [1980],
or Goodman, Wallach [1984]. The goal is to solve

L(t) = [m v L;(L(t)), L(t)], L(0) =L, (7.1)

where Iy, ..., I; are the homogeneous generators of the ring of real K-invariant polynomials
on . First one shows that if ¢ : ¢ — R is a homogeneous polynomial and one extends ¢
to gc in the obvious way using homogeneity, then if y = Re and the gradient is taken
relative to Im &, 7x(£) € it for all { € 8. From here it follows that 7I;(L), 7 = 1,...,4,
generate :C(L), where C(L) is the centralizer of L. Secondly, carry out the factorization

exp(t v I;(L)) = k(exp(t v I;(L)))b(exp(t ¥ [;(L))); (7.2)

then the solution of (7.1) is

L(t) = Ady(exprw1;(L)) -1 L = Adp(exp(ev1;(L))) L- (7.3)

BCT ]
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where ¢ = k(g)b(g) is the factorization of ¢ € G defined by G = KB. Since L € O,,
we can write L = AdiA for some k € K. By our first comments, Ady-11 7 I;(L) € t, or,
equivalently, Ady-1 7 I;(L) € a = it. Consequently, if 4 € a, X := Adgp, L := AdiA, the
curve L(t) = Ady(exptx)-1L is a solution of a linear combination of the equations (7.3).

But L(t) can clearly be rewritten as
L=AdiA — L(t) = Adk(exp(tu)k‘l)'lAs expiy € A, (74)

which defines the left dressing action of the non-compact real torus A on O, (see Lu,
Weinstein {1990], Lu [1990]). Unfortunately, the action of A defined by (4) is not the .

diagonal action
L =AdiA — Adk(hk)A-p " heT, (75)

and Atiyah's theorem stated in Corollary 4.1 doeﬁ not apply. Let J denote the momentum
map of the diagonal T-action, i.e. the orthogénal projection onto t relative to the invariant
metric coming from the Killing form on &. The image J(J4) is neither convex, nor a
polytope, as shown by examples by M. Zou. One can turn, however, (7.4) into (7.5) by
inversion. N;a.mely, define + : Ty — Ox by «(kAk™') = k~!Ak and the Toda flow (4)
becomes

L(L) = L(Ad"A) g Adk(exp(tp)k'l)A

which is exactly the diagonal action. Therefore J(«(Jx)) will be a convex polytope by
Atiyah’s theorem. The trouble is that the “inversion” AdgA — Adg-1 A makes no sense on
Oa: when one replaces k by kh, h € T, the image under ¢ will depend on h.

More precisely , given L € Op N Jac, L = AdiA, determines k only up to the right
multiplication of an element of T'; remember, A is chosen once and for all in the interior
of the positive Weyl chamber of t. And this leads to the second main ingredient, namely,
k must be chosen in a smooth way and uniquely for each L € J. That this is possible

is ultimately based on the Bruhat decomposition of K into cells and constitutes the main

technical part of the proof. It was inspired by ideas that show up also in Flaschka, Haine
[1990] and Ercolani, Flaschka, Haine [1990]. The upshot of this work is that the “inversion
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map” ¢ can be extended continuously to the boundary JA\J} and that it is a diffeomorphism
on J? and a homeomorphism on Jj. Here is its very simple and concrete description in
the case of SU(£+1). Let L = kAk~!. The columns of k are orthonormalized eigenvectors
of L. Let now L € J?; then the first row entries r; of k do not vanish. Fix k by the
requirement that rj/ry € R. This is the smooth unique choice of k for a given L. The
“inversion” ¢ is now easy to describe. The Toda hierarchy acts on ¢(J!) as the noncompact

‘torus A as follows: Consider the element

a = exp(piciAty + ... perrcer AT ) € A

where ¢y = 1 for k odd, ¢x = 1 for k even, and py,...,pes1 are arbitrary real constants.
We have the mapping
a: L) k(ak™")Ak(ak™1)"1.

It is a straightforward check to see that this action preserves the normalization of the r;’s
described above.

Now, several conclusions are possible.

Theorem 7.1. The image of Jp under the map J o : Jy — t is the convex hull of the
Weyl group orbit through A.

Combined with the results of §6 and those in Duistermaat, Kolk, Varadarajan {1983]
who show that the action of the one-parameter group exptu for u € &, on Q,, is a gradient

flow generated by —«(u, -) relative to the Kahler metric, Theorem 7.1 now implies

Theorem 7.2. The Toda flows in Jy are gradient flows in the metric induced by pulling
back the Kahler metric of «(Ja) to Ja.

It should be emphasized that the functions which generate the gradient flows are not
the Toda Hamiltonians. Theorem 7.2 is complementary to Theorem 6.2, where the Toda
flow is seen to be gradient relative to another metric which, geometrically, is more natural.

Shades of the “inversion map” ¢ will appear also in §8 and there seems to be a connection

between these results and the ones of next section.
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We close with some comments on the relationship between the results in §6, §7 and
Moser’s [1975] gradient flows associated with the Toda lattice.

We recall from Sections 5 and 6 that the Toda lattice equations are gradient with respect
to the normal metric on an orbit ©4 and hence may be written in the form L = [L, [L, N]].

Now one can project the flow on O, (which is diffeoﬁlorphic to K/T) to K/P, P a
parabolic subgroup of K.

Consider speciﬁca.ll); the case K = SU(£+ 1) and let Py = diag(1,0,...0) — ﬁ? Now
take the K-orbit O;p, through 1Py with points k(iPo)k~!, k € K. This orbit consists of
points of the form: rank 1 projection matrix minus a multiple of the identity, a.nd may thus
be identified with CP{. Now we can check that for :P € O;p,, —(adiP)*([iP,n]) = [i P, 7]

and hence (see section 4) the normal and Kahler metric coincide. (This also applies to a

general Grassmannian; see Bloch, Flaschka and Ratiu [1990].)

Now consider the gradient flow with respect to the Kihler (or normal !) metric of

¢x(iP) = —cTr(:PA*) on CP¢. Here A = diag(\,... ) and cis 1 or i as needed to make
¢k real. The gradient flow is
iP = [iP,[iP,cA%]).

Taking P=r ®7, r = (r1,...7¢41) with 3_ |r;[Z = 1 yields

41
I#il = =Irsl0f = Do MfImif?), j=1...6+1

=1
which is Moser’s equation for the Toda lattice.
Note that this flow is just conjugate to the Hamiltonian flow iP= [iP, cA"] - just apply
the complex structure {i P, ]! |
Note also that Atiyah’s theorem also applies to K/P. Ignoring the constant shift in
P,, the momentum mapping Jp : K/P — tis given by k™! mod P — idiag(r ® T). The

Jacobi matrix L is thus sent to (i|r1|?,...,i|rs+1]?) and the image in t = R is the standard
~+1
simplex ) & = 1.

i=1
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§8 The non-linear convexity theorem of Kostant

This section reviews the results in Lu, Ratiu [1990]. It is not directly related to the
previous ideas on the relationship between integrable systems and convexity. However,
the dressing transformation that appeared so prominently in §7 and certain aspects of the
“inversion map” on O, can be found here too. There seems to be a much deeper connection
between the ideasl in this section and the Toda lattice. On the symplectic geometric side, we
think, the result discussed below raises a host of other questions. For example, are there
other convexity theorems that have ultimately a symplectic origin? There are several
one can think of, among which are other convexity results proved in the same paper of
Kostant [1973], as Kostant himself has pointed out to us. On the other hand, are there
meaningful generalizations of the result below to a symplectic group setting? Finally,
do the constructions below shed some light on the second Hamiltonian structure for the
A;-Toda lattice (as opposed to the well-known results on the gé(¢ + 1)-Toda lattice)?

We return to §3 on the symplectic convexity results and set the stage for the statement
of one of Kostant’s non-linear convexity results at Lie group level.

G is a real connected semisimple Lie group with Lie algebra g and ¢ is the Lie subalgebra
corresponding to a maximal compact subgroup of the adjoint group of G. g = ¢ @ p is the
Cartan decomposition, i.e. p is the orthogonal complement of ¢ in g relative to the Killing
form. The elements of p are all semisimple and P = exp p is a closed submanifold of G; ezp
is a diffeomorphism between p and P. At the group level, the map (k,pj €K xPr—kp
is a diffeomorphism, where K is a connected subgroup of G with Lie algebra &; one writes
G = K P and calls this the Carten decomposition of G.

By the invariance of the Killing form, [¢,p] C p and therefore K acts on p by the adjoint
action and also on P by conjugation; the exponential map exp : p — P is K-equivariant.
Let a denote a maximal abelian subalgebra of p. The elements of a are all semisimple
and thus the adjoint representation of a on g decomposes as g = [ @ alélé ga Where [ is the
centralizer of a in g, and for a linear functional a on a, go = {£ € g [1,£] = a(n)¢ for all
n € a}; @ is the set of all such non-zero a’s. Fix a basis in a and introduce the lexicographic

ordering on functionals on a. Put n = go go and then g = €® a ® n is the [wasawa
a
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decomposition of g. Let A, N be the connected subgroups of G with Lie algebras a and n
respectively. The Jwasawa decomposition of G states that (k,a,n) € KXxAXN v kan € G
is a diffeomorphism; one writes G = KAN. By W we denote the relative Weyl group of
(K,a), i.e. W is the quotient of the normalizer of a in K by the centralizer of a in K.

If G is a complex semisimple Lie group, but thought of as a real Lie group, the above
choices are easier. £ is a compact real form of g, the Killing form on g is the complex
linear extension of that on &, p = ¢, a = it, where t is a Cartan subalgebra of . The
Weyl group of (K, t) is that of (K, a). Fixing a basis of t will ultimately define an Iwasawa
decomposition of g and G.

Now let G be a semisimple Lie group, real or complex. The Cartan and Iwasawa
decompositions define a diffeomorphism between P and AN, namely, if p = kan, then
associate to p the element an. Let p4 be the projection from G, P, or AN to A according

to the Iwasawa decomposition.

Theorem 8.1. (Kostant [1973]) For a € A denote by O, the K-orbit of a in P. Then
pa(O,) is the convex hull of the Weyl group orbit W -a in A (The Lie group A is identified

with its Lie alegbra a via the exponential map, so convexity makes sense.)

This statement is one of Kostant’s nonlinear convexity theorems. The term is justified
by the following remarks and the example to be discussed below. The differential (tangent
map) of p4 : P — A gives the orthogonal projection p, : p — a relative to the Killing form.
Let log : A — a be the inverse of exp and define J, := logo ps 0 ezp: p — a. We compare
J1 to pg. Jy is non-linear and its differential at zero is p,. What Kostant’s theorem states
is the remarkable fact that each K -orbit in p has the same convez image under both J; and
Pa and this polytopclis the convez hull of the corresponding Weyl group orbit.

Let’s sketch the simplest example: G = SL(n,C), K = SU(n), P = {n x n positive
definite Hermitian matrices with determinant 1}, N = {n x n strictly upper triangular

complex matrices}, g = sé(n,C), ¢ = su(n), a = {n x n real diagonal traceless matrices},

p = {n x n traceless Hermitian matrices }, n = {n x n strictly upper triangular complex

~matrices}. The Cartan decompositions are SL(n,C) = SU(n)P and sf(n,C) = su(n) @ p.
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The Iwasawa decompositions are SL(n,C) = SU(n)AN, $f(n,C) = su(n) Gadn. If
X €9, pa(X) is the diagonal part of X. On the other hand

J1(X) = (log 0 p4 0 ezp)(X)

822 n 2z
=~ (IogA (e*),log=——=% Azg 2z 3 logﬁ:{?;j)

where A is the determinant of the left upper corner k x k matrix. For X = (z;,...,z,) € a,
the flag manifold Ox (the K-orbit in p through X) is the set of all Hermitian matrices with
Zy,...,Zq as their eigenvalues. The relative Weyl group is in this example the permutation
group on n letters.

The expressions appearing in Ji(X) remind one of the explicit solution of the Toda
lattice equations (see Kostant [1979]); we don't believe this to be an accident but cannot
explain it so far.

Let us outline below the main ideas going into the “symplectic proof” of Kostant’s
theorem. We begin with the complex case, i.e. G is a complex semisimple Lie group, K is
a real compact form of G, and G = K AN is the Iwasawa decomposition. We let b := a®n,
B := AN and remark as in §7 that & is isomorpb.ic to b* via the imaginary part of the
Killing form x. Let pp and pp be the projections of g on ¢ and b respectively relative to
the Iwasawa decomposition g = ¢ @ b. We will denote by R, the right translation in B by
b, its differential, and all its tensorially induced maps. The following theorem is deduced
form abstract considerations in Lu, Weinstein {1990}, Lu {1990] and carried out “by hand”
in Lu, Ratiu {1990].

Theorem 8.2. On B define a bivector field = by
(Ry-1m(B))(X,Y ) = (Im k)(pe(Ady-1 X), pe(Adp-1Y))

where b € B, X,Y € ¢t = b*. Then 7 defines a Poisson structure on B = AN which is
multiplicative.

The property of multiplicativity means that « satisfies

ﬂ-(blb'z) = Lb17r(b2) + szﬁ-(bl)
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where L is left translation by b. A Poisson Lie group is a Lie group endowed with a
multiplicative Poisson structure. Thus theorem 8.2 gives a concrete natural formula for a
Poisson Lie group structure on B.

The Iwasawa decomposition at group level G = KB induces a smooth projection pp :

G — B, pp(kb) = b. Define the K-action on B by
o:(k,b) € K x B pp(kbk™!) € B.

Theorem 8.3. The symplectic leaves of the Poisson structure = in Theorem 8.1 are the

K-orbits in B relative to the action o.

Let t = ta and T be the connected subgroup of K with Lie algebra t. T is a maximal

torus in K.

Theorem 8.4. The restriction o to T leaves the Poisson structure m on B invariant and

the map
J=logops:B=AN —a

J(an) = log(a)

is the momentum map for this T-action.

It should be noted that the Poisson structure = on B is not K-invariant, but only 7-
invariant. In Lu, Weinstein [1990] it is shown that there is a natural Poisson structure on
K such that the map o : K x B — B is a Poisson map if one thinks of K x B as a product
Poisson manifold (see Weinstein [1983]). This Poisson structure on K alluded to above
happens to vanish on T and this is why this T-action is Hamiltonian.

The Poisson structure 7 on B and the T-momentum map J : B — a are the first
ingredient in the proof of Kostant’s theorem in the complex case. The second ingredient
is the convexity Theorem 3.1. P and AN = B are identified via pp (and both of them
are diffeomorphic to K\G). The action o of K on B becomes the conjugation of K on
P. We will still denote by 7 the push-forward to P of the Poisson structure on B and
so the symplectic leaves are the K-orbits on P. Every K-orbit in P intersects A and the

fixed point set of the T-action on the K-orbit is the corresponding Weyl group orbit. Now
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apply Theorem 3.1 to the equivariant momentum map J of Theorem 8.4 to immediately
conclude Kostant’s convexity result in Theorem 8.1.

To prove Theorem 8.1 for real Lie groups, a last ingredient is needed: namely Duis-
termaat’s Theorem 3.4. For this, we need to id_entify an antisymplectic involution on the
K-orbits in P. We will do better and find an anti-Poisson involution; it will be induced
by a Cartan involution. Here is the construction. Let G be a connected real semisimple
Lie group with Lie algebra g. Without loss of generality we may assume G has trivial
center so it admits a complexificaton G¢. Then the Lie alegbra of G¢ is gc = g @ 19,
the complexification of g. Let 7(X 4 tY) = X — 1Y be conjugation in g¢, X,Y € g, and
denote also by 7 the unique automorphism of G¢ whose differential at the identity is the
conjugation. The identity component of the fixed point set of 7 is G. If g = ¢ @ p is the
Cartan decomposition of g, let 8¢c = 8@ ip, pc = it ® p = B¢ so that both ¥c and pc
are T-invariant and the fixed point sets of 7 | 8¢, T | pc are ¢ and p respectively. B¢ is a
compact real form of g¢ and ge = tc & pc is a Cartan decomposition of gc. Let a be a
maximal abelian subalgebra of p, a’ a maximal abelian subalgebra of g containing a and
let ac = a @ i(a’ N E). Then ac is a maximal abelian subalgebra of pc and a is the fixed
point set of 7 | ac. Bases in a and ac are chosen such that the basis in ac is a prolongation
of the basis in a. Relative to such a choice (and a lexicographic ordering), we have the

Iwasawa decomposition

g=tPadn, gc=tcBac®nc.

nc is T-invariant and, as before, the fixed point set of T|nc is n. Now pass to the group

level and use the same notational scheme.

Theorem 8.5. Let 7 be the multiplicative Poisson structure on B¢ = AcN¢ defined in

Theorem 8.2. Then 7|Bc is an anti-Poisson autozﬁorphism, ie T'w = -m.

Now Kostant’s Theorem 8.1 for real Lie groups is a direct consequence of Duistermaat’s
Theorem 3.4 applied to a K-orbit in P viewed as the fixed point set of 7 on the K¢-orbit

in Pc through the same point. The only missing link is the momentum map Pec — a,

which, after a suitable identification becomes the Iwasawa projection Pc — A. This is
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constructed in the following way. Let T¢c be the maximal torus of K¢ with Lie algebra
tac. By Theorem 8.4, T¢ leaves the Poisson structure on Pc invariant (recall, we identify
Pc and B¢ = AcN¢). Let T be the subtorus generated by t = ia. Apply theorem 8.4 to

conclude that this action has equivariant momentum map
Jr: (kcacne) € Pc — proja(logac)

where k¢ € K¢, ac € Ac, nc € Nc and projg : ac — a is the orthgonal projection
relative to the Killing form. Let ap be the orthogonal complement of a in a¢c and define
Ao = expag. Then Ac = AAp and we can regard Jr as

Jr : (kcaagnc) € Pc— a€a

for kc € Kc, a € A, ag € Ag, nc € Nc. As before, this map is 7-invariant. Now restrict
the T-action and the momentum map to a K¢-orbit in Pc. By Theorem 3.4 the image of
the r-fixed point set, which is the K-orbit in P through the same point, has Jr-image in a
equal to the convex hull of the image of the fixed point set of the T-action on the K-orbit.
But this fixed point set is the intersection of the K-orbit with A, i.e. the corresponding
Weyl group orbit in A. Finally, Jr restricts to the identity map on A. This proves Theorem
8.1 in the real case.

It is worthwhile noting that the symplectic leaves of 7 in p and the symplectic leaves
of the Lie-Poisson structure on #* = p coincide. Moreover, a theorem of Conn [1985]
guarantees that locally, around zero, these two Poisson structures are isomorphic (the key
assumption in Conn’s theorem, that ¢ is compact semisimple, is automai;ica.lly fulfilled in
our case). We suspect that these Poisson structures are globally isomorphic and hope
that the isomorphism is relevant to questions regarding the multi-Hamiltonian structure
of the Toda lattice equations. Duistermaat [1984] has already shown that the momentum
maps for these two structures can be obtained from each other by a homotopy argument.
The hoped for Poisson isomorphism between = and the Lie-Poisson structure cannot be

K-invariant since 7 is not whereas the Lie-Poisson structure is; it must, however, be T-

invariant.
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